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1. Introduction

L1. Main results. Throughout this paper, ||§|| will denote the distance of the real
number £ from the nearest integer. We shall prove the following results which represent
extensions to simultaneous approximations of Roth’s famous theorem [5] on rational

approximations to an algebraic irrational a.

TaEOREM 1. Let o, § be algebraic and 1, o, § linearly independent over the field of
rationals Q. Then for every ¢ >0 there are only finitely many positive integers q with

llgel] - laBl - g+ <1. ()

CoROLLARY. Lef «, 3, € be as before. There are only finitely many pairs of rationals

P1/2, Dalq satisfying ‘
ac—% <|q| 2, lﬂ_&

—3/273. 2
. <lq| @)

A dual to Theorem 1 is

THEOREM 2. Let a, 3, ¢ be as in Theorem 1. There are only finitely many pairs of
rational integers q; +0, g, 3=0 with

lgvoe+ o)l | qa gl <1. (3)

CorovLLARY. Again let a, §, ¢ be as in Theorem 1. There are only finitely many triples
41> @ P Of rational integers with ¢ =max (|q,|, |gz|) >0 satisfying

e +a:8+p| <g 2. : 4)

1.2. Approzimations by rationals or quadratic trrationals. Let w be either rational or

a quadratic irrational. There is a polynomial f(¢) =2 +y¢ +2 %0, unique up to a factor +1,
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whose coefficients , y, z are coprime integers and which is irreducible over the rationals,
such that f(w)=0. Define the height H(w) of @ by

H(w) —max (|2], [y], |2]). ®)

TaEOREM 3. Let x be algebraic, but not rational or a quadratic irrational, and let ¢ >0.
There are at most finitely many numbers w which are rationals or quadratic irrationals and

which satis
W lcx—wl < H(w)3-=. (6)

This theorem should be compared with a recent result of Davenport and the author
[3] which asserts the existence of infinitely many numbers © of the type described above
satisfying
| —a] <Cla) H(w)™>; M
in fact in this latter result « can be any real number which is neither rational nor a qua-
dratic irrational. (For results concerning approximations by algebraic numbers of degree
<k, see Wirsing [7]. Wirsing (unpublished as yet) also proved a general result of the type
of Theorem 3, but without best possible exponents.)
Theorem 3 follows easily from the eorollary to Theorem 2; by Roth’s Theorem, we

may restrict ourselves to quadratic irrationals w. Let
) =ai+yt+z=2(—w)(—-w')

be the irreducible polynomial described above, and w’ the conjugate of w. Then ]x] < H(w)
and, as is easily seen, |w'z| <2H(w). If (6) holds, then

[zo2 +yo+z| = |ra—20| |a—w| <(|x| +2)H(w)H(w) 3 <H(w)2/*
if H(w) is large. Since H(w)2*2<(max (|z|, |y|))2"2,
our inequality has only a finite number of solutions by the corollary of Theorem 2.
1.3. Further results.

THEOREM 4. Let o, f,y be algebraic, 1, B,y linearly independent and 1, &, oy —f
linearly independent over Q. Let o+1>1. There are only finitely many triples of rational
inlegers q,, 95, g5 with q; >0 satisfying

| oy + 5] <q1%, [Be+y9:+qs] <ai ™. (8)

This theorem appears to be more general than Theorems 1 or 2, since it involves three
numbers «, f§,y; but actually it contains neither of them. Later in section 4.3 we shall
prove a general but somewhat complicated theorem which contains Theorems 1, 2 and 4.
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Notice that our conditions of linear independence are necessary: For 1, 8,y this is
rather obvious. For 1, a, ay —f, assume g>7. For sufficiently small C, the inequalities
|“Q1+92l<091—g: l(ﬁ_“)’)%'l‘%lg(}q;t 9)

imply (8), and (9) may have infinitely many solutions unless 1, «, ay —f are linearly

independent.

THEOREM 5. Let «, 8,y be algebraic and 1, a, B,y linearly independent over Q, and
let €>0.

There are only finitely many triples of non-zero integers qy, s, 93 having

"“%‘I'/g%‘*'ﬂls" : |!11Q2(13|5/3+e<1- (10)

This theorem probably is not best possible; probably the exponent 5/3+¢& in (10)
may be replaced by 1+e¢. I am unable to prove the analogue of Theorem 1 or 2 for three

numbers «, §, y. I cannot prove any result in this direction for more than three numbers.

1.4. Auziliary results. To prove the main results we shall derive some auxiliary theo-

rems. Let n=>1,
|l=n+1 , (11)

and let Ly=o Xy 4. to Xy,

Ll = “qu +... +OC”X,
be linear forms. Denote the cofactor of a;; in the matrix (o) (1 <k, k<1) by 4,,.

Definition. Let Ly, ..., L, be linear forms as above, and let S be a subset of {1, ..., I}.
We say Ly, ..., L;; S are proper if
(i) the ey, are algebraic and det (e,) 40

(ii) for every ¢€S, the non-zero elements among 4,,, ..., 4,; are linearly independent
over Q.

(iii) for every k, 1 <k<I, there is an 1€8 with 4,,+0.
Of particular interest will be the following examples.

(1) 1=2, L, =X, —aX,, Ly,=X,, 8={2}. L,, L,; 8 are proper if « is an algebraic irra-
tional.

2)1=3, L, =X, —aX,, L,=X,—fX;, Ly=X,;, S={3}. Now L,, L,, L;; S are proper
if «, 8 are algebraic and 1, «, § linearly independent over Q.
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(3) 1=3, Lhi=X,, Ly=X,, Ly=aX,+pX,+X,, 8S={1,2}. L, Ly, Ly; S are proper if
, f are both algebraic irrationals.

TarorREM 6. Suppose L, ..., L;; S are proper, and A,, ..., A, are positive reals satisfying

AA4,.. A, =1, (12)
A,>1 if 4€S. (13)

The set defined by
|L()| <4, (1<j<)) (14)

is a parallelopiped; denote its successive minima (in the sense of the Geometry of Numbers)
by 21, vaey ﬂ.n, ll'
For every 6 >0 there is then a Qy(6; Ly, ..., L;; S) such that
>Q¢ (15)
tf @>max (4, ..., 4;, @y(0)). (16)

Applying this theorem to our example 1) we obtain a lower bound for 1;,. Hence it
is easy to see that this particular case of Theorem 6 is equivalent to Roth’s Theorem.
Applying Theorem 6 to example 2) or 3) one only obtains a lower bound for A, rather
than for 1,, and hence one does not immediately obtain Theorem 1 or 2. The following
transference principle allows one in this case to proceed from the inequality for A, to an

inequality for 4.

THEOREM 7. Let L;, L,, Ly be three linear forms of determinant 1 in variables X,, Xy, X,
and let M, My, M4 be the adjoint forms, i.e. the forms with

LM, +L,M,+L,M, = X%+ X5+ X3

Let 8, T be nonempty subsets of {1,2, 3} with empty intersection.
Suppose now the second minimum 2y of the parallelopiped (14) satisfies

A>Q~0 (17)
provided (12), (13) and (16) are satisfied. Also suppose the second minimum u, of
|Mx)| <B; (i=1,2,3) (18)

satisfies s >Q0 (19)

provided By By, B;=1, B,>1 if t€T and Q >mazx (B,, B,, By, @,(5)).
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Then the first minimum A, of (14) satisfies

M>Q9 (20)
if A d4,4,=1,
if A>1 for i€8,A,<1 for jET (21)
and Q>max (4,, 4,, 4;, Q,(0)). (22)

We shall show in chapter 4 that Theorems 1, 2 and 4 are easy consequences of Theo-
rems 6 and 7. Theorem 5 will be derived from Theorem 6 by a similar transference principle.

Our proof of Theorem 6 will follow the method of my previous paper [6] on this sub-
ject, where a weaker form of the theorem was proved. This method consists of a further
development of the ideas involved in the proof of Roth’s Theorem [5]. In the first draft
of my manuseript I had derived the transference principles of chapter 4 by the methods
of [6]. I am indebted to Professor H. Davenport for suggesting the much more lucid
method of the present version.

2. The index of a polymomial
2.1. The index. R will denote the ring of polynomials in ml variables
Xty oo Xugs oo Xopgs ooer X

with real coefficients. Let Ly, ..., L,, be linear forms, none of them identically zero, of

the special type
Ly, =Ly( X, .o, Xp)) (1<h<m).

Also let positive integers ry, ..., 7, be given. For ¢>0 we denote by
I(c)

the ideal in R generated by the polynomials

LyLy .. L 1)
with Sinrptz=e. 2)
n=1

I{c)o I(c) if ¢ <c'. One has I(0)=%R and cDOI(c) =(0).

Definition. The index of a polynomial PER with respect to (L, ..., Ly} 71, vy 7)) 18
defined as the largest ¢ with P€ I{c) if P%0, and it is + oo if P=0.
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Remark. Since the set of numbers D7, 4,7, is discrete, there is for a polynomial
P*0 always such a maximal ¢. For given L, ..., L,, and ry, ..., r,, we denote the index
of P by ind P.

By Hilfssatz 6 of [6],

ind (P +@) = min (ind P, ind @), (3)

ind (PQ) = ind P +ind Q. @)

In what follows, r will always denote an m-tuple of positive integers (ry, ..., r,,) and

3 will denote an Im-tuple of nonnegative integers (2,5, ..., 4175 -} tm1s ++es mz). W€ putb
(/1= 2 Gt Fim) ral (5)
Given a polynomial PER, set
5 1 aiu+...+imz
=(yn! ) i P 6
P (7’11 Tmi ) aXilll . XZ,;,P ( )
The inequality ind P3 > ind P— (/1) (7N

follows easily from our definitions.

Lemyma 1. Suppose the polynomial P has index ¢ == oo with respect to (Ly, ..., Ly, 7y, ..., 7).

Let T be the (ml —m)-dimensional subspace of ml-dimensional space R™ defined by
Ly Xy, ooy X)) =cc. = L X gy ooy Xpt) =0.
There is an § with (J/t) =c such that P3 does not vanish identically on T.

Proof. This is a weakened version of one of the assertions of Hilfssatz 7 in [6].
Given a polynomial P€R, write |P| for the maximum of the absolute values of its

coefficients. If P has integral coefficients, then so does P3,

LeMma 2. Let PER be homogencous in Xy, ..., Xy, of degree r, (1<h<m). (That is,
P is a sum of monomials cX7 ... X'm having juy + ...+ =rn(1 <h<m).) Then for any 3,

IPSI <2r1+...+rmlpl_ (8)

Proof. It will suffice to prove this estimate for monomials. Now

it 2= () . () .

%1 Ymi
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Since (711) (7"") < Qb timl
b1 tmi

the desired inequality follows.

2.2. Existence of certain polynomials.

THEOREM 8. Let I, t be positive integers and
Lj':—alel—l—...‘l—“lel (]. <7‘<t)

linear forms, none identically zero, whose coefficients are algebraic integers. Construct new
linear forms
th=a11Xh1+..-+a”Xhl (1 <7<t)

in variables X, ..., X,; A1<h<m). Set A, for the degree of K;=Q(xy, ..., a;;) ond A=
max (A, ..., A).
Let >0 and assume m to be so large that
m = 4g~2 log (2tA). 9)
Let ry, ..., r,, be positive integers.
There is a polynomial PE€R with rational integral coefficients, not vanishing identically
and satisfying
(i) P is homogeneous in X,,, ..., X, of degree r, (1 <h<m),
(ii} P has index > (I —g)m with respect to

(Lagy coos Lipgs 11y oo 1) (1 <GSR,

(111) IP| <D7‘1+...+Tm,

where D is a constant depending only on the coefficients oy,

Proof. This is Satz 7 (Indexsatz) of [6].
The following theorem is almost but not quite identical with Satz 8 of [6].

THEOREM 9. Let
Lj=“j1X1+...+aﬂXl (l <j<l)

be linear forms with nonvanishing determinant whose coefficients are algebraic integers.

Define A and the linear forms Ly; as in Theorem 8. Let ¢ >0 and assume

m > 4e-2 log (2IA). (10)

Let rq, ..., 7, be positive infegers.

3 — 672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.
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There is a polynomial P=0 in R with rational integral coefficients such that

(i) P is homogeneous in X,,, ..., X, of degree r, (1 <h<m),
(11) IPI <Dr1+...+rm,
(iii) writing (uniquely!)
P3=73 d3(jyy, eoes fo) LiF .. LI L. Lima . Lims, (11)
one has [ @3 (Gags -y )| S BT+ 4w
for arbitrary ¥ and 4,4, .-, i

(iv) If (J/x) < 2em, (12)

then d3(f11; ey Trmi) =0 unless
Z jhkr,_,l -—ml_l < 3lme (]. <k gl). (13)
h=1

Here D, E depend only on the coefficients oy,

Proof. As we shall see, the polynomial P constructed in Theorem 8 satisfies everything.

This is clear as far as (i) and (ii) are concerned. As for (iii),

)
let X,= 2 Bul, (1<i<]),
K=
, 1
whence Xpi= 2 Bl (<i<l 1<h<m). (14)
¥=1
Let G=max(l,lﬂul,...,lﬂ”').

One obtains P3 in the form (11) by substituting the right-hand side of (14) for each X, in
P3=7 c3(j1y, oves ) X ... Ximl, (15)

A typical product in (15), namely X% ... X', then becomes

mi?

(,él ﬂl,cle)’". .. (él ﬁ,kL,,,,,)M

and as a polynomial in Ly, ..., L, has coefficients of absolute value

< (lG)iu+ st Il (lG)TV" bt
By (ii) and by Lemma 2,
[€3 (it +ns fur) | < @DYs* =47,
Therefore PY as a polynomial in Ly, ..., Ly has coefficients of absolute value < (2IDG)"+ -+,
This proves (iii).
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The index of P with respect t0 (Ly, ..., Lip;; 71, ..., Ty) is at least (-1 —¢) by the previous
theorem. Hence if (12) holds, the index of P3 is at least

I —e)ym—(r) = (It —3e)m

by (7). Hence any Im-tuple (jq, ..., im) having d3(j,;, ..., i) +0 satisfies
S gwerat—mlTt > —3me  (1<k<I). (16)
k=1
Since PY is homogeneous in L,,, ..., L, of degree <r,, one obtains
3 1 m
2gwern' <1, 3, (Z fhkrzl—ml“) <0,
k=1 k=1 \h=1
whence by (16), D jmtn —mlT <3m(l—1) e. (17)
k=1

The inequalities (16) and (17) give (iv).

2.3. Grids. Now as always let
l=n+1, (18)

and let vy, ..., v, be n linearly independent vectors of R’, spanning a subspace H. Let

s be a positive integer. Write
Q =Q(8; ml: seey mn)

for the set of all vectors 0 =h 10, + ...+ R, 10,
where hy, ..., b, are integers in the interval 1<2,;<s. ¢ will be called a grid of size s on H,
and vy, ..., v, are basis vectors of the grid.

In what follows a polynomial in X, ..., X, will be interpreted as a function on R'.
The next lemma contains the idea which will enable us to improve upon the results of [6].

Lemwma 3. Let P(X,, ..., X})} be a polynomial in X, ..., X, with real coefficients of total
degree <r, and let s, t be positive integers satisfying

s(E+1)>r. (19)

Suppose g is a grid of size s on a subspace H of R such that P and all the partial derivatives

at, +.. 1

ml) with t1+...+t1<t

vanish on p. Then P vanishes identically on H.
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Proof. After a linear transformation we may assume the basis vectors of the grid to be
tv;=(1,0,..,0), .., w,=(0,...,0,1,0). Putting P(X|, ..., X, 0)=@Q(X,, ..., X,,), we see:
It unll suffice to show that & polynomial Q of total degree <r is identically zero, if Q and its
mixed partial derivatives of order < t vanish in the s" inleger points (hy, ..., h,) where 1 <h;<s
(I1<i<n).

If n=1, Q has zeros of order >t+1 at X; =1, 2, ..., s, hence altogether counting multi-
plicities @ has at least s(t+1)>r>deg @ zeros, and @ is identically zero.

Now comes the induction from n=1 to n. It will suffice to show that (X, —%)'*!
divides @(X,, ..., X,,) for h=1, 2, ..., s, because this implies that the product (X, —1)*!...
(X; —s)'™ divides @(...), and since here the divisor has degree s(t-+1)>r>deg @, @=0
follows.

Let e, be the largest exponent with (X, —A)*|Q (that is, (X, —%)* divides @), and
pub e=min (e, ..., ¢;). We have to show that e>¢+1.

Assume now e <¢, and without loss of generality assume e=e, <¢. We may write
QUXy, ..., Xp) = (X, —-1)* .. (X, —8)*R(X, ..., X,). (20)

The degree of R is at most r —e; —... —e,<r —es. After taking the partial derivative with
respect to X; of order e=e, and putting X; =1 afterwards, the right-hand side of (20)
becomes
el(1-2)" ... (1-9)*R(l, X,, ..., X,).
Now every mixed partial derivative of the polynomial R(1, X,, ..., X,) in n—1 variables
of order < f{—e vanishes in each of the integer points (&, ..., &,) where 1 <h;<s (2<i<n).
Since
s(t—e+1)>r—es,
our inductive assumption gives R(1, X,, ..., X,)=0. This can only be so if
(X, -1 | R(X,, ..., X,),

whence (X; —1)**!|Q, and this contradicts our choice of e,.

Lemma 4. Let the polynomial PER be of total degree < ry, in Xy, o, Xy A<k <m).
We may write P(X11, ooy X115 ees Xinty ooy X)) =P( Xy, ony X)) where X =(Xp1, ..., Xp)), and
interprete P as a function on the m-fold product space R x ... x R'.

Now let H,, ..., H,, be subspaces of dimension n=1—1 of R', and let g, on H, be a grid
of size s, (1<h<m). Let T=H, x... x H,, be the subspace of R'x ... x R' consisting of all
(Xps ooy X)) with X,€H, (1<h<m), and let o* =0, x ... X g, consist of all (X, ..., X,,) with
X.€0n (1 <h<m). Let ¢,, ..., t, be integers with

Sp(ta+1)>1y (21)
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such that P and the partial derivatives (more precisely, partial derivatives except for constant

factors)
P where T =(t1, -0 b)) With fh1+...+4,,<t, (1 <h<m)

vanish on *. Then P is identically zero on T.

Proof. This lemma is easily proved by using Lemma 3 and induction on .

2.4. The index with respect to certain rational linear forms. Suppose =1 and v, ..., 10,
are linearly independent integer points in R' where {=n+1. Except for a factor 41,
there is exactly one linear form M =m, X, +...4+m,X,%=0 where m,, ..., m, are coprime

rational integers, having
M(w) =mywy+...+mw,; =0 (1<i<n).
Write M =M{w,, ..., w,}. (22)
Put | M| =max (Jm,], ..., |my]).
THEOREM 10. Let ¢y, ..., ¢; be reals having
les] <1 (E=1,..,0); c+...4+¢,=0. (23)
Let £¢>0,0<6<1 and 0>16 2. (24)

Let Ly, ..., L, be linear forms and m; ry, ..., r,, indegers satisfying the hypothesis of Theorem 9.
Let E be the constant of part (iii) of that theorem, and P the polynomial described there.
Let @y, ..., @, be reals satisfying the inequalities

(a) @.>2'E, @ >lUe1+1) (1<h<m),

(b) rlog@Qy<r,log @, <(1+&)r,log@, (1<h<m).

Finally, for h=1, ..., m, let 10,4, ..., 10, be lincarly independent integer points of R' satisfying
(e) | L) | Q9% (A<j<U; 1<k<n; 1<h<m).

Then P has index af least me

with respect to (M, ..., M,,; 1y, ..., t,,) where M, (h=1, ..., m) is the linear form in X,,, ..., X,
given by M, =M {10, ..., 04,}.

Remark. The advantage of this theorem as compared with the corresponding Satz 9
in [6] is the absence of a condition @5 = (r), +1)! (1 <h<m). Such a condition is a serious
disadvantage, since in the applications r; has order of magnitude log @, so the condition
would require that @, is not too small compared to @,,.



38 WOLFGANG M. SCHMIDT

Proof. By Lemma 1 it will suffice to show that P3 is identically zero on 7’ provided

(J/r) <em. Putting
orn =0{le 1+ 1; Wags o5 ),

it will be enough by Lemma 4 to prove that
(PS)I(DI: ceey nm) =0

for v,€p, and T=(t;;, ..., tn;) satisfying &, +... +8,,<[r,e], because s,=[e"']+1 and
t, =[r, €] satisfy the inequality (21). Since

em +[r €)fry + - [T m€)rm <2em,
it will suffice to verify that P3(9,, .., 0,) =0 (25)

for v, €0, (1 <h<m) and (J/r) <2em.
The left-hand side of (25) may be written

, Zj A3 (fa1s oo Grnt) Ly (00) oo Li(00) oo Ly (9)" ... Ly (D)™, (26)
11 - Jmld

By (24), (a) and (c),
| L (02)] S Q¥ °Ue™ + 1) <@gt 07e< @ 150 (1<k<l 1<h<m). (27)

Furthermore, by part (iv) of Theorem 9 and by (b), indices 7;,, ..., j; having d3(jyy, ..., fms) +0

satisfy
éljhk log @, =7, log Q, éljhkrgl =7 log @, (1" —8le) m,
m m
hzljhk log @, <(1+¢)r, log@, hzljh,,r,jl
<rlog @, (1+¢) (71 +3le) m <r log @, (1" + Tle) m,
whence hgljhk log @, —rlog @17 m | <Tlmer,log @, (1<k<I).

Combining this with (27) we get
lLk (Dl)ilk . Llc (Dm)imkl < Q;,l"lm(ck—lsl’e)+14l mery Qi mep— rllme,
and each summand of (26) has absolute value

<E’rl+...+Tinx"ﬂ_l(01+...+c;)>1‘1ml’€ — Er,+...+erl~r1ml’s <ET‘+"'+T’"(QIT‘E . Q,;ng)lg/(l'l'e)

<(EQre)... (BQR5)™
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by virtue of part (iii) of Theorem 10 and by (b). Since (26) has at most 2"+ -+ gum.

mands, we get
| P30y, ..., o) | < TT @EQ" <1

h=1

by (a). The left-hand side of this inequality is a rational integer, hence is zero.
This proves Theorem 10.

2.5. A variant of Roth’s Lemma.

TrEOREM 11. Let
0 =w(m, g) = 24-27"(g/12)2" L, (28)

where m is a positive integer and
0<e<1/12. (29)

Let ry, ..., r,, be positive integers such that
wr, =21, (1<h<m). (30)

Let My=mp1 Xp1+...+mp Xy (L<h<m) be linear forms whose coefficients are relatively
prime integers. Let 0<t1<n and assume

| M, = | M, (1<h<m), (31)
| M, |7 =28 (1<h<m). (32)
Let P(Xqq, ooy Xyp5 oois Xty ooy X)) £0 be a polynomial with rational integral coefficients
which is a form in Xy, ..., X, of degree r, (L<h<m) and which satisfies
|P|™ < | My |, (33)
Then the index of P with respect to (M, ..., M,; 74, ..., 7,) 8 at most &.

Proof. This is Satz 11 of [6].

3. Proof of Theorem 6
3.1, Two lemmas.
LeEMMA 5. Let I=n+1, let uy, ..., u, be vectors of R', u;=(uy, ..., %y;) (L<2<n) and
let U,, ..., U, be the n xn subdeterminants of the matriz (u;;) (1 <i<n, 1<j<l). Similarly,

let v,, ..., v, be vectors and V,, ..., V, subdeterminants of (v;). Then

U0 ... 1,0,
=8'1V1+...+U1V1. (1)
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Proof. Without doubt, this lemma in some disguised form may be found in the lite-
rature. A simple proof is as follows.

Both the left and right-hand side of (1) are linear functions in each of the vectors u;
and each of the vectors p;. It therefore suffices to verify the equation if the u’s as well
as the v’s are taken from a fixed orthonormal basis e, ..., ¢, of R’ Both sides are zero
unless u,, ..., U, consist of = distinct basis vectors, the v, ..., b, consist of n basis vectors
and furthermore the set 1y, ..., 11, is identical with the set by, ..., v,. Now both sides of

(1) are +1 or —1 depending on whether p,, ..., b, is an even or odd permutation of 1, ..., it,.

LemMA 6. Let I=n+1, and let Ly, ..., L;; 8 be proper in the sense explained in §1.4.

Let ¢y, ..., ¢, be real numbers having
cl+"'+cl=0 (2)

and le;| <1 fori=1, ..., land ¢;>0 for 1€8. (3)

Let >0, Q>0 and let y, ..., v, be linearly independent integer points of R' satisfying

[Lyw,)| <@ (1<i<l, 1<j<n). @
Then M =M, ..., w,}
satisfies Q< | M| <Q° (5)

provided Q= C,.
Here C;=C(6,L,, ..., L)) >0 (i=1, 2, 3).

Proof. Using the vectors iy, ..., iv,, construct the determinants W, ..., W; as in
Lemma 5. Then putting M, =W,/W (1<k<l) where W is the greatest common divisor
of W,, ..., W, one has

M=M X +..+ M X,

By (4) and since |¢;| <1, each component wy of v, satisfies |w;|<C,Q, whence
| W] <C,Q" and [ M| <C,Q"< @"*! if Q is large.

As for the lower bound, suppose a particular M, is + 0. By condition (iii) of proper

systems, there is an 1€8 with 4, +0, and by (ii), the non-zero elements among
Ay veey Aigs s Ay

are linearly independent over Q. For this particular ¢, ¢, +... +¢;_y +¢ 3 +... +¢;<0 by (2)
and (3), and by (4),

Ly (wy) ... Ly_1(0y) Ly1 (30y) ... Ly (10y)
<nl Q—nd. (6)

Ly (m,) ... Ly (0,) L1 (0,,) ... Ly(10,)
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On the other hand, by Lemma 5, the left-hand side of (6) equals
[Widy+..+ W, A4,,
whence [MiAy+..+ MyAy+...+ M, A, <n! Q™™ (7

Let K;=Q(4,, ..., 4;;) have degree d;, and let d be max d,, taken over all +€8. Since
M, =0, 4, =0, and since the non-zero elements among A4 |, ..., 4;; are linearly independ-
ent over Q, M, A,;+...+ M A, is not zero, and in fact its norm (from K, to Q) has absolute
value > C;. Since each conjugate has absolute value < C,|M|, we may conclude that
| MyAy+...+ M A, | > 0| M|'=%>Cs| M|'~°. For large @, the last inequality combined
with (7) yields d>1 and | M| >C,@Q ¢~ D >,

3.2. Reductions of the problem.

It suffices to prove Theorem 6 in the special case where
4,=0% (1<i<)) (8)

and ¢y, ..., ¢; are fixed constants subject to the conditions (2) and (3).
To prove this statement, we remark that because of 4,4, ... 4,=1, we may restrict

ourselves to numbers @ satisfying not only @ >max (4, ..., 4;) but also
Q>max (A7, ..., A7Y).

Then A;=@Q% (=1, ..., l) where ¢, ..., ¢; satisfy (2) and (3), but of course these ¢, ..., ¢,
will in general depend on 4., ..., 4,.

Now let N be an integer > 2/d, and put n=N-1; then 0 <y <d/2. Write Zz for the
set of integral multiples of #. There are ci, ..., ¢/, all lying in Zy, such that

et te =0, Jei—c|<n @(E=1,.,10.
Since all integers are in Z#, one has again
lei] <1 (i=1,..,7) andc;>0if i€S.

Put A; =Q% (i=1,...,1). Then A, ... 4;=1, 4;>1 if ;€8. Furthermore, if the nth succes-
sive minimum A, of |L(xz)| <4; (¢=1,...,1) has 1,>Q~%?2, then the nth minimum 4, of
|Li(x)| <4, (i=1, ..., 1) satisfies 1,>@3. It therefore suffices to prove the theorem with
d replaced by 6/2 and with ¢,, ..., ¢, in the finite set of I-tuples having ¢,€Z» and [c¢;| <1.
Hence it is enough to prove the theorem for a particular such I-tuple.

1t suffices to prove Theorem 6 when the coefficients «y; of Ly, ..., L, are algebraic integers.



42 WOLFGANG M. SCHMIDT

Namely, there is always a rational integer ¢>>0 such that the forms gL, ..., gL, all
have integral coefficients, If L,, ..., L;; S are proper, then so are gL, ..., ¢L;; S. Our reduc-
tion now follows from the remark that the successive minima of |¢L,(r)| <4, (i=1, ..., 1)

are ¢! times the successive minima of |Ly(x)| <4, (i=1, ..., ]).

3.3. Proof of Theorem 6. Let c,, ..., ¢, be constants satisfying (2) and (3). Let Ik be
the set of reals @ >1 such that there are n linearly independent integer points tv,, ..., 1D,

having
[Ldwy)] <@ (1<i<l, 1<j<n). 9)

We have to show that the set I} is bounded.
We may clearly assume 0 <§<1/12, Pick >0 small enough to satisfy

3>161%. (10)
Then also 0 <g<1/12. Next, pick an integer m so large that
m >4e2 log (2IA), (11)
where A is the maximum of the degrees A, of K;=Q{xy, ..., &;). Further sef
w =24-27m(g[12)7 71, (12)

Now £<1 and m>1 implies @ <1.

In what follows, D, E will be the constants of parts (ii), (iii) of Theorem 9, and
C,, Cy, O, the constants of Lemma 6.

We argue indirectly and assume that I is unbounded. There is then a @, in I such

that
Q>2E, Q>Ust+1), (13-14)
>0y QF0>2"0 @R >DM (15-17)

We also may pick Q,, ..., @, in I satisfying

twlog @, >log @, (I<h<m). (18)
In particular this implies Q@ <...<Q@pn. (19)
Let 7, be an integer so large that |
ery log @, >log @,
and for A=2, 3, ..., m put r, = [y log @,/log @,]+1.
This choice of 7, ..., r,, implies
rylog @, <r,log @, <(1+e)rylog @y (1<h<m). (20)

By virtue of (18) and (20), @ry =2(14-8) "1y, 21 (21)
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Our linear forms L,, ..., L, as well as ¢, m and ry, ..., r,, satisfy all the hypotheses of
Theorem 9. Let P(X,, ..., X;,;) be the polynomial described in that theorem. Now the
hypotheses of Theorem 10 are also satisfied.

Conditions (2.23), (2.24) (i.e. formulae (23), (24) of chapter 2) of Theorem 10 follow
from (2), (3) and (10), while (a), (b) folow from (13), (14), (19) and (20). By definition
of I and since @, €M, there exist for each A, 1 <h<m, linearly independent integer points
0r1, ..., Wy, such that (c) holds. Let M,, ..., M,, be the linear forms of Theorem 10. Then
we have

P has index at least me with respect to (M, ..., My 71, ooy T

By Lemma 6 and since @, >C,,

QP <|Mu|<Qf* (1<h<m), (22)
whence | M= Q> @y = | M, [V,
and this gives | M= | My (1<h<m) (23)

with 7=C,/C,. Furthermore,
| M, |7 = @y¢ > 2™ (1<h<m) (24)
by (16), (19) and (22). By Theorem 9,
| P| < Drtetrm< P
and because of (17) and (22) this implies
| P|™ < D™ < QYnolC < | ML | = | M |7 (25)

By our choice of ¢ and w and by (21), ¢, m, @, ry, ..., 7, satisfy the hypotheses of
Theorem 11. Also 7, the linear forms M, ..., M,, and the polynomial P satisfy the condi-
tions. The inequalities (2.31), (2.32), (2.33) of Theorem 11 are our inequalities (23), (24)
and (25). We therefore conclude:

P has index at most & with respect to (M, ..., M5 715 oy Tr)

Since m >1, this contradicts the lower bound for the index given earlier. The assump-
tion that I} is unbounded was therefore wrong, and Theorem 6 holds.

4. Proof of the main theorems

4.1. Davenport’s Lemma.

LeMMA 7. Let Ly, ..., L, be linear forms of determinant 1, and let 1, ..., A; denote the

successive minima of the parallelopiped defined by

|Lix)| <1 (A1<§<)). 1)
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Suppose g, ..., 0; satisfy 010z - 0;=1, 2)
0150, 0,0, (3)
014 S@alp ... <), 4)

Then, after a suitable permutation of Ly, ..., L,, the successive minima A1, ..., A; of the new

parallelopiped
eslLin) <1 (1<j<) (6)

satisfy 270, , <A <2Ugid; (1<4<). (6)
Proof. We shall use the ideas of [2]. By a well-known Theorem of Minkowski (for
example, see [1], chapter VIII, Theorem V),

1 1 ’ ’
—<ﬂl...ﬂ.,<l, _<ﬂl...zl<1. (7)

Set N(r)=max (|L;(t)], ..., |Lix)|) and let gy, ..., £; be linearly independent integer
points such that N(x,) =21, (¢=1, ..., I). If ¢ lies in the subspace S, generated by 0, 1, ..., 1>
then L,(x), ..., L,(z) satisfy !—4 independent linear conditions, the coefficients in which
depend only on ty, ..., L. ,

We order Ly, ..., L, in the following way. In the condition

UL+..+UL =0 )

implied by r€S,_,, U, is the largest coefficient in absolute value. In the additional linear
relation implied by £ €8,_,, which we can take in the form

Vily+..A Vi Ly =0, )

V., is to be the largest coefficient in absolute value, and so on.
Then if Ly, ..., L, satisfy (8), we have

|UL| <|ULy| +.oo 4+ | Uiy Ly |
and so |Ly| <Ly + oo+ | Luca ],
whence Ly ] + oo+ [ Loy | 23 L | + oo+ | L))
If L, ..., L, satisfy both (8) and (9), we have, similarly,
|Zy| + oot L] ZH| Ly | + oo+ [ Lia D ZH Ly | + o+ | L))

and so on generally.
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Now suppose g lies in S; but not in §;_; (1<i<). Then N(x) =2, and L(x), ..., L,(x)
satisfy I —4 linear relations, whence

| Ly | + .o+ | L] 227 Ly + ...+ | Ly]) 224,
By (3) this yields

1 _. _
max (¢,|Ly|, ..., ;| L;|) > max (g, | Ly |, ..., QiILil)>{ 210, 4,>2""0,,.

By (4), this inequality in fact holds for any ¢ which is not in S, ;. This shows 1;>279, ;.
The lower bound for A; now follows from (2) and (7).

4.2, Proof of Theorem 7. Let the forms L,, L,, Ly, M,, My, M, and the sets S, T satisfy
the hypotheses of Theorem 7. If S={1, 2, 3}, condition (1.21) implies 4, =4,=4,=1,
the set (1.14) is a fixed set, and (1.20) certainly holds if @ is large. We may therefore assume
that neither § nor T contains all three elements 1, 2, 3. Since S and 7' are not empty and
since SN T is, § contains either one or two elements, and similarly for 7'

There exist integers ¢,, ¢,, ¢; with
ey tHeteg=0, e <2(1=1,2,3), ¢,>1if4€8, ¢, <-1ifjeT. (10)
Throughout this section, 4,, 4,, 4, will be positive reals with 4, 4,4,=1 and
A, >1ifi€8, A4,;<1ifjeT, (11)
ie. (1.21). 4,, A,, 45 will denote the successive minima of
|Lix)| <4, (:=1,2,3) (12)
and g, us, p5 the successive minima of
[M,(p)]<4;7' (=1,2,3). (13)

The convex bodies defined by (12), (13), respectively, are polar to each other. By a well-
known Theorem of Mahler ({4], or see [1], chapter VIII, Theorem VI),

1<X;p,;,<3! (j=1,2,3). (14)
By the hypothesis of Theorem 7, one has
Ay>@Q0 (15)
provided @ >max (4,, 4,, 4,, C,(6)). Similarly,

o> Q-2 (16)
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provided Q>max (477, A3, A3', Cy(d)). By virtue of (14), applied for j=2, and since
Q>max (4,, 4,, 4,) implies Q2>max (47", A5, A7), we therefore have

Q<1 <@ (7
if Q>max (4,, 4,, 4,5, C5(6)).

Suppose now for some A,, 4,, 4, satisfying all our conditions one has

3y <Q (18)
where @ >max (4,, 4,, 4,). Put
'A~_1 = Ai ch‘ (7‘= 1,2,3). (19)
Then 4, 4,A;=1 and B
A,>QYifi€8, A,<@Q¥ifjeT, (20)

and Q*® >max (4,, 4,, 4,). The first minimum 1, of the set
Lo <4, (i=1,2,8) (21)

satisfies 1, <@-7%. By an inequality of the type (17), applied to A;, A, 4, one has
Q2 <2,<Q? if @=C,(6).

Set =0 0.=Q%, =0
Since 9,1, <Q~% <g,1, <py4;, Lemma 7 is applicable to the parallelopiped defined by (21).
There is a permutation 7, f,, j3 of 1, 2, 3 such that the successive minima 1;, 45, 43 of the
parallelopiped

|Lip)| <o =4i (i=1,2,3) (22)
satisfy 9-129 7. <1 <230,7, (j=1,2,3). (23)
In particular, 4, <2124, ‘

One has 4;4;A4;=1, and by (20) and the construction of g,, 05, 03, 4;>1 if {€S and
A;<1 if j€T. Also note @'+12%>max (4,, A;, A3). Now suppose @>C4(d/2) and put
Q' =Q""'®. Inequality (17) applied to the parallelopiped (22) and to ' yields 4, >Q'~%/2>
212¢)-% if ) is large. We thus have reached a contradiction, and (18) cannot hold if @ is
large. Since § >0 was arbitrary, Theorem 7 is proved.

4.3. A general theorem.

THEOREM 12. Let L =0y Xy +ot;p X+ 013 X5 (1=1, 2, 3) be linear forms with algebraic
coefficients and with determinant + 0, and let M, =f X\ + B, Xo+ P13 X5 be the adjoint forms.
Let A, B be subsets of {1, 2, 3} such that AN B=9 and assume that

(i) for i€ A, the non-zero elements among (oy, &g, %) are linearly independent over Q;
(iiy for j€ B, the non-zero elements among (B, Pis» Bis) are linearly independent over Q;
(iil) for k=1, 2, 3, there is an i€ A and a j€ B such that «y,+0, §; +0.
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Let £>0, n>0. There are only finitely many integer points q==0 such that

|L1(Q)L2(q)L3(CI)l < IQI_S; (24)
[Liq)] <|q|-* for 1€4, (25)
IL,-(q)| =n for j€B, (26)

where Iql =max (lq1l, I%I’ I%I) tf G=(41 92 23)-

Proof. Ly, Ly, Ly; B and M,, M,, M4; A are proper. Without loss of generality we may
assume that L, L,, L have determinant 1. We may apply Theorem 6 and then Theorem 7
with §=B, T'=A. As before we may assume that S, T contain one or two elements each.

Suppose now (24), (25), (26) hold. Set

A4, =max (|L(q)]||q|*3 |q| %) ifi¢S=B. 27)

Now if t€T'=A4, then ¢ ¢S, and by (25) one has 4,<1. By (24), if |q| is sufficiently large
and if £<1,

[T L@ al") <min ([af’, [q[7>* 1| L;(@)|™") < [T 4.

jesS i¢s i¢s

Hence one may for each j €. = B choose 4, such that |L,(q)]|q|¥¢<4;and that 4, 4, 4;=1.
By (26), 4;>1if j€S8 =B, at least if |q| is large.

We have |Li(q)| <4;|q|~¢ (i=1,2,3). (28)

By (27), we have |q|3<4;<|q|2if ¢¢8S. Since 4,>1 if j€S and since 4,4,4,=1, one
obtains |q[1°>max (4,, 4,, 45). Put @=|q|. By virtue of (28), the first minimum £, of

|L@)] <4, (i=1,2,3) (29)
satisfies A, < |q|~*/¢ =@~#/%0. By Theorem 7 this cannot happens if |q| and hence @ is large.
4.4. Proof of Theorem 1, 2 and 4.
Proof of Theorem 1. Let a, § be algebraic and 1, «, 8 linearly independent over Q. Set
Ly =X,~aX; Ly=X,-pX, L,=2X,
Theorem 12 applies with 4 = {1, 2}, B={3}. Now suppose ¢>0 and
llaqll - [|1Bgl] - g+ <1. (30)

Choose q=(p,, py, q) such that |L,(q)] =|log|l, |L(a)] =]|Pall, |Ls(q)] =¢. By Roth’s
Theorem, [lag|| >g-1-¢/3, whence by (30),

| Lo(a) | = ||Ball <g2/*<|q|~#/2 if ¢ is large.
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Since also |Ly(q)| <|q|~#2 a relation of the type (25) but with exponent —¢&/2 instead
of —¢ holds. Similarly, (30) implies a relation of the type (24). Since (26) with n=1 is
obvious, there can be only a finite number of such integer points q, hence a finite number
of positive integers ¢ satisfying (30).

Proof of Theorem 2. Let o, § be as before and let Ly =X, Ly = X,, Ly=aX; +X,+ X,
Theorem 13 applies with 4 ={3}, B={1, 2}.
Now suppose ¢, +0, ¢, +0 and

||y +Bgall - |91 g2 ) e <1. (31)

Choose §=(gs, ¢ 9s) such that Ly(q) =1, La(9) =¢s, |Ls(q)| =|legs + g, (26) with 5=1
is obvious, and for large |g|, (31) implies relations of the type (24), (25). Hence by Theo-

rem 12 there are only finitely many solutions.
Proof of Theorem 4. Suppose a, B, y satisfy the hypotheses of Theorem 4, and let
Li=X,, Ly=aX,+X, Ly=pX,+yX,+X,
The adjoint forms are now
M =X, +a'Xp+5'X;, M;=X,+v'X;, M;=X,

where o' = —a, y'= —y, f'=ay~p. Theorem 12 applies with 4 ={3}, B={1}.
Now suppose q=(¢s, g2 ¢s), ¢ >0 and
|agy +¢2| <qi% |Par+ye:+as| <ai”, (32)

where ¢ +7=1+2>1. For large ¢, whence large |q|, (32) implies a relation of the type
(24), but with exponent —¢/(1 + |g| + [7|) instead of —&. By Roth’s Theorem, the number
of golutions is finite unless p <1. Hence t>>¢ and (32) implies a relation of the type (25).
Obviously (26) holds with =1. Hence by Theorem 12 there are only finitely many g

satisfying our inequalities.

4.5. Proof of Theorem 5. Let a, f§, y be numbers satisfying the conditions of Theorem 5.

Let
Li=X,-aX,, L,=X,-fX, Ly=X;—ypX, L,=X,

and let M, ..., M, be the adjoint forms, i.e.
M, =X,, My=X, My=X; M,=0X,+pX,+yX;+X,

Set S={4}, T={1,2,3}. L, ..., Ly; Sand M,, ..., M,; T are proper and Theorem 6 applies.
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Let 4,, ..., 4, be positive reals with 4,4,4;4,=1 and
4;<1fori=1,2,3; A4,>21 (33)
Let 4,, ..., A, and g, ..., y, denote the successive minima of the parallelopipeds
L) <4, (=1,..,4) (34)
and [ Mx)| <47t (=1, ..'., 4), (35)
respectively. By Mahler’s Theorem,
1<tpus_;<4! (=1, .., 4). (36)
We claim that A > A Ve-e (37)

if A, is large. Otherwise there is a q=(..., ¢) +0 having |L,(q)| <4,;4,7V%¢ (i=1, ..., 4).

Since 4, 4, 4,= A", we may assume 4,4, <A;*3
lloegll - |Ball - % < Ay ATV0~2 4y AT1O 2 AG+O G0 < 4 213-200-2800 ]
By Theorem 1 this cannot happen if 4, hence g is large.
By Theorem 6, Ag>AL®, pg>Ag* (38)

if A, is large. Combining the inequalities written down so far with Minkowski’s well-known

inequality 1/4!<y, ... u,<1 ([1], chapter VIII, Theorem V), we see that

Azll9~e<‘u2<Ai’ Aze<ﬂ3<A1/9+s, H4<Ai/9+8 (39)
if 4, is large.

Lrmma 8. Suppose 4, is large and

A, <A77 (i=1,2,3). (40)

Then f> A7V, (41)
Proof. Set 01 =0z = (Us/t2)2, 05 = 04 = (pa/tt)2.

Since Q1141 S Qafbe = Qafhs S Qalas (42)

we may apply Lemma 7. There is a permutation 4, ..., j, of 1, ..., 4 such that the successive

minima py, ..., py of
| M, (x)| <4t = AT (G=1,...,4) (43)

satisfy 2700, 4, <pj<2%%, 1, (=1, ..., 4). (44)

By (39), psua<A7°**, and therefore by (40), 4;=4,0, <A °A{"** =1 (i=1,2,3).
Also A3~ < A{< AL,

4 — 672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.
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What we said earlier about (35) therefore also applies to the parallelopiped (43).
Since by (42) and (44) u; and ug are of the same order of magnitude, we have u; <4,
us<Aj if A, is large. Using (44) again we obtain

1/4! <lu{‘u2',u§‘u; < Ai‘lul"u,; < 214°A§E,ul,u4 < 214°A§EA1’9”‘1¢1.

For large A,, (41) follows.

Proof of Theorem 5. Let a, B, y satisfy the conditions of Theorem 5. Suppose integers
g1 +0, ¢ =0, g5 +0 satisfy
llegy + P22 +78s]| - | 919295 2 <1, (45)

where ¢>0. Choose q=(gy, s, ¢3, ¢s) such that |M(q)| =|q| (:=1,2,3) and |M,(q)| =
ll gy +Baz +7gs||-

Put 4,= I%I_II%%!I:’.I_I/G—S/Q (1=1,2,3), Ay=|¢,19,95] ¥
Then AP < | g [V < AT (i1, 2, 3),
whence A, <AFUI-#30, (46)

Ai/9+sl30|qil =A4;7! lqlqzqal—1/6—s/9+(3/2+e/3)(1/9+s/30) <A7! (1=1,2,3),
and therefore
lMi(CI)l = IQiI <A7TAVOE0 (¢=1,2,3), |M4(Q)l < l%%%l_5/3_8<A11—1/9—6/30-

Therefore u, <A;"*~***. On the other hand, since (46) is an inequality of the type (40),

Lemma 8 implies g, > 4; 1973,

Hence there are no solutions of our inequalities having large 4,, and (45) has only

a finite number of solutions.
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