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Abstract

We describe a method to create optimal linear spline approximations to ar-
bitrary functions of one or two variables, given as scattered data without
known connectivity. We start with an initial approximation consisting of a
fixed number of vertices and improve this approximation by choosing dif-
ferent vertices, governed by a simulated annealing algorithm. In the case
of one variable, the approximation is defined by line segments; in the case
of two variables, the vertices are connected to define a Delaunay triangu-
lation of the selected subset of sites in the plane. In a second version of
this algorithm, specifically designed for the bivariate case, we choose vertex
sets and also change the triangulation to achieve both optimal vertex place-
ment and optimal triangulation. We then create a hierarchy of linear spline
approximations, each one being a superset of all lower-resolution ones.

1 Introduction

In several applications, one is concerned with the representation of complex ge-
ometries or complex physical phenomena at multiple levels of resolution. In
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the context of computer graphics and scientific visualization, so-catlel-
resolution methodare crucial for the analysis of very large numerical data sets,
see [2, 3, 4, 5, 6, 7]. Examples include high-resolution terrain data (digital ele-
vation maps), laser scans of mechanical models, see [8, 9], and high-resolution,
three-dimensional imaging data (e.g., magnetic resonance imaging data).

We present an approach for the construction of multi-resolution representa-
tions of very large scattered data sets using the principgnofilated annealing
see [10, 11, 12]. Our goal is the computation of several optimal linear spline ap-
proximations to a given scattered data set. This approach is a generalization of
data-dependent triangulation algorithms, see, for example, [13].

We assume that the given data sets are samples of a real function of one or
two variable$, with the samples randomly distributed in the function’s domain
and no known connectivity between the samples. Each individual linear spline
approximation is defined by the set of its control points and by the way these
points are connected forming a triangulation (simplex mesh).

When representing high-resolution data sets with low-resolution linear spline
approximations, one has to be careful where to place the spline’s control points
and how to connect them in order to achieve a faithful representation of the data
set, see Figures 1 and 2.
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Figure 1. Uniform versus optimal control point placement for univariate data.

To find the optimal linear spline approximation with a given number of control
points, we employ an iterative optimization algorithm that attempts to improve
the quality, measured by an appropriate error norm, of an initial approximation
by moving the spline’s control points. This iteration is governed by the simu-
lated annealing algorithm, an optimization technique well fit for high-dimensional
problems where the desired global minimum is hidden among many, poorer, local
minima.

1The algorithm works for arbitrary numbers of variables, but in this paper we deal with the
cases of one and two variables only.
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Figure 2: Uniform versus optimal control point placement for bivariate data. Left:
graph of function to be approximated; center: uniform control point placement;
right: optimal control point placement.

Since the functions we approximate are only defined at discrete, randomly
distributed sites in the domain, we will restrict our algorithm in the following
way: We only place control points at the given sites and only use the supplied
function values at those sites. The main advantage of such an approach lies in the
fact that no additional geometrical or function information needs to be stored. The
problem of placing an approximating spline’s control points is hereby reduced to
choosing a subset of samples and connecting them in an appropriate way; and
the process of “moving a control point” is really defined by removing one sample
from the chosen subset and inserting another one instead. Thus, control points do
not “move,” we just select different samples.

1.1 Basic Definitions

To make the discussion of our algorithm easier and to allow describing the algo-
rithm for the univariate and multivariate cases together, we define some special
terms we use throughout this paper. Some of them originated in the field of com-
putational geometry, while others are special uses of well-known mathematical
terms.

e A siteis a point in a function’s domain. Considering functionsndfreal)
variables, a site is a poist= (xg,...,Xn) € R".

e The convex hullof a setSc R" of sites is the “smallest” closed, convex
subsetCH(S) c R" that contains all ofS sites, i.e.,SC CH(S). For all
dimensionsCH(S) is bounded by a convex polyhedron whose vertices are
a subset oS. We call a sites € S interior, if it is not an element of the
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vertex set definingCH(S)’s bounding polyhedron. In other words, a site
is interior, if and only if its removal would not change the convex hull, i.e.,
if CH(S\ {s}) = CH(S), see Figure 3.

O interior site

® non-interior site

Figure 3: Interior and non-interior sites in the bivariate case.

A vertexis a pair consisting of a site and the corresponding function value.
Considering functiong:R" — R™ of n variables andn function values, a
vertex is defined by atn+m)-tuplev= (s, f(s)) = ((X1,...,%n), (f1,..., fm)) €
(R"x R™M), see Figure 4. We call a vertaxterior vertex if its site is an in-
terior site.

Scattered datalefine a representation of a functiorR" — R™ by a finite
set of vertices, with all vertices having pairwise different sites.

A vertex placemenis an ordered set of vertices, with all vertices having
pairwise different sites. FdX vertices and a functio:R" — RM it is an

elementV = ((sl, f(s1)),..., (SN, f(sN))) € ((R"x Rm))N.

A connectivityis a set ofn-dimensional simplices which connect all sites

in a vertex placement and overlap only on their boundaries. In the case
of one variable, a connectivity is simply a set of adjacent intervals; for two
variables it is driangulatiory and for three variables it istatrahedral mesh

(or tetrahedrizatioi.

The(n—1)-dimensional simplices seperating adjacent simplices in the con-
nectivity will be callededges regardless of dimension. A verteplatelet

is the union of all simplices that share this vertex’ site. In the case of one
variable, a platelet is an interval, and for two variables it is an area bounded
by a star polygon, see Figure 4.

e A configurationis the pair consisting of a vertex placement and the under-
lying connectivity.



Figure 4: A vertexv, its sitev.s and its platelet’s boundary polygd? in the
bivariate case.

1.2 Visualizing Large Data Sets

When visualizing functions that are discretized in terms of large scattered data
sets, one would like to render images of these functions in real time. To achieve
this, one has to approximate a given function with a small enough number of
graphical primitivesi.e., line segments or triangles, to render the function at in-
teractive frame rates. To allow adjusting the approximation quality, a hierarchy of
approximations with increasing numbers of primitives is highly desirable.

More specifically, at each hierarchy levelwe chooseNy vertices from an
original scattered data set, i.e., we only choose sites contained in the original set
and only use the original function values at those sites. Furthermore, we ensure
that the set of vertices of any hierarchy leyet k is a subset of levdt’s vertex
set. After having decided which vertices to select for a hierarchy llevéiat
level's vertices are connected in an appropriate way to form a linear spline’s con-
trol mesh. The resulting linear splines then define a hierarchy of approximations
to the function defined by the provided scattered data. An example of such a
hierarchy in the univariate case is shown in Figure 5.
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Figure 5: A hierarchy of approximations in the univariate case. New vertices are
inserted at the sites marked by solid triangles.

If the number of vertices for an approximation level is prescribed, one has to
address two problems:

1. Which vertices should one choose for the approximation, i.e., how should
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one create the vertex placement?

2. How should one connect the chosen vertices, i.e., how should one create the
connectivity?

In the special case of a function of one variable, we only have to address the first
problem, since in the univariate case the connectivity is defined by the chosen
sites’ numerical order.

1.3 Finding Optimal Approximations

Our approach to finding an optimal linear spline approximation for a given, fixed
number of verticedNy is based on an iterative optimization algorithm. First, we
create an initial configuration, then we attempt to improve this configuration by
changing its vertex placement and its connectivity in every step. Since this op-
timization problem is high-dimensional and generally involves local minima in
abundance, the algorithm of simulated annealing, see section 2.1, is well suited to
construct “good” linear spline approximations.

During the iteration process, we will restrict our algorithm to use only vertices
that are elements of the original data set. This approach has two major advantages:

1. Since the function to be approximated is only known at discrete sites, we
would have to estimate function values for sites that are not included in the
original data set, i.e., we would have to define some appropriate scattered
data interpolant or approximant.

2. By only using original vertices, each approximation is a subset of the origi-
nal data set. To represent a particular approximation we only have to main-
tain a list of indices referring to this superset instead of a list of vertex
positions. For the definition of a hierarchy of approximations at different
resolutions we only need to store one integer for each original vertex: the
integer that indicates the hierarchy level at which a vertex becomes active.

However, in the case of two, or more, variables the quality of a configuration
depends on both vertex placement and connectivity. There are two different ways
to proceed:

1. One can ignore the connectivity and treat a functiom @friables like a
univariate function by enforcing a certain type of connectivity throughout



the iteration process; in the bivariate case, an obvious candidate is the De-
launay triangulation, see [14, 15]. Under this constraint, a vertex placement
implies its connectivity (up to negligible ambiguiti@sand the algorithm

can proceed exactly as in the univariate case.

Once the iteration process has terminated, one could use the optimal vertex
placement as input for @ata-dependent triangulation algorithrwhich at-
tempts to find the best possible connectivity for a given vertex placement,
see [13]. The drawback of this two-step algorithm is that the final vertex
placement may not be optimal for the final connectivity, since both parts
were optimized independently.

2. One can attempt to optimize both parts of the configuration, namely vertex
placement and connectivity, in parallel. For example, before each step one
could randomly decide which part to change, and then either move a vertex
or change the connectivity, which could inclusl@appinga common edge
of two adjacent triangles. The probability for deciding which part to change
could either be constant throughout the algorithm, or it could change to
favor connectivity changes in later stages. The drawbacks of this parallel
algorithm are twofold: One has to treat the univariate case differently from
the general case, and the optimization process will take even longer to finish.

We discuss both ways simultaneously, since the respective algorithms differ only
slightly, and we will compare the results, see section 4.2.

2 Background and Related Work

2.1 The Simulated Annealing Algorithm

Simulated annealing is an iterative minimization technique suitable for optimiza-
tion problems of large scale, especially those where a desired global extremum is
“hidden” among many, poorer local extrema, see [11, 12, 13]. Unlike “greedy” it-
erative optimization technigues, which always take the best possible step from any
configuration, simulated annealing sometimes takes a “bad” step and can hence
overcome being stuck in a local minimum, see Figure 6. Thus, the chances of
finding a global minimum are increased.

2These ambiguities arise when a set of sites is ngeimeral positioror is degeneratemeaning
that more than three sites are co-circular [16, 17, 18].
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Figure 6: Sketch of error value over time for greedy optimization methods
(left) and simulated annealing (right). As the temperakiredecreases, positive
changes ok become less probable.

The simulated annealing algorithm was inspired, and received its name, by the
process of metal crystallizing from the liquid phase back to the solid phase while
its temperature slowly decreases. This process can be viewed as an minimization
process: One defines a configuration asndople of the positions oh atoms
and the function to be minimized as the liquid’s internal energy. In spite of this
being a large-scale optimization problem with local energy minima in abundance,
the natural annealing process manages to reach the global energy minimum of
a single crystal, as long as the liquid’s temperature is lowered slowly enough.
This is due to the fact that the natural annealing process allows steps decreasing
the liquid's internal energy as well as steps increasing the energy. In fact, the
probability proAE) for an increaséE in energy is determined bgoltzmann’s
law of thermodynamigstating that protAE ) = e 28/KT whereAE is the energy
increase in Joule (J), is the liquid’s current temperature in Kelvin (K) akd=
1.38x 10723J/K is Boltzmann’s constant

The simulated annealing algorithm is an adaption of the natural annealing pro-
cess for arbitrary optimization problems. In this adaption, a configuration is no
longer then-tuple of atom positions but a variable of arbitrary type; the liquid’s in-
ternal energy is replaced by the function to be minimized; the movement of atoms
is replaced by a relation that transforms one configuration into another one; and
the termkT from Boltzmann’s law is replaced by an arbitrary (positive, real) num-
ber called “temperature.” We note that the temperature is independent from the
function to be minimized: The former can have an arbitrary value and defines the
probability of accepting an increase in the latter during the optimization process,
see Figure 6.

The generic simulated annealing algorithm, also known adteopolis al-



gorithm see [12], is shown in Algorithm 1:

Parameters:
e A spaceX of configurations.
¢ An initial configurationC € X.
¢ A (non-deterministic) functiorthangeConfiguratiorK — X which trans-
forms one configuration into the next one.
e A functiontargetFunctionX — R which is to be minimized.
e An annealing scheduleT:N — R™.

Local Variables:

Anintegern € N.

A configurationnewCe X.

A numberAE € R.

Afunctionprob: [0,1] — {0,1}, p+— r, with the property that the probability
P(r=1)=p.

Results:
¢ A final configuratiorC € X.

n=0; /*iteration counter */
while iteration not finishedlo
begin
newC= changeConfiguratioiC);
AE = targetFunctiorinewC) — targetFunctioriC);
if AE < Othen
C=newC /*accept all good steps */
else ifprob(e*AE/kT(“) then
C=newC /[*accept some bad steps */
n=n+1;
end
return C; /* return final configuration */

Algorithm 1: Generic simulated annealing.

The initial temperature and the decrease of temperature over the course of
iteration are described by a decreasing funckdnNg — R™, called “annealing
schedule.” Since the annealing schedule can be an arbitrary decreasing function
and since it influences both the speed of optimization and the “optimality” of the
result, its choice is another optimization problem: If the temperature is chosen to



decrease too quickly, the algorithm might “get stuck” in a local minimum; on the
other hand, if the temperature decreases too slowly, the algorithm usually requires
a long time to converge to a minimum. Various heuristics have been developed
that have proven useful for common problems, see [11, 13].

2.2 An Error Measure for Linear Spline Approximations to
Scattered Data

To optimize an approximation to a given function, one has to define some quality
measure, which describes how well a current configuration approximates a target
function. When both the target function and the approximation are defined analyt-
ically, mathematics provides several well-defined function space metrics. How-
ever, in our case, the target function is defined by scattered data, which means that
its behaviour is unknown between the provided sites. Nevertheless, if one uses
a metric which is defined by an integral of some difference measure between the
two functions, such as tHe? metric, given by

Lz(fl, fz) = \//(f]_()() — f2(X))2dX ,

it is possible to calculate a reasonable estimation to this metric.

If we assume that the given sites are randomly distributed in the target func-
tion’s domain, we can approximate an integral by a variatioMohte-Carlo-
integrationand thus obtain a reasonable quality measure, see [11]. The method to
calculate thd_? distance between an approximation and a target function for the
application we discuss in this paper is shown in Algorithm 2:

N = number of original vertices;
A = area of original sites’ convex hull;
dist=0; /*distance value */
for each original vertexv do
begin
Find simplexsin connectivity that contaings sitev.s;
Interpolate the simplex’ valué at sitev.s;
dist= dist+ (f —v.f)?;
end
return /dist-A/N; /* return L?-distance */

Algorithm 2: Distance calculation.
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Figure 7 illustrates how vertices contribute to the error value for functions of one
and two variables.

f69 fx,y)
)/\1\1\\/{{ X
y
\ X

Figure 7: Vertices influencing the error measure.

In the case of one variable there is another appropriate scheme: We interpret
the original vertices as control points of a linear splinend interpret the current
vertex placement as control points of a linear spin&hen one can calculate the
L2 distance betweeh anda by algebraically integrating the functions’ difference
over the interval defined by the original sites’ convex hull.

3 The Optimization Algorithm

We now describe the individual steps of our algorithm. Algorithm 3 is a high-level
description. The subsequent sections describe the important steps in more detail.

Create initial configuration (vertex placement and connectivity);
Determine initial temperature and create annealing schedule;
while iteration is not completdo

begin

Change configuration;

Calculate change in error norm;

Undo iteration if rejected by simulated annealing;

end
return current configuration;

Algorithm 3: Optimal linear spline approximation.

The algorithm’s main loop terminates when “the iteration is complete.” De-
pending on a user’s needs, this condition can be specified in two ways:

1. The loop can be terminated after a prescribed number of iterations. This
guarantees a certain runtime of the algorithm, but it does not guarantee the
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final configuration to be a minimum. Using this termination condition, the
algorithm can be classified as a Monte-Carlo method.

2. The loop can be terminated when the annealing algorithm can no longer
perform any iteration steps. This means the final configuration is a mini-
mum, at least a local one. Since there is no upper bound on the number of
iteration steps the algorithm will perform before reaching this condition, it
can be classified as a Las-Vegas method.

In our experiments, we decided to use the Monte-Carlo termination condition.
(In all examples, the number of iterations performed is stated in the respective
error graphs.)

3.1 Creating an Initial Configuration

Our approximations are defined over the original sites’ convex hull. Therefore, we
include all non-interior vertices, as defined in section 1.1, in all approximations.
Other vertices are then added to this set.

In the univariate case, we cover the convex hull by choosing the leftmost and
the rightmost original vertices and spread the rest of vertices nearly uniformly
between them, always choosing the nearest original site from a calculated site.
The connectivity is naturally defined by sorting the chosen vertices by their sites
and connecting adjacent vertices by line segments.

In the multivariate cases we cannot distribute the vertices over a regular grid,
because the original sites’ convex hull can be arbitrarily shaped. Instead, we se-
lect all non-interior original vertices, thereby covering this convex hull, and we
choose the rest of vertices randomly from the original data set. The initial con-
nectivity is no longer determined by the initial vertex placement. In the bivariate
case, we define the initial connectivity by a Delaunay triangulation of the initial
vertices’ sites. Since the Delaunay property maximizes the minimum angle in a
triangulation, it is a reasonable first choice to approximate unknown functions.
Furthermore, if we decide to ignore the problem of connectivity throughout the
optimization, as mentioned in section 1.3, the Delaunay property is easy to main-
tain when moving vertices.

To create a Delaunay triangulation, we employ the iterative algorithm de-
scribed by Guibas et al., see [19], inserting one site at a time into the current
triangulation and restoring the Delaunay property afterwards by swapping diago-
nals of convex quadrilaterals that violate it. This might not be the fastest possible
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algorithm, though Knuth points out its expected runtim@(alogn), but we only

have to do this once and it is fairly easy to implement. Furthermore, most parts of
this algorithm can be re-used for moving vertices, which is needed in the iteration
algorithm described in section 3.3.

3.2 Creating an Annealing Schedule

There are two steps one has to perform to create the annealing schedule:
1. One has to define the initial temperature.

2. One has to decide how fast to decrease the temperature over the course of
iteration.

A reasonable heuristic to define the initial temperature is to apply some (say, 100)

steps of the iteration scheme and to calculate the mean error norm increase of
all “bad” steps. After that, we define the initial temperaturg Bdog.2) times

the mean error norm change. Since the probability for accepting a “bad” step is

defined asp = e 25/KT, whereAE is the (positive) error norm change akd

is the current temperature, the annealing algorithm initially accepts an “expected

bad” step with a probability of one half.

Next, we lower the temperature in steps, leaving it constant for a fixed number
of iterations and scaling it by a fixed factor afterwards, resulting in a geometric
decrease in temperature. The number of iterations per temperature step and the
scaling factor, smaller than one, can be chosen arbitrarily. These two parameters
have an influence on both the algorithm’s speed and the final result’s quality: If
the temperature is lowered too rapidly, the series of configurations might con-
verge towards a far-from-optimal local minimum; if the temperature is lowered
too slowly, the series might require a long time to converge.

3.3 Changing the Current Configuration

The simulated annealing algorithm’s core is its iteration step. In principle, one
can use any method to change the current configuration, but we have found out
that the “split” approach, shown in Algorithm 4, works very well.
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if prob(moveProbability then  /* move a vertex */
begin
Choose an interior vertex
Estimatev's contributionvE to the error measure;
if VE < errorFactor- E then /* visin flat region */
Move v globally;
else /* visin high-curvature region */
Movev locally;
if moveProbability=1then /* only moves allowed */
Restore the Delaunay property;
end
else /* rotate an edge */
begin
Choose an edgewhich is the diagonal of a convex quadrilateral;
Rotatee;
end

Algorithm 4: Changing the current configuration.

The constantnoveProbabilitys used to control the behaviour of the optimiza-
tion process for bivariate functions. If this constant’s value is one, the algorithm
moves a vertex in every step, and after each vertex movement the current triangu-
lation is updated to satisfy the Delaunay property. Thus, the algorithm maintains
a Delaunay triangulation of the current sites throughout the optimization process,
ignoring the problem of optimizing the triangulation and concentrating on find-
ing an optimal vertex placement instead mbveProbabilityis smaller than one,
the algorithm can either move a vertex or swap an edge, thereby optimizing both
vertex placement and triangulation simultaneously. In this case, we do no longer
enforce the Delaunay property after vertex movements. Section 1.3 discusses
both approaches. In the casenobveProbabilitybeing zero, the algorithm swaps
an edge in each step and becomes a data-dependent triangulation algorithm. For
univariate functionsmoveProbabilityis always one, since the problem of connec-
tivity does not arise.

The variableE holds the current distance between the scattered data set and
the approximating spline, and the constanbrFactor determines the maximum
error contribution which still classifies a vertex as being located in a flat region of
the approximated function.
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3.3.1 Estimating a vertex’ error contribution

To estimate how much the removal of an interior vertewould increase the
current error measure, we estimate the “volume'vefplatelet: We construct
an approximating least squares hyperpléhéor all vertices surrounding, and
calculate the poinp having the same site asnd lying onH. Then we defind as
the distance betweanandp, andA as the area of's platelet. Figure 8 illustrates
this for the univariate and bivariate cases.

f(X) f(x.y)

Figure 8: Estimating a vertex’ error contribution.

A possible and reasonable definition\d$ error contribution is the volume
of the “hyperpyramid” having basg& and heighth. This volume is given byA-
h/2 in the univariate case and BBy h/3 in the bivariate case. In order to make
this estimation comparable to ouf error measure, we define a vertex’ error
contributionvE in the univariate case ag’A-h?/2 and in the bivariate case as

VA R2/3.

3.3.2 Global vertex movement

If v's error contribution is smaller than a constant times the current error, we as-
sume thatv is currently located in a “flat” region of the function and should be
moved away from this region. We movegloballyto a randomly chosen new site
not already being part of the current configuration. By doing this we assure that
vertices get driven away from nearly flat regions of a function in early stages of
the iteration.

To actually “move” a vertex globally we (1) remove it from the configura-
tion; (2) we fill the resulting hole in the connectivity (in the bivariate case by re-
triangulating the vertex’ platelet); and (3) we insert the vertex into the configura-
tion at the new site by splitting the simplex that contains this site. If we decided to
ignore the optimization of the connectivity by definimgpveProbabilityas one, we
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would have to update the connectivity after moving a vertex by performing edge
swapping until the Delaunay condition is satisfied, which is described in [19].
Figure 9 illustrates this process for the bivariate case.

Figure 9: Moving a vertex globally in the bivariate case. 1) initial state; 2) re-
moving the vertex; 3) filling the hole; 4) inserting new vertex; 5) restoring the
Delaunay property (optional).

There is one special case to consider when moving a vertex: A new site lying
on an edge that is currently part of the connectivity must be treated differently,
since the simplex, or simplices, covering this site cannot be split in the usual way.
(Usually, we insert a new vertex by removing the simplex that covers its site and
inserting edges connecting the new vertex to all vertices defining that simplex.)
Considering the bivariate case, if the edge is part of the boundary of the original
sites’ convex hull, the triangle covering the new site is split into two triangles.
If the edge isinterior, i.e., it is shared by two triangles, both triangles sharing
this edge are split into two triangles. (However, if one decides to use a Delaunay
triangulation throughout the optimization process, the latter case can be ignored:
One can split any of the two triangles in the usual way, thereby introducing a
degenerate triangle, and the edge swapping step will generate the correct result.)

3.3.3 Local vertex movement

When a vertex’ error contribution is larger tharrorFactor- E, we assume it is
currently located in an “important,” high-curvature region of the target function,
and we attempt to find a better site for this vertex by movirigdally to a new,
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unoccupied site in its platelet. The maximum distance a vertex can be moved
locally is also bounded by a constant calledalDistance This increases the
probability of making a “good” step in later stages of the iteration. Since the
given vertices are randomly distributed, it would be difficult to first select a subset
of “near” vertices and then to choose one of them randomly. Instead, we employ
a probabilistic method: We randomly select an original vevidying inside the
platelet of the vertex to be moved, calculate the Euclidian distancbetween

v andw, and acceptw with the probabilitye—(@/locaiDistance® ¢ \y is rejected,

we choose other vertices until one is accepted or until more than a fixed number
of vertices has been rejected. This ensures that the distance a vertex is moved
locally is distributed in a bell-shaped manner, with the probability of accepting a
small displacement being close to one. We do not use a normal distribution for
the distance, because the probability of accepting even a very small displacement
would be considerably smaller than one in that case.

However, if we applied the global movement algorithm to a small displace-
ment, the connectivity surrounding the moved vertex could change drastically,
which would probably increase the error value. This is due to the fact that the ver-
tex’ platelet is re-triangulated before the vertex is inserted again, see Figure 10.

e

Figure 10: Drawbacks of moving a vertex a small distance by the global method in
the bivariate case: 1) initial state; 2) result after global move as shown in Figure 9
(without enforcment of the Delaunay property); 3) desired result.

It is desirable to change the connectivity as little as possible when adjusting a
vertex’ position by a small displacement, see Figure 10, parts 1 and 3. To achieve
this, we use a different method to move a vertex locally. Conceptually, we “slide”
the vertex on the line from its old to its new site, dragging the edges connecting
it to all surrounding vertices along. Whenever a surrounding simplex becomes
degenerate during the vertex’ motion, we swap one edge of the affected simplex
before moving the vertex any further, see Figure 11. This method of swapping
edges while moving the vertex also works for moving a vertex over arbitrary dis-
tances, and out of its initial platelet, but it changes the connectivity between the
vertex’ old and new site, and it can result in the vertex’ new platelet containing
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both the old and the new site.

Figure 11: Moving a vertex locally in the bivariate case for a non-convex platelet:
1) initial state; 2) swapping edgeto prevent triangld from becoming degener-
ate; 3) resulting state.

3

4 Examples and Results

4.1 Univariate Scalar-valued Functions

1. The first test case is the functid(x) = 3sin(x?), x € [0,4,/T1], and a linear
spline approximation with 18 vertices, see Figure 12. Though it is hard to
prove, our algorithm finds an approximation that looks globally optimal.

2. The second test case is the function

2(1-x) if x<1
41-x)(x—2) ifl<x<2

2(x—2) if2<x<3

2(x—3)%>  if3<x

f(x) = x € [0,4],

and a linear spline approximation with 14 vertices, see Figure 13. Our algo-
rithm finds a very good approximation, although the function has disconti-
nuities in both the zeroeth and first derivatives. In the two quadratic sections
[1,2] and([3,4] the sites are uniformly distributed; we thus assume that the
resulting approximation is globally optimal.

3. The third test case is the function
3 sin((2n+ 1)x
f(x)=4 %M , X€ 10,4,
- 2n+1

the fourth-order Fourier approximation of a square wave, and a linear spline
approximation with ten vertices, see Figure 14. The number of vertices is
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too small to capture all details of the function, but the algorithm still finds a
very good approximation.

. The fourth test case is the same function as in the third, but using a linear
spline approximation with 30 vertices, see Figure 15. Now all the function’s
important features are present in the approximation — the graph of the orig-
inal function does not show in Figure 15 because it is completely overlayed
by the approximating polyline.
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Figure 12: First experiment. Upper-left: initial vertex placement; upper-right:
final vertex placement; bottom: error measure over time.
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Figure 13: Second experiment. Upper-left: initial vertex placement; upper-right:
final vertex placement; bottom: error measure over time.
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Figure 14: Third experiment. Upper-left: initial vertex placement; upper-right:
final vertex placement; bottom: error measure over time.
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Figure 15: Fourth experiment. Upper-left: initial vertex placement; upper-right:
final vertex placement; bottom: error measure over time.
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4.2

5.

Bivariate Scalar-valued Functions
The fifth test case is the function

03 ifx?+y?<03
f(xy)={ —05x if x*+y*>03andx<0 , xye[-11],
x?  if X*4+y?> 0.3 and 0< x

and a linear spline approximation with 100 vertices and general triangula-
tion, see Figure 16. Our algorithm finds a very good approximation, al-
though the function has discontinuities in both the zeroeth and first deriva-
tives.

. The sixth test case is the same function as in the fifth, but this time using a

linear spline approximation with 100 vertices and a Delaunay triangulation,
see Figure 17. Not only is the final error measure twice as large as for a gen-
eral triangulation, but the resulting vertex placement is also completely dif-
ferent from the result of experiment eight. This shows that a post-processing
step of applying a data-dependent triangulation algorithm, see 1.3, would
lead to a sub-optimal result, since the vertex placement cannot be changed
by the post-processing step.

. The seventh test case is the function

2 2 sin((2i+1)x sin((2j+1)y)
f(xy) = ZZ)Z) 2|+1 T , XYye€[0,2m,

the third-order Fourier approximation of a bivariate square wave, and a lin-
ear spline approximation with 50 vertices and a general triangulation, see
Figure 18. The number of vertices is too small to capture all details of the
function, but the algorithm still finds a decent approximation.

. The eigth test case is the same function as the seventh, but this time using

a linear spline approximation with 250 vertices and a general triangulation,
see Figure 19. Due to the increased number of vertices the approximation
takes much longer to converge, but the result captures all details of the target
function.

. The ninth test case is a scattered data set consisting of 37,594 vertices, re-

sulting from a laser scan of a Ski-Doo hood and a linear spline approxi-
mation with 1,000 vertices and a general triangulation, see Figure 20. This
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case shows that our algorithm can be used in surface reconstruction, as long
as the source data can be interpreted as a bivariate, scalar valued function.
In the general case of a two-manifold surface, the algorithm can be used to
approximate locally functional pieces of a given surface, as described in [8].
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Figure 16: Fifth experiment. Top row: initial and final configurations and flat-
shaded rendering; bottom row: error measure over time.
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Figure 17: Sixth experiment. Top row: initial and final configurations and flat-
shaded rendering; bottom row: error measure over time.
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Figure 18: Seventh experiment. Top row: initial and final configurations and flat-
shaded rendering; bottom row: error measure over time.
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Figure 19: Eigth experiment. Top row: initial and final configurations and flat-
shaded rendering; bottom row: error measure over time.
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Figure 20: Ninth experiment. Top row: initial and final configurations and flat-
shaded rendering; bottom row: error measure over time.
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4.3

Bivariate Vector-valued Functions

In this section we apply our method to the approximation of RGB images, inter-
preting them as bivariate vector-valued functions of the form

f:RZ— (0,13, (xy) — (r(xy),9(x.y),b(x,y))

To judge an approximation’s quality, ol? error measure algorithm requires a
function

dis?: ([0,1*)° — R*

We define this as the squared Euclidian distance between two color values
(r1,91,b1) andc, = (rz, g2, b2):

dist(cy,Cp) i= (r1 —r2)%+ (91— g2)° + (by — bp)?

10. The tenth test case is a photograph of Golden Gate Bridge in San Fran-

11.

12.

cisco, resampled to a resolution of 32222 pixels, see Figure 21, and a
linear spline approximation with 400 vertices and a general triangulation,
see Figure 22.

The eleventh test case is the same function as in the tenth case, but this time
approximated by a linear spline with 800 vertices and a general triangula-
tion, see Figure 23. The resulting linear spline is a superset of the result of
experiment ten, as defined in section 1.2.

The twelvth test case is again the same function, but approximated by a
linear spline with 1,600 vertices and a general triangulation, see Figure 24.
Again, the resulting linear spline is a superset of the result of experiment eleven.
It is hard to see in these low-quality reproductions, but the resulting linear
spline approximation is very close to the original image.
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Figure 21: A color photograph of Golden Gate Bridge in San Francisco, resam-
pled to a resolution of 329 222 pixels.
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Figure 22: Tenth experiment. Top row: initial and final configurations; bottom
row: final approximation and error measure over time.
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Figure 23: Eleventh experiment. Top row: initial and final configurations; bottom
row: final approximation and error measure over time.
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Figure 24: Twelvth experiment. Top row: initial and final configurations; bottom
row: final approximation and error measure over time.
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5 Conclusions

We have presented a method to calculate optimal linear spline approximations
to functions defined by scattered data, using an iterative optimization technique
governed by the simulated annealing algorithm. Our method is a generalization
of data-dependent triangulation methods.

We have demonstrated that our method performs well for univariate and bivari-
ate scalar-valued functions and for bivariate vector-valued functions. Our method
yields good approximations in a reasonable time, and in simple cases it often
finds a globally optimal approximation. Furthermore, we have found that our al-
gorithm finds very good approximations to RGB images even when using only a
small number of vertices. Our technique provides an interesting alternative way
to transform images to a storage-efficient, resolution-independent representation.

6 Future Work

The main areas for future research are the generalization of our algorithm to func-
tions of three and more variables and the application of our method to image
and video compression. There is no reason to believe that our method would not
work for higher-dimensional functions. The only problems might be represent-
ing higher-dimensional linear splines and defining an appropriate iteration step.
Even dealing with time-varyind-dimensional data sets is possible; one could ei-
ther interpret them a& + 1)-dimensional functions, or one could calculate inde-
pendentd-dimensional approximations for the function at discrete times. Taking
advantage of time coherence, one could improve the speed of the iteration and
the quality of the results by using the final configuration from tirrees initial
configuration for time + At. For use of our method in image compression, one
would have to investigate methods for efficient storage of linear splines; and one
could also research the use of different error measures to achieve more visually
pleasing results or special effects like edge enhancement. The remarks about time-
varying functions apply to video data as well, and since especially video streams
in tele-conferencing exhibit strong frame coherence, our algorithm might lead to
a real-time video compression method for this kind of video streams.
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