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ON SIMULTANEOUS INFERENCE IN MULTIDIMENSIONAL
CONTINGENCY TABLES

TomAS HAVRANEK

(Received October 15, 1976)

Investigating the GUHA-methods (cf. [4], [6] and [7]) we meet an interesting
method of treatment of multidimensional contingency tables (an up-to-date detailed
description of these methods can be found in [7]). In fact, in such methods the
computer processes a set of 2 x 2 tables derived from the original 2 x 2 x ... x 2
table and on each such 2 x 2 table the hypothesis of independence is tested. It is
clear that we face here the problem of simultaneous inference. As was shown by
Andé] [1] the interaction test has good properties in such situations. In the present
note we prove a theorem showing the properties of this test for the set of tables
derived in a particular manner. These derived tables cannot be obtained via inter-
actions or generalized interactions, hence our Theorem 1.8 covers situations distinct
from those of Andél’s Theorem 3.

I. DERIVED CONTINGENCY TABLES

1.1. Consider the following examples: We have a 2 X 2 x 2 contingency table
with the frequencies

111, N101 5 M1105 P100

No11, Hoot s Moros Mooo >

such a table refers to three properties (ny,; is the frequency of objects possessing
the first and the third property, but not the second). We can ask whether the first
property P, is associated with the conjunction of the second and the third property
(P, and P5). Then we must consider the following derived 2 x 2 table:

Ry11, MNyo1 + Pyo + Ryoo

No11» Mgor + Noro + Mooo

and test an appropriate hypothesis of dependence.
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Such a way of deriving contingency tables is characteristic for the present GUHA-
methods; even rather complicated cases described by means of propositional calculus
can oceur (cf. also [9], with applications in sociology).

1.2. Remark. The usage of logical means is not incidental, it has a rather deep
reason:

If we consider a model theory of finite dichotomously valued (i.e. finite classical)
monadic models of a finite type t and we restrict ourselves to facts invariant with
respect to the isomorphisms of models, we see that all such models can be represented
by finite dimensional (t—dimensional) contingency tables. If M is such a model, it
can be represented by a table (or vector)

n, .. is the frequency of objects having the value {ij,..., i,>. Thus the logical
apparatus of the model theory can be (and is) a good formal means for investigating

contingency tables.

1.3. Suppose we observe some random properties (i.e. alternative random variables)
on a set of objects M; let Py, ..., P, be the names of the propertizs. Random proper-
ties observed on objects form a sequence of t-dimensional random variables. We shall
assume that this is a sequence of independently and identically distributed variables.
Hence the distributional properties are described by a vector of probabilities

P = <Po,...,o, Po,...,0,1,5 +-» Pl,...,1> »

where p;, . ; is the probability that the first property assumes the value i, the
value i, etc. We shall suppose here p;,  ; > 0 for each <iy,...,i,>€{0, 1}*. The
vector of the observed frequencies n is multinomially distributed with a parameter p.

1.4. Consider composite properties named by elementary conjunctions, i.e.
consistent conjunctions of literals. (Literals are atomic formulas P; and negated
atomic formulas ~1P;; a conjunction of literals is consistent if each predicate P;
occurs in it at most once. Examples of elementary conjunctions: P, & 71P,, Py,
T1P; & P, & T1P,; example of an inconsistent conjunction of literals: P; & 1Py &
& P,.) The meaning of a statement “an object possesses the property named by an
elementary conjunction” is obvious (e.g. an object possesses P, & TP, iff it pos-
sesses P, and does not possess P,). If we have now two disjoint conjunctions ¢;, @,
(i.e. @4, ¢, have no common predicates) we can ask whether they are associated (not
independent).

1.5. Example. In the example from 1.1 we speak about the association of Py

and P, & P,. If we consider the association of P; and P, & 71P,, we have to use the
table

Ni105 Hioo + Migg + Byot

No10> Moo + Mor1 + Moot -
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Similarly for four properties Py, P,, P3, P, (say sex, treatment, symptom A, symptom
B) one can construct a table corresponding to the relation between P; & P, and
P, & T1P,.

The above presented tables are constructed using the following rule: Suppose we
want to construct the table corresponding to elementary conjunctions @1, @2- The
boolean functions corresponding to ¢, and ¢, are used. Denote them by (¢,)*, (p2)*
respectively. In each cell of the 2 x2 table we place the sum of frequencies with
indices for which the boolean functions give values in the corresponding cell of the
following pattern:

1,1, 1,0
0,1, 0,0.
In our example:

indices boolean functions (or )
iy i, i3 (P* (Py & Py)* (P* (P, & T1Py)*
0 0 0 0 0 © 0)
0 0 1 0 (© 0)
a1 0 0 0 © 1
01 1 0 1 © 0)
1 00 1 0 a 0)
10 1 1 0 a 0)
110 1 0 Il 1)
TR T 1 1 a 0).

Now the reader can casily construct a table for the relation between P, & P, and
P3 & 1P, (here 1110 corresponds to 1, 1, etc.) Note that we could use other forms
of open formulae in the same way.

1.6. If m is a t-dimensional table and ¢, two disjoint composite properties
(without any common atomic property), then the following derived table is relevant
for the association of ¢ and ¥/:

Zil(q’ﬁ wa II) > ZIO(QD’ 'l/a n)
Yoile. v, m), Yoole. v, m).

) \ N
Yile, v.n) = > Wi i -
{Citess B 5 (@)1 e i) = 1,00 * (1 eens i) =Jji

T(p, ¢, n) =

Here

Clearly, we can apply a test of independence in 2 x 2 contingency tables to our
derived table T(g, ¥, n).

1.7. If we consider a set S of pairs of disjoint composite properties, we face
a simultaneous inference problem. Particularly, we can ask what is the probability
that, when testing the independence of pairs from S in a tables n, one or more er-
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roneous inferences occur under the assumption of the total independence; i.e. the
probability of the global error of the first kind.

We know that the interaction test has good simultaneous test properties (cf. (1.
Hence we apply this test here.

a, b

Consider a 2 x 2 table (
¢, d

>. By the interaction test we reject the hypothesis

of independence if

11 1 1\
log (ad/bc) k; oo ;—) =

where A, is the (1 — «f2)-quantile of the normalized normal distribution. We can
apply this test to the set S of pairs of composite properties. For S = {{@y, Y1), ...
vees Oy, l/lk>} we use some significance levels oy, ..., o, and apply the interaction

test to the i-th pair as follows: put (z: Z) = T(¢; ¥;, n) and a = o; and use the
above described decision rule. Then we can prove the following theorem:
1.8. Theorem Let n be a contingency table and let S = {{¢(, D, ..., (q)k; i)
be a set of disjoint pairs of composite properties. Put ag = 1 — ﬁ (1 — o). Then the
i=1

probability of the global error of the first kind is asymptotically (in the cardinality
of samples) less than or equal to .

II. PROOFS

2.1. We have now to introduce some further notation. Having a pair {(¢;, ¥ ;>
we put
(1) gi(") = log le,((pia Vi, ”) — log ZOI((pia Vi ")
~ log ZIO((Piv Vi, ”) + log Zou((Pi, Vi, ")

and
S.(n) = < 1 + 1 + 1 s ,.,_71,..*‘____>1/2 .
' Zu‘((ﬂi, Vi ”) Zox(‘[)i, Vi, ’1) Zm((l’ia Wi, ") Zoo(‘Pi’ ¥ i»”)

Hence our test rejects the independence hypothesis on the derived table T(¢;, ¥;, n)
iff

wolz hn

2.2. Lemma. Let X, be a sequence of k-dimensional random vectors having
asymptotically the N (0, A) distribution (normal distribution with zero means
and regular covariance matrix A). Let 3(X,) be consistent non-zero estimatesof a;
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(i =1,..., k) Then X¥, where X5 = X,-,,/ai(X)for i =1,..., k, has asymptotically
the ,/V(O, A*) distribution, where A* is a matrix with diagonal elements equal to 1.

(The lemma follows from 2.c.4.(x ) in [10].)

2.3. Lemma (Sidak [11]). If variables X4, ..., X, have a k-variate normal distri-
bution with zero means, then

P(IX,| < epy o [Xi] < a) 2 P(X| < o) P(IX) < o).
2.4. Proof of Theorem 1.8. It is clear that

<\/(”) (”0 ,,,,, 0/" - Po;...,o)~ cees \/(“) (”1 ..... 1/” - 1)1..‘.,1)>

has asymptotically a 2'-variate normal distribution with zero means and the dis-
persion matrix
Po,..., 0(i - ]’0...,,0)7 —P¢.....0oPo...1s
V=1~=po,.. 1Po..0r - :
[71.....!(1 - ."’1‘,,.‘1)

Consider now functions g; as defined in (I) and hence the vector variable
X, = (\/(n) (91(”/”) - 91(1’)), BN \/(") (gk(”,/") - ‘h(P)» >

where
nln = (ng,. ofn, ..., ny . afnd

and n is the cardinality of the sample. Thus we obtain, for the diagonal elements of
the dispersion matrix of X,

ag{p) 094p
v{p) = . Z . Z Uit e i)t eennind ’*‘l“(—)‘ P ( ) ,
Litgeensit) Figeeesdt) api;,‘...it OPji,esie

where v, 5.5 are elements of V. For g; corresponding to {¢;, ;> we have
v{p) = s3(p) (to prove it is a principally elementary but tedious exercise). By Lemma
6.a.2. (iii) in [10] we see that X, has asymptotically a normal distribution with the
diagonal elements v/(p). (Moreover, v,(p) = si(p) > 0.)
Note that under the null hypotheses we have gi(p) = Ofori = 1,..., k.
Moreover, we have s;(n/n) = n si(n) and g,(n/n) = g.(n); we sec immediately that
si(n/n) > 0 for i = 1,..., k and that s}(n/n) is a consistent estimate of si(p). Hence

by 2.2
)= G )

has asymptotically a k-variate normal distribution with zero means and the diagonal
elements of the dispersion matrix equal to 1.
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Now we apply Lemma 2.3 to estimate the probability of error. By the lemma we
have

) P(i§1|X,-I 2c¢)< 1 - ,-li(l — (X 2 ¢).

If now ay, ..., % are some numbers («; € (0, 0-5)) and X, ..., X, are multinormal
variables with zero means and with VAR (X;) = 1 we obtain by (2)

P(glx"l > Npp) S 1 — ﬁl(] —a).
Applying the asymptotical properties of g,(m)[s{n), i = 1, ..., k, we have
i [P0 o) 2 ¥ 5) = B(UIK] 2 A = 0
under null hypotheses, which completes the proof.

{II. DISCUSSION

3.1. Our proof depends on the idea of Andél’s proof of Theorem 3 in [1]. But
Andél’s proof is not quite complete: it is based on the incorrect Rao’s lemma 6.a.2.11.
Andgl’s proof can be corrected using our Lemma 2.2 to prove that

P(ld, — d;] < ¢S4y, ..oy |dy — 8,] < ¢S4,) —
— P(]Yll <e ..., IYW| <¢), where Yy, ...Y,

are multinormal with zero means and with the diagonal elements of the dispersion

. . d; — ;) .
matrix equal to 1, converges to zero. (Smce LA—) i=1

d;

, ..., w has asympto-

tically the desired distribution. In Andé&!l’s proof
P(]dl - 51| < ¢Sy e [dw - (Swl < ¢Sy)) —
— P(|Y{] < ¢ /(n) Syps - | Y| < ¢ /(n)'Sa,)

need not converge to zero; note that the left expression is incorrect; {Sy,, ..., Sy,
is a random variable and the probability concerns <Yy, ..., ¥,,» (see [1], p. 104)).

3.2. Exactly the same error occurs in the proof of Theorem 1 of [1]. The proof
of this theorem could be completed using the following easy lemma:

Let X, be a sequence of k-dimensional random vectors having asymptotically the
(0, A) distribution (4 is assumed to be regular). Let 4, = f(X,) be consistent and
regular estimates of 4. Then X,4, ' X, has asymptotically the y*-distribution with k
degrees of freedom. (A proof can be based on 2.c.4 from [10].)
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3.3. Both Lemmas 3.2 and 2.2 have the same basis: norming the sample values
by estimates of variances (or covariance matrix) based on the same sample values.
Note that in all cases (Theorem 1.8 here and Theorems 1 and 3 in [1] and many
others) the idea is to establish that ((X,) converges in distribution to X, where X has
a distribution independent of the sample values.

3.4. All the proofs could be completed using Rao’s lemma 6.2.2.11 in its true form,
ie. sup IF,, - H,,’ Lo
However, by the first step we obtain then only the convergence in probability which

leads to further complications. The “norming” method seems to be more natural
and straightforward.

3.5. How numerically good is the improvement of the Bonferroni bounds achieved
by Theorem 3 of [1] or Theorem 1.8 of the present note? Consider some usual sig-
nificance levels (probabilities of the error of the first kind) and a moderate number
of tests:

number of tests

level of
one test 3 5 i0 15 20 30
|
0-001 E 0-002997 0-004990 0-009955 0-014895 0-019811 0-029569
0-003 0-005 0-010 0-015 0-020 0-30
0-005 0-014925 0-024751 0-04889 0-07243 0-09539 0-13962
I 0-015 0-025 0-05 0-075 0-1 0-15
0-01 . 00297 0-0490 0-0956 0-1399 0-1821 0-2603
0-03 0-05 0-1 0-15 0-2 0-3
0-02 i 0-0588 0-0961 0-1829 0-2614 0-3323 0-4545
0-06 0-] 0-2 0-3 04 0-6
0-05 0-143 0-226 0-401 0-537 0-642 0-785
0-15 0-25 0-5 0-75 1-0 1-0

(the upper numbers are our bounds, the lower are the Bonferroni bounds).

We see immediately that our (and And&l’s) bounds are considerably better than
Bonferroni bounds for values of the global probability greater than 010, i.e. out of
the conventional region of admissible values of probability of an error.

Another comparison of the effectiveness of such bounds for simultaneous inference
methods, using the given probability of the global error of the first kind and on this
basis computed critical levels and critical values. can be found in [3] (With further
references).
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Souhrn

O SIMULTANNI INFERENCI
V MNOHOROZMERNYCH KONTINGENCNICH TABULKACH

ToMAS HAVRANEK

V &ldnku je studovdna otdzka simultdnni inference pro mnohorozmérné kon-
tingen&ni tabulky typu2 x 2... x 2. Je popsdna metoda odvozovdni kontingenénich
tabulek 2 x 2, které odpovidaji ,,sloZenym‘* vlastnostem; tyto tabulky nemohou byt
obdrZeny z plvodni tabulky pomoci obvyklého kolapsovdni na marginalni tabulky.
Je dokdzdna véta asymptoticky omezujici hladinu pravdépodobnosti celkové chyby
prvniho druhu p¥i pouziti interak&niho testu (viz [1]). Je ddle diskutovédna efektivnost
takto dosazené hladiny a uvedeny nékteré dopliky k ¢ldnku [1].
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