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ABSTRACT

This work deals with the problem of a boundary layer on a flat plate

which has a constant velocity opposite in direction to that of the uniform

mainstream. It has previously been shown that the solution of this boundary

value problem is crucially dependent on the parameter which is the ratio of

the velocity of the plate to the velocity of the free stream. In particular,

it was proved that a solution exists only if this parameter does not exceed a

certain critical value, and numerical evidence was adduced to show that this

solution is nonunique. Using Crocco formulation the present work proves this

nonuniqueness. Also considered are the analyticity of solutions and the

derivation of upper bounds on the critical value of wall velocity parameter.

Research for the first and second authors was supported by the National

Aeronautics and Space Administration under NASA Contract Nos. NASI-17070 and
NASI-18107 while they were in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23665-5225.
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I° Introduction

The boundary layer on the upstream-moving flat plate at zero incidence

admits of the classical similarity transformation which reduces the relevant

partial differential equations to the Blasius equation.

f"" + ff" = 0

f(0) = 0

f'(O) = -.%, X > 0

f'(=) = i,

where f = _(x,y)//(2vx), _ being the dimensional stream function, and

the kinematic viscosity, and _ = y/(2/_. This equation can be readily

integrated once to yield

I 1f"(n) = f"(0)exp - / f(z)dz ,
0

i.e.,

[ ° ]1 i i (_ - z)2 f"(z)dz
f"(_) = f"(0)exp _ X_2 - _ 0

using integration by parts twice. Obviously, the shear stress f"(n) has the

same sign as the skin-friction at the wall, f"(0). For I = 0, Weyl proved

the existence and uniqueness using function-theoretical methods. For I < 0,

Callegari and Friedman and Callegari and Nachman found it expedient to work

with the Crocco formulation, that is, in terms of shear stress g(=f") as the

dependent variable and tangential velocity u(=f') as the independent

variable:
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g(u)g"(u) + u = O, -X < u < I,

g'(-_) -- 0

g(1) -- O.

For _ _ 0, they proved existence, uniqueness, and analyticity of

solutions to Eq. (2) using an analytical function theory approach. For the

case % > 0, Hussaini and Lakin proved that a solution exists only for

less than a critical value % . Their numerical results showed nonuniqueness
c

for k < k and the numerical value of _ was found to be 0.3541 .... In
-- C' C

this work, the nonuniqueness is established rigorously. Also, proof of

analyticity, and absolute monotonicity etc., is given. Certain analytical

upper bounds on % are established.

For convenience, we use the transformation x = u + % to map the

interval -k < u < I, to 0 < x < i + k. So we consider the equations

g(x)g"(x) + (x - X) = 0, 0 < x < I + X (I.I)

g'(O) = o
(1.2)

g(1 + x) = o.

2. Analytlclty of Solutions

In this section, the following basic result will be proved:

THEOREM I: There is a range of positive values of _ such that the

positive continuous solution g(x) of the boundary value problem (1.1) and

(1.2) is analytic on the closed intervel [0,1 + _].
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This theorem will be proved by considering a sequence of lemmas. The first

lemma required is:

LEMMA I: The derivative g'(x) vanishes at one and only one point on

the interval 0 < x < i + I. Further, g(x) has its maximum value at this

point.

Proof of Lemma i: Equation (1.1) can be integrated using the initial

condition g'(0) = 0 to give

x

- _ d_, (2 I)g'Cx)= f0

Thus, as the initial value _ = g(0) > 0, both g(x) and g'(x) are positive

for 0 < x < I. Also,

g"(x) = (I - x)/g(x) (2.2)

is positive for 0 < x < I and g"(1) = 0. The continuous solution g(x)

remains positive for I < x < 1 + I, and hence g"(x) is now negative. This

gives that g'(x) is a monotone decreasing function for x > I. As

g'(1 + I) = -_, there must thus be at least one point on the interval

(I,I + I) at which g'(x) vanishes. In fact, assuming that g'(x) vanishes

at more than one point leads to a contradiction, for suppose that g" vanishes

at both xI and x2 with xI < x2. Then, g" would have to vanish at least

once between these two points which is impossible as g" < 0 for x > I. The

proof of Lemma 1 is concluded by noting that g"(x I) < 0 implies that

g(x I) must be the maximum value of g(x).
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LEMMA 2: The solution g(x) has a convergent power series expansion on

the closed interval [Xl,l + X].

Proof of Lemma 2: As g(x) is positive and differentiable for

xI _ x < i + X, equation (2.2) shows that g(x) has derivatives of all

orders on this interval. Further, expressions for these derivatives may be

obtained directly from the differential equation (1.1). Induction shows that

for n _ i, derivatives of g(x) satisfy the recursion relation

I n In+n+ 1g(n+3) = _ ig (n+l)g" g(n+2) +_ k=2 [_n-k+3J + ( k ) g(k) (2.3)

P) is
where g(k) is the k-th derivative of g with respect to x and (q

the usual combinatorial symbol.

Let g(xl) = _, and consider the auxilliary function G(x) defined by

G(x)= _ - g(x). (2.4)

Then, as B is the maximum value of g(x), G(x) is non-negative for

xI < x < 1 + X. Also, for all n _ i, Gn(x) = -g(n)(x). Consequently,

equation (2.1) shows that G'(x) is positive on the interval x < x < 1 + _.

From (I.I),

X - X 1 + G" G"

G"(x) =g--(-_-- and G'''(x) = g(x)

are also both positive on this interval. The recursion relation (2.3) thus

shows that all derivatives of G(x) are non-negatlve on the closed interval

[Xl,l + X - _] where 1 + X - xI > _ > 0. Hence, G(x) is absolutely
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monotonic on this closed interval. A theorem of Bernstein [4] now gives

that G(x) has a convergent Taylor series expansion about the point x1

whose radius of convergence is not less than 1 + % - xI. From the definition

of G(x), it immediately follows that for {x - Xl{ < i + % - xI, g(x) has

the convergent expansion

g(n)(xl) n.
g(x) = _ n] (x - x I) (2.5)

n=0

Application of a Tauberian theorem [5] further shows that the power series

(2.5) converges at the singular point x = 1 + % to the value g(l + %) = 0

completing the proof of Lemma 2.

To establish Theorem i, it must be shown that for a nontrivial range of

positive values of %, the power series (2.5) for the solution g(x) of the

boundary value problem (i.i) and (1.2) converges at the left boundary point

x = 0. This will be accomplished in Lemma 3. A consequence of this

convergence will be an expansion for the initial value of g(x) as the series

= (-i)n x_ (n)(x). (2.6)
= B + _ n! g i

n=2

3: There exists a positive value % such that if 0 < % < %

then xI < (I + %)/2.

Lemma 3 gives that the left-hand boundary point x = 0 lies inside the radius

of convergence of the power series expansion (2.5). Consequently, the

corresponding solution of the boundary value problem will be analytic. It

should be noted that the upper bound on xI given in Lemma 3 is a sufficient,

but not a necessary, condition for convergence.
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Proof of Lemma 3: Equation (1.1) may be integrated from 0 to x using

the identity gg" = (gg-)- _ (g-)2 and the initial condition g'(0) = 0. A

second integration from 0 to xI now gives the result

2 2 2 Xl

Xl(X 1 - 3_) _ _ - B + f _ _)g.2(_)d_.6 2 (Xl (2 7)
0

An upper bound on the right-hand side of (2.7) and a lower bound on the

maximum point xI are now required to establish the lemma.

A lower bound on xI may be obtained by using (2.1) and the fact that

g'(x I) = 0 to obtain

X Xl
l-_ _-_

f _ d_ = f d$0 X _ • (2.8)

As g(x) is monotone increasing on [0,Xl], g(x) J g(X) on [0,X], but

g(X) _ g(x) on [%,Xl]. Equation (2.8) now gives

xI _ 2%. (2.9)

As g(x) has its only maximum at xI by Lemma i, an immediate lower

bound on g(x I) = 8 is 8 > a. A sharper lower bound on 8 can be obtained

from the expression

Xl x 1

= + f (xI - )2
0 g(_) dE = _ + f (X - $ d_ (2 I0)0 g(_)

obtained by integrating (2.1) from 0 to xI. As g(x) _ B, and by (2.9),

xI - X _ %, equation (2.10) now gives the quadratic inequality
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3
B2 -aB - 2% > 0 (2.11)

3 --

which implies

B > a + /¢ 2 + 8%3/3" (2.12)-- 2 "

A lower bound on B2 _ 2 which follows from (2.12) is thus

_ 2_3
B2 2 __.___ . (2.13)

Consider next bounds on the initial value _. Let X = 1 + %. Then,

integrating (2.1) from 0 to X and using g(X) = 0 gives

X (x - $)(_ - %) d$. (2.14)
a = f g(_)0

This relation may be rewritten in terms of strictly positive integrals as

(x - _)(% - _) d_X (x - _)($ - _) d_ - f (2.15)a = f g(_) g.(_)0

which shows

X (x - $)(_ - _) d$. (2.16)i f

The convexity of g(x) on [X,X] implies that on this interval

g(x) > g (k).(X - x). Equation (2.16) now gives that a _ (2g(k)) -I. As

< g(k), this further implies

a2 11/2. (2.17)
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Equation (2.15) does not lend itself to the derivation of a lower bound

2

on a . However, in the present consideration of analyticity, the required

bound can be obtained from a relation between _ and B which follows from

the existence proof of Hussaini and Lakin [3]. This proof shows that if

is positive and does not exceed a critical value, there is at least one

initial value _ such that a positive continuous solution of the initial

value problem consisting of (I.i) and the conditions g(0) = a and g'(0) = 0

exists and has g(X) = 0, i.e., it is a solution of the boundary value

problem. Further, the solution of the initial value problem will be unique if

< 2=. (2.18)

It must be noted that a unique solution of the initia! value problem dn=_ not

imply a unique solution of the boundary value problem. This will be shown in

section 4.

A lower bound on a2 follows by using (2.18) in (2.12). The result is

_3
a2 _-- • (2.19)

The final bound needed for use in equation (2.7) is an upper bound for

g'(x) on the interval [0,Xl]. From (2.2), g"(x) is a monotone decreasing

function on this interval. Further, g"(l) = 0 while the third derivative

of g is negative when x = I. Thus, g'(x) has its maximum value at x = I.

This implies that on [0,Xl]

_-_
0 <__g'(x) <_g'(l) = f _ d$. (2.20)0
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As g(x) > _ on [0,%], equation (2.20) gives

_2
0 ! g'(x) !_a . (2.21)

An upper bound on the integral in equation (2.7) is thus

xI
3 2

f (xI - _)g'2(_)d_ !_ XxI" (2.22)
0

Use of (2.13) and (2.22) in equation (2.7) implies

Xl2(Xl _ "-_21_) + 2%3 _< 0. (2.23)

This relation gives that xI will be less than X/2 for _ in the range

0 < % < _ = 0.1176. The sufficient condition for analyticity is thus

satisfied for a range of positive values of % establishing Lemma 3 and

Theorem i.

Equation (2.9) implies that xI cannot be less than X/2 if % > i/3.

Indeed, direct numerical solution of the boundary value problem shows that xI
^

< X/2 when % < % = 0.32 and a lies on the upper branch in Figure i. The

A

gap between the values of % and _ is associated with fundemental problems

in obtaining sharper bounds on the initial value a. For example, equation

(2.15) implies

Xl X X

a < f (x - _)(_ - k) d_ + f (_ - _) d_ - f (_ - _)2 d_. (2.24)

-- _ g(_) x 1 g(_) x 1 g(_)
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Individually, the last two integrals in (2.24) are formally infinite, yet they

must cancel so as to give an order one upper bound. Direct numerical

calculations show that the upper bound on 2 is 2 < 0.219961. The upper

bound in (2.17) is thus conservative by over a factor of two.

It must again be noted that xI < X/2 is only a sufficient condition for

analyticity. For values of _ on the upper branch of Figure i, solutions of

the boundary value problem can thus be expected to remain analytic for

greater than _. Further insight can be gained by examining parameter values

for which the condition (2.18), which is sufficient for a unique solution of

the associated initial value problem, is maintained. Numerical results show

that (2.18) holds for all values of a on the upper branch of Figure i. It

also holds for _ on the lower branch of Figure i in the relatively small

range 0.351 < % < %c and is violated over the remainder of the lower

branch. The behavior of B as a function of _ is given in Figure 2. For

values of X associated with initial values on much of the lower branch of

Figure i, there must thus be serious doubts as to whether solutions of the

boundary value problem (1.1) and (1.2) are analytic.

3. An Upper Bound on
c

The existence proof of Hussaini and Lakin [3] established the existence

of solutions of (I.i) and (1.2) for positive values of 1 less than a

critical value Ic. It was shown from (i.i) and (1.2) that lc < i/2. The

value of Xc was also determined numerically in that work to be

Xc = 0.3541079... (3.1)
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In this section, additional upper bounds for %c will be obtained directly

from (1.1) and (1.2).

Using the identity that precedes equation (2.7), equation (2.1) can be

integrated from 0 to x and the result integrated again from 0 to X.

As g(X) = 0, this gives

2 X

X2(X - 3_) = ____+ f (x - _)g'2(_)d$. (3.2)
6 2 0

The right-hand side of (3.2) is intrinsically positive, and thus

x - 31 > o. (3.3)

This relation immediately implies

!i/2. (3.4)

To obtain sharper bounds now requires the use of positive lower bounds

for 2 and the integral in (3.2). While no additional assumptions are

required to obtain (3.4), in what follows it will be necessary to assume that

B < 2=. However, as noted previously, this condition is satisfied on the

entire upper branch in Figure i. In particular, it is satisfied in the

limiting case when _ = C

Let the integral l(x) be defined by

x

I(x) = f (X - _)g'2(_)d$. (3.5)
o

Then, as l(X) > 0, equation (3.2) implies
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X2(X - 3_) > 3_2. (3.6)

Replacing X by 1 + % and using (2.19) now gives the inequality

3X3 + 3_2 - 1 < 0 (3.7)

which yields the improved bound

< 0.47533. (3.8)

A slightly sharper bound can be obtained by noting that I(X) > I(%).

Let 6 = g(%). Then, g(x) < 6 on [0,%], so on this interval

2

g.2(x ) > x___ (2% - x) 2 (3.9)
-- 462 "

This leads to the relation

_5
I(1) > (5_ + 16) (3 i0)

--12062 "

An upper bound on 6 now follows from the fact that g(x) > a on [0,1] and

6 = a + f (_ _ lj2_ d$. (3.11)
0 g(_)

In particular,

62 < 2X3 + 1
-- 2 " (3.12)

Use of (3.12) in (3.10) then shows
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_5
I(%) > (5% + 16) . (3.13)

-- 60(2% 3 + 1)

Equation (3.2) now gives

X2(X - 3_) > 3a2 + 6I(_) (3.14)

which leads to the inequality

65%6 + 76%5 + i0_3 + 30% 2 - i0 < O. (3.15)

The solution of (3.15) is

< 0.46824 (3.16)

which is only a marginal improvement over (3.8).

Even if the lower bound on I(X) is further sharpened by considering

this integral on the full interval [0,X], a significant decrease in the bound

on % is not obtained. Again, this is due to the difficulties associated

with obtaining sufficiently sharp bounds on the initial value a.

4. Non-uniqueness of Solutions for 0 < _ <
C

Using direct numerical results, Hussaini and Lakin [3] have shown that if

is positive and less than _ then solutions of the boundary valueC

problem are not unique. For a fixed value of _ in this range, as shown in

Figure 1 there are two initial values _ which lead to solutions of the

boundary value problem. The purpose of this section is to prove this non-
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uniqueness directly from (i.i) and (1.2). To this end, it is convenient to

consider the normalized initial value problem

hh" + t - L = 0, (4.1)

h(0) = i, h'(0) = 0 (4.2)

obtained from the initial value problem for g(x) by taking

2/3
g(x) = ah(t) with x = a t. (4.3)

The parameter L in (4.1) is related to = and % through the expression

-2/3
L = a %. (4.4)

If h(T) = 0 and _(%) is given by

a {(i + %)/T} 3/2= , (4.5)

then g(X) = 0, so the solution of the initial value problem with initial

value (4.5) will also be a desired solution of the boundary value problem.

Equations (4.3) through (4.5) also imply that in terms of T and L

L

= T---'_ (4.6)

and

a = (T - L)-3/2. (4.7)
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LEMMA 4: Let hl(t) and h2(t) be solutions of the initial value

problem (4.1) and (4.2) corresponding to L values LI and L2,

respectively. Then, if L2 > LI, h2(t) > hl(t).

Proof of Lemma 4: For t << L, h(t) must be of the form i + Lt2/2.

Thus, the lemma holds for small values of t. That it holds for 0 < t _< T

can now be shown by contradiction. Let t be the first value of t at which

hl(_ ) = h2(_ ). As hI was previously less than h2, this requires

II 11

h2(-{) < h1(-{). But,

L2 - t L2 - t LI - t

h_(_) = - > = hi (t-). (4.8)
h2(-{) hI(-{) hI(_)

This contradiction establishes Lemma 4. Lemma 4 also shows that if

hl(T I) = 0 and h2(T2) = 0, then h2(T I) > 0. This implies that:

COROLLARY: T2 > T1.

The derivative h'(t) is given by an expression analogous to equation

(2.1). As h(0) is positive, both h(t) and h'(t) will be positive for

0 < t < L. This shows that T > L. Consequently, the denominators in (4.6)

are strictly positive. The following lemma gives a sharper result:

LEMMA 5: T > 3L.

Proof of Lemma 5: Equation (4.1) may be integrated twice from 0 to

t using (4.2) to give
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t3 Lt2 t

i/2h2(t) + 6 2 =1/2+ f (t - _)h'2(_)d_. (4.9)
0

This implies

1 t2(t _ 3L) > 0. (4 i0)h2(t) + _ --

Setting t = T and h(T) = 0 now establishes the lemma.

Consider next the behavior of T as a function of L. It has already

been shown in Lemma 4 that T is a monotone increasing function of L.

LEMMA 6: T(L) is superlinear in L.

Proof of Lemma 6: Let tI be the point at which h'(t I) = 0. As is the

case for the original initial value problem in the variable x, there is one

and only one such point, it lies in the interval L < t < T, and h(t I) is a

maximum value.

Equation (4.1) may be multiplied by h" and divided by h to give

hh" + h'(t - L) = 0. (4.11)h

Integration from 0 to t produces the result

t

i/2h'2 + (t - L)inh(t) - f inh($)d$ = 0. (4.12)
0

Evaluating (4.12) at tI now shows
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t1

f Inh(_)d_

0 (4.13)

tI = L + inh(tl ) •

Next, the expression

t (t - $)(L - $) d_ (4.14)
h(t) = 1 + f h(_)

0

may be evaluated at t = L to give an expression for h(L).

L (L - _)2

h(L) = 1 + f h(_) d_. (4.15)0

As h'(t) is non-negative on the interval [0,L], h(t) is monotone

increasing, so h(t) < h(L). Use of this fact in (4.15) gives the quadratic

inequality

L3

h2(L) - N(L) -_--_ 0 (4.16)

which implies h2(L) > L3/3. The solution h(t) has its maximum value at

tI. Consequently,

h(tl) > /_ . (4.17)

One additional bound is needed before demonstrating the superlinear

behavior of T(L). The change of concavity of h(t) on the interval [0,t I]

due to the fact that h"(L) = 0 precludes obtaining as a lower bound for h

on this interval the straight line which passes through the origin and the

point (tl,h(tl)) , i.e., it cannot be shown that h(t) > h(tl).t/t I. However,

for a given L, it is clear that h(t) can be bounded below on this interval

by a curve of the form



-18-

k

h(tl)t

H(t;k) - k (4.18)
t
1

for a value of k > i. As k increases, these curves become progressively

more convex. It should be noted that if H(t,_) provides a lower bound on

[0,t I] for the solution of (4.1) and (4.2) associated with L = _, then, by

Lemma 4, H(t,k) also provides a lower bound for solutions associated with

larger values of L.

This lower bound for h(t) on [0,tl] may be used to obtain an lower

bound for the integral in equation (4.13). In particular,

t

f inh(_)d_ > tI lnh(tl) -ktl. (4.19)
0

Equation (4.13) now implies that

L

tI > _ inh(t 1)- (4.20)

Use of (4.17) then gives

LT > tI >-_ in . (4.21)

The superlinear behavior of T(L) is thus established.

THEOREM 2: For positive values of X in the range 0 < I <
c'

solutions of the boundary value problem (I.I) and (1.2) are not unique.
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Proof of Therem 2: Consider the behavior of L as a function of %. By

(4.4), L(0) = 0. Equation (4.6) and the superllnear behavior of T with

repect to L shown in Lemma 6 now imply that the graph of % vs L must be

as in Figure 3. In particular, for a fixed positive % which is less than

_c' there will be two distinct values of L. By the corollary to Lemma 4,

each value of L must correspond to a different value of T. Equation (4.5)

now shows that for the fixed value of %, two distinct values a I and a2

exist such that the solutions of the initial value problems with these a's

are solutions of the boundary value problem (i.i) and (1.2). Solutions of the

boundary value problem are thus not unique completing the proof of Theorem 2.
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Figure I. Values of the parameter a = f"(0) for which f'(_) = 1 as a

functionof I.



-22-

/
/

/
0.8 -- /

/
/

/
/

0.6 /
/

/
/o0.4 -

/
/

0.2 -

1 1

0.1 0.2 0.3 0,4 0.5

o(.

Figure 2. Values of the maximum value 8 of g(x) as a function of the

initial value g(0) = a. The dotted line is 8 = 26.



-23-

Figure 3. The qualitative behavior of the parameter L in the initial

value problem (4.1) and (4.2) as a function of %.
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