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Abstract. A simple Stock Exchange Game Model (SEGM) was introduced in Mockus (2003),
to simulate the behavior of several stockholders using fixed buying-selling margins at fixed bank
yield.

In this paper, an extended model USEGM is proposed. The advantage of USEGM is application
of the Nash Equilibrium (NE) to strategies that define buying-selling margins and bank haircuts
dynamically. This enables us to simulate market illiquidity that is an important feature of the present
financial crisis (Allen, 2008). In addition, USEGM includes the transaction costs to reflect the
reality better. To represent users that prefer linear utility functions, USEGM adds the AR-ABS(p)
autoregressive model, minimizing the absolute values, to the traditional AR(p) model minimizing
least square deviations.

A formal application of NE to simulate the behavior of market participants is a new feature
of these models. In the well-known works Allen (2008), Brunnermeier (2009), Brunnermeier and
Yogo (2009) equilibrium ideas were applied to supply-demand balance concepts, as usual.

The objective of USEGM is not forecasting, but simulation of financial time series that are
affected by predictions of the participants. The “virtual” stock exchange can help in testing the
assumption of rational investor behavior vs the recent theories that explain financial markets by
irrational responses of major market participants (Krugman, 2000, 2008, 2009). The model helps
comparing expected profits of different prediction models using the virtual and historical data.

The model has been compared with eighteen actual financial time series and found the results to
be close in many cases.
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1. Introduction

1.1. Market Description

There are many important investigations of financial crises including extraordinary events
in 2007 and 2008 (Allen and Gale, 2007; Allen, 2008; Brunnermeier, 2009; Darley and
Outkin, 2007). A detailed formal description of these processes and their interactions is
not practical, therefore the authors of these papers present the research results in general
terms with references to real-life data, as usual (Allen and Gale, 2007; Bernanke, 2005,
1983; Krugman, 2000, 2008, 2009; Greenspan, 2009).
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The first analysis of the Great Depression is made in Keynes (1936, 2007) using the
general terms. Describing some specific features of the market process, mathematical
expressions were applied in many publications. In Brunnermeier (2007), the optimal bal-
ance of pessimistic-optimistic beliefs and asset prices is regarded in a formal way. In
Brunnermeier (2003), a model is presented in which an asset bubble can persist despite
the presence of rational arbitrageurs. In Brunnermeier (2004), theoretical results are ap-
plied in explaining the relations of hedge funds and the technology bubble.

The paper Brunnermeier et al. (2008) documents that ‘carry traders’ are subject to the
crash risk. The term ‘carry trade’ without further modification refers to currency ‘carry
trade’: investors borrow low-yielding and lend high-yielding currencies. It tends to corre-
late with the global financial and exchange rate stability, and retracts in use during global
liquidity shortages.

The paper Brunnermeier (2009) summarizes and explains the main events of the liq-
uidity and credit crunch in 2007–2008, starting with the trends leading up to the crisis.
The paper explains by real data how these events unfolded and how different amplifi-
cation mechanisms magnified losses in the mortgage market into large dislocations and
turmoil in financial markets.

In Brunnermeier and Pedersen (2007), the authors provide a model that links an as-
sets market liquidity, i.e., the ease with which it is traded, and traders’ funding liquidity,
i.e., the ease with which they can obtain funding. Traders provide the market liquidity,
and their ability to do so depends on their availability of funding. Conversely, traders’
funding, i.e., their capital and the margins they are charged, depend on the assets market
liquidity. The paper shows that, under certain conditions, margins are destabilizing while
the market liquidity and funding liquidity are mutually reinforcing, leading to liquidity
spirals. The model explains the empirically documented features that the market liquidity
can suddenly dry up.

The paper Brunnermeier and Julliard (2006) describes a formal model explaining how
a reduction in inflation can fuel run-ups in housing prices, if people suffer from money il-
lusion. For example, investors, who decide whether to rent or buy a house by simply com-
paring monthly rent and mortgage payments do not take into account that inflation lowers
future real mortgage costs. The authors decompose the price-rent ratio in a rational com-
ponent (meant to capture the proxy effect and risk premium) and an implied mispricing.
They find that inflation and nominal interest rates explain a large share of the time-series
variation of mispricing, and that the tilt effect is unlikely to rationalize this finding.

The paper Brunnermeier (2007) studies portfolio holdings and asset prices in an econ-
omy in which people’s natural tendency to be optimistic about the payout from their
investments is tempered by the expected losses of basing their portfolio decisions on in-
correct beliefs. The authors show that this model can generate the following three facts.
First, household portfolios are not optimally diversified. Second, household portfolios
are tilted toward stocks with identifiable attributes. Third, positively skewed assets tend
to have lower returns. The paper argues that these three patterns are observed because
human beings want to believe what makes them happy and want to make good decisions
that lead to good outcomes in the future.
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The paper Brunnermeier and Yogo (2009) shows by examples that, when a company
is unable to rollover its debt, it may have to seek more expensive sources of financing
or even liquidate its assets. This paper provides a normative analysis of minimizing a
rollover risk through the optimal dynamic choice of the maturity structure of debt. The
objective of a company with long-term assets is to maximize the effective maturity of
its liabilities across several refinancing cycles, rather than to maximize the maturity of
the current bonds outstanding. An advantage of short-term financing is that a firm, while
in good financial health, can readjust its maturity structure more quickly in response to
changes in its asset value.

In Brunnermeier and Nagel (2006), data from the Panel Study of Income Dynamics
(PSID) was used to investigate how households’ portfolio allocations change in response
to wealth fluctuations. The theoretical model indicates that persistent habits, consump-
tion commitments, and subsistence levels can generate time-varying risk aversion with
the consequence that when the level of liquid wealth changes, the portion a household
invests in risky assets should also change in the same direction. In contrast, the data anal-
ysis shows that the share of liquid assets that households invest in risky assets is not
affected by wealth changes. Instead, one of the major drivers of households’ portfolio
allocation seems to be inertia: households re-balance only very slowly following inflows
and outflows or capital gains and losses.

1.2. Market Prediction

Different individuals may regard the market prediction problem differently. Therefore,
providing research tools to interested parties, such as graduate students in relevant fields,
may contribute to further understanding of these markets. The USEGM model can be
regarded as one of such tools.

The market prediction task divides researchers into two groups: those who believe
that we can devise mechanisms for predicting the market, and those who believe that
the market is efficient and, whenever any new information appears, the market absorbs it
by correcting itself. A convenient mathematical tool representing the latter model is the
Wiener process, which implies that the best possible prediction of the next value is based
only on the present value (Fama, 1995; Plagge, 2007). The Wiener model is often called
the Random Walk (RW).

In this paper, a non-traditional game-theoretical explanation of the RW is proposed
as a hypothesis. The stock exchange is regarded as a game of competing players trying
to maximize the wins by selling assets1 at high prices and buying them at lower prices.
Selling-buying levels are based on next-day2 predictions by autoregressive models AR(p)
or AR-ABS(p) of order p. The difference is that, while determining the parameters in AR-
ABS(p), an absolute deviation is minimized instead of the least square one. The AR-ABS
model follows from the assumption that players are risk neutral, which means that utility

1The term assets means any assets of financial market, for example, stocks, futures, bonds, loans, etc.
2The term ‘next-day’ means next time unit, for short.
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functions are linear. The AR model represents risk-aversion by overestimating relative
importance of large losses.

In real life, the asset holders predict by their own specific models. We consider the
autoregressive models as a reasonable first approximation of such forecasting strategies.

In USEGM players control the order p of the autoregressive models directly or by
some mixed strategy x that defines probabilities of p. Margins of individual investors and
haircuts of banks are defined by linear functions of the estimated risk, depending on the
previous losses. Players make profit if they predict correctly.

It is unlikely that the USEGM provides a complete description of the behavior of
stock market participants. For example, ordinary stockholders3 are not trying to achieve
the equilibrium, they are just looking for a greater profit. However, the model may be
useful in explaining prediction peculiarities of financial time series, where the prices are
affected by predictions of market participants. The model represents, in a simple game-
theoretical form, some basic arguments of the efficient market theory and, therefore, is
a natural initial approximation. Thus, RW can be regarded as a benchmark of minimal
efficiency convenient for evaluating more sophisticated prediction techniques. We regard
the results and tools, described in this paper, as an example encouraging a further research
along similar lines by interested persons, not just by professional investors.

To compare the simulation results with real data, the RW model was tested using
financial time series of eighteen assets. Five simulated time series were taken for com-
parison. The Amazon river discharge and the demand rate in a call center were regarded,
too, to illustrate the difference between financial, physical, and commercial data.

To reflect risk-neutral users, the Autoregressive by Absolute Values AR-ABS(p)
model of order p was used. The parameter p was optimized for each asset. The RW
(p = 1) provided the best results for cocoa futures prices and for the simulated Wiener
process. In other cases, the results of RW were not optimal, but close.

1.3. Market Simulation

The research Allen (2008) shows that the present crisis is connected with market illiquid-
ity. Simulation of the complete crisis process is too difficult. Therefore, it is of interest to
create simple models that explain at least some of the interesting properties of financial
and related markets.

A common feature is that future financial data depend on predictions. Another com-
mon feature is the balance of conflicting interests. The game-theoretical concept for that
is Nash Equilibrium (NE) (Nash, 1951; Debreu, 1982). In simple terms, NE can be de-
fined as a contract of players that provides no incentives to brake it. It means that no
player can get additional profit by breaking NE. In this paper, a NE based model, reflect-
ing both predictions and balance of interests is proposed, implemented, and investigated.
We refer to it as an Updated Stock Exchange Game Model (USEGM).

In the previous game models SEGM (Mockus, 2003, 2010; Mockus and Raudys,
2010) the behavior of several individual investors was considered assuming that they

3The term stockholder means a holder of financial asset, for short.
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are buying-selling stocks in accordance with NE at fixed buying-selling levels defined by
AR(p) predictions. The proposed USEGM model considers, in addition, the equilibrium
behavior of banks that finance individual investors, too. When defining the buying-selling
levels, the transaction costs are included. The risk neutral behavior of investors is reflected
by using the AR-ABS(p) predictions. All these new features of USEGM eliminate some
important disadvantages of the SEGM model and represent financial markets better. The
novelty of both SEGM and USEGM models is a direct simulation of the behavior of
financial operators in the context of NE.

Another approach was applied in Darley and Outkin (2007), where the NASDAQ
market was simulated as an adaptive system. In Ramanauskas and Rutkauskas (2009),
an artificial stock market model, based on interaction of heterogeneous agents, is pro-
posed. Ramanauskas and Rutkauskas (2009) use the model for the analysis of market
self-regulation abilities and market efficiency.

The idea that the financial market is a “casino” game was expressed in Keynes (1936,
2007). In Krugman (2000, 2008, 2009), the unpredictability of asset prices is explained
by the irrational behavior of participants. In the report Greenspan (2009), financial crises
are explained as the inevitable result of a natural human tendency, namely, the tendency
of human beings when confronted with long periods of prosperity to presume that it will
continue.

According to the models of this paper the seemingly irrational behavior of market
participants can be considered as rational under the specific conditions of decision making
and the available information. Looking this way, differences between the efficient market
theory (Fama, 1995) that assumes the rational behavior of market players and theories
based on the irrational behavior (Krugman, 2000, 2008, 2009) are not so significant.

In the updated model, the Nash Equilibrium (NE) is applied to strategies that define
buying-selling margins and bank haircuts dynamically. This enables us to simulate market
illiquidity that is an important feature of the present financial crisis (Allen, 2008).

In USEGM investors are using borrowed money for their operations. Linear strategies
are applied both to control margins of buying-selling levels of investors and haircuts of
banks.

Investor strategies are to define their buying and selling levels for the next iteration
via the autoregressive models AR(p) or AR-ABS(p) of order p. The order p is set directly
or by some mixed strategy x defining the probabilities x of p. These strategies and coef-
ficients of the linear margin and haircut strategies are selected by minimizing expected
deviations from the Nash Equilibrium (NE).

A formal application of NE to simulate the behavior of market participants is a new
feature of the models. In the well-known works Allen (2008), Brunnermeier (2009),
Brunnermeier and Yogo (2009) equilibrium ideas were applied to supply-demand bal-
ance concepts, as usual.

The objective of USEGM is not forecasting but simulation of financial time series
that are affected by predictions of the participants. The “virtual” stock exchange based on
NE conditions can help testing the assumption of rational investor behavior vs the recent
theories explaining financial markets by irrational responses of major market participants
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(Krugman, 2000, 2008, 2009). The simulation by the Wiener model can be useful for ex-
plaining the Random Walk (RW) model of the efficient market theory (Fama, 1995). For
example, the simulations by the earlier version SEGM (Mockus, 2003, 2010) suggested
that NE was close to the Wiener model.

To compare the simulation results with real data, the model was tested, using eighteen
real and five simulated financial time series. The Amazon river discharge and the rate of
call center demands were regarded as well to illustrate the difference between financial,
physical, and commercial data.

The interactive software is implemented as a Java applet, published in an open web-
site and can be run by any browser with Java support. A version of USEGM, including
automatic optimization of buying-selling margins and bank haircuts as functions of the
expected risks, is under development.

The proposed financial market models are designed as a tool for simulating the mar-
ket processes in response to different changes of market parameters. The models helps
comparing expected profits of different prediction methods using the virtual and actual
historical data, too. Convenient user interactions are provided by implementing the mod-
els as a Java applet and publishing it in an open web-site (Mockus, 2007). The updated
versions of the model and new experimental results will be presented on these web-sites
during the process of USEGM development.

2. Extended Stock Exchange Game Model (USEGM)

The purpose of USEGM is to explore the relationship between the real data and Nash
equilibrium and to investigate what other results can be obtained using this simple model.
For example, a dynamic control of buying-selling margins and bank rate haircuts provides
a possibility to simulate the market and fund illiquidity as the cause of financial crisis.
The interactive mode of buying-selling levels allows simulation of artificial control of
market prices.

The scientific objective of this approach is to test the hypothesis that some impor-
tant stock exchange features can be approximately described as a game of players using
strategies, based on the Nash equilibrium. It is supposed that stock prices are primarily
the result of the game of major stockholders with some random deviations that represent
large numbers of small investors. Investment decisions depend on stockholders’ predic-
tions of the future stock prices and expected dividends. The expected risk defines margins
of stockholders and haircuts of banks. This model is used to investigate what could be
learned about the basics of market theory using the simple game-theoretical stock ex-
change model.

USEGM assumes that each player predicts stock prices by the autoregressive models
AR(p) or AR-ABS(p) of order p. Scale parameters a (41) of the the model AR(p) are
estimated using the standard least squares algorithm (42) for different p4. The scale pa-

4The values of p in the both models are defined using pure or mixed strategies where p is determined by
some probability distribution.
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rameters a of the AR-ABS(p) model which represents linear utility function are defined
by the linear programming (46).

Actual stockholders use their own ways of predicting. We regard the AR(p) and AR-
ABS(p) models as the simplest initial approximations of the prediction processes.

In some cases, simulations using AR(p) models with various p at fixed buying-selling
levels indicate that the expected profit cannot be improved by deviation from the Wiener
model (p = 1 and a = 1). This represents a new explanation of the RW model. The basic
formulas of USEGM are as follows. The additional formulas are on the web-sites, for
example: http://prof.if.ktu.lt˜jonas.mockus/igor/stock.pdf. The
formal description will be updated and the new experimental results will be presented on
these web-sites during the process of USEGM development.

2.1. Buying and Selling Strategies

We start a formal description by considering a simple case of I major players i = 1, . . . , I

and a single joint-stock company. The following notation is used:
z(t) = z(t, i) is the price at time t, predicted by the player i,
Z(t) is the actual5 price at time t,
U(t) = U(t, i) is the actual profit accumulated at time t by player i,
δ(t) is the dividend at time t,
α(t) is the yield at time t,
γ(t) is the interest rate at time t,
h(t) = γ(t) − α(t) is the haircut6,
β(t, i) is the relative stock price change at time t as predicted by the player i

β(t, i) = (z(t + 1, i) − Z(t))/Z(t). (1)

Expected profitability7 (relative profit) p(t, i) of an investment at time t depends on the
predicted change of stock prices βi(t), dividends δi(t), the bank rate α(t), and haircut
h(t)

p(t, i) = β(t, i) − α(t) + δ(t) − h(t) = β(t) + δ(t) − γ(t). (2)

The aim is profit, thus a customer i will buy some number nb(t, i) � n(t) of stocks, if
profitability is greater comparing with the relative transaction cost τ(t); p(t, i) > τ(t),
will sell stocks, if the relative loss (negative profitability −p(t, i) is greater as compared
with the transaction cost −p(t, i) > τ(t), and will do nothing, if −τ(t) � p(t, i) � τ(t).
Here the relative transaction cost is defined as the relation

τ(t) =
τ0

n(t)Z(t)
, (3)

5The term ‘actual’ means simulated by USEGM.
6In finance, a haircut is a part that is subtracted from the value of the assets that are being used as collateral.

The size of the haircut reflects the perceived risk associated with holding the assets.
7The term “profit” can define losses if negative terms prevail.
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where τ0 is the actual transaction cost and n(t) is the number of transaction stocks. From
equality τ(t) = p(t, i) it follows that a minimal number of stocks to cover transaction
expenses is

n(t) =
τ0

p(t, i)Z(t)
. (4)

Therefore, the buying-selling strategy S(t, i) of the customer i at time t in terms of prof-
itability levels:

S(t, i) =

⎧⎨
⎩

buy nb(t, i) � n(t) stocks, if p(t, i) � τ(t),
sell ns(t, i) � n(t) stocks, if p(t, i) � −τ(t),
wait, otherwise.

(5)

From expressions (1) and (2), the buying-selling strategy S(t, i) in terms of stock price
levels

S(t, i) =

⎧⎨
⎩

buy nb(t, i) � n(t) stocks, if Z(t) � zb(t, i),
sell ns(t, i) � n(t) stocks, if Z(t) � zs(t, i),
wait, otherwise.

(6)

Here the buying price level of the player i at time t is

zb(t, i) = z(t + 1, i)/
(
1 − δ(t) + α(t) + h(t) + τ(t)

)
. (7)

The selling price level of the player i at time t is

zs(t, i) = z(t + 1, i)/
(
1 − δ(t) + α(t) + h(t) − τ(t)

)
, (8)

where z(t + 1, i) is the stock price predicted by the investor i at time t + 1.
The market buying price at time t is the largest buying price of players i = 1, . . . , I

zb(t) = zb(t, imax), where imax = arg max
i

zb(t, i).

The market selling price at time t is the lowest selling price of players i = 1, . . . , I

zs(t) = zb(t, imin), imin = arg min
i

zs(t, i).

The actual price of a stock at time t + 1 is defined as the price of a previous deal
of major stockholders plus the noise representing the remaining small stockholders. The
noise ε(t) is defined by truncated Gaussian distribution with variance reflecting stock
volatility. The Gaussian distribution follows from the assumption that the noise is a sum
of independent random numbers representing the buying-selling actions of large number
of small stockholders.

Z(t + 1) =

⎧⎨
⎩

zb(t) + ε(t + 1), if Z(t) < zb(t),
zs(t) + ε(t + 1), if Z(t) > zs(t),
Z(t) + ε(t + 1), otherwise.

(9)
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The market buying price at time t is the largest buying price of players i = 1, . . . , I

zb(t) = zb(t, imax), where imax = arg max
i

zb(t, i).

The market selling price at time t is the lowest selling price of players i = 1, . . . , I

zs(t) = zs(t, imin), imin = arg min
i

zs(t, i).

The number of stocks owned by the player i at time t + 1 is

N(t + 1, i) =

⎧⎨
⎩

N(t, i) + nb(t, i), if Z(t) < zb(t),
N(t, i) − ns(t, i), if Z(t) > zs(t),
N(t, i), otherwise.

(10)

Here nb(t, i) and ns(t, i) are the numbers of stocks for buying and selling operations by
the player i at time t.

2.2. Investors’ Profit

The product N(0, i) Z(0, i) is the initial investment to buy N(0, i) shares by the in-
vestors’ own capital at initial price Z(0, i). The initial funds to invest are C0(0, i) and the
initial credit limit is L(0, i).

L(t, i), t = 1, . . . , T is the credit available for a customer i at time t. The investors’
own funds C0(t, i) to invest at time t are

C0(t, i) = C0(t − 1, i) −
(
N(t, i) − N(t − 1, i)

)
Z(t). (11)

Here the product (N(t, i)−N(t−1, i)) Z(t) defines the money involved in buying-selling
stocks.

Stocks are obtained using both investors own money C0(t, i) and the funds b(t, i)
borrowed at moment t. The borrowed sum of the stockholder i accumulated at time t is

B(t, i) =
t∑

s=1

b(s, i). (12)

The symbol b(t, i) shows what the user i borrows at moment t

b(t, i) =

⎧⎪⎪⎨
⎪⎪⎩

−C0(t, i), if − L(t, i) � C0(t, i) < 0,

0, if 0 � C0(t, i),
insolvent at moment t = t∗

i ,

if − L(t, i) > C0(t, i) − Bsum(t, i) + N(t, i) Z(t).

(13)
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Expression (13) is for long-term loans where frequent transactions are not economical or
restricted by contracts.The advantage is lower interest rate γ(t).

b(t, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−C0(t, i), if − L(t, i) � C0(t, i) < 0,

−C0(t, i), if 0 � C0(t, i) < B(t, i),
0, if B(t, i) � C0(t, i),
insolvent at moment t = t∗

i ,

if − L(t, i) > C0(t, i) − Bsum(t, i) + N(t, i) Z(t).

(14)

According to the second line in expression (14), the user i “borrows” a negative sum
b(t, i) = −C0(t, i) if 0 < C0(t, i) � B(t, i), which means that the user pays back a part
b(t, i) of the loan B(t, i) using available funds C0(t, i). This expression is for short-term
loans with possibility of frequent transactions. The disadvantage is a higher interest rate
γ(t).

The general borrowing expenses are

Bsum(t, i) = B(t, i) +
t∑

s=1

B(s, i) γ(s, i), (15)

where the first term denotes the loan accumulated at time T and the second term shows
the interest.

An investor (stockholder) gets a profit as the difference between the income from
selling and buying stocks D(t, i) and expenses for borrowing funds Bsum(t, i)

U(t, i) = D(t, i) − Bsum(t, i), (16)

where

D(t, i) = N(t, i) Z(t) − N(0, i) Z(0). (17)

The funds available for the investor i at time t are

C(t, i) = C0(t, i) + L(t, i) − Bsum(t, i). (18)

An investor is trying to maximize gains by borrowing money to invest in shares that
appreciate more than what it costs him by way of interest. It means leveraging shares for
an investment.

The number of stocks nb(t) to buy at the time t is restricted by inequality:

n(t) � nb(t, i) � C(t, i)/Z(t). (19)

Here the first part of the inequality restricts transaction costs. According to expression
(13), the stockholder will be insolvent at the time t = t∗

i if the loan exceeds the assets

Bsum(ti, i) > C0(ti, i) + L(ti, i) + N(t, i) Z(t), (20)
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since there will not be enough money to pay back all the borrowing expenses Bsum(t∗
i , i).

This can happen without buying additional stocks, because the interest Bsum(t, i) accu-
mulates automatically.

Considering multi-level operations, we shall define additional restrictions (33) on the
number of stocks nb(t).

2.3. Bank Profit

It follows from (20) that the bank losses at time t∗
i are

Bloss(t∗
i , i) = Bsum(t∗

i , i) − C0(t∗
i , i) − N(t∗

t , i) Z(t∗
i ). (21)

The total bank losses accumulated at time t � maxi t∗
i are

Bloss(t) =
∑

i

Bloss(t∗
i , i). (22)

The bank income

D(t) =
t∑

s=1

I∑
i−1

B(s, i)γ(s, i). (23)

The bank profit

U(t) = D(t) − Bloss(t). (24)

2.4. Multi-Level Operations

In the opinion of some professional brokers we have interviewed, one needs at least three
buying profitability levels pb(t, i, l), l = 1, 2, 3, where

pb(t, i, l + 1) > pb(t, i, l), pb(t, i, 1) = τ(t), (25)

and three selling profitability levels ps(t, i, l), l = 1, 2, 3, where

ps(t, i, l + 1) < ps(t, i, l), ps(t, i, 1) = −τ(t),
pb(t, i, l) > ps(t, i, 1).

(26)

to explain the behavior of major stockholders. The level l = 1 means to buy-sell the
minimal number of stocks. The level l = 3 means to buy-sell as much stocks as possible,
and the level l = 2 is in the middle. Thus, the number of stocks to buy-sell at time t and
the buying profitability level l = 1 are

nb(t, i, 1) = ns(t, i, 1) = n(t), (27)
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where n(t) is from expression (6). The number of stocks to buy at time t and buying
profitability level l = 3

nb(t, i, 3) = int
(
C(t, i)/Z(t)

)
, (28)

where C(t, i) is the investor’s i funds available at time t defined by expression (18).
Hence, the number of stocks to buy at time t and the buying profitability level l = 2 are

nb(t, i, 2)(t) = int
((

C(t, i)/Z(t) + n(t)
)
/2

)
. (29)

The number of stocks to be sold at time t and the selling profitability level l = 3 are

ns(t, i, 3) = N(t, i). (30)

The number of stocks to be sold at time t and the selling profitability level l = 2 are

ns(t, i, 2) = int
(
(N(t, i) + n(t))/2

)
. (31)

where N(t, i) is the number of stocks available at time t.
The general buying-selling strategy S0(i) of the investor i at time t + 1 is

S0(i) =
{

wait, if −τ(t) � p(t, i) � τ(t),
use active strategy S(l, i), otherwise,

(32)

where the active strategy S(l, i) is as follows

S(1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

buy nb(t, i, 3) stocks, if p(t, i) � pb(t, i, 3),
buy nb(t, i, 2) stocks, if p(t, i) � pb(t, i, 2),

and p(t, i) < pb(t, i, 3),
buy nb(t, i, 1) stocks, if p(t, i) � pb(t, i, 1) = τ(t),

and p(t, i) < pb(t, i, 2),
sell ns(t, i, 1), stocks if p(t, i) � ps(t, i, 1) = −τ(t),

and p(t, i) > ps(t, i, 2),
sell ns(t, i, 2) stocks, if p(t, i) � ps(t, i, 2),

and p(t, i) > ps(t, i, 3),
sell ns(t, i, 3) stocks, if p(t, i) � ps(t, i, 3),
wait, otherwise.

(33)

Here p(t, i) is profitability of investor i at time t defined by (2) and the profitability levels
are defined by the equalities

pb(t, i, l) = τ(t)l, (34)

ps(t, i, l) = −τ(t)l, l = 1, 2, 3.
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Using this strategy, the number of stocks owned by the player i at time t + 1 is

N(t + 1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(t, i) + nb(t, i, 3), if p(t, i) � pb(t, i, 3),
N(t) + nb(t, i, 2), if p(t, i) � pb(t, i, 2),

and p(t, i) < pb(t, i, 3),
N(t) + nb(t, i, 1) stocks, if p(t, i) � pb(t, i, 1) = τ(t),

and p(t, i) < pb(t, i, 2),
N(t) − ns(t, i, 1), stocks if p(t, i) � ps(t, i, 1) = −τ(t),

and p(t, i) > ps(t, i, 2),
N(t) − ns(t, i, 2) stocks, if p(t, i) � ps(t, i, 2),

and p(t, i) > ps(t, i, 3),
N(t) − ns(t, i, 3) stocks, if p(t, i) � ps(t, i, 3),
N(t), otherwise.

(35)

The buying-selling prices of the player i at time t depends on the buying-selling levels l.
Extending single-level conditions (7) and (8) to the multi-level case of active strategy
S(l, i), the buying-selling price levels are as follows

zb(t, i, l) = z(t + 1, i)/(1 − δ(t) + α(t) + h(t) + pb(t, i, l)),
zs(t, i, l) = z(t + 1, i)/(1 − δ(t) + α(t) + h(t) + ps(t, i, l)), l = 1, 2, 3.

(36)

It follows from (25) and (26) that

zb(t, i, l + 1) < zb(t, i, l),
zs(t, i, l + 1) > zs(t, i, l),
zs(t, i, l) > zb(t, i, l), l = 1, 2, 3.

(37)

The actual price of a stock at time t+1 is defined as the price of a previous deal of major
stockholders plus the Gaussian noise representing the remaining small stockholders.

2.5. Prediction Parameters

2.5.1. AR(p) Model
The profit (16) of the player i depends on the accuracy of prediction β(s, i) made at time
s, s = 1, . . . , t, where t denotes the present time. Define the AR(p) model of order p as

z(s) =
p∑

k=1

akz(s − k) + εs. (38)

In this and the next section, the symbol z(t) denotes the simulated stock rate at time t,
or the historical stock prices, if these are used for the evaluation of the expected profit by
USEGM. The USEGM model starts at time s = 1, so we should define the past values
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z(1 − p). We assume that

z(s) = z(1)(1 − s) η, εs = 0, if s < 1. (39)

where z(1) is the initial price and 0 < η < 1 is a fixed number. If s = t + 1, then εs is a
Gaussian random variable with zero expectation and positive variance (stock volatility).
If 1 � s � t, then εs are residuals of the prediction model. Using equalities (38) and (39),
we define residuals by the expressions

ε1 = z(1) − a1z(0) − · · · − a2z(1 − p),
ε2 = z(2) − a1z(1) − · · · − a2z(2 − p),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εt = z(t) − a1z(t − 1) − · · · − apz(t − p).

(40)

Assume that the player i predicts using the AR(p) model8 of order p with the “memory”
parameter p. Then the residual εs(i) of the player i prediction at the time s � t is defined
by the equality below

z(s, i) =
p∑

k=1

ai
k z(s − k, i) + εs(i). (41)

The scale parameters ai
k are defined by the condition

ai
k = arg min

ai
k

t∑
s=1

ε2s(i), (42)

where

εs(i) = z(s, i) −
p∑

k=1

ai
k z(s − k, i). (43)

Condition (42) can be reduced to solution of the system of linear equations:

x = A−1B, (44)

where A = A(k, j), k, j = 1, . . . , p, B = B(k), k = 1, . . . , p, x = (xk, k = 1, . . . , p)
and xk defines the optimal value of ak = xk.

Here

A(k, j) =
t∑

s=1

z(s − k)z(s − j), B(k) =
t∑

s=1

z(s)z(s − k). (45)

8Professional investors are trying to obtain additional information about the fundamentals of the stock
directly or by sophisticated statistical models. Thus the AR(p) model can be regarded as a simple initial ap-
proximation of a nonprofessional player.
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2.5.2. AR-ABS(p) Model
To reflect risk-neutral market participants, we minimize the sum of absolute values of the
residuals in the regressive model (38) of order p. It explains the acronym AR-ABS(p).

The method of least squares is sensitive to large deviations (Arthanari and Dodge,
1993). Therefore, the replacement of squares by absolute values is beneficial, if the cus-
tomers’ utility function is linear. The linear utility function represents risk-neutral behav-
ior.

Minimization of Residuals in AR-ABS(p) Models. To minimize f(x), we apply linear
programming.

min
v,u

t∑
s=1

us, (46)

us � εs, s = 1, . . . , t, (47)

us � −εs, s = 1, . . . , t, (48)

us � 0, s = 1, . . . , t. (49)

Here

u = (u1
s, u

2
t , s = 1, . . . , t),

v = (v1
k, v2

k, k = 1, . . . , p),

us = u1
s − u2

s, s = 1, . . . , t,

uj
s � 0, vj

k � 0, j = 1, 2,

where v, u are auxiliary variables and εs are residuals defined by differences of the aux-
iliary variables v:

εs = z(s) −
p∑

k=1

(
v1

k − v2
k

)
z(s − k). (50)

If εs = εs(i), where εs(i) are residuals of the player i, then the scale parameters
ai

k of the player i are obtained by solving the LP problem (46) as differences of the
corresponding auxiliary variables ai

k = v1
k − v2

k.

2.6. Dynamic Margins and Haircuts

The buying and selling levels depend on the results of investment operation. To avoid
risky investments, the margins between buying and selling levels m(t, i) = p′

b(t, i) −
p′

s(t, i) � 2τ(t) are increased after an unsuccessful investment. Here p′
b(t, i) p′

s(t, i)
denote dynamic profitability levels. To increase the expected profit, the margin m(t, i)
is decreased after a success. For simplicity, linear strategies are applied. It means that
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m(t, i) = p′
b(t, i) − p′s(t, i). Here

p′
b(t + 1, i) =

⎧⎨
⎩

p′
b(t, i)(1 + km(i)(U(t, i)−U(t − 1, i)),
if p′

b(t, i)(1+km(i)) � τ(t),
pb(t, i), otherwise,

(51)

p′
s(t + 1, i) =

⎧⎨
⎩

p′
s(t, i)(1 + km(i)(U(t, i)−U(t − 1, i)),
if p′

s(t, i)(1+km(i)) � −τ(t),
p′

s(t, i), otherwise.
(52)

Here the parameter −1 < km(i) � 1 shows how the dynamic margins p′
b(t) and p′

s(t),
where p′

b(1) = pb(1), p′
s(1) = ps(1) depend on the profitability p(t, i). We assume that,

in the dynamic mode, the buying-selling stock numbers nb(t, i, l), ns(t, i, l), l = 1, 2, 3
remain the same as in the static mode. In addition, the manually controlled profitability
levels pb(t, i, 4), ps(t, i, 4) using nb(t, i, 3), ns(t, i, 3) are included for market manipula-
tion.

To control the risk, banks define haircuts as a function of bank profit U(t) for lending
funds to investors. The bank profit is the difference between the gains for lending money
and losses due to borrowers’ defaults. Assuming a linear haircut strategy

h(t + 1) =
{

h(t)(1 + kh(U(t) − U(t − 1))), if h(t)(1 − khU(t)) � hmin,
hmin, otherwise,

(53)

where −1 < kh � 1 and hmin is the minimal haircut defined by transaction expenses.

2.7. Search for Nash Equilibrium

2.7.1. Equilibrium in Memory Parameters
Memory parameters p9 reflect a personal opinion of an individual investor i and, in search
of the Nash equilibrium, will be regarded as some variable p = pi, pi = 1, 2, . . . , m,
i = 1, . . . , I . Here pi = 0 refers to the Wiener model with the parameters p = 1, a1 = 1,
and pi = m > 0 means the AR(p) or AR-ABS(p) model with the parameter p = m.

Denote by p0 = (p0
i , i = 1, . . . , I) a ‘keep-contract’ vector and by pmax =

(pmax
i , i = 1, . . . , I) a ‘max-profit’ vector, where

pmax
i = arg max

pi

U
(
T, i, pi, p̄i

0
)
, i = 1, . . . , I. (54)

Here p̄i
0 = (p0

k, k = 1, . . . , I, k �= i), and U(T, i, pi, p̄i
0) is the accumulated profit of

the player i, predicted using the AR(p) or AR-ABS(p) model with p = pi while other
players k �= i predict by the same model with the equilibrium parameters p = p0

k, k �= i.

9The symbol p is used for the memory parameter p, for profitability p(t, i), and for buying-selling levels
pb(t, i), ps(t, i), the specific meaning is defined by different indexes.
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Denote by U(T, i, pmax
i ) the profit of the player i using the ‘max-profit’ parameters.

Denote

p∗ = arg min
p0

∑
i=1...,I

(
U

(
T, i, pmax

i

)
− U

(
T, i, p0

i

))
, (55)

where p0 = (p0
i , i = 1, . . . , I). Expression (55) denotes the minimum of the sum of

players’ profits obtained by violating the NE strategy, while other players follow the NE
strategies. Parameters p∗ = (p∗

i , i − 1, . . . , I) define NE exactly, if sum (55) is zero and
approximately, if the sum is less then the simulation error.

Strategies pi are discrete, so NE may not exist. In such a case, to satisfy the sufficient
conditions of the Nash equilibrium (Nash, 1951), we introduce mixed strategies x =
(xi, i = 1, . . . , I), xi = P {p = pi}, where P is a probability of the event p = pi. Then
we search for such a contract vector x0 = (x0

i , i = 1, . . . , I),
∑

i=1,...,I xi = 1, xi � 0
that minimizes the sum of differences between ‘max-profit’ and ‘keep-contract’ profits

x∗ = arg min
x0

I∑
i=1

(
U

(
T, i, xmax

i

)
− U

(
T, i, x0

i

))
, i = 1, . . . , I. (56)

Here, the symbol U(T, i, x0), defines the profit of the player i. when all the players keep
the contract parameters x0

i . The symbol U(T, i, xmax
i ) denotes the maximal profit of the

player i, when other players keep the contract parameters x0
k, k �= i. Therefore, the vector

x∗ defines the Nash equilibrium exactly if the sum (56) is zero. The vector x∗ defines the
Nash equilibrium approximately, if the sum is less than the simulation error. However,
applying the mixed strategies x, one introduces additional simulation errors which may
exceed the discrete approximation errors while using pure strategies p.

Expressions (55) and (56) define stochastic global optimization problems. The
Bayesian Approach (Mockus et al., 1997) is meant for these problems. Other well-known
global optimization methods (Strongin and Sergeyev, 2000; Dzemyda and Sakalauskas,
2011) can be applied, too.

2.7.2. Equilibrium in Margins and Haircuts
Condition (56) defines the Nash equilibrium on a set of different prediction models AR(p)
or AR-ABS, assuming that investors keep constant buying-selling margins m(t, i) =
m(i) for customers i. To reflect the influence of margins, Nash equilibrium condition
(56) is extended by including the margin strategies yi = km(i). Then, it follows from
(56) and (52) that

δmax = min
p0

i
,y0

i

I∑
i=1

(
U

(
T, i, pmax

i , ymax
i

)
− U

(
T, i, p0

i , y
0
i

))
, i = 1, . . . , I. (57)
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This model includes the parameters of investors. To include the parameters of the lending
bank, the haircut strategy vi = kh(i) is added to condition (57)

δmax = min
p0

i
,y0

i
,v0

I∑
i=1

(
U

(
T, i, pmax

i , ymax
i , vmax

)
− U

(
T, i, p0

i , y
0
i , v0

))
,

i = 1, . . . , I. (58)

In expressions (57) and (58) the parameters y0
i , ymax

i , v0, vmax are defined in a way
similar to that of the parameters p0

i , pmax
i in (55).

3. Examples of the Stock Exchange Game Model

In Fig. 1, the lower line represents the profit of a single player that uses the AR(p), p = 9
model. The upper line shows the profit of the remaining seven players that use the Wiener
model. The time period is three years (virtual).

Figure 2 illustrates the “mixed” case: the upper line represents the profit of a single
player that uses the Wiener model. The remaining lines show profits of the remaining
seven player that use different prediction models, from AR(1) to AR(7).

Figures 3 shows the corresponding stock rates..
These figures illustrate that, in the examples the Wiener model approximately pro-

vides the Nash equilibrium. Figures 4 and 5 illustrate a virtual “crisis” when stock prices
are nearly zero and no one wants to buy them.

Another way of testing the USEGM model is to investigate the reaction to well known
deliberately non-NE strategies of some major stockholder. An example is George Soros’
currency manipulation by selling a large amount of assets to buy back these and other
assets later at an artificially lowered price. An important feature of this scenario is that the

Fig. 1. Profit of AR(p), p = 9 vs the Wiener model.
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Fig. 2. Profit in the Wiener model versus AR(p) models, p = 1 − 7.

Fig. 3. Stock price in the Wiener model versus AR(p) models, p = 1 − 7.

player “Soros” makes great profit if other players are predicting prices by the previous
data, for example, by AR(p), p > 1. In Fig. 6, the lower line represents the profits of
seven players that use the AR(p), p = 9 model. The upper line shows the profit of a
player that uses the “Soros” model.

In Fig. 7, the middle line represents the stock price in the “Soros-vs-AR(p, p = 9)”
game. The other six lines show buying and selling levels.

Figure 8 shows the historical stock rates of Google and Intel. Different scales of stock
prices are used here, the scale of Intel stocks is 25 USD.
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Fig. 4. Profits when the crisis occurs.

Fig. 5. Stock prices when the crisis occurs.

Comparing these actual stock rates with the corresponding simulated data in Fig. 3,
one can notice obvious differences and some similarities.

4. Examples of Financial Time Series

To compare the simulation results with real data, an efficient market hypothesis has also
been tested, using financial time series of eighteen assets. In this experiment, the simple
SEGM model was applied. Five simulated financial time series, the Amazon river dis-
charge, and the demand of a call center were regarded, too, to illustrate the differences.
Time series are selected so as to represent various asset sectors.
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Fig. 6. Profits in the “Soros-vs-AR(p, p = 9)” game.

Fig. 7. Stock price in the “Soros-vs-AR(p), p = 9” game.

In Table 1 nine assets are used in evaluations. The prices are predicted. Eight assets
are real-world futures closing prices. The ninth ‘asset’ is a random simulation. Random
independent Gaussian numbers are summed up cumulatively to simulate ‘closing prices’
for random data representing the Wiener model.

500 data points are used for training and the remaining 250 points are used for eval-
uation. The training data points represent approximately 2 years of history prior to Jan-
uary 1, 2007. This is the pre-crisis time. The training data are divided into two equal
parts. In the first part, the scale parameters ai, i = 1, . . . , p of the AR-ABS(p) model
of order p are evaluated for each parameter p. The second part of training data is used to
optimize p. The evaluation data points represent approximately one year of history after
January 1, 2007.
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Fig. 8. Historical stock rates of Google and Intel.

Table 1

The residuals of next-day predictions, the first set, data from 2005-01-01 to 2008-01-01, 500 days for training,
250 days for predictions

Asset AR-ABS(1)1 AR-ABS(popt) popt RW

Audusd 0.004525 0.004521 3 0.00453

Brentcrudeoil 0.9676 0.9656 17 0.97

Ccocoa 22.572 22.572 1 22.572

Coffee 1.2863 1.2712 12 1.28

Eurodollar 0.049286 0.04926 19 0.0493

Kospi 2.5672 2.5536 16 2.59

Leanhogs 0.6798 0.6797 2 0.68

Random 0.7654 0.7654 1 0.765

Tnote5y 0.1987 0.1986 5 0.2

Different assets are quoted in different currencies. Thus, some numbers are large.
For example, the ‘kospi’ data are quoted in South Korean currency Won. Series from
all the major sectors are considered: energy (brentcrudeoil), commodities (cocoa, coffee,
leanhogs), currency exchange (audusd), interest rates (eurodollar), equity indexes (kospi),
and bonds (tnote5y).
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Table 2

The list of the second set

Sector Name Time Short name

Hydrology Amazon 1928–1992 Amazon

IT Intel Corporation 2007.01.01–2008.12.31 Intc

Food industry Kraft Foods Inc. 2007.01.01–2008.12.31 Kft

Mutual funds Templeton Global Bond A 2007.01.01–2008.12.31 Tpinx

Raw materials United States Oil 2007.01.01–2008.12.31 Uso

Currency Euro-Dollar 2007.01.01–2008.12.31 Eurusd

Simulation Virtual Stock Exchange 1 Usegm1

Simulation Virtual Stock Exchange 2 Usegm2

Table 3

The residuals of predictions, the second set, 338 items for training and 168 for predictions

Asset AR-ABS(popt) Matlab(1) Matlab(2) Matlab(9) RW

Amazon 5.983 14.064 6.793 6.287 14.433

Eurusd 0.395 0.416 0.451 0.503 0.395

Intc 3.141 3.391 3.095 3.172 3.078

Kft 1.439 1.429 1.442 1.466 1.437

Tpinx 0.544 9.546 0.565 0.588 0.532

Uso 3.305 3.532 3.486 3.898 3.240

Usegm1 1.471 1.499 1.641 1.554 1.474

Usegm2 3.635 3.622 3.699 3.734 3.606

Table 1 shows that the best results were obtained using RW in the simulated Wiener
process (as expected) and in time series of cocoa futures prices. Residuals are defined
as mean absolute deviation to represent investors which assume a linear utility function.
Simulation of the Wiener process has been repeated for 10 times and p = 1 was always
optimal. In the time series of seven other assets, the best results were provided by the
AR-ABS(p) models of order p with the optimized order p = popt > 1. This indicates
that in most cases asset holders are not playing strategies, corresponding to the Wiener
model. An interesting exception is futures prices of cocoa. A possible explanation is
that the cocoa market is controlled by a few major players who are using buying-selling
strategies close to the Nash equilibrium. The situation is different in the remaining seven
markets, where the prices depend on the actions of many players. Apparently most of
them are looking for greater current profits and are not following equilibrium strategies.

For comparison, Tables 2 and 3 show the results of different time series, using dif-
ferent prediction methods. Here hydrology data are presented in addition to the financial
ones. The residuals of predictions are presented as the ratio of the root mean squared error
(RMSE) to the sample mean, the sources of data were (rivdis, 2009; Historical quotes,
2009; Fxhistory, 2009).
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To illustrate the influence of the “memory” parameter p, three versions of ANN pre-
dictions are given: Matlab(1) means p = 1, Matlab(2) is for p = 2, and Matlab(9) means
p = 9. As expected, the best memory for hydrology time series was p∗ = 9. The financial
data show different results. For eurusd, kft, and tpinx p∗ = 1, for intc and uso p∗ = 2.
For both examples usegm1 and usegm2 of simulated time series the optimal p∗ = 1.

The AR-ABS(p) model optimizes the parameter p automatically and provides the best
results for ‘amazon’, ‘eurusd’, and ‘usegm1’ data sets. For ‘intc’, ‘kft’, ‘tpinx’, ‘uso’,
and ‘usegm2’ data sets, the Wiener model was the best. However, for financial data the
differences between RW and AR-ABS(p) were not significant statistically. For hydrology
time series, AR-ABS(p) provided almost three times better results.

Some historical financial time series of 1997 were considered, in addition to relatively
recent data, to illustrate the market behavior under more stable financial conditions.

The difference of average prediction errors of ARMA and RW models can be regarded
as some parameter of “ARMA-unpredictability” of the data. It means that the time series
are not predictable by the ARMA model if the difference is zero or negative. Table 4
shows the difference between the mean square deviations of ARMA and RW models.

The table uses four data sets

– exchange rates of DM/$, $/£, Yen/$, and Fr/$,
– closing rates of AT&T, Intel Co., and Hermis Bank stocks,
– index of the London Stock Exchange,
– call rates of a call center.

In Table 4, the symbol MeanARMA denotes average prediction errors of the ARMA
model. The symbol VarArma means the variance of ARMA predictions. The symbol
DeltaARMA% denotes the relation (RW-ARMA)/RW in percentages. Here RW defines
average errors of the Random Walk. DeltaARMA% > 0 means that the ARMA model
predicts better.

The data are divided into three equal parts: The first part is to estimate the parameters
a and b of the ARMA model using fixed numbers p and q.

The best values of p and q are defined using the second part of data.

Table 4

The average “next-day” prediction results of ARMA and RW models

Data DeltaARMA% MeanARMA VarARMA

$/(£) −1.779090e−01 1.293609e+00 8.454827e−02

DM/$ −1.191e−02 1.092e−01 9.985e−02

Yen/$ −1.086e+00 6.369e+00 6.446505e+00

Fr/$ −3.029e−01 4.285e−01 3.395e−01

AT&T −1.375e+00 4.554e+00 3.621e+00

Intel Co +2.814e−01 2.052e+01 1.936e+00

Hermis Bank −4.280e+01 2.374e+01 1.998e+01

London Stock Exchange −5.107e−01 2.751e+02 2.346e+01

Call Center +3.076e+01 8.453e+02 7.111e+02
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The third part is to compare the ARMA and RW models. The table shows the com-
parison results. Table 4 shows that the ARMA model predicts all the financial data no
better than RW. However, the observed deviations between the RW and ARMA models
of financial data are too small for statistical conclusions. The results are different for the
next-day call rate predictions. Here ARMA predicts call rates thirty one percent better
than RW. That is a statistically significant difference. Table 3 shows that, in predicting
Amazon river discharge, the residual of the AR-ABS model is almost three times smaller
comparing with RW.

No formal experimental design and sophisticated statistical techniques were used in
this paper, since the USEGM model is designed as a tool of individual on-line experi-
mentation for graduate studies and scientific collaboration.

5. Software of the Stock Exchange Game Model

The stock exchange game model is a part of the general on-line system for graduate
studies and scientific collaboration (Mockus, 2006; Mockus, 2003).

The main web site (last modified December, 2011) is at:
http://mockus.org/optimum.
The mirror sites are at:
http://prof.if.ktu.lt˜jonas.mockus,
http://optimum2.mii.lt,
http://kopustas.elen.ktu.lt˜jmockus,
Examples are in the form of Java applets and can be started by any browser with Java

support (assuming that both Java and Javascript are enabled). Applets were compiled by
java1.6 so they may not work correctly using lesser versions of Java.

The common feature of examples is that all of them are solved using optimization
techniques. Three versions of USEGM are in the section “Global Optimization”, subsec-
tion “Stock-Exchange Model”, subsubsection “Nash Equilibrium, Examples of Global
Optimization in the Simplest Stock Exchange Model”.

GMJ1 is the reference to prototype of the stock exchange model.
The reference to the version of SEGM that represents up to eight major investors and

eight stocks is this:
‘GMJ2 stable version, up to 8 customers and 8 stocks with user ‘Soros’, , #1’.
To start applets directly by the ‘appletviewer’ command (without a web browser), the

tt of this version can be used. The updated USEGM model ‘STOCK-2’ is on the web and
can be started using corresponding URL, for example: http:mockus.org/optimum/
igor/contigor.html10.

In other synchronized servers, the URL should be changed accordingly.
Statistical simulation of USEGM is a time consuming process if I and J are large.

The large computing time limits the possibilities of completely automatic optimization.
Thus, a multi-processor version is under development. Now the software works up to

10To make correct reference this URL may be entered manually.
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I = J = 8. In a multi-processor system, the number of major players I will be defined
by the number of processors.

In the Internet environment, we need platform-independent languages for running the
software on remote computers. Java is more efficient for scientific calculations among
such languages. Java applets provide a unique possibility for student-teacher interactions.
Students can run the programs remotely and teachers can test students’ results on-line.

6. Concluding Remarks

The Game Theory is a suitable framework to model financial markets because the future
market price of financial assets depends on predictions (and subsequent actions) of the
market participants with conflicting interests.

The idea that a financial market is a “casino” game was expressed in Keynes (1936,
2007). In Krugman (2000, 2008, 2009), the unpredictability of asset prices is explained
by the irrational behavior of participants.

According to the models of this paper, the seemingly irrational behavior of market par-
ticipants can be considered as rational under the specific conditions of decision making
and the available information. From this standpoint, the differences between the efficient
market theory (Fama, 1995), assuming the rational behavior of market players and theo-
ries based on the irrational behavior (Krugman, 2000, 2008, 2009) are not so significant.

The proposed financial market model USEGM is designed as a tool for simulating the
market processes in response to different changes of market parameters and for estimating
the expected profits of different prediction methods using the virtual and historical data.
Convenient user interactions are provided by implementing the model as a Java applet
and publishing it in an open web-site (Mockus, 2007).

A simple Stock Exchange Game Model (SEGM) was introduced in Mockus (2003,
2010), Mockus and Raudys (2010) to simulate the behavior of several stockholders us-
ing fixed buying-selling margins at fixed bank yield. In this paper, an extended model
USEGM is proposed. The advantage of USEGM is application to strategies that define
buying-selling margins and bank haircuts dynamically. That enables us to simulate mar-
ket illiquidity that is an important feature of the present financial crisis (Allen, 2008). In
addition, USEGM includes the transaction costs, what helps to reflect the reality better. To
represent users preferring linear utility functions, USEGM adds the AR-ABS(p) autore-
gression model minimizing the absolute values. The traditional AR(p) model minimizing
least square deviations reflects risk aversion.

While USEGM may be too simplistic for practical forecasting, it can serve as a useful
tool for studies of market behavior by presenting an easy way of simulating different
scenarios of player strategies. For example, simulations can explain stock market reaction
to deliberately set non-NE strategies of a major stockholder, such as manipulation of asset
prices, designed to lower their value.

We have compared the RW model with eighteen actual financial time series and found
the results to be close to the Nash equilibrium in some cases. A possible explanation of
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the differences is that major players are not following NE strategies. Some similarity
of the results obtained using the simple SEGM model and real data indicates that the
approach, based on the assumption of optimal behavior by market participants, may be
suitable and useful as a first approximation in the studies of real financial markets. In
addition, USEGM can be applied to compare potential profit which can be obtained by
various prediction models using historical data.

Using the USEGM simulation, one may notice that a simplistic prediction of future
trends is a reason of financial instability. This way USEGM helps students of business
informatics to understand better financial disasters that we are witnessing at present.
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Apie Nash’o pusiausvyros modeliavim ↪a akcij ↪u biržos kontekste
Jonas MOCKUS

Paprasčiausias akcij ↪u biržos modelis (SEGM) buvo pasiūlytas (Mockus, 2003, 2010; Mockus ir
Raudys, 2010) keli ↪u akcinink ↪u elgesio aprašymui, naudojanči ↪u pastovius pirkimo-pardavimos slen-
ksčius ir banko palūkanas. Straipsnyje siūlomas sudėtingesnis modelis USEGM. Jo privalumas yra
Nash’o pusiausvyros (NE) pritaikymas, nustatatant kintančius laike pirkimo-pardavimo slenksčius
ir bank ↪u palūkanas. Tai suteikia galimyb ↪e modeliuoti blog ↪a rinkos likvidum ↪a, kuris buvo charak-
teringas finans ↪u rinkos krizei. Be to, USEGM ↪ivertina finansini ↪u operacij ↪u kaštus, kurie neišven-
giami praktikoje. Siekiant geriau modeliuoti akcininkus kurie orientuojasi ↪i tiesines naudingumo
funkcijas, USEGM papildomai realizuoja AR’ABS(p) autoregresijos model↪i, kuris minimizuoja
absoliutinius nukrypimus. Tradicinis AR(p) modelis minimizuoja kvadratinius nukrypimus.

Formalus NE pritaikymas finans ↪u rinkos dalyvi ↪u elgesiui modeliuoti yra nauja ši ↪u modeli ↪u
ypatybė. Allen (2008), Brunnermeier (2009), Brunnermeier ir Yogo (2009) darbuose pusiausvyros
idėjos buvo taikomos nagrinėjant pasiūlos-paklausos balans ↪a.

Rinkos prognozavimas nėra USEGM modelio tikslas. Modelis skirtas aprašyti finansini ↪u
eiluči ↪u priklausomyb ↪e nuo akcinink ↪u naudojamo prognozavimo metodo bei j ↪u elgesio. Tuo būdu,
„virtuali“ akcij ↪u rinka pagrista NE gali būti panaudota tikrinti tradicin ↪e efektyvios rinkos teorij ↪a,
atžvilgiu nauj ↪u idėj ↪u, aiškinanči ↪u rinkos procesus neracionaliu rinkos rinkos dalyvi ↪u elgesiu. Mo-
delis buvo lyginams su aštuoniolika reali ↪u laiko eiluči ↪u; daugeliu atvej ↪u rezultatai buvo panašūs.


