
On Simple and Secure Key Distribution

Gene Tsudik Els Van Herreweghen

Communications and Computer Science Department

IBM Z�urich Research Laboratory

CH-8803 R�uschlikon, Switzerland

fgts,evhg@zurich.ibm.com

Abstract

Many recent research e�orts in computer security fo-
cus on constructing provably secure authentication pro-
tocols. Although many of the resulting protocols rely
on the a priori secure distribution of secret keys, no
provably secure key distribution protocols have yet been
demonstrated. In this paper, we use an existing secure
two-party authentication protocol as a stepping stone
for constructing a series of simple and secure key dis-
tribution protocols. The protocols are shown to satisfy
desired security requirements, using the security prop-
erties of the underlying authentication protocol.

1 Introduction

Research in authentication protocols has been fairly ac-
tive since the publication in the late 1970s of the Need-
ham and Schroeder landmark paper [11]. In it, they
proposed a family of protocols for two- and three-party
authentication and key distribution. The distinguish-
ing feature of these protocols was the use of encryption
for authentication. The protocols were subsequently
shown to contain some subtle weaknesses (e.g., [5]).
These weaknesses were subsequently �xed in [12] and
the Needham-Schroeder protocol family served as a ba-
sis for the well-known Kerberos network security server
originally developed at MIT [15, 16]. Although popu-
lar and fairly widespread, Kerberos has been subject
to considerable criticism both for the protocols it is
based on as well as for their implementation (see, for
example, [1].)
More recently, research e�orts began to develop (or

to provide tools needed for developing) authentication
protocols with some formal assurance of security. Most
notably, formal tools for testing authentication proto-
cols were developed, e.g., BAN logic [4] and its suc-
cessor, GNY logic [8]. Instead of devising speci�c pro-
tocols, these methodologies provide a means for show-
ing that appropriate beliefs are attained as a result of
running an authentication protocol. They are, how-

In Proceedings of ACM Conference on Computer and Com-
munications Security, November 1993.

ever, no panacea as there remain a number of issues
(i.e., non-disclosure of secret information) that these
methodologies do not address.
Other e�orts, in particular, Bird et al. [2], concen-

trated on constructing protocols that can be shown se-
cure (in some restricted de�nition of the term.) The
main result of Bird et al. [2] is a two-party authentica-
tion protocol shown to be secure against an important
class of attacks known as interleaving attacks. Such at-
tacks are based on the adversary's ability to use either
i) legitimate
ows obtained from past executions of the
protocol or ii) protocol
ows elicited by the adversary
from legitimate parties.
Both e�orts stopped short of designing more elab-

orate protocols, speci�cally, key distribution protocols
that can be shown secure. In fact, the follow-up to [2] is
a family of three-party key distribution and authentica-
tion protocols [3] that has been subsequently realized
in an actual network security service, KryptoKnight
[9]. The underlying key distribution protocols, how-
ever, have not been shown secure; at least, not insofar
as the authentication protocols in [2].
The goal of this paper is to probe further, i.e., to

develop simple and secure two- and three-party key
distribution protocols. This is achieved by combining
careful protocol construction techniques and utilizing
the properties of a two-party authentication protocol
(already proven secure) as basic building blocks. Our
design is similar both in spirit and motivation to tech-
niques developed by Gong in [7], but focuses more on
modularity and simplicity.

2 Design Goals

Before turning to the construction of the actual proto-
cols, we emphasize the goals of our design and desired
properties of the resulting protocols:

� Simplicity
Simplicity is the major theme in our design and
its foremost intended feature. The simpler the
protocol, the easier it is to spot vulnerabilities
and to demonstrate security features.

1

� No timestamps
Use of timestamps in authentication and key dis-
tribution protocols has been debated ad nauseum
for a number of years. Since our concern is with
simplicity, timestamps are unacceptable because
of the inherent requirement for (even loose) clock
synchronization.

� Small number of cryptographic operations
Cryptography is essential but must be used spar-
ingly. Minimizing the use of cryptography makes
protocols simpler and more e�cient.

� Small message sizes
Small message sizes can make a protocol suit-
able for implementation in space-conscious envi-
ronments, e.g., in a network layer or in a boot
service. Another incentive is to eliminate unnec-
essary redundancy which can otherwise make a
protocol less secure and/or less e�cient.

� Small number of messages
Similarly, too many messages make an awkward
protocol. Few messages make the protocol sim-
pler to implement and less prone to timing con-
straints (i.e., fewer delays).

� Conventional cryptography
The merits of public key cryptography are many
and well-known. However, it is still quite ine�-
cient. Furthermore its use sometimes presents a
problem because of the associated patent issues.
Finally, most public key methods impose a fairly
large basic encryption block size (e.g., a 512 bits
is a recommended minimum for RSA [14].) In
light of these concerns we proceed with conven-
tional encryption in mind. Nonetheless, for the
sake of generality, the resulting protocols must
not have any features that rule out the use of
public key cryptography.

� No decryption
A typical cryptosystem has two components: en-
cryption and decryption. While the use of en-
cryption is necessary there are reasons to avoid
using decryption. First, decryption makes the
implementation more complex. Second, it rules
out the use of strong one-way hash functions in
place of traditional encryption techniques (and
where only encryption is needed, strong one-way
hash functions can be used instead at much lower
cost; see, for example, [17].) Finally, protocols
using only encryption (but no decryption) avoid
the entire issue of exportability which is relevant
at least in the United States.

� Minimal overhead
The key distribution protocol we intend to con-
struct should impose minimal additional over-
head on the existing authentication protocol it
is based on. Since the authentication protocol
used as building block is a generic one, we ab-
stract out the speci�cs of the underlying encryp-
tion function.

3 Terminology

The following terminology is used throughout the pa-
per:

� A; B; P; Q - full principal names (e.g., in X.500
format).

� S - full name of the Authentication Server; S
is assumed to be universally trusted by all con-
stituent principals.

� � - exclusive-OR operator.

� EK(X) - encryption of plaintext block X under
key K. Both K and X are assumed to be not
longer than the basic block size of the underlying
encryption function, e.g., 64 bits in case of DES
[10] or 512 bits in case of MD5 [13].

� MACK(X) - DES-style message authentication
code (MAC) computed in CBC mode over plain-
text X with key K. However, this notation does
not in any way imply the use of DES.

� Kab - all symbols beginning withK are keys. The
two-letter subscript identi�es the two principals
sharing that key (e.g., A and B share Kab).

� Nab - all symbols beginning with N are nonces,
i.e., non-secret but unpredictable random num-
bers, used only once for this purpose. The �rst
letter of the subscript (e.g., a in Nab) refers to the
party that originated the nonce while the second
subscript letter identi�es the target party.

� A =) B X - this notation captures a single proto-
col
ow; it denotes that A sent a message X to
B.

4 Initial Assumptions

The single most important assumption we need to
make is that there exists a secure two-party authentica-
tion protocol (2PAP). One example is the nonce-based
three-message protocol developed in [2]. The protocol

2

is illustrated in Figure 1. However, any secure nonce-
based 2PAP will su�ce for our purposes. Informally
speaking, a 2PAP is considered secure if and only if:

It is computationally di�cult for an intruder

to impersonate either party

The di�culty should be equal to the strength of the
underlying cryptosystem or a strong one-way function.
For example, if DES [10] is used with the 2PAP in [2],
the computational di�culty of defeating the protocol
equals that of breaking DES by brute force, which is
generally believed to require on the order of 256 trials.

P =) Q P;Npq

Q =) P AUTHKpq
(Npq;Nqp; Q);Nqp

P =) Q ACKKpq
(Npq; Nqp; P)

Figure 1: Secure Two-Party Authentication Protocol
(2PAP)

AUTHKpq
denotes an authentication expression

based on the shared key Kpq and generated by the
responding party (Q in our case). This expression is
computed over three inputs: two nonces (one generated
by each party) and the name of the message originator.
One example of AUTH is:1

E(Q� E(Nqp � E(Npq)))

Similarly, ACKKpq
is the authentication expression

that the initiating party sends in order to complete
two-way authentication. It is computed over the same
inputs except for the message originator's name (which
is P in this case, or can even be omitted as shown in
[2]). An example of ACK is:

E(Nqp � E(Npq))

The above protocol has several advantages:

� Compactness: minimal number of messages; also,
each message is of minimal length.

� Security: the protocol has been shown secure
against interleaving attacks.

� No decryption: a strong one-way function suf-
�ces.

5 Two-party Key Distribution
Protocol (2PKDP)

The model for two-party key distribution is such that
one of the parties initiates the protocol by requesting

1All encryption is performed with Kpq.

a new key. The other party responds by generating a
new key and shipping it back to the requester. The
protocol may include a con�rmation
ow whereby the
initiator acknowledges the receipt of the new key.
Although our ultimate goal is the design of a se-

cure three-party key distribution protocol (3PKDP),
we adopt an incremental approach by �rst construct-
ing a secure two-party KDP and, subsequently using
it as a stepping stone for obtaining three-party KDPs.
However, one should not conclude that two-party key
distribution, by itself, has no applications. A 2PKDP
can be used, for example, to refresh a short-term ses-
sion key between two parties (while retaining a more
long-term pairwise key.) More generally, a 2PKDP can
be used in an environment where the requesting party
needs a good, fresh key for any number of reasons and,
not being able to generate such a key, asks the party
that can (e.g., an AS.)

5.1 Desired Properties

A 2PKDP is said to be secure if and only if the following
properties hold:

� Key Non-Disclosure: a third party cannot dis-
cover a key being distributed without explicit
collaboration of a legitimate party. (Legitimate
party is one of the two protocol participants.)

� Key Non-Modi�cation: a third party can-
not modify a key being distributed to any value
known to this third party.

� Key Non-Reuse: a third party cannot dis-
tribute a previously used key, i.e., it cannot fool
the initiating party into using an old key. (This
can be considered a subset of the Key Non-
Modi�cation property.)

� Key Independence: knowledge of one key can-
not be used to compute other keys, i.e., a key
distributed in one protocol run does not open the
door to discovering keys distributed in other pro-
tocol runs.

Strictly speaking, the integrity of the key being dis-
tributed is not one of the goals of a "pure" KDP. In
other words, an attacker may be able to tamper with a
key distribution message, resulting in a di�erent, albeit
unknown to the attacker, value of key. This seems a
bit unorthodox, however, it can be argued that, once a
key is distributed, a simple authentication protocol be-
tween the two parties can be used to verify the "good-
ness" of the key.

3

5.2 Constructing Secure 2PKDP with
Secure 2PAP

In this section we derive some features of cryptographic
expressions used in the secure 2PAP protocol. These
will help us later in demonstrating desired properties of
the key distribution protocols presented in subsequent
sections.
Lemma 1: Given a secure 2PAP of the form de-

picted in Figure 1, it is computationally di�cult for an
intruder (not knowing Kpq) to obtain an AUTH ex-
pression when at least one of the nonces Nqp or Npq is
selected by a legitimate party.
Proof: Follows directly from our de�nition of se-

cure 2PAP.
Let F (K;P) = C be a strong encryption function

that transforms plaintext P into ciphertext C using
key K, e.g., DES. Let �K be a randomly-generated, un-
predictable, used-only-once quantity, i.e., �K is a good
nonce.
Lemma 2: It is computationally di�cult to ob-

tain:

F (AUTHKpq
(Npq; Nqp; Q); �K)

without the knowledge of the AUTH expression.
Proof: Since the AUTH expression itself is com-

putationally di�cult to obtain, it follows that any en-
cryption of randomly-selected cleartext (�K) computed
with AUTH as a key, is also computationally di�cult
to obtain.

Corollary: It is computationally di�cult to ob-
tain:

AUTHKpq
(Npq; Nqp; Q) � �K(1)

Proof:
Expression 1 represents one-time-pad encryption (�)
of \plaintext" �K with \key" AUTHKpq

(Npq ; Nqp; Q).
Both plaintext and key are random and unpredictable
values, and therefore this can be considered a strong
encryption function.

5.3 Sample Protocol

P =) Q P;Npq

Q =) P AUTHKpq
(Npq;Nqp; Q) � Knew; Nqp

Figure 2: Two-Party Key Distribution

We now turn to the particulars of 2PKDP. The protocol
depicted in Figure 2 takes advantage of the AUTH ex-
pression scavenged from the secure 2PAP. It is a simple
protocol consisting of only two messages. It resembles

a truncated 2PAP except that the authentication ex-
pression in the second message is used as a one-time
mask for the key being distributed.2 Knew is assumed
to be a good nonce, i.e., random, used-only-once value.
Kpq is assumed to be a strong long-term key (e.g., a
key obtained at login time) while Knew is a short-term
session key. In order to obtain Knew the recipient (P)
�rst recomputes the mask based on its own Npq and
Nqp which is supplied in cleartext. The key is then ex-
tracted by XOR-ing the re-computed mask expression
with the corresponding �eld in the message.

Key disclosure in 2PKDP can take place only if the
attacker is able to obtain an AUTH expression that
safeguards a new key. The attacker has two sources
of information that can help in "breaking" the proto-
col. First of all, the attacker may record any num-
ber of legitimate executions of 2PKDP between P and
Q. In this case, Npq is always under control of P and
Nqp is always under control of Q. Alternatively, he
may try to impersonate P by changing or composing
a �rst message of the protocol and intercepting Q's re-
ply; in which case Npq is under the attacker's control,
and Nqp is selected by Q. In both cases, at least one
of the nonces: Npq ; Nqp, is always under the control
of a legitimate party, i.e.,P or Q. Therefore, the abil-
ity to compute AUTHKpq

(Npq ; Nqp; Q) is equivalent to
breaking 2PAP.

Key modi�cation Key modi�cation to a value
known by the attacker is essentially equivalent to key
disclosure. If the attacker is able to modify the key to a
selected value then the corresponding AUTH expres-
sion simultaneously becomes known. However, since
the attacker cannot know the key a priori, he must
�rst know the AUTH expression. This is clearly im-
possible, as shown above.

Key re-use entails the attacker "feeding" an old key
to the initiating party. Note that the attacker does
not have to know the old key in order to try this at-
tack (the simplest attack is to use pre-recorded replies
from previous 2PKDP runs.) Since the attacker does
not know any old key Ko, the only pieces of knowl-
edge available to him are the recorded messages from
previous protocol runs of the form:

AUTHKpq
(No

pq ;N
o
qp;Q) � Ko; No

qp(2)

In order to be fooled into acceptingKo, P has to receive
a message of the form:

AUTHKpq
(Npq ;N

x
qp;Q) � Ko; Nx

qp

where Npq is the fresh nonce generated by P in the
current protocol run and Nx

qp is a nonce which is either

2It is assumed that the AUTH expression yields a uniform-
random expression of the same size as the key, which is the case
for the protocol depicted in Figure 1.

4

generated by the attacker or by Q. Then, the following
relationship must hold:

AUTHKpq
(Npq; N

x
qp;Q) = AUTHKpq

(No
pq; N

o
qp; Q)

Assuming that AUTH is based on a strong one-way
function, this condition can hold only if:

Npq = No
pq

and

Nx
qp = No

qp

which is impossible since P is assumed to generate
bona �de nonces (i.e., nonces, by de�nition, are never
reused.)
Alternatively, we can analyze the issue of replay by

considering what happens if an attacker re-sends an
old protocol message (see expression 2 above) to P ,
replacing the nonce N o

qp by some value Nx
qp:

AUTHKpq
(No

pq; N
o
qp; Q) � Ko; Nx

qp

where either Npq 6= N o
pq or Nx

qp 6= N o
qp, P will extract

a key K0 instead of Ko, satisfying following equation:

AUTHKpq
(Npq; N

x
qp; Q) � K0 =

AUTHKpq
(No

pq; N
o
qp;Q) � Ko

K0 is, however, not known to the attacker, since he
can't compute the AUTH expression masking it.
One important consequence of this result is that

the attacker can, in e�ect, "fool" the protocol initia-
tor P into accepting just about any tuple of the form
< Gx; Nx > as valid reply in the second
ow of the
protocol. However, we still claim that the protocol

achieves its goal of distributing a random, one-time
key which can only be discovered by the legitimate pro-
tocol initiator. That is, even though the attacker can
convince P to accept any value Gx as an expression
masking the key, the protocol retains its strength since
the key extracted from Gx remains secret.

Key independence requires that protocol runs be
unrelated. If the attacker discovers Ki from some pro-
tocol run (possibly via a brute force attack or some
other means external to the protocol) then he simul-
taneously gains the knowledge of the corresponding
AUTH expression, AUTHKpq

(N i
pq ; N

i
qp; Q) that con-

ceals the said key.
As there is no relationship between keys distributed

in di�erent protocol runs, knowledge of a Ki, by itself,
o�ers no advantages to the attacker. Even knowledge of
AUTHKpq

(N i
pq ; N

i
qp; Q) is only marginally useful since

we assume that the probability of:

AUTHKpq
(N i

pq;N
i
qp;Q) = AUTHKpq

(N j
pq; N

j
qp; Q)

is negligible when [N i
pq ; N

i
qp] 6= [N j

pq ; N
j
qp] (i; j denote

the di�erent protocol runs.) Therefore, knowledge of a
single session key cannot lead to the discovery of other
session keys.

Key Integrity The protocol in Figure 2 above does
not provide for key integrity. As discussed before, key
integrity is not necessarily considered a foremost prop-
erty of a secure key distribution protocol. Failure to
assure key integrity may result in the distribution to
the requesting party of a key di�erent from the one
originally issued. However, under some circumstances,
this is not problematic. For example, if the key issuer
does not retain any knowledge of the key after issuing it
(the key may be intended for communication between
the requester and some other party), the integrity of
the key does not matter so long as its value does not
become known to an unauthorized party.
There are also scenarios where key integrity is

needed. So far, we have made an implicit assumption
that the new key is chosen uniformly by its issuer. By
uniformly we mean that, supposing that a key is an n
bits long, then every possible n-bit quantity is equally
likely to be selected as a key. In this case, any modi�-
cation of the key distribution token (in message 2) still
preserves the uniformity of the key that is subsequently
extracted. On the other hand, if keys are selected in
a non-uniform manner whereby each key must satisfy
some particular requirements (e.g., the RSA cryptosys-
tem), the non-uniform properties would not be pre-
served if the key distribution token is modi�ed.

6 Three-party Key Distribution
Protocol (3PKDP)

The properties of the 2PKDP discussed so far appear
reassuring. However, two-party key distribution is not
a particularly useful application. A much more com-
mon scenario is that of three-party key distribution.
The model for three-party key distribution is that two
parties having no shared secret key enlist the assistance
of a mutually-trusted third party performs the actual
key distribution. This trusted third party is frequently
referred to as Authentication Server (AS) or Key Dis-
tribution Center/Server (KDC). Each of the two par-
ties are assumed to share a longer-term key with the
AS.

6.1 Desired Properties

As with 2PKDP, the goal is to design a secure 3PKDP.
The conditions for a secure 3PKDP are essentially simi-
lar to that of 2PKDP. The only additional requirement
is that a 3PKDP must be secure against a malicious
insider, i.e., a legitimate party that, by participating
in legitimate runs of the protocol, can gather enough
information to impersonate other parties or otherwise

5

abuse the protocol.3 This requirement is, of course,
limited since there are some exposures (e.g., a malicious
insider disclosing a key shared with another party) that
cannot be addressed within the scope of a 3PKDP.

6.2 The Protocol

Figure 3 illustrates a naive version of a secure 3PKDP.4

It is constructed by simply putting together two runs
of 2PKDP.5 One notable aspect is that the key being
distributed in messages 2 and 4 is one and the same {
Kab. The names of the parties involved are changed to
emphasize the di�erence with respect to previously dis-
cussed two-party protocols; A and B are the two prin-
cipals and S is the mutually-trusted AS. The only other
aspect where the present protocol di�ers from 2PKDP
is in the way principal names are used within AUTH
tokens. Whereas before, a name denoted the originator
of a token (as in Figure 2), it now refers to the thrid-
party in the protocol, e.g., the AUTH token sent from
S to A includes B's name; similarly, the AUTH token
sent from S to B includes A's name. This feature is
necessary to prevent masquerading attacks whereby a
malicious party tampers with the principals' names in
message 1 of the protocol.

A =) S A;B;Nas

S =) A AUTHKas
(Nas; Nsa; B) � Kab; Nsa

B =) S B;A;Nbs

S =) B AUTHKbs
(Nbs;Nsb; A) � Kab; Nsb

Figure 3: Naive Three-Party Key Distribution

The protocol is secure with respect to outsider at-
tacks, i.e., a non-participating party (i.e., not A, B
or S) cannot subvert the protocol. This follows di-
rectly from the established security of 2PKDP. The
only additional information available to the attacker
from 3PKDP (as opposed to two unrelated runs of
2PKDP) is the fact that the same key is being dis-
tributed to A and B. However, not knowing either the
key or the masking expression, the attacker can only
try to play XOR-ing "games" and factor out Kab by

3We note that the problemof malicious insiders does not exist
in two-party key distribution.

4A more sophisticated protocol would optimize the number of
protocol
ows and minimize the size of each
ow. At this point,
however, we are not yet concerned with optimization.

5This version of the protocol only intends to show the proper-
ties of the key distribution, and doesn't deal with synchronizing
A and B (how does B know that A wants to communicate?). In
a real protocol, this issue could be dealt with by having A send
all its communication with AS over B. This would imply that A
would start by contacting B instead of AS.

computing:

AUTHKas
(Nas; Nsa; B) � Kab �

AUTHKbs
(Nbs; Nsb; A) � Kab =

AUTHKas
(Nas; Nsa; B) � AUTHKbs

(Nbs;Nsb;A)

This expression cannot be of any value since its com-
ponents remain unknown. In fact, the attacker can
succeed in distributing AUTHKas

(Nas; Nsa; B) to B
(instead of Kab) and/or AUTHKbs

(Nbs; Nsb; A) to A
(instead ofKab). However, this is nothing but a special
case of previously discussed key integrity issue. Recall
that even in 2PKDP the attacker is able to modify the
key by o�setting (i.e., XOR-ing with any value) the
masked key expression. Nonetheless, the key extracted
from such "mangled" expression remains unknown to
the attacker.

6.3 Insider Attacks

6.3.1 Key Modi�cation and Re-use

The new danger introduced in this 3PKDP as a result
of using the same key in messages 2 and 4 are the so-
called insider attacks by either A or B. Both A and B,
being privy to Kab, can discover each other's AUTH
expressions and try to use this new knowledge in some
malicious fashion.
Knowing Kab, A (or B) can now alter B's (or A's)

key distribution token to any desired value. Whether
or not this is a real threat depends on the requirements
speci�c to the local environment. The present proto-
col certainly ful�lls the requirements of non-disclosure,
non-modi�cation, non-reuse and independence as de-
�ned in section 5.1, as long as the adversary is an out-
sider. In its current state, the protocol is vulnerable to
modi�cation or reuse of Kab by an insider (A or B).
In other words, neither of the two parties can be sure
that the Kab was actually issued by the AS.
This exposure cannot be addressed without changing

the original 2PKDP. (See section 6.4 below.)

6.3.2 Other Attacks

Insider attacks can take on a broader scope. In general,
any legitimate partyX that is registered at the AS, can
use 3PKDP to obtain a set of messages of the form:

AUTHKas
(Nas; Nsa;X) � Kax; Nsa

AUTHKxs
(Nxs; Nsx; A) � Kax; Nsx

for any selected party A and any selected values of Nxs

and Nas. Because X can extract Kax from the second
message, he can also obtain the corresponding AUTH
expression: AUTHKas

(Nas; Nsa; X).
Since the AUTH expression is computed using Kas,

the only way X could try to misuse this information
is in an attempt to modify or �nd a key distributed to

6

A in a 3PKDP execution between A and some other
party, say B. For such an attempt to succeed, X
needs to compute AUTHKas

(Nas; Nsa; B) for either:
i) a random value of Nas or ii) a random value of
Nsa. Since X only knows expressions of the form
AUTHKas

(: : : ; : : : ; X), �nding an expression of the
form AUTHKas

(: : : ; : : : ; B) is equivalent to breaking
2PAP.

6.4 Maintaining Key Integrity

In order to protect against insider attacks and maintain
the integrity of the new key, we need to modify 2PKDP
and, consequently, 3PKDP to explicitly include the in-
tegrity check of the key being distributed. The protocol
in Figure 4 is essentially the same as the basic protocol
in Figure 2 except that Nqp is no longer a simple nonce,
but the encryption6 of the other party's nonce under
the new session key, i.e., Nqp = EKnew

(Npq).
For the sake of simplicity, we focus on the two-party

version in the rest of this section, however, the discus-
sion is equally applicable to a three-party variation.

P =) Q P;Npq

Q =) P AUTHKpq
(Npq;EKnew

(Npq);Q) � Knew;

EKnew
(Npq)

Figure 4: Two-Party Key Distribution with Self-
Checking Nonces

The implications of this change are not immediately
obvious. An integrity check bene�ts the receiver of the
message but it can also be of value to an attacker. For
example, an outsider attacker now possesses cleartext-
ciphertext pairs of the form [Nas; EKab

(Nas)]. This
new information can help in breaking the session key
via a known plaintext attack. On the other hand, the
session key is no longer subject to insider modi�cation.
Any change in the expression containing the key must
be accompanied by the change in the corresponding
key integrity check. For example, if an (in- or outsider)
intruder wants to distribute K0

ab to A instead of Kab,
it must be able to change the key distribution message
for A from:

AUTHKas
(Nas; EKab

(Nas);B) � Kab; EKab
(Nas)

to:

AUTHKas
(Nas; EK0

ab
(Nas);B) � K0

ab; EK0

ab
(Nas)

Equivalently, the integrity of the key is dependent on
the intruder's ability to generate a pair of values:

X = EK0

ab
(Nas)

and

Y = AUTHKas
(Nas; EK0

ab
(Nas);B) � K0

ab

6Or the result of applying any strong trapdoor one-way
function.

where Kas, Nas and B are �xed and K0

ab is free.
7

If we assume that the encryption function is one-
to-one, i.e., the encryption of Nas under a given key
(Kab) is distinct, then we can infer that Y is a function
X. This is because X uniquely determines the value of
Kab which, in turn, uniquely determines the value of
AUTHKas

(Nas;EK0

ab
(Nas); B). Making a further assump-

tion that AUTH is based on a secure MAC allows us
to conclude that, since both Nas and B are �xed, the
value of EK0

ab
(Nas) is uniquely determined from
AUTHKas

(Nas; EK0

ab
(Nas);B).

Hence, for every possible choice of Y there exists only
one value of X.
Suppose that the intruder is able to compute a pair

of values [X;Y] satisfying the above conditions. As a
result of this computation, the intruder must be able
to verify the relationship between X and Y . This veri-
�cation cannot be achieved without the knowledge of
K0

ab. But, since

Y �K0

ab = AUTHKas
(Nas; EK0

ab
(Nas);B)

the intruder simultaneously comes into possession of

AUTHKas
(Nas;EK0

ab
(Nas); B)

However, knowledge of this AUTH expression contra-
dicts our assumptions about a secure 2PAP. The in-
truder can obtain an AUTH expression in one of two
ways:

1. by obtaining a "fresh" AUTH expression that
has never been computed by S.
or

2. by obtaining "stale" AUTH expressions previ-
ously used by S in a past run of the protocol.

Case 1: is in direct contradiction to the properties of a
secure 2PAP as described in Sections 4 and 5.2. Case 2:
any AUTH expression from a previous protocol run is
bound to the nonce Nas used in that execution. Since
A can be expected to generate good nonces in every
new protocol run, it is impossible to reuse stale AUTH
expressions. Therefore, the attack is impossible.

7 Conclusions

This paper discussed the issues of secure key distri-
bution in a network environment. Results of previous
research in secure two-party authentication were used
to construct a range of simple and secure protocols for
both two- and three-party key distribution. The pro-
posed protocols are compact and require minimal ad-
ditional computation on top of existing authentication

7The term �xed means that the variables involved are set for
the duration of the protocol run; free means that the variable is
allowed to take on any value.

7

protocols. This makes them suitable for adaptation at
any layer of the network protocol hierarchy; in partic-
ular, at the data link and network layer where both
bandwidth and computational resources are often lim-
ited.

8 Ongoing Work

The integrity of the key being distributed has not been
a major concern in the design of the basic protocols
presented in this paper. However, it is recognized that
in many cases, key integrity is a required property. The
solution proposed in section 6.4, using self-checking
nonces, preserves key integrity but opens the door for
known-plaintext attacks on the key being distributed.
This observation led to the development of a somewhat
improved protocol variant, which protects the integrity
of the key without exposing it to known-plaintext at-
tacks. This is achieved without increasing either the
message sizes or the number of cryptographic opera-
tions. E�orts are currently under way to demonstrate
the security of the improved protocol variant.

9 Acknowledgements

This work bene�ted from discussions with Phil Jan-
son and Ralf Hauser and comments of the anonymous
referees.

References

[1] S.M. Bellovin, M. Merritt, Limitations of the Ker-

beros Authentication System, ACM SIGCOMM Com-
puter Communication Review, October 1990.

[2] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten,
R. Molva, M. Yung, Systematic Design of Two-Party
Authentication Protocols, Proceedings of CRYPTO'91,
August 1991.

[3] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten,
R. Molva, M. Yung, A Modular Family of Secure Pro-

tocols for Authentication and Key Distribution Draft,
in submission to IEEE/ACM Transactions on Network-
ing, August 1992.

[4] M. Burrows, M. Abadi, and R. Needham, A Logic

of Authentication, Proceedings of ACM Sympo-

sium on Operating System Principles, Decem-
ber 1989.

[5] D. Denning and G. Sacco, Timestamps in Key Dis-

tribution Systems,Communications of the ACM,
August 1981.

[6] W. Di�e and M. Hellman, New Directions in Cryp-

tography, IEEE Transactions on Information Theory,
November 1976.

[7] Li Gong, Using One-Way Functions for Authentica-

tion. ACMComputer Communications Review. October
1989.

[8] L. Gong, R. Needham and R. Yahalom, Reasoning
About Belief in Cryptographic Protocols, Proceedings
of IEEE Symposium on Security and Privacy, May 1990.

[9] R. Molva, G. Tsudik, E. Van Herreweghen, S. Zatti,
KryptoKnight Authentication and Key Distribution

Service, Proceedings of ESORICS 92, October 1992;
Toulouse, France.

[10] National Bureau of Standards, Federal Information
Processing Standards, National Bureau of Standards,
Publication 46, 1977.

[11] R. Needham and M. Schroeder, Using Encryption

for Authentication in Large Networks of Computers,
Communications of the ACM, December 1978.

[12] R. Needham and M. Schroeder, Authentication Re-

visited, ACM Operating Systems Review, Vol. 21, No.
7, January 1987.

[13] R. Rivest, The MD5 Message Digest Algorithm, In-
ternet DRAFT, July 1991.

[14] R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public Key Cryp-

tosystems, Communications of the ACM, February
1978.

[15] J. Steiner, The Kerberos Network Authentication Ser-
vice Overview,MIT Project Athena RFC, Draft 1, April
1989.

[16] J. Steiner, C. Neuman, J. Schiller, Kerberos: An

Authentication Service for Open Network Systems,
Proceedings of USENIX Winter Conference, February
1988.

[17] G. Tsudik, Message Authentication with One-Way

Hash Functions, Proceedings of IEEE INFOCOM 1992.
May 1992.

8

