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ON SIMULATIONS OF DISCRETE FRACTURE NETWORK FLOWS

WITH AN OPTIMIZATION-BASED EXTENDED FINITE ELEMENT

METHOD∗

STEFANO BERRONE† , SANDRA PIERACCINI† , AND STEFANO SCIALÒ†

Abstract. Following the approach introduced in [SIAM J. Sci. Comput., 35 (2013), pp. B487–
B510], we consider the formulation of the problem of fluid flow in a system of fractures as a PDE
constrained optimization problem, with discretization performed using suitable extended finite el-
ements; the method allows independent meshes on each fracture, thus completely circumventing
meshing problems usually related to the discrete fracture network (DFN) approach. The application
of the method to DFNs of medium complexity is fully analyzed here, accounting for several issues
related to viable and reliable implementations of the method in complex problems.

Key words. fracture flows, Darcy flows, discrete fracture networks, optimization methods for
elliptic problems

AMS subject classifications. 65N30, 65N15, 65N50, 65J15
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1. Introduction. In many applications, such as water resources monitoring,
contaminant transport, and oil/gas recovery, efficient numerical simulations of sub-
surface fluid flow in fractured porous rocks are of increasing interest. The description
of the phenomena has to correctly account for the intrinsic heterogeneity and direc-
tionality of the rock medium and the multiscale nature of the flow. In dense fracture
networks the flow can be well modeled as the flow in a continuous porous medium
where fractures influence the distribution of an equivalent permeability tensor. On
the contrary, in sparse fracture networks flow properties are mainly determined by the
larger fractures; thus discrete fracture network (DFN) models are preferred to more
conventional continuum models as basis for the simulations.

A DFN is an assemblage of resembling-fractures planar ellipses or polygons,
stochastically generated given probabilistic data on distribution of density, aspect
ratio, orientation, size, aperture, and hydrological properties of the medium [12]. The
fluid regime in a DFN can be conditioned even by the smallest elements, and therefore
neglecting fractures below a specified threshold is not recommended. As a consequence
the number of generated fractures is frequently high even for a limited size of the do-
main of interest. Discretization thus often leads to poor meshes with a huge number
of nodes. At the same time, a stochastic approach to the uncertainty of the parame-
ters requires large numbers of simulations so that efficiency of numerical methods is
of paramount importance for the applicability of DFN-based numerical solutions.

A DFN is a complex three-dimensional (3D) structure. The first numerical chal-
lenge is to provide good-quality conforming meshes where the discretization of fracture
intersections (traces) is the same on all the fractures involved. This is usually achieved
by the introduction of a huge number of elements, independently of the required ac-
curacy of the numerical solution.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 29,
2012; accepted for publication (in revised form) January 3, 2013; published electronically April 3,
2013. This work was supported by Italian funds Miur-PRIN-2008 (200834WK7H 004).
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SIMULATING DFN FLOWS WITH OPTIMIZATION-BASED XFEM A909

In order to reduce computational cost, a possible approach consists in reducing
the DFNs to systems of one-dimensional pipes that are aligned along the fractures
and mutually connect the centers of the traces with the surrounding fractures. This
approach eases mesh generation problems and the resulting mesh of pipes still reflects
the topological properties of the fracture network [8, 23]. An accurate definition of
pipe properties is obtained with a boundary element method in [13].

Without resorting to dimensionality reduction, in [30] a mixed nonconforming
finite element method on a conforming mesh is proposed. In [21], an adaptive ap-
proach to the conforming mesh generation requiring adjustments of the trace spatial
collocations is proposed. Local modifications of the mesh or of the fracture network
in order to preserve conformity of the meshes or alignment of meshes along the traces
are considered in several works (see, e.g., [18, 30]). In [15], a method to generate a
good-quality conforming mesh on the network system is proposed based on the pro-
jection of the discrete 3D network on the two-dimensional planar fractures in order
to remove those connections among fractures which are difficult to be meshed. In
[25, 26], a mixed hybrid mortar method is proposed allowing nonconformities of the
meshes on the fractures but requiring that the traces are contained in the set of the
edges of each fracture triangulation. Resorting to mortar methods, the discretization
of each fracture can lead to a different discretization of the traces. Interesting, very
complex DFN configurations are tested in [14].

In the recent work [6], the authors have proposed a different approach for the
description of steady-state flows in a given DFN, which consists in the reformula-
tion of the problem as a PDE constrained optimization problem. Following this
approach, it is shown that the meshes introduced on each fracture are allowed to be
independent of the meshes on other fractures and independent of trace number and
disposition, thus actually eliminating any kind of meshing problems related to DFN.
The discrete problem is formulated as an equality constrained quadratic program-
ming problem. Discretization on each fracture is performed with the extended finite
element method (XFEM) for approximating the nonsmooth behavior of the solution,
which may present discontinuities in the fluxes. Here, we further analyze viability
of the method proposed in [6] by discussing several issues arising when the method
is applied to complex DFNs. In particular, we fully account for the extended finite
element discretization with the so-called open interfaces, i.e., traces not ending on
fracture edges. We also discuss preconditioning issues related to the numerical solu-
tion of the problem. Several numerical results are proposed, showing the capability of
the method in dealing with complex situations, such as critical traces intersections.

The paper is organized as follows. In section 2 we briefly recall the physical model
and the continuous optimization problem, and in section 3 the discrete formulation of
the problem is given. In section 4 we describe the basics of extended finite elements
considered herein, with special attention given to the treatment of open interfaces. In
section 5 numerical results are discussed in order to prove viability and reliability of
the method.

2. Problem description. The quantity of interest of the problem we are dealing
with is the hydraulic head, given by H = P +ζ, where P = p/(̺g) is the pressure
head, p is the fluid pressure, g is the gravitational acceleration constant, ̺ is the fluid
density, and ζ is the elevation. The computation of the hydraulic head in a DFN
requires the solution of differential equations on a system of planar polygonal open
sets called fractures, denoted by Fi with i ∈ I. Let us introduce on each Fi a local
tangential coordinate system x̂i. Despite being planar, their orientations typically
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A910 S. BERRONE, S. PIERACCINI, AND S. SCIALÒ

differ so that their union is a 3D set. Let us denote by Ω the union of the fractures
and let ∂Ω be its boundary. The intersection of the closure of each couple of fractures
is either an empty set or a set of nonvanishing segments called traces, denoted by Sm,
m ∈ M. Let S denote the set of all these traces. Furthermore, let each fracture of
the system be endowed with a hydraulic transmissivity tensor Ki(x̂i).

In this paper the following assumptions are made on the DFN: (1) Ω̄ is a connected
set; (2) each trace Sm, m ∈ M, is shared by exactly two polygonal fractures Fi and
Fj , i �= j: Sm ⊆ F̄i ∩ F̄j ; (3) on each fracture, the transmissivity tensor Ki(x̂i) is
symmetric and uniformly positive definite.

Given a trace Sm, let Fi and Fj be the fractures sharing the trace: the set of
indices i and j is denoted by ISm

= {i, j}. For each fracture Fi let us denote by Si

the set of traces shared by Fi with other fractures and by Ji ⊂ I the set of indices of
fractures sharing one trace with Fi.

While referring the reader to [6] for all the details, we sketch here a brief descrip-
tion of the approach. Let us split the boundary ∂Ω into two sets ΓD �= ∅ and ΓN with
ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, on which Dirichlet boundary conditions HD and
Neumann boundary conditions GN are respectively imposed. Let HiD and GiN be
the restriction of HD and GN to ΓiD = ΓD ∩ ∂Fi and ΓiN = ΓN ∩ ∂Fi, respectively.
Let us define ∀i ∈ I

Vi = H1
0(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= 0
}
, V D

i = H1
D(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= HiD

}
,

and let V ′
i be the dual space of Vi.

The global hydraulic head H in the whole connected system Ω is provided by the
solution of the following problems: ∀i ∈ I find Hi ∈ V D

i such that ∀v ∈ Vi

(2.1)

∫

Fi

Ki∇H∇vdΩ =

∫

Fi

qivdΩ+

∫

ΓN∩∂Fi

Gi,Nv|SdΓ+
∑

S∈Si

∫

S

[[
∂Hi

∂ν̂iS

]]

Sm

v|SdΓ,

where ∂Hi

∂ν̂i
S

= (n̂i
S)

T
K∇H is the outward co-normal derivative of the hydraulic head,

where n̂i
S is the unique normal fixed for the trace S on the fracture Fi, and the

symbol [[∂Hi

∂ν̂i
S

]]S denotes the jump of the co-normal derivative along n̂i
S . This jump is

independent of the orientation of n̂i
S .

In (2.1) the left-hand side models the diffusion of hydraulic head on each fracture,
the first term of the right-hand side is the external load in each facture, the second is
the term due to the Neumann boundary conditions, and the last term describes the
net flow of hydraulic head entering the fracture at each trace.

In order to set up a well-defined problem, the following matching conditions have
to be added to (2.1):

Hi|Sm
−Hj |Sm

= 0 for i, j ∈ ISm
,(2.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0 for i, j ∈ ISm
.(2.3)

These two additional conditions correspond to the physical requirement of continuity
of the hydraulic head and conservation of hydraulic fluxes across each trace Sm,
m ∈ M. Condition (2.2) implies that the hydraulic head H on the whole domain Ω
belongs to the space
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SIMULATING DFN FLOWS WITH OPTIMIZATION-BASED XFEM A911

(2.4) V D = H1
D(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm

, ∀m ∈ M

}
.

For simplicity of notation and exposition in the rest of this section we assume
that the traces S ∈ S are disjoint. This assumption can be removed at the cost of a
more complex and heavy notation. Let us define for each trace S ∈ S a suitable space

US and its dual that we denote by
(
US

)′
. We define similar spaces on all the traces

of fracture Fi ∀i ∈ I and on the full set of traces S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

For each trace S common to Fi and Fj we introduce suitable variables US
i ∈ US

and US
j ∈ US representing the unknown quantities [[∂Hi

∂ν̂i
S

]]S and [[
∂Hj

∂ν̂
j

S

]]S , respectively.

Moreover, for each fracture Fi let us denote by

Ui = Π
S∈Si

US
i ∈ USi

the tuple of functions US
i with S ∈ Si and by U = Πi∈I Ui ∈ U the tuple of all

functions US
i with S ∈ Si and i ∈ I, i.e., the 2(#M)-tuple of functions on all traces

in Ω̄. Let us introduce the following linear bounded operators:

Ai ∈ L(Vi, V
′
i ), 〈AiH

0
i , v〉V ′

i
,Vi

=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i HD
i , v〉V ′

i
,Vi

= (K∇HD
i ,∇v), HD

i ∈ V D
i ,

Bi ∈ L(USi , V ′
i ), 〈BiUi, v〉V ′

i
,Vi

= 〈Ui, v|Si
〉USi ,USi ′ ,

BΓiN
∈ L(H− 1

2 (ΓiN ), V ′
i ), 〈BΓiN

GiN , v〉V ′

i
,Vi

= 〈GiN , v|ΓiN
〉
H−

1
2 (ΓiN ),H

1
2 (ΓiN )

the definitions holding ∀v ∈ Vi. Further, we introduce the dual operators A∗
i ∈

L(Vi, V
′
i ), Bi

∗ ∈ L(Vi,USi
′
) and the Riesz isomorphism ΛUSi : USi → USi

′
. Finally,

let Ri HiD ∈ V D
i be a lifting of Dirichlet boundary condition HiD. The problem is

then clearly stated as follows: ∀i ∈ I find Hi = H0
i +Ri HiD with H0

i ∈ Vi such that

(2.5) AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD.

2.1. Formulation as an optimization problem. The novel approach intro-
duced in [6] consists in replacing the differential problems on the fractures (2.5) ∀i ∈ I,
coupled with the matching conditions (2.2), (2.3), with a PDE constrained optimal
control problem, in which the variable U acts as a control variable; equations (2.5)
∀i ∈ I are the constraints, and the matching conditions are replaced by the task of
minimizing a nonnegative functional. Let us define the spaces

HSi =
∏

S∈Si

HS , H =
∏

i∈I

HSi

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. We introduce the following linear

bounded observation operators CS
i and Ci and the dual Ci

∗:

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i ).
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For all i ∈ I, let us denote by Hi(Ui) the solution to (2.5) corresponding to the value

Ui for the control variable. Furthermore, for each fracture Fi, we denote byΠS∈Si
US
j

the tuple of control functions defined on the fractures Fj intersecting Fi in the traces
S ∈ Si.

Let us now introduce the following differentiable functional J : U → R:

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

(
|| Π

S∈Si

(
CS

i Hi(Ui)− CS
j Hj(Uj)

)
||2HSi + ||Ui + Π

S∈Si

US
j ||2USi

)
.(2.6)

The problem of finding the hydraulic head in the whole domain is restated as the
following optimization problem: find U ∈ U solving the problem

(2.7) min J(U) subject to (2.5) ∀i ∈ I.

In [6] it is shown that if US = H− 1
2 (S) and HS = H

1
2 (S), there exists a unique

control variable U vanishing the functional J(U) and correspondingly the unique
solution H satisfying (2.5) ∀i ∈ I is the solution to (2.1)–(2.3), as the vanishing of the
two terms of the functional J corresponds to the imposition of the matching conditions
(2.2), (2.3) ∀m ∈ M. It is further shown that the optimal control U ∈ U providing
the minimum of the functional J(U) is characterized by the following conditions:

(2.8) (ΛUSi )
−1 Bi

∗Pi + Ui + Π
S∈Si

US
j = 0

∀i ∈ I, where the functions Pi ∈ Vi are the solution of

A∗
iPi = Ci

∗ΛUSi Π
S∈Si

(
CS

i Hi(Ui)− CS
j Hj(Uj)

)
in Fi.(2.9)

The computation of the solution to the problem of interest on the whole DFN may
be approached by either solving problems (2.5) coupled with (2.8) and (2.9) ∀i ∈ I

or setting up an iterative process for solving the optimization problem (2.7). In the
next section we will give details concerning computation of a numerical solution with
these approaches.

Remark 2.1. The assumption of each trace being shared by exactly two fractures
can be circumvented by redefining the functional as follows. With straightforward
extension to more general cases, we allow three fractures Fi, Fj , Fk to share the same
trace S. Then the corresponding JS(U) term in the definition of J(U) is

JS(U) = ||CS
i Hi(Ui)− CS

j Hj(Uj)||2HS + ||CS
i Hi(Ui)− CS

k Hk(Uk)||2HS

+||US
i + US

j + US
k ||2US .

3. Discretization of the constrained optimization problem. In this
section, we account for the numerical solution of the problem, and we start briefly
sketching the derivation of the finite dimensional counterpart of problem (2.7). For
simplicity, in this section we assume homogeneous Dirichlet boundary conditions, i.e.,
HD = 0. All the results can be extended to the general case HD �= 0. We describe
our numerical method for the approximation of the solution assuming US = L2(S),

HS = L2(S) ∀S ∈ S. We remark that with these choices the assumption of discon-
nected traces can be removed [6].
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Let us introduce an independent conforming triangulation Tδ,i on each fracture Fi

∀i ∈ I. Let Vδ,i be the finite dimensional trial and test spaces defined on the elements
of Tδ,i and spanned by Lagrangian basis functions φi,k, k = 1, . . . , Ni. The discrete

approximation of Hi on each fracture is defined as hi =
∑Ni

k=1 hi,kφi,k ∀i ∈ I.
Let us consider the following different numbering for the control functions US

i ,
induced by the trace numbering. Let S = Sm be a given trace with ISm

= {i, j} and
assuming i < j, we denote by U−

m and by U+
m the control functions related to the

mth trace and corresponding to fractures Fi and Fj , respectively. Let us fix a finite
dimensional subspace of US for the discrete approximation u⋆

m of the control variable
U⋆
m, ⋆ = −,+ and let us introduce basis functions ψ−

m,k, k = 1, . . . , N−
m and ψ+

m,k,

k = 1, . . . , N+
m. Then we have for m ∈ M, ⋆ = −,+, u⋆

m =
∑N⋆

m

k=1 u
⋆
m,kψ

⋆
m,k.

With this notation, using L2-norms in (2.6) and CS
i hi = hi|S , we obtain the

following finite dimensional form of the functional J(u):

J(u) =
1

2

∑

i∈I

∑

S∈Si

∫

S

⎛

⎝
Ni∑

k=1

hi,kφi,k |S
−

Nj∑

k=1

hj,kφj,k |S

⎞

⎠
2

dγ

+
1

2

∑

m∈M

∫

S

⎛
⎝

N−

m∑

k=1

u−
m,kψ

−
m,k +

N+
m∑

k=1

u+
m,kψ

+
m,k

⎞
⎠

2

dγ.(3.1)

In view of deriving a compact form for (3.1), let us introduce vectors hi ∈ R
Ni ,

hi = (hi,1, . . . , hi,Ni
)T , i ∈ I, and setting NF =

∑
i∈I

Ni, let h ∈ R
NF

be ob-
tained concatenating, for i ∈ I, vectors hi. Hence from now on, besides denoting
the discrete solution, hi will also denote the vector of degrees of freedom (DOFs).
Similarly, let us introduce the vectors u⋆

m ∈ R
N⋆

m , u⋆
m = (u⋆

m,1, . . . , u
⋆
m,N⋆

m
)T , m ∈ M,

⋆ = −,+, and setting NT =
∑

m∈M
(N−

m + N+
m) we define u ∈ R

NT

concatenating

u−
1 , u

+
1 , . . . , u

−
#M

, u+
#M

.

For all i ∈ I, S ∈ Si, let us define matrices MS
i ∈ R

Ni×Ni and (for j ∈ Ji)
MS

ij ∈ R
Ni×Nj as

(MS
i )kℓ =

∫

S

φi,k |S
φi,ℓ|S

dγ, (MS
ij)kℓ =

∫

S

φi,k |S
φj,ℓ|S

dγ

and for m ∈ M and ⋆ = −,+ define M⋆
m ∈ R

N⋆
m×N⋆

m , M±
m ∈ R

N−

m×N+
m , and Mm as

(M⋆
m)kℓ=

∫

S

ψ⋆
m,kψ

⋆
m,ℓ dγ, (M±

m)kℓ=

∫

S

ψ−
m,kψ

+
m,ℓ dγ, Mm=

(
M−

m M±
m

(M±
m)T M+

m

)
.

Then, let Gh ∈ R
NF×NF

and Gu ∈ R
NT×NT

be defined blockwise as follows:

Gh
ii =

∑

S∈Si

MS
i , i ∈ I, Gh

ij = −MS
ij , i ∈ I, j ∈ Ji, Gu = diag(M1, . . . ,M#M).

With these definitions at hand, the functional J(u) in matrix form reads

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Matrices Gh and Gu are clearly symmetric and semidefinite.
Now, let us turn our attention to the algebraic counterparts of operators Ai, Bi

in (2.5): overloading notation, we let Ai and Bi also denote the matrices defining the
algebraic operators. We set Ai ∈ R

Ni×Ni and BSm

i ∈ R
Ni×N⋆

m as
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(3.2) (Ai)kℓ=

∫

Fi

∇φi,ℓ∇φi,k dFi,
(
BSm

i

)

kℓ
=

∫

Sm

φi,k |Sm
ψ⋆
m,ℓ dγ,

where, since Sm ⊆ F̄i ∩ F̄j , we take ⋆ = − if i < j or ⋆ = + otherwise. Matrices

BSm

i , Sm ∈ Si, are then grouped rowwise to form the matrix Bi ∈ R
Ni×NSi with

NSi
=

∑
Sm∈Si

N⋆
m and ⋆ chosen as before, which acts on a column vector ui obtained

appending the blocks u⋆
m in the same order used for BSm

i , as the action of a suitable

operator Ri : R
NT �→ R

NSi such that ui = Riu. According to these definitions, the
constraints (2.5) lead to the algebraic equations

(3.3) Aihi −BiRiu = q̃i, i ∈ I,

where q̃i accounts for the term qi in (2.5) and the boundary conditions. Denoting

w = (hT , uT )T ∈ R
NF+NT

and defining

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =

⎛
⎜⎝

B1R1

...
B#IR#I

⎞
⎟⎠ ∈ R

NF×NT

,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu),(3.4)

the overall problem reads as the following equality constrained quadratic programming
problem:

(3.5) min
w

1

2
wTGw s.t. Cw = q̃.

Classical results (see, e.g., [22, Theorem 16.2]) show that under proper assumptions
on C and G, w∗ is the unique global solution to (3.5) if and only if it is the unique
solution to the following saddle point system:

(3.6) A =

(
G CT

C 0

)
, A

(
w∗

−p∗

)
=

(
0
q̃

)
,

where p∗ is the vector of Lagrange multipliers. In [6] the following result, concerning
existence and uniqueness of the solution to the discrete counterpart of problem (2.7),
is proved.

Theorem 3.1. Let us consider the discrete formulation (3.5) to the problem of

subsurface flow in a DFN with G and C defined as in (3.4). Then, the solution exists

and is unique and coincides with the solution to (3.6).
The numerical approximation of the hydraulic head can be obtained in a twofold

manner. A possible method consists in solving the saddle point linear system (3.6).
This approach is viable for DFNs of moderate size: in this case sparse solvers can
efficiently compute a solution to (3.6). When very large DFN systems come into
play, solving the linear system may be a quite demanding task even if very coarse
meshes are used on each fracture, and parallel computing may become preferable. In
these cases, as depicted in [6], a worthwhile approach consists in using a gradient-
based method for the minimization of (3.5). Indeed, as shown in [6], this method
allows for the decoupled solution of local problems on the fractures with a moderate
exchange of information among them. This point makes the method appealing for
parallelization on massively parallel computers and GPU-based computers, in which
the local problems on fractures can be distributed among processors.
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4. XFEM discretization.

4.1. XFEM description. The XFEM [3, 20, 11, 4] is a finite-element-based
numerical method to approach partial differential equations in variational form with
nonsmooth or discontinuous solutions. XFEM in the context of poro-fractured media
are also used in [10]. The nonsmooth behavior of the solution is added to the standard
finite element approximation space through customized enrichment functions in order
to extend approximation capabilities. By means of the partition of unity method [1],
the influence of the enrichments is localized in a neighborhood of irregularity inter-
faces. In this way the XFEM allows us to reproduce irregularities regardless of the
underlying triangulation.

Let us consider a problem set on a domain ω ⊂ R
d with a weak discontinuity

(i.e., a discontinuity in derivatives) along the manifold S ⊂ ω, S ⊂ R
d−1, and let Tδ

be a conforming triangulation on ω with Nel elements τe ⊂ R
d, ω̄ =

⋃
1≤e≤Nel τe. Let

Vfem
δ be the standard finite dimensional trial and test space defined on the elements

of Tδ and spanned by Lagrangian basis functions φk, k ∈ I. Each basis function φk

has compact support denoted by ∆k.
If the nonsmooth character of the solution is a priori known, it is possible to

introduce it in the FEM discrete space. Let us assume Φ is a continuous bounded
function on ω, Φ ∈ H1(ω)∩C0(ω̄) that well approximates the behavior of a function
h in a neighborhood ∆S of S given by the union of some mesh elements τe. It is
possible to build a partition of unity on ∆S based on the standard finite element
shape functions to define new enriching basis functions starting from Φ that can be
introduced into the FEM space, thus giving the enriched functional space

(4.1) Vxfem
δ = span

(
{φk}k∈I

, {φkΦ}k∈J

)
,

where J ⊂ I is the subset of indices of functions φk used to define the partition of
∆S . DOFs in J are called enriched DOFs (and the corresponding nodes enriched
nodes). The selection of the domain ∆S can vary with the specific application of the
method but is usually given by the union of mesh elements intersected by the interface
S. The approximate solution hxfem of the problem with the XFEM will be in general

(4.2) hxfem
δ (x̂) =

∑

k∈I

hxfem
k φk(x̂) +

∑

k∈J

axfemk φk(x̂)Φ(x̂),

where hxfem
k and axfemk are the unknowns related to the standard and enriching basis

functions, respectively. The nonsmoothness of the exact solution is now present in the
discrete solution and is reproduced independently of the position of mesh elements.
Since only a subset of total DOFs is enriched, elements in Tδ may have a variable
number of enriched nodes. In particular, according to the classification given in [16]
we have standard elements when no nodes are enriched, reproducing elements if all
nodes are enriched, and blending elements if only some nodes are enriched.

The enrichment function Φ can be correctly reproduced only in reproducing el-
ements where the partition of unity is complete. On the contrary, in the blending
elements partition of unity is partially established and unwanted terms are introduced
in the approximation, affecting the convergence rate of the standard finite element
[9, 29, 17]. Moreover, the basis of Vxfem

δ is no longer a Lagrangian basis. For these
reasons we will actually implement the modified version of XFEM with shifted basis
functions, as suggested in [17]. The enrichment basis function φkΦ is replaced by

φk(x̂)Φ̃(x̂) = φk(x̂)R(x̂) (Φ(x̂)− Φ(x̂k)) ,

D
o

w
n
lo

ad
ed

 0
4
/0

4
/1

3
 t

o
 1

3
0
.1

9
2
.2

2
.1

6
3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A916 S. BERRONE, S. PIERACCINI, AND S. SCIALÒ

Closed interface
Open Interface

Fig. 4.1. Classification of discontinuity interfaces.

Fig. 4.2. Example of function behaviour for near-tip enrichments.

where R(x̂) =
∑

j∈J φj(x̂) and x̂k are the coordinates of the kth node. The enriched
domain is extended including blending elements through a redefinition of the set J
as J̃ = {k ∈ I : ∆k ∩ ∆̊Φ �= ∅}, where ∆Φ =

⋃
k∈J ∆k. In this way the approxi-

mation capability of the enriched space is unaffected in reproducing elements, where
R(x̂) = 1, and depends on the choice of the enrichment function Φ, while the standard
finite element polynomial representation of solution can now be obtained in blending
elements, restoring optimal convergence rates. The shift restores Lagrangian property
of the basis functions, making easier the imposition of Dirichlet boundary conditions
and graphical representation of the results.

The generalization to multiple enrichments is straightforward. In particular we
remark that XFEM enjoys an additivity property with respect to the interfaces: inde-
pendently of traces disposition, the set of enriching functions with multiple interfaces
is the union of the enrichments introduced by each interface. A comprehensive review
of the XFEM method, including implementation details, can be found in [16].
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4.2. Enrichment functions selection. We now focus on the definition of the
enrichments used in the application of the XFEM to DFNs. Recalling definitions
introduced in section 2, on each fracture Fi the exact solutions Hi to (2.5) may have
a jump of fluxes across the traces in Si. The XFEM approach allows the triangulation
to be set on each fracture independently of the disposition and number of the traces,
thus actually eliminating meshing problems related to DFNs. Let us fix a fracture
F ⊂ R

2 and let MF ⊂ M be the subset of indices corresponding to traces on F .
The selection of the enrichment functions is related to the irregularity to be re-

produced and to the type of interfaces. Here we deal with solutions with discontin-
uous gradient (weak discontinuities) and different enrichment functions need to be
employed according to the location of the traces (interfaces) in the domain, with a
distinction between closed and open interfaces (see Figure 4.1). In order to describe
the enrichment functions, let us introduce for m ∈ MF the function dm(x) given by
the signed distance from Sm [29, 4]: for x̂ ∈ F , dm(x̂) = ‖x̄ − x̂‖sign(n̂Sm

· (x̄ − x̂)),
where x̄ is the projection of x̂ on Sm and n̂Sm

is the fixed unit normal vector to Sm.
For a closed interface we use the enrichment function Ψm defined as Ψm(x̂) =

|dm(x̂)| [4] that is a continuous function with discontinuous first order derivatives
across Sm. This introduces the required nonsmooth behavior in the approximation.
The enrichment is localized in a neighbourhood of Sm defined by the set of DOF
Jm
Ψ = {k ∈ I : ∆k ∩ Sm �= ∅}.

On the contrary, if Sm is an open interface, different enrichment functions are
needed to reproduce the behavior of the solution close to the extrema of the interface
and away from the extrema

{
s1, s2

}
= σm. Away from the extrema, the nonsmooth

behavior of the solution is similar to the case of closed interfaces and the same function
Ψm is used, being the set Jm

Ψ defined as
{
k ∈ I : ∆k ∩ Sm �= ∅, ∆k ∩ sℓ = ∅

}
∀sℓ ∈

σm. Other enrichment functions are introduced to describe near-tip behavior of the
solution; we adopt here the functions suggested in [4] and defined as follows. Let r
be the signed distance between the current point and trace tip; furthermore, let us
consider for each tip a reference system centered into trace tip with the x-axis aligned
to the trace and oriented in such a way that the trace lies on the negative side, and
let θ ∈ (−π, π) be the polar angle of x̂ in this system. Then, the enriching functions
are

Θm
sℓ(x̂) ∈

{
r cos

θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}
, sℓ ∈ σm.

Functions Θm
sℓj

(x̂) are continuous and cusplike on Sm, and their behavior around

trace tips is a combination of
{√

r, r, r2
}
, as shown in Figure 4.2, in which we

plot the function r cos θ/2. The set of DOFs subject to tip enrichments is given
by Jm

Θsℓ =
{
k ∈ I : ∆k ∩ sℓ �= ∅

}
∀sℓ ∈ σm. In order to prevent blending elements

related problems, the enrichment functions described here are used as a basis for the
modified XFEM version [17] mentioned in the previous subsection.

With all the enrichments described here, the number of DOFs on each fracture Fi

is Ni = # I +
∑

m∈M
# J̃m

+3
∑

m∈M

∑
sℓ∈σm

# J̃m

Θsℓ , where J̃m
and J̃m

Θsℓ denote
the sets of DOFs for the modified version.

The numerical integration of singular functions was performed on subdomains
not crossing the traces [20, 4]. A Gauss quadrature rule was used with special care
for the integration of gradients of near-tip enrichment functions, where a concentra-
tion of integration nodes around trace tip is recommended to correctly evaluate the
singularities [19].
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5. Numerical results. The numerical simulations reported in this section aim
at showing the viability of the approach proposed in [6] in solving problems on com-
plex networks. In subsection 5.1 a problem with open interfaces is considered, and
numerical convergence of the method is analyzed. In subsection 5.2 a critical situation
is introduced in which three traces are very close to each other and almost parallel
and intersecting each other. The great deal of flexibility in mesh generation allowed
by our approach is shown. In subsection 5.3 some more complex DFNs are considered.
In subsection 5.4 preconditioning issues for system (3.6) are analyzed. Finally, in 5.5
we show how the method can deal with broadly ranging transmissivity values.

All the simulations are performed with triangular meshes and first order finite
elements. The problems have been solved through the optimization approach intro-
duced in [6], in conjunction with extended finite elements, and mesh elements arbi-
trarily placed with respect to the traces. We highlight that since the triangulations
on a couple of intersecting fractures induce different discretizations on the common
trace, the minimum of the discrete functional (3.1) is different from zero, which is the
theoretical minimum of the functional in the continuous case.

The problems have been solved in a twofold manner: either solving the whole sys-
tem (3.6) via an iterative method or applying the steepest descent method to problem
(3.5) (Algorithm 4.5 in [6]). Concerning the first case, the matrix A in (3.6) is sym-
metric but indefinite, as shown in classic literature on saddle point problems (see,
e.g., [5]). Furthermore, in real applications A is of huge dimensions but highly sparse,
hence an iterative method with matrix free approach appears to be a suitable choice.
Among iterative methods for solving linear systems, SYMMLQ [24] is recommended
for symmetric indefinite systems and requires a symmetric positive definite precondi-
tioner. This is the choice we adopted here, using the MATLAB built-in SYMMLQ
function. The issue of preconditioning SYMMLQ on DFN applications is addressed
in subsection 5.4.

Nevertheless, when large DFNs are considered, even assembling and storing the
system (3.6) may be a quite demanding task. The steepest descent method suggested
in [6] may help in this respect as only the decoupled solution of local problems on
fractures are required at each step, and with this approach a large problem can be
dealt with also on a simple PC without requiring excessive memory resources. When
this algorithm is used, the local problems (3.3) are typically of small dimension, so
that a direct solver can be effectively used to compute these solutions. We used in
our experiments the MATLAB built-in direct solver. Computations are always started
from u0 = 0.

5.1. Behavior of the method with open interfaces. The first problem pro-
posed is designed in order to test the behavior of the method with near-tip enrich-
ments. Let us define the domain Ω = F1 ∪ F2 with

F1 =
{
(x, y, z) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

F2 =
{
(x, y, z) ∈ R

3 : −1 < x < 0, y = 0, −1 < z < 1
}
.

The trace S ends in the interior of F1 and is an open interface. Let us define
Hex(x, y, z) in Ω as

Hex(x, y, z) =

{
(x2 − 1)(y2 − 1)(x2 + y2) cos

(
1
2 arctan2(x, y)

)
on F1,

−(z2 − 1)(x2 − 1)(z2 + x2) cos
(
1
2 arctan2(z, x)

)
on F2,

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between
the positive x-axis and point (x, y), and differs from the usual one-argument inverse
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tangent arctan(·) for placing the angle in the correct quadrant. The function H is the
solution of the system

−∆H = −∆Hex in Ω \ S,
H = 0 on ∂F1 ∪ ∂F2 \ Γ,

H =

√
2

2
(z2 − z4) on Γ,

where Γ is the boundary of F2 parallel to the z-axis and intersecting the x-axis in x =
−1. In Figure 5.1, left, we report the geometry of the problem and the nonconforming
mesh used with XFEM (δmax = 0.1). On the right, we report the control variable
u1 computed, compared with the exact function. The flux mismatch computed along
the trace is ‖u1 + u2‖L2(S) = 2.8 10−4. The results obtained with XFEM are shown
in Figure 5.2. The problem has also been solved with standard finite elements on
meshes conforming to the trace. The rates of convergence in both cases, reported in
Figure 5.3, left, are optimal. As expected, the curves relative to the solution obtained
with the XFEM lie below the curves corresponding to standard finite elements. In
fact, the basis function r2 cos θ/2 introduced for trace tip behaves essentially as Hex

close to the center of F1, where tip is located, thus locally reducing the error with
respect to the standard finite elements. Minima of

√
J are reported on the right plot

of Figure 5.3, showing that grid refinement pushes these minima toward zero.

5.2. Critical traces disposition and DOFs investigation. In this subsec-
tion we consider a problem with critical traces disposition. We consider four fractures:
F1 is located on the x − y plane of a 3D reference system; the other three fractures
are orthogonal to the x− y plane and generate with F1 three traces very close to each
other and almost parallel, i.e., the angles between traces are very small, ranging from
0.8 (sexagesimal) degrees up to 1.8 degrees. The three traces are open interfaces. The
fracture F1 and the three traces are represented in Figure 5.4, along with examples
of mesh used on F1. On the right plot, a detail of the right extremities of the traces
is shown. The coordinates of traces extremities are (xb

1, y
b
1) = (0.4, 0.5), (xe

1, y
e
1) =

(0.6, 0.5), (xb
2, y

b
2) = (0.398, 0.5), (xe

2, y
e
2) = (0.602, 0.503), (xb

3, y
b
3) = (0.402, 0.501),

(xe
3, y

e
3) = (0.598, 0.498).

In Table 5.1 we report, for fracture F1, the number of DOFs obtained meshing the
fracture for the following approaches: our optimization approach in conjunction with

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

Trace length

F
lu

x

uex
1

XFEM

F1

F2

Fig. 5.1. Problem 1: Domain description with mesh and solution h (left) and control variable
along trace (right).
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−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

y

−1
−0.5

0

−1−0.500.51
−0.2

−0.15

−0.1

−0.05

0

0.05

xz

Fig. 5.2. Problem 1: Numerical solution on F1 (left) and on F2 (right).
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Fig. 5.3. Problem 1: H1(Ω) and L2(Ω) error norms (left) and functional minima (right) under
refinement.

Table 5.1

Number of DOFs for fracture F1 for different solution strategies.

Amax XFEM Nonfitting FEM Fitting FEM
0.05 48 12 655
0.0225 85 34 672
0.01 135 71 715
0.0025 398 311 910
0.0004 486 396 1017

XFEM, hence without fitting the mesh to the traces; the same optimization approach,
on the same mesh, with standard FEM basis functions (hence without enriching basis
functions); and standard FEM on a mesh fitting the traces. We remark that in this
latter case the mesh has been generated only on F1 and is only constrained to fit trace
disposition; if the mesh on the other three fractures were generated, and conformity
on all the DFN were required, the number of DOFs might be even larger. In all three
cases the meshes have been obtained with the software Triangle [28], requiring a good
quality mesh (−q option in Triangle) and imposing a given maximum element area
Amax, reported in Table 5.1. Comparing the first and second columns of the table,
it is clear that when the same mesh is considered, XFEM requires a larger number
of DOFs than FEM, with a more significant percentage on the coarser meshes, since
a larger fraction of elements are subject to enrichment. Under grid refinement, the
number of elements enriched increases, but the percentage decreases, and the relative
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difference in DOFs between the two approaches becomes smaller. As shown by the
last column, the number of DOFs introduced with a regular, fitting mesh is in this
case much higher than the previous ones, thus showing how effective our approach
is in reducing the number of DOFs with respect to a conforming approach. Besides,
we stress that nonfitting meshes are produced without any knowledge about traces
disposition and thus are easily obtained.

A problem has been introduced on this DFN as follows: −∆H = 0 in Ω\S; on
F1 we set homogeneous Dirichlet conditions on fracture edges (almost) parallel to
the traces and homogeneous Neumann condition on the other sides; on fractures Fi,
i = 2, 3, 4, we setH = 1 on the top edge and homogeneous Neumann conditions on the
other sides. The problem has been solved with the first two approaches mentioned
earlier (XFEM and FEM on the same mesh, with our optimization approach). A
coarse (Amax = 0.05) and a fine (Amax = 0.0025) mesh have been used and are
depicted in Figure 5.4. The numerical results obtained on the coarse and fine meshes
are reported in Figures 5.5 and 5.6, respectively. The XFEM solutions are plotted
on subelements generated by cutting XFEM elements along traces. Finally, in Figure
5.7 we report the values of

√
J versus the number of iterations of the steepest descent

method using both FEM and XFEM on the coarse mesh. It can be seen that the
larger number of DOFs introduced by enrichments, and the larger number of iterations
required by XFEM, are counterbalanced by the higher quality of the solution.
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Fig. 5.4. Problem 2: meshes on F1. Left: coarse grid; right: fine grid.
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Fig. 5.5. Problem 2: Solution on coarse grid. Left: XFEM; right: FEM.
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Fig. 5.6. Problem 2: Solution on fine grid. Left: XFEM; right: FEM.
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Fig. 5.7. Problem 2: values of
√
J against number of iterations.

5.3. DFN systems simulations. In this subsection we consider systems of
fractures of increasing complexity. Fracture transmissivities Ki are assumed constant
on each fracture but different from fracture to fracture.

First, we consider the DFN configuration depicted in Figure 5.8: the system is
composed of six fractures. Some of the traces generated do intersect each other. A

Fig. 5.8. Problem 6F: Geometry with a coarse mesh.
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Fig. 5.9. Problem 6F: detail of fine mesh.
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Fig. 5.10. Problem 6F: solution on F2 with fine mesh.

detail of the mesh, presented in Figure 5.9, highlights nonconformity of the mesh.
The numerical solution computed on fracture F2 is reported in Figure 5.10, and is
represented with respect to a local tangential reference system (X,Y ). This conven-
tion also applies from now on to similar plots of the solutions. The figure shows
that intersecting traces are easily handled by our approach. In particular, we see in
Figure 5.10 that the discontinuities in the flux along the traces are clearly shown. In
Figure 5.11 we report the solution computed on fracture F6 with a coarse and a fine
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Fig. 5.11. Problem 6F: solution on F6 with coarse (left) and fine (right) mesh.
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Fig. 5.12. Problem 7F: Domain description.

mesh (δmax = 0.77 and δmax = 0.22, respectively), showing the behavior of the solu-
tion close to intersecting traces. The solutions are plotted on subelements obtained
splitting XFEM elements along traces.

Then, the following configurations are considered. In these problems the reference
system for R3 is a right-handed orthogonal system oriented such that the x− y plane
lies on the page plane and fractures are parallel to z axis.

7F: The domain is composed of 7 fractures and 11 traces, as shown in Figure 5.12.
Fractures range from z = 0 to z = 5. All the traces completely cross each
fracture, and thus tip enrichments are not used.

11F: The domain is composed of 11 fractures and 26 traces, as shown in Figure 5.13.
The fracture shown by a dashed line ranges from z = 0 to z = 2.5, while all
other fractures range from z = 0 to z = 5; thus in this case tip enrichment
functions are employed, since some traces end inside the domain.
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Fig. 5.13. Problem 11F: Domain description.

D
o

w
n
lo

ad
ed

 0
4
/0

4
/1

3
 t

o
 1

3
0
.1

9
2
.2

2
.1

6
3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMULATING DFN FLOWS WITH OPTIMIZATION-BASED XFEM A925

−2 −1 0 1 2 3 4 5 6 7
−10

−5

0

5

10

15

20

X

Y

Fig. 5.14. Problem 50F: Domain description.

50F: In this last case the domain is composed of 50 fractures and 153 traces,
as sketched in Figure 5.14. All fractures in continuous lines range between
z = 0 and z = 3, while fractures drawn with dashed lines range from z = 0
to z = 1.5. Also in this case tip enrichment functions are employed.

Boundary conditions are set in a similar fashion in all cases. Homogeneous Dirich-
let boundary conditions are set on ΓD = ∂Ω ∩ {z = 0}, while ΓN = ∂Ω \ ΓD. A
different constant value of Neumann boundary condition is imposed on fracture edges
belonging to ΓN and marked with a plain black dot in the figures showing domain
configurations. Homogeneous Neumann boundary conditions are placed on the other
fracture edges in ΓN . In all cases different (constant) values of K are randomly
taken on each fracture, approximately ranging from 10−1 to 102. The geometry of
the DFN and a mesh example are reported in Figure 5.15 for the case 11F. In Fig-
ures 5.16–5.21 and 5.23–5.25 we report for each system considered and for a selected
fracture Fi: (i) the solution hi on the fracture; (ii) the restriction on the traces
of hi and of the solution hj obtained on the fracture Fj which generates the trace
through its intersection with Fi; (iii) the control variables ui and −uj. All the results

Fig. 5.15. Problem 11F: geometry and a viable coarse mesh (δmax = 1).
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Fig. 5.16. Problem 7F: Solution on fracture F6 (traces numbering is global).
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Fig. 5.17. Problem 7F: Solution hi on the traces of fracture F6 and solutions {hj} on the
fractures intersecting F6 in its traces.
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Fig. 5.18. Problem 7F: Solution ui on the traces of fracture F6 and solutions {−uj} on the
fractures intersecting F6 in its traces.
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Fig. 5.19. Problem 11F: Solution on fracture F6 (traces numbering is global).
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Fig. 5.20. Problem 11F: Solution hi on the traces of fracture F6 and solutions {hj} on the
fractures intersecting F6 in its traces.
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Fig. 5.21. Problem 11F: Solution ui on the traces of fracture F6 and solutions {−uj} on the
fractures intersecting F6 in its traces.
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Fig. 5.22. Problem 11F: relative continuity mismatch and flux unbalance.
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Fig. 5.23. Problem 50F: Solution on fracture F50 (traces numbering is global).

reported here are obtained with a grid parameter δmax = 0.16. As shown in particular
in the two-dimensional plots, the computed numerical solution well approximates con-
tinuity and flux conservation (2.2)–(2.3). Focusing on the intermediate 11F case, in
Figure 5.22 we plot for each trace the L2-norm of the difference of the hydraulic head
on intersecting fractures, ||hi|S − hj |S ||, relative to the average L2-norm of h on the

trace, hav = 1/2(||hi|S || + ||hj |S||) (triangular markers), and in square markers flux

unbalance at traces, ||ui + uj||, relative to the average flux uav = 1/2 (||ui||+ ||uj ||).
It can be seen that the relative mismatches in flux conservation and head continuity
are small and roughly of the same order. Furthermore, in Table 5.2 we report, again
for problem 11F, the flux unbalance and the total flux on each fracture, which are
computed on Fi, i = 1, . . . , 11, as

∑
S∈Si

∫
S
uS
i + uS

j dγ and
∑

S∈Si

∫
S
uS
i dγ, respec-

tively. The sum of the flux unbalances on all the DFN is −5.0114e-7, and clearly the
sum of the total fluxes on the fractures exactly matches this value. It can be seen
from the table that flux unbalance on the fractures is quite small, being six orders of
magnitude below the respective total flux.

D
o

w
n
lo

ad
ed

 0
4
/0

4
/1

3
 t

o
 1

3
0
.1

9
2
.2

2
.1

6
3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMULATING DFN FLOWS WITH OPTIMIZATION-BASED XFEM A929

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

S=26

S=56

S=110

S=152

Trace length

H
yd

ra
u

lic
 h

e
a

d

h
i|S

h
j|S

Fig. 5.24. Problem 50F: Solution hi on the traces of fracture F50 and solutions {hj} on the
fractures intersecting F50 in its traces.
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Fig. 5.25. Problem 50F: Solution ui on the traces of fracture F50 and solutions {−uj} on the
fractures intersecting F50 in its traces.

Table 5.2

Problem 11F: Fracture flux unbalance and total fluxes (δmax = 0.16).

Flux unbalance Total flux Flux unbalance Total flux

F1 −9.69e-7 1.44 F7 −1.38e-6 0.50
F2 −1.98e-6 4.72 F8 −1.98e-6 −14.41
F3 2.02e-7 −17.10 F9 2.19e-6 9.06
F4 −1.07e-6 2.99 F10 3.61e-6 −4.17
F5 −9.81e-7 7.20 F11 3.87e-6 2.88
F6 −2.51e-6 6.87

5.4. Preconditioning. The choice of a good preconditioner for SYMMLQ is a
crucial task as the linear systems arising from the discrete DFN-like problems are ill-
conditioned even for the smaller problems considered, and conditioning worsens both
if grid parameter is reduced and if the number of fractures increases. In Table 5.3
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Table 5.3

System matrices data. Dim: matrix dimension; NCond: matrix condition number; Iter: itera-
tive solver number of iterations; Relres: solution relative residual.

Problem Dim NCond SYMMLQ Iter Relres Grid Prameter

S1 8324 1.9 · 106 3000 1.75 · 10−1 0.1
S2 15067 9.0 · 109 3000 1.25 · 10−1 0.1
7F 18261 1.3 · 109 3000 1 0.16
11F 32888 1.7 · 1010 3000 1 0.16
50F 69476 9.3 · 109 3000 1 0.22

we report the data related to the conditioning of the system for various problems
considered, along with the results obtained while attempting to solve the nonpre-
conditioned linear system with SYMMLQ. Problems 7F, 11F, and 50F refer to the
examples shown in subsection 5.3, while Problems S1 and S2 are a modified version of
Problems 7F and 11F, respectively. With reference to Figures 5.12 and 5.13, z-quotes
are reduced in Problems S1 and S2 to z = 1 for the fractures represented with solid
lines and to z = 0.5 for the fracture shown by dashed line. Different Dirichlet bound-
ary conditions are set on fracture edges in the z-direction marked with a black dot,
while homogeneous Dirichlet boundary conditions are placed on the remaining edges.
Finally a constant value K = 1 is prescribed to all the fractures. These modified
problems yield smaller linear systems. The data in Table 5.3 show that the iterative
solver never succeeded in reaching the required exit tolerance tol = 10−6 within the
maximum number of iterations allowed (maxit = 3000).

In order to precondition the system, we follow here the approach described in [27],
in which a block triangular preconditioner is suggested for linear systems of saddle
point type arising from general quadratic programming problems. In detail, for a
saddle point problem of the form (3.6), the following preconditioner is suggested:

(5.1) P =

(
G+ CTW−1C kCT

0 W

)
,

where k is a scalar and W is an NF ×NF symmetric positive definite weight matrix.
A suitable choice for k and W suggested in [27] is k = 0 and W = γI, where I is the
identity matrix and γ > 0 is a given constant which should provide an augmenting
term CTW−1C not too small in comparison with G. We remark that the choice k = 0
yields a block diagonal symmetric preconditioner and hence is suitable for use along
with the SYMMLQ solver.

The preconditioner (5.1) is introduced in [27] in the context of interior point
methods for optimization problems, which especially in the case of inexact methods
[2] heavily rely on iterative methods and hence on good preconditioners. In the case
of interior point methods, at each outer iteration a linear system with a structure
similar to (3.6) has to be solved with the block G being typically more and more
ill-conditioned as the solution is approached. In [27], an adaptive choice of γ along
outer iterations appears to be an effective choice: when used in conjunction with
the MINRES solver, an effective choice is γ = 1/max(G) for linear programming
problems, and for quadratic programming problems the choice suggested is given by
γ = ‖C‖2/‖G‖.

Since here we deal with a different context and the block G is not necessarily the
major source of ill-conditioning, a preliminary investigation has been performed on
Problems S1, S2, 7F, 11F, and 50F in order to study the effectiveness of the precon-
ditioner in our applications and, possibly, identify a suitable value for the parameter
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Fig. 5.26. SYMMLQ number of iterations versus γ.

γ. A broad range of values for γ has been considered, ranging between 10−9 and 300,
which roughly corresponds to the optimal value ‖C‖2/‖G‖ suggested in [27] applied
to problems S1 and S2. For problems 7F, 11F, and 50F this value corresponds to
≈ 7 · 105. Exit tolerance for the iterative solver is now set to tol = 10−12 and the
maximum number of iterations is set to maxit = 3000. We point out that the imple-
mentation of SYMMLQ that we used for solving the system Ax = q performs the
check on the exit tolerance on the unpreconditioned relative residual ‖q − Ax‖/‖q‖
even if the linear system is preconditioned. Results of this preliminary investigation
are reported in Figures 5.26 and 5.27. In particular, in Figure 5.26 we report the
number of iterations required by SYMMLQ for several values of γ. As shown in the
figure, in all problems considered for γ small enough the iterative solver succeeded in
satisfying the stopping criterion within a very moderate number of iterations. The
value γ = 10−7 appears to ensure the best performance in the preconditioner for all
the considered problems, independently of the number of fractures, of the number of
unknowns and of the boundary conditions. Indeed, Figure 5.27 shows that for optimal
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Fig. 5.27. Preconditioned system: condition number (left) and eigenvalues (right) versus γ.

D
o

w
n
lo

ad
ed

 0
4
/0

4
/1

3
 t

o
 1

3
0
.1

9
2
.2

2
.1

6
3
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A932 S. BERRONE, S. PIERACCINI, AND S. SCIALÒ

γ values the condition number of the preconditioned linear system reaches very low
values and matrix eigenvalues cluster around the values {−1, 1}.

5.5. Large variation of K values. In previous computations we allowed a
different transmissivity value Ki on each fracture Fi, i ∈ I (assuming for simplicity
Ki constant on the fracture). In real applications, large variations in the (typically
very small) values ofKi may occur from fracture to fracture, possibly spanning several
orders of magnitude. This may correspondingly cause a large variation in the orders
of magnitude of U , which, representing the conormal derivative nTK∇H , may largely
differ from those of H , making the functional J less sensitive to variation in U . In
order to deal with this situation, a possible approach consists in properly weighting
the terms ‖US

i + US
j ‖ in the functional, allowing the following modification to J :

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS +

1

(KS
min)

α
||US

i + US
j ||2US

)
,

where KS
min = min {Ki, Kj} and, e.g., α = 1, 2. The weights introduced help in

balancing the contribution of the various terms of the cost functional, giving more
relevance to flux unbalance when large variations of transmissivity occur at intersect-
ing fractures. The following model problem has been used to show the effectiveness of
this extension of the method, here applied with α = 1. The problem domain is shown
on the left of Figure 5.28, along with fracture and trace numbering. Fracture F1 carries
a constant value Dirichelet boundary condition h = 10 on the top border along the y-
axis, while fracture F3 has a Dirichelet boundary condition h = 3 on the bottom border
parallel to the y-axis. Fractures F2 and F4 have a constant value h = 1 Dirichelet
boundary condition on the left border parallel to the y-axis. A homogeneous
Neumann boundary condition is prescribed on the remaining borders of all fractures.
Four different simulations are performed with different sets of fracture transmissiv-
ity values as reported on the right of Figure 5.28. It was noted that with these
broad variations of K, the correction helped in obtaining the solution, as we experi-
enced difficulties in convergence of the steepest descent method with the nonmodified
functional. Results concerning hydraulic head mismatch at traces and flux unbal-
ance are collected in Figures 5.29 and 5.30. In Figure 5.29 the L2(S)-norm of the
difference of the hydraulic head on intersecting fractures Eh = ||hi|S − hj |S || is re-

ported with solid markers for each trace, along with the average L2(S)-norm of h,

Fig. 5.28. Domain description and fracture transmissivity values.
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Fig. 5.29. L2-norm of hydraulic head mismatch Eh (filled markers) and average L2-norm of
solution hav (empty markers) on the traces of the system.
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Fig. 5.30. L2-norm of flux unbalance Eu (filled markers) and average L2-norm of fluxes uav

(empty markers) on the traces of the system.

hav = 1/2(||hi|S ||+ ||hj |S ||) (in empty markers) in order to compare the mismatch of

h at the intersections in relation to the order of magnitude of the solution. Similarly,
in Figure 5.30 we show flux unbalance at traces in solid markers, Eu = ||ui + uj ||,
with the average flux uav = 1/2 (||ui||+ ||uj||) in empty markers. It is noticed that
the hydraulic head mismatch on traces and the flux unbalance are usually orders of
magnitude lower than the hydraulic head and the flux, respectively, also for fracture
transmissivities differing for six orders of magnitude.

6. Conclusions. In this paper we have further analyzed the viability in complex
systems of a novel method introduced in [6] for the problem of subsurface flow in a
system of fractures, which consists in the reformulation of the problem as a PDE
constrained optimization problem. Independent meshing processes have been used on
the fractures, generating grids which are independent of the mesh on other fractures
and of trace number and disposition. This is a crucial point since one of major
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difficulties in the DFN approach is typically the generation of a trace-matching mesh.
The discussion and the experiments reported here show effectiveness of the method
in providing good approximation of the solution in complex DFNs.

In future works, more realistic DFN configurations will be investigated. A parallel
implementation exploiting the independence of the problems on the subfractures is
also envisaged. Moreover, we will investigate the applicability of the method to the
non-steady-state case in conjunction with local time adaptive strategies as in [7].
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