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1 Introduction

Consider two species of oppositely charged particles (e.g., negatively charged
conduction electrons and positively charged holes in a semiconductor crys-
tal or negatively and positively charged ions in a plasma) whose motion is
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described macroscopically be the drift-diffusion-Poisson system

nt = div(∇f(n) − n∇Φ) (1)

pt = div(∇f(p) + p∇Φ) (2)

λ∆Φ = n− p− C(x). (3)

Here n ≥ 0 and p ≥ 0 are the position densities of the negatively and,
repectively, positively charged particles, Φ is the (self-consistent) Coulomb
potential and C(x) ∈ L∞(Ω) is the difference of background ion position
densities. λ > 0 is a (usually small) parameter representing the scaled Debye-
length of the particle system. f = f(s) is the (nonlinear) pressure function
satisfying f ′(s) > 0 for s > 0. For the sake of simplicity we assume in this
paper equal pressure-density equations of state for both particles.

The equations (1),(2),(3) are posed in a bounded domain Ω ⊂ R
d, d ∈ N,

where the particles are assumed to be confined. We assume zero-outflux
conditions:

(∇f(n) − n∇Φ) · ν = (∇f(p) + p∇Φ) · ν = 0 on ∂Ω, (4)

and a zero-outward electric field

∇Φ · ν = 0 on ∂Ω. (5)

Here ν denotes the (formal) exterior outward unit vector normal of ∂Ω.
Also we supplement the equations by initial conditions for the densities

n(x, t = 0) = n◦(x) ≥ 0 ,

∫

Ω

n◦(x) dx =: N (6)

p(x, t = 0) = p◦(x) ≥ 0 ,

∫

Ω

p◦(x) dx =: P (7)

N and P are the total negative and, respectively, positive charges, which
are conserved by the evolution of (1),(2). Therefore we do have to require
total charge neutrality of the system

N − P =

∫

Ω

C(x) dx. (8)

As basic reference for drift-diffusion-Poisson systems with linear diffusion
we cite [MRS90], where many further references can be found. Recently, the
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limit t→ ∞ has been investigated for the bounded domain [Gaj85, GaGr89,
CJMTU00, Ott00] and for the whole space problem [BiDo99, BDM99, AMT98,
AMTU98, CJMTU00, Ott00] and the limit λ → 0 of the parabolic- elliptic
system ws analysed in [Gas, GLMS99] (where results for time intervals of
O(1)-length were obtained).

In this paper we are interested in the limit λ → 0+ of the stationary
system corresponding to (1)-(8). To compute the steady state of a nonlinear
(possibly degenerate) convection-diffusion equation with given potential V =
V (x) ∈ L∞(Ω),

ut = div(∇f(u) + u∇V (x)),

∫

Ω

u dx = M ≥ 0, u ≥ 0,

we write the flux as

∇f(u) + u∇V (x) = u∇(h(u) + V (x)),

where the enthalpy h = h(s) is defined by

h(s) =

∫ s

1

f ′(r)

r
dr. (9)

Then for the equilibrium state u = u∞(x) we find that h(u∞(x))+V (x) is
constant on connected components of {u∞ > 0}. It turns out that the unique
equilibrium state, which minimizes the corresponding entropy [CJMTU00],
is given by

u∞(x) = g(c− V (x)), (10)

where g is the generalized inverse of the enthalpy,

g(σ) =

{

0 , σ ≤ h := h(0+)

h−1(t) , h < σ < h := h(∞)

}

, ∀σ ∈ (−∞, h). (11)

The constant c in (10) is determined such that

M =

∫

Ω

g(c− V (x)) dx. (12)
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Note that a unique constant c satisfying (12) exists (at least) for

M ∈
(

0,M
)

, M =











∞ if h = ∞
∫

Ω

g(h+ ess inf
Ω
V − V (x)) dx if h <∞

For the typical choice

f(s) = sm,















m > 1 : porous medium case

m = 1 : linear case

m < 1 : fast diffusion case

(13)

we calculate

h(s) =



















m
m−1

(sm−1 − 1) , m > 1
(

−∞ < h = − m
m−1

, h = ∞
)

log(s) , m = 1
(

−∞ = h, h = ∞
)

m
1−m

(

1 − s−(1−m)
)

, m < 1
(

−∞ = h, h = m
1−m

<∞
)

(14)

and

g(σ) =























(

(

1 + σm−1
m

)+
)

1
m−1

, m > 1

exp(σ) , m = 1

(

1 − σ 1−m
m

)− 1
1−m , m < 1

(15)

Another physically important case is given by the Fermi-Dirac distribu-
tion [Groe86, GaGr89]

f(s) = sF−1(s) −
∫ s

0

F−1(ξ) dξ (16)

with

h(s) = F−1(s) − F−1(1), −∞ = h, h = ∞ (17)

and

g(σ) = F
(

σ + F−1(1)
)

., (18)
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where

F (σ) =

∫

Rd

d v

ε+ exp
(

|v|2

2
− σ

) .

By formally applying the solution formula (10) to (1)-(7), we obtain the
steady state drift-diffusion-Poisson system (called the “mean field equation”
in the sequel) for the equilibrium potential Φ = Φ∞

λ∆Φ = n[Φ] − p[Φ] − C(x), x ∈ Ω (19)

n[Φ] = g(α[Φ] + Φ) (20)

p[Φ] = g(β[Φ] − Φ) (21)

subject to homogeneous Neumann conditions

∇Φ · ν = 0 on ∂Ω. (22)

The constants α[Φ], β[Φ] (so-called Fermi-levels), which determine the parti-
cle densities n∞ = n[Φ], p∞ = p[Φ], are given by the normalisations

∫

Ω

g(α[Φ] + Φ) dx = N, (23)

∫

Ω

g(β[Φ] − Φ) dx = P, (24)

where (8) is assumed to hold for consistency reasons.
We refer to [GaGr89, CDMS99] for an analysis of (19)-(22) in the “linear”

case g(σ) = exp(σ) (Boltzmann distribution) and to [BDM99, Unt97] for the
model in “nonlinear” cases.

It turns out that (19)-(21) is a critical point of the functional

Jλ[Φ] =
λ

2

∫

Ω

|∇Φ|2 dx−
∫

Ω

C(x)Φ dx

+

∫

Ω

G(α[Φ] + Φ) dx+

∫

Ω

G(β[Φ] − Φ) dx

−Nα[Φ] − Pβ[Φ], (25)
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where G is a primitive of g. We shall show in the case h = ∞ that Jλ is a
strictly convex, weakly lower semicontinuous, bounded from below functional
on an apropriate convex set. The solution of (19)-(21) is therefore uniquely
determined as the minimum of Jλ.

Actually, the constraints (23), (24) which determine α and β makes the
problem nonlocal and it turns out that a transformed functional is easier to
handle (in case of h = ∞ and for carrying out the limit λ→ 0, see Appendix
A). This new functional reads

Eλ(n, p) =

∫

Ω

H(n) dx+

∫

Ω

H(p) dx+
1

2λ

∫

Ω

|∇V |2 dx

where (H ′)−1 = g|(0,+∞) (i.e. H ′ = h) and where V = V [n − p− C] is given
by

−∆V = n− p− C

(with homogeneous Neuman boundary conditions) and has now to be mini-
mized under the constraints

N =

∫

Ω

n(x) dx and P =

∫

Ω

p(x) dx, n ≥ 0, p ≥ 0.

The constants α and β now simply appear as Lagrange multipliers associated
to the normalization constraints for the L1-norms of n and p.

This allows us to state our first result.

Theorem. A. With the above notations, (19)-(21) has a unique solution.

The functional Eλ is the one which is used to study in L1 the asymp-
totic behaviour of drift-diffusion problems corresponding to a nonlinear dif-
fusion (see [CJMTU00, BDM99] for the case with a Poisson coupling; see
[AMTU98, AMT98, BiDo99] for the case with Poisson coupling and a lin-
ear diffusion). Such a framework is also especially convenient for the study
of the so-called insulator limit (see [CDMS99] for a justification in terms of
physical quantities) corresponding to λ→ 0, and as in [CDMS99] (this paper
is basically a generalization of [CDMS99] emphasizing the abstract structure
of the problem), we have to distinguish two regimes.
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Theorem. B. If either N >
∫

Ω
C+ dx or (equivalently) P >

∫

Ω
C− dx, then

the solution of (19)-(21) converges as λ → 0 to the solution of (19)-(21)
with λ = 0, which is unique. In the other case, there exist two measurable
subsets of Ω, Ωn and Ωp, respectively, with Ωn ⊆ {C ≥ 0}, Ωp ⊆ {C ≤ 0},
and a unique solution (n0, p0, V0), which is the limit of (n, p, V ) as λ → 0,
such that

−∆V0 = n0 − p0 − C,

∫

Ω

V0 dx = 0,

∫

Ω

n0 dx = N,

∫

Ω

p0 dx = P,

V0 = ess inf
Ω
V0 on Ωn

∆V0 = C on Ω \ (Ωn ∪ Ωp)

V0 = ess sup
Ω
V0 on Ωp

,

n0 =

{

C+ on Ωn

0 on Ω \ Ωn
, p0 =

{

C− on Ωp

0 on Ω \ Ωp

The conditions N >
∫

Ω
C+ dx and P >

∫

Ω
C− dx are equivalent because

of the global charge neutrality (25)). In the second case, ∆V0 = C on Ω \
(Ωn∪Ωp) and v0 is constant on Ωn and Ωp where it reaches its maximum and
its minimum respectively. Note that this double obstacle for V is uniquely
determined by the side condition

∫

Ωn
C+ dx = N .

The paper is organized as follows. The remainder of the first section is
devoted to some preliminary results. A more detailed statement of Theorem
A and its proof are given in Section 2, and Section 3 deals with the insu-

lator limit. Remarks on the Legendre transform of the functional can be
found in Appendix A and an extension to unbounded domains (correspond-
ing to one species of particles, or two species when one looks for intermediate
asymptotics) is given in Appendix B.

Before going further, let us fix some notations and state the detailed
assumptions we shall use throughout this paper.

A.1 Ω ⊂ R
d, d ∈ N, is a bounded, nonvoid domain.

A.2 h : J → R, J = R
+ := (0,∞) or J = R

+
0 := [0,∞), is continuous and

strictly increasing.
h := infJ h, h := supJ h. J = R

+ iff h = −∞.
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A.3 H : R
+
0 → R is continuous, differentiable on R

+ and

∀s ∈ R
+ : H ′(s) = h(s).

A.4 g : (−∞, h) → J is the generalized inverse of h as defined in (11).

A.5 C ∈ L∞(Ω). C = ess inf
Ω
C, C = ess sup

Ω
C.

Remark 1. a) H is strictly convex.
b) g is continuous and increasing, strictly increasing on (h, h) and lim

t→h
g(t) = ∞.

In the sequel we shall assume that assumptions A.1 and A.5 are always
satisfied.

Let f ∈ L1(Ω) with
∫

Ω
f dx = 0. If there is V ∈ H1(Ω) with

∫

Ω
V dx = 0

and

∀φ ∈ H1(Ω) :

∫

Ω

∇V · ∇φ dx =

∫

Ω

fφ dx,

- which is, e.g., the case for all f ∈ L1(Ω) ∩H−1(Ω) with
∫

Ω
f dx = 0 - then

V will be uniquely determined (by f) and we will set V = V [f ] and certainly
∫

Ω

|∇V [f ]|2 dx <∞.

We observe: V [f ] is a weak solution of

−∆V = f,

subject to homogeneous Neumann boundary conditions. However, if, for a
given f , no such V ∈ H1(Ω) exists, then we set

∫

Ω

|∇V [f ]|2 dx = ∞.

We introduce for N,P ∈ R
+ with N − P =

∫

Ω
C dx the set

C :=

{

(n, p) ∈ L1
+(Ω) × L1

+(Ω) :

∫

Ω

n dx = N,

∫

Ω

p dx = P

}

,

and we define for λ ∈ R
+,

Eλ : C → R ∪ {∞},

Eλ(n, p) =

∫

Ω

H(n) dx+

∫

Ω

H(p) dx+
1

2λ

∫

Ω

|∇V [n− p− C]|2 dx,

where we make use of Jensen’s inequality ensuring that Eλ is bounded below.
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1.1 A Semilinear Elliptic PDE of Order Two

In this section we shall derive several auxiliary results.

Proposition 1. Assume A.1 and A.5 and let λ ∈ R
+. Let I ⊆ R be a

nonvoid, open interval and let m : I → R be continuous and increasing with

−∞ ≤ inf
I
m < C ≤ 0, 0 ≤ C < sup

I
m ≤ ∞.

Then there is exactly one Φ ∈ H1(Ω) with Φ(x) ∈ I for almost all x ∈ Ω and

m (Φ) φ ∈ L1(Ω), −λ
∫

Ω

∇Φ · ∇φ =

∫

Ω

m(Φ)φ dx−
∫

Ω

C φ dx,

for all φ ∈ H1(Ω). Furthermore, Φ has the following properties:

1. Φ ∈ L∞(Ω), C ≤ m
(

ess inf
Ω

Φ
)

≤ m

(

ess sup
Ω

Φ

)

≤ C,

in particular: there is a constant Φ̂ ∈ R
+ such that

∀λ ∈ R
+ : ‖Φ‖L∞(Ω) ≤ Φ̂.

2. Φ is the unique weak solution (in H1(Ω)) of the semilinear elliptic PDE

λ∆Φ = m(Φ) − C,

subject to homogeneous Neumann boundary conditions.

3.

∫

Ω

m(Φ) dx =

∫

Ω

C dx.

Proof. Let

M : I → R, M(t) :=

∫ t

t0

m(s) ds,

where t0 ∈ I with m(t0) = 0. Since m(t(< 0 for t < t0 and since m(t) > 0 for
t > t0, the function M is a non-negative primitive of m. Furthermore, since
m is increasing, M is convex. We introduce the functional

Fλ : H1(Ω) → R ∪ {∞},

Fλ(η) =











λ

2

∫

Ω

|∇η|2 dx+

∫

Ω

M(η) dx−
∫

Ω

C η dx if η ∈ C0

∞ if η /∈ C0

,
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where

C0 = {η ∈ H1(Ω) : η(x) ∈ I for almost all x ∈ Ω}.

We certainly have infC0 Fλ ∈ R. Let (ηk)k∈N be a minimizing sequence of Fλ.
By assumption we have for almost all x ∈ Ω,

lim
t→inf I

(m(t) − C(x)) < 0, lim
t→sup I

(m(t) − C(x)) > 0,

hence there is a compact interval [a, b] ⊆ I (which is, by the way, independent
of λ) such that t 7→ M(t) − C(x)t is decreasing on (inf I, a) and increasing
on (b, sup I), i.e. for almost all x ∈ Ω:

∀t ∈ (inf I, a) : M(t) − C(x) t ≥M(a) − C(x) a,

∀t ∈ (b, sup I) : M(t) − C(x) t ≥M(b) − C(x) b.

Now we set for k ∈ N,

[ηk] := min{b,max{a, ηk}}.

Then ([ηk])k∈N is a sequence in H1(Ω) because cutting maps H1(Ω) (contin-
uously) into itself. Furthermore, cutting does not increase the L2(Ω)-norms
of the gradients [Zie89]. Hence

∀k ∈ N : Fλ([ηk]) ≤ Fλ(ηk),

and therefore ([ηk])k∈N is a minimizing sequence of Fλ as well. By passing to
a subsequence (but without changing notation) we have

[ηk] ⇀ Φ ∈ L∞(Ω) weak* in L∞(Ω) as k → ∞,

and therefore - since L∞(Ω) ⊆ L2(Ω) and since the L2(Ω : R
d)-norms of

(∇[ηk])k∈N are uniformly bounded - we have

[ηk] ⇀ Φ ∈ H1(Ω) weakly in H1(Ω) as k → ∞.

We readily deduce from a lower semicontinuity argument that Φ is a mini-
mizer of Fλ in H1(Ω). Since Fλ is strictly convex due to the quadratic lead-
ing term, Φ is the unique minimizer of Fλ in H1(Ω). The uniform bounds
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ηλ(x) ∈ [a, b] ⊆ I for almost all x ∈ Ω give m(Φ) ∈ L∞(Ω) and the associated
Euler-Lagrange equations

∀φ ∈ H1(Ω) : −λ
∫

Ω

∇Φ · ∇φ =

∫

Ω

m(Φ)φ dx−
∫

Ω

C φ dx

easily follow. The proof of the remaining statements is left to the reader.
In particular cases the result of Proposition 1 can be extended as follows.

Proposition 2. Assume A.1 and A.5 and let λ ∈ R
+. Let I ⊂ R be an

open, nonvoid interval with inf I ∈ R or sup I ∈ R. Let m : I → R be con-
tinuous and increasing. Assume furthermore one of the following conditions

1. If inf I ∈ R and if

inf
I
m = C ≤ 0, 0 ≤ C < sup

I
m ≤ ∞,

then we set

m0 : [inf I, sup I) → [C,∞), m0(ρ) =

{

C if infI = ρ

m(ρ) if infI < ρ

2. If sup I ∈ R and if

−∞ ≤ inf
I
m < C ≤ 0, 0 ≤ C = sup

I
m,

then we e set

m0 : (inf I, sup I] → (−∞, C], m0(ρ) =

{

m(ρ) if ρ < sup I

C if ρ = sup I

3. If inf I, sup I ∈ R and if

inf
I
m = C ≤ 0, 0 ≤ C = sup

I
m,

then we set

m0 : [inf I, sup I] → [C,∞), m0(ρ) =















C if ρ = infI

m(ρ) if infI < ρ

C if ρ = sup I
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Then there is exactly one Φ ∈ H1(Ω) with Φ(x) ∈ dom(m0) for almost all
x ∈ Ω and

m0 (Φ) φ ∈ L1(Ω), −λ
∫

Ω

∇Φ · ∇φ =

∫

Ω

m0(Φ)φ dx−
∫

Ω

C φ dx,

for all φ ∈ H1(Ω). Furthermore, Φ has the following properties:

1. Φ ∈ L∞(Ω), C ≤ m0

(

ess inf
Ω

Φ
)

≤ m0

(

ess sup
Ω

Φ

)

≤ C,

in particular: there is a constant Φ̂ ∈ R
+ such that

∀λ ∈ R
+ : ‖Φ‖L∞(Ω) ≤ Φ̂.

2. Φ is the unique weak solution (in H1(Ω)) of the semilinear elliptic PDE

λ∆Φ = m0(Φ) − C,

subject to homogeneous Neumann boundary conditions.

3.

∫

Ω

m0(Φ) dx =

∫

Ω

C dx.

Proof. We consider case 1. Cases 2. and 3. can be treated in analogy. We
define the function

m1 : (−∞, sup I) → R,

m1(ρ) =

{

C + (ρ− inf I) if ρ ∈ (−∞, inf I]

m(ρ) if ρ ∈ (inf I, sup I)

Since inf m1 = −∞ < C, we can apply proposition 1 to obtain:

There is exactly one Φ1 ∈ H1(Ω) such that Φ1(x) ∈ (−∞, sup I) for almost
all x ∈ Ω and

m1 (Φ1) φ ∈ L1(Ω), −λ
∫

Ω

∇Φ1 · ∇φ =

∫

Ω

m1(Φ1)φ dx−
∫

Ω

C φ dx,

for all φ ∈ H1(Ω). Furthermore, Φ1 has the following properties:

1. Φ1 ∈ L∞(Ω), C ≤ m1

(

ess inf
Ω

Φ1

)

≤ m1

(

ess sup
Ω

Φ1

)

≤ C,
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2. Φ1 is the unique weak solution (in H1(Ω)) of the semilinear elliptic
PDE

λ∆Φ1 = m1(Φ1) − C,

subject to homogeneous Neumann boundary conditions.

3.

∫

Ω

m1(Φ1) dx =

∫

Ω

C dx.

m1 (Φ1) φ ∈ L1(Ω), −λ
∫

Ω

∇Φ1 · ∇φ =

∫

Ω

m1(Φ1)φ dx−
∫

Ω

C φ dx,

We deduce from estimate 1.: m1(Φ1) = m0(Φ1). Hence for all φ ∈ H1(Ω),

m0(Φ1)φ ∈ L1(Ω), −λ
∫

Ω

∇Φ1 · ∇φ =

∫

Ω

m0(Φ1)φ dx−
∫

Ω

C φ dx,

Φ1(x) ∈ dom(m0) = [inf I, sup I) for almost all x ∈ Ω,

Φ1 ∈ L∞(Ω), C ≤ m0

(

ess inf
Ω

Φ1

)

≤ m0

(

ess sup
Ω

Φ1

)

≤ C,

Φ1 is a weak solution (in H1(Ω)) of the semilinear elliptic PDE

λ∆Φ1 = m0(Φ1) − C,

subject to homogeneous Neumann boundary conditions, and
∫

Ω

m0(Φ1) dx =

∫

Ω

C dx.

Now let Φ∗(x) ∈ dom(m0) for almost all x ∈ Ω and

m0 (Φ∗) φ ∈ L1(Ω), −λ
∫

Ω

∇Φ∗ · ∇φ =

∫

Ω

m0(Φ
∗)φ dx−

∫

Ω

C φ dx.

Then m0(Φ
∗) = m1(Φ

∗) as well and we deduce Φ∗ = Φ1 from the uniqueness
result cited above.

The verification that the semilinear elliptic PDE

λ∆Φ = m0(Φ) − C,

subject to homogeneous Neumann boundary conditions and
∫

Ω

m0(Φ) dx =

∫

Ω

C dx, has a unique solution in H1(Ω) is left to the reader.
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1.2 An Abstract Variational Problem

In this section we consider the limit λ → 0 of an abstract minimization
problems with a class of functionals containing Eλ.

Theorem 3. Let (B, ‖.‖) be a Banach space and let

C ⊆ B

be nonvoid, convex and weakly closed in B. Let

E,F : C → R ∪ {∞}, be bounded below with inf
C
E <∞, inf

C
F <∞.

We set

C∗ := {x ∈ C : E(x) <∞}.

For λ ∈ R
+ let xλ ∈ C.

Assume

1. xλ is for each λ ∈ R
+ a minimizer of Eλ := E + λ−1F in C.

2. xλ ⇀ x0 weakly in B as λ→ 0.

Then

a) lim sup
λ→0

F (xλ) ≤ inf
C∗

F .

b) If F is weakly lower sequentially continuous at x0, then

F (x0) ≤ inf
C∗

F.

c) If F is weakly lower sequentially continuous at x0 and if E(x0) < ∞,
then x0 is a minimizer of F in C∗, i.e.

F (x0) = inf
C∗

F.

d) If x∗ is a minimizer of F in C∗, then

lim sup
λ→0

E(xλ) ≤ E(x∗).
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e) If x∗ is a minimizer of F in C∗ and if E is weakly lower sequentially
continuous at x0, then

E(x0) ≤ E(x∗).

f) If E and F are weakly lower sequentially continuous at x0 and if E(x0) <
∞, then x0 is a minimizer of F in C∗ whose “energy” E(x0) is less or
equal the energy E(x∗) of any minimizer x∗ of F in C∗.

Proof. a) Let −ρ ∈ R be a lower bound of E in C. Let x ∈ C with E(x) <∞.
Since λ > 0 we have

λ(E(xλ) + ρ) + F (xλ) ≤ λ(E(x) + ρ) + F (x).

Hence by non-negativity of E(xλ) + ρ,

lim sup
λ→0

F (xλ) ≤ F (x).

b) follows from a).
c) If E(x0) <∞, then x0 is by b) a minimizer of F in C∗.
d) Let −ρ ∈ R be a lower bound of E,F . Let x∗ ∈ C∗ be a minimizer of F
in C∗. Then E(x∗) <∞ and we obtain for all λ ∈ R

+ the estimate

(E(xλ) + ρ) +
1

λ
(F (xλ) + ρ) ≤ (E(x∗) + ρ) +

1

λ
(F (x∗) + ρ),

from which we deduce E(xλ) <∞, hence xλ ∈ C∗, and due to F (x∗) ≤ F (xλ),

E(xλ) ≤ E(x∗).

e) follows from d) and f) follows from a)-e).

2 The Main Results

2.1 λ ∈ R
+

The main result of this section is

Theorem 4. Assume A.1-A.5. Let λ ∈ R
+ and let N,P ∈ R

+ with

N − P =

∫

Ω

C dx.

Then:
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1. The functional Eλ has a unique minimizer (nλ, pλ) in C.

2. nλ, pλ ∈ L∞(Ω) with

nλ ≤ C +
P

meas(Ω)
, pλ ≤ −C +

N

meas(Ω)
.

3. There are αλ, βλ ∈ R such that

nλ = g
(

αλ − λ−1Vλ

)

,

pλ = g
(

βλ + λ−1Vλ

)

,

where Vλ = V [nλ − pλ − C], hence if one sets Φλ := −λ−1Vλ, then

λ∆Φλ = g (αλ + Φλ) − g (βλ − Φλ) − C,

∫

Ω

Φλ dx = 0,

subject to homogeneous Neumann boundary conditions and
∫

Ω

g(αλ + Φλ) dx = N,

∫

Ω

g(βλ − Φλ) dx = P.

Proof. Due to the lack of coercitivity (in case of h < ∞) of Eλ it is not
obvious that Eλ has a minimizer in C. The argumentation will be based
settled on the semilinear equation

λ∆Ψ = g(α + Ψ) − g(β − Ψ) − C (26)

subject to homogeneous Neumann boundary conditions. In (26) the con-
stants α, β are a priori unknown. Our program is to prove: There are α, β ∈ R

such that
∫

Ω
g(α+ Ψ) dx = N ,

∫

Ω
g(β − Ψ) dx = P .

We consider for c ∈ (−∞, 2h) the semilinear elliptic PDE

λ∆Φ = g(c+ Φ) − g(−Φ) − C (27)

subject to homogeneous Neumann boundary conditions. This problem fits
with

m(.) = g(c+ .) − g(−.), I = (−h, h− c)

16



to Proposition 1: there is a unique Φc ∈ H1(Ω) which solves (27) subject
to homogeneous Neumann boundary conditions. Furthermore, Φc belongs to
L∞(Ω) and if we set

nc = g(c+ Φc), pc = g(−Φc),

Φc := ess sup
Ω

Φc, Φc := ess inf
Ω

Φc

then we deduce from (27) the estimates

g
(

c+ Φc

)

− g
(

−Φc

)

≤ C, g
(

c+ Φc

)

− g
(

−Φc

)

≥ C. (28)

Hence the functions nc, pc belong to L∞(Ω). Let us introduce

Nc =

∫

Ω

nc dx =

∫

Ω

g(c+ Φc) dx, Pc =

∫

Ω

pc dx =

∫

Ω

g(−Φc) dx.

Then Nc − Pc =
∫

Ω
C dx and we have

‖nc‖L∞(Ω) ≤ C +
Pc

meas(Ω)
, ‖pc‖L∞(Ω) ≤ −C +

Nc

meas(Ω)
.

We have to prove: there is c ∈ R such that Nc = N , Pc = P . This is
shown in several steps.

c 7→ (Nc, Pc) is continuous. Indeed, let c ∈ (−∞, 2h) and let (ck)k∈N be a

sequence in (−∞, 2h) with limk→∞ ck = c and let (ck1(k))k∈N be a subsequence
of (ck)k∈N. We have to prove: there is a subsequence (ck2(k))k∈N of (ck1(k))k∈N

with

lim
k→∞

Nck2(k)
= Nc, lim

k→∞
Pck2(k)

= Pc.

We deduce from (28): There are K0, K1 ∈ N such that for all k ∈ N

‖nck
‖L∞(Ω), ‖pck

‖L∞(Ω) ≤ K1, k ≥ K0.

Hence there is a subsequence (k3(k))k∈N of (k1(k))k∈N and there are n0, p0 ∈
L∞(Ω) with

nk3(k) ⇀ n0, pk3(k) ⇀ n0 weak* in L∞(Ω) as k → ∞.

17



We deduce:

Φk3(k) → Φ0 strongly in H1(Ω) as k → ∞

where

λ∆Φ0 = n0 − p0 − C,

subject to homogeneous Neumann boundary conditions. Hence there is a
subsequence (k2(k))k∈N of (k3(k))k∈N with

Φk2(k)(x) → Φ0(x) for almost all x ∈ Ω as k → ∞.

We deduce

nk2(k)(x)

= g(ck2(k) + Φk2(k))(x) → g(c+ Φ0)(x) for almost all x ∈ Ω with k → ∞,

pk2(k)(x) = g(−Φk2(k))(x) → g(−Φ0)(x) for almost all x ∈ Ω with k → ∞.

Hence n0 = nc, Φ0 = Φc, p0 = pc and therefore due to weak* convergence in
L∞(Ω), limk→∞Nck2(k)

= Nc, limk→∞ Pck2(k)
= Pc.

limc→2hNc = ∞, limc→2h Pc = ∞.

Here we only consider h <∞. The case h = ∞ can be treated similiarily.
Due to Nc = Pc +

∫

Ω
C dx it sufficies to prove: limc→∞ Pc = ∞. According

to c+ Φc(x) < h and −Φc(x) < h for almost all x ∈ Ω, we deduce

c− h < −Φc(x) < h for almost all x ∈ Ω.

Hence

lim
c→2h

Pc = lim
c→2h

∫

Ω

g (−Φc) dx ≥ lim
c→2h

g(c− h)meas(Ω) = ∞.

If c < c1 < 2h, then c+ Φc ≤ c1 + Φc1 and Φc ≥ Φc1. Indeed we have

λ∆Φc = g(c+ Φc) − g(−Φc) − C, λ∆Φc1 = g(c1 + Φc1) − g(−Φc1) − C.
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Substraction and testing with [(c+ Φc) − (c1 + Φc1)]
+ ∈ H1(Ω) gives

− λ

∫

Ω

∣

∣∇[(c + Φc) − (c1 + Φc1)]
+
∣

∣

2
dx

=

∫

Ω

(g(c+Φc)−g(−Φc)−(g(c1+Φc1)−g(−Φc1))[c+Φc)−(c1+Φc1)]
+ dx ≥ 0,

because g is increasing and c < c1 implies −Φc(x) ≤ −Φc1(x) for all x ∈ Ω
with c + Φc(x) ≥ c1 + Φc1(x). Hence c + Φc(x) ≤ c1 + Φc1(x) for almost all
x ∈ Ω. The estimate Φc(x) ≥ Φc1(x) for almost all x ∈ Ω follows from a
similiar argument by using the test function [Φc1 − Φc]

+ ∈ H1(Ω).

In particular we deduce

If c < c1 < 2h, then Nc ≤ Nc1, Pc ≤ Pc1

Behaviour of nc, pc as c→ −∞ Let c◦ ∈ (−∞, 2h) be fixed. Then due to
previous estimates we have for all c ∈ (−∞, c◦],

‖nc‖L∞(Ω) ≤ C +
Pc

meas(Ω)
≤ ‖C‖L∞(Ω) +

Nc◦ + Pc◦

meas(Ω)
= K◦,

where K◦ ∈ R
+ is independent of c ∈ (−∞, c◦]. In analogy we obtain

‖pc‖L∞(Ω) ≤ K◦.

We deduce: there is a sequence (ck)k∈N ∈ (−∞, c◦] with limk→∞ ck = −∞
and there are n−, p− ∈ L∞(Ω) with

nck
⇀ n−, pck

⇀ p− weak* in L∞(Ω) as k → ∞,

and certainly

lim
k→∞

Nck
= N−, lim

k→∞
Pck

= P−.

We also have for all k ∈ N,

λ∆Φck
= nck

− pck
− C,

such that

‖∇Φck
‖L2(Ω:Rd) ≤ K1
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for some K1 ∈ R
+ independent of k ∈ N. Hence - possibly after passing to a

subsequence but without changing notations -

Φck
− 1

meas(Ω)

∫

Ω

Φck
dx→ V− ∈ H1(Ω) strongly in H1(Ω) as k → ∞,

where
∫

Ω
V− dx = 0. We introduce

ω := lim
k→∞

∫

Ω

Φck
dx ∈ R ∪ {∞},

where we made use of the fact that c 7→
∫

Ω
Φc dx is increasing. Now it is

easy to see: Either ω = ∞ with

Φck
→ ∞ almost everywhere on Ω as k → ∞,

or

Φck
→ Φ− strongly in H1(Ω) and almost everywhere on Ω as k → ∞,

where

λ∆Φ− = n− − p− − C,

subject to homogeneous Neumann boundary conditions.We also introduce

ω∗ := lim
k→∞

∫

Ω

(ck + Φck
) dx ∈ R ∪ {−∞},

where we made use of the fact that c 7→
∫

Ω
(c + Φc) dx is decreasing. We

deduce as above: Either ω∗ = −∞ with

ck + Φck
→ −∞ almost everywhere on Ω as k → ∞,

or

ck + Φck
→ Φ∗ strongly in H1(Ω) and almost everywhere on Ω as k → ∞,

where

λ∆Φ∗ = n− − p− − C,
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subject to homogeneous Neumann boundary conditions.

Existence of c ∈ (−∞, 2h) with Nc = N,Pc = P . Due to the previous results
it remains to prove: limk→∞Nck

= 0 or limk→∞ Pck
= 0. We distinguish with

respect to
∫

Ω
C dx.

∫

Ω
C dx > 0: In that case ω ∈ R is not possible, because

lim inf
k→∞

∫

Ω

nck
dx = lim inf

k→∞

∫

Ω

g(ck + Φck
) dx

= 0 = − lim inf
k→∞

∫

Ω

pck
dx−

∫

Ω

C dx < 0

would follow. Hence ω = ∞ and therefore by Lebesgue’s dominated conver-
gence Theorem,

lim
k→−∞

Pck
=

∫

Ω

g(−Φck
) dx = 0.

∫

Ω
C dx = 0: It is easy to see: If ω = ∞, then limk→∞ Pck

= 0, or if ω ∈ R,
then limk→∞Nck

= 0.
∫

Ω
C dx < 0: We consider the value of ω∗, proceed as in case of

∫

Ω
C dx > 0

and conclude limk→∞Nck
= 0.

End of proof. We have shown: there is c ∈ R such that

λ∆Φc = g(c+ Φc) − g(−Φc) − C

subject to homogeneous Neumann boundary conditions has a solution Φc ∈
H1(Ω) with

∫

Ω
g(c+ Φc) dx = N ,

∫

Ω
g(−Φc) dx = P . We set

Vλ := −λΦc +
λ

meas(Ω

∫

Ω

Φc dx,

αλ = c− 1

meas(Ω)

∫

Ω

Φc dx, βλ =
1

meas(Ω)

∫

Ω

Φc dx,

and

nλ = nc = g
(

αλ − λ−1Vλ

)

, pλ = pc = g
(

βλ + λ−1Vλ

)

.
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Then it is easy to see that (nλ, pλ) ∈ C satisfy the variational inequalities

h(nλ) + λ−1Vλ = αλ on {nλ > 0}
h(nλ) + λ−1Vλ ≥ αλ on {nλ = 0}

,

h(pλ) − λ−1Vλ = βλ on {pλ > 0}
h(pλ) − λ−1Vλ ≥ βλ on {pλ = 0}

,

where Vλ = V [nλ − pλ −C]. It is left to the reader to verify that the validity
of these variational inequalities ensures that (nλ, pλ) is the unique minimizer
of Eλ in C and to prove that nλ, pλ have the properties as specified in the
Theorem.

2.2 λ→ 0

The main result of this section is

Theorem 5. Assume A.1-A.5. Let N,P ∈ R
+ with

N − P =

∫

Ω

C dx.

For λ ∈ R
+ let (nλ, pλ) be the unique minimizer of Eλ in C, see theorem 4,

and Vλ = V [nλ − pλ − C]. Then:

1. There is (n0, p0) ∈ C ∩ (L∞(Ω))2 such that

nλ ⇀ n0, pλ ⇀ p0 weak* in L∞(Ω) as λ→ 0,

2. Vλ → V0 = V [n0 − p0 − C] strongly in H1(Ω) as λ→ 0.

Furthermore,

3. If N >
∫

Ω
C+ dx, P >

∫

Ω
C− dx, then V0 = 0 and (n0, p0) is the unique

minimizer of

E : C → R ∪ {∞}, E(n, p) =

∫

Ω

H(n) dx+

∫

Ω

H(p) dx
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in

C0 = {(n, p) ∈ C : n− p = C} 6= ∅,

i.e. there is a unique γ ∈ R and a unique ρ ∈ L∞(Ω) with

max{−C+,−C−} ≤ ρ,

∫

Ω

ρ dx = N −
∫

Ω

C+ dx = P −
∫

Ω

C− dx,

h(C+ + ρ) + h(C− + ρ) = γ on {ρ > −C+} ∩ {ρ > −C−}
h(C+ + ρ) + h(C− + ρ) ≥ γ on {ρ = −C+} ∪ {ρ = −C−}

determining n0, p0 via

n0 = C+ + ρ, p0 = C− + ρ.

4. If N =
∫

Ω
C+ dx, P =

∫

Ω
C− dx, then V0 = 0 and

n0 = C+, p0 = C−.

5. If N <
∫

Ω
C+ dx, P <

∫

Ω
C− dx then there is a unique pair (Ωn,Ωp)

of measurable subsets of Ω such that

meas(Ωn ∩ Ωp) = 0, Ωn ⊂ {C ≥ 0}, Ωp ⊂ {C ≤ 0},

∫

Ωn

C+ dx = N,

∫

Ωp

C− dx = P,

n0 = C+ on Ωn

n0 = 0 on Ω \ Ωn

,
p0 = C− on Ωp

p0 = 0 on Ω \ Ωp

,

V0 = ess infΩ V0 on Ωn

∆V0 = C on Ω \ (Ωn ∪ Ωp)

V0 = ess supΩ V0 on Ωp

.
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Proof. Let (λk)k∈N be a sequence in R
+ with limk→∞ λk = 0. By the uni-

form estimates on ‖nλ‖L∞(Ω), ‖pλ‖L∞(Ω) there is a subsequence (λk1(k))k∈N of
(λk)k∈N and there is (n0, p0) ∈ C such that

nλk1(k)
⇀ n0, pλk1(k)

⇀ p0 weak* in L∞(Ω) as k → ∞.

Hence

Vλk1(k)
→ V0 = V [n0 − p0 − C] strongly in H1(Ω) as k → ∞,

hence after passing to a subsequence (k2(k))k∈N of (k1(k))k∈N,

Vλk2(k)
→ V0 for almost all x ∈ Ω as k → ∞.

We have to prove that (n0, p0) are actually independent of the sequence
(λk)k∈N. We proceed by a case-distinction and set

F : C → R
+
0 ∪ {∞}, F (n, p) =

∫

Ω

|∇V [n− p− C]|2 dx.

The main ingredient is the application of theorem 3.

Case I: N >
∫

Ω
C+ and P >

∫

Ω
C−.

We have C0 6= ∅. By theorem 3, the pair (n0, p0) minimizes E in the set of all
minimizers of F for which E is bounded, i.e. in {(n, p) ∈ C0 : E(n, p) <∞}.
By strict convexity, the functional E has exactly one minimizer in that set.
It is left to the reader to deduce the variational inequalities as specified in 3.

Case II: N =
∫

Ω
C+ dx and P =

∫

Ω
C− dx.

With the notations of Case I we have C0 = {(C+, C−)}. The statement
follows from theorem 3.

Case III: N <
∫

Ω
C+ dx and P <

∫

Ω
C− dx. In this case the set C0

is void. However, we deduce from theorem 3 that (n0, p0) - we note that
E(n0, p0) <∞ because n0, p0 ∈ L∞(Ω) - is a minimizer of F in C∗ = {(n, p) ∈
C : E(n, p) <∞}.

We observe: V0 does not vanish identically. (Otherwise n0 − p0 = C
implying N ≥

∫

Ω
C+ dx, P ≥

∫

Ω
C− dx). Hence due to

∫

Ω
V0 dx = 0,

0 < meas({V0 < 0}),meas({V0 > 0}) < meas(Ω),

and therefore

ess inf
Ω
V0 < ess sup

Ω
V0.
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The sequence (αλk2(k)
− λ−1

k2(k)Vλk2(k)
(x))k∈N is, for almost all x ∈ {V0 < 0},

bounded above as k → ∞. Hence limk→∞ αλk2(k)
= −∞. By the well-

known identification of weak* limits in L∞ and pointwise almost-everywhere
limits of sequences of functions we obtain for almost all x ∈ Ω: If (αλk2(k)

−
λ−1

k2(k)Vλk2(k)
(x))k∈N converges in R∪ {±∞}, then n0(x) = limk→∞ g(αλk2(k)

−
λ−1

k2(k)Vλk2(k)
(x)). Hence, up to a set of measure zero,

{V0 > 0} ⊆ {n0 = 0}.
Now take x ∈ Ω such that limk→∞ Vλk2(k)

(x) = V0(x), that the sequence

(αk2(k) − λ−1
k2(k)Vλk2(k)

(x))k∈N is bounded above and V0(x) > ess infΩ V0. Then

there is z ∈ Ω with limk→∞ Vλk2(k)
(z) = V0(z) = V0(x)− η with some η ∈ R

+

and the sequence (αk2(k) − λ−1
k2(k)Vλk2(k)

(z))k∈N is bounded above, too. Since

limk→∞(Vλk2(k)
(x)− Vλk2(k)

(z))/λk2(k) = ∞, we obtain up to a set of measure
zero:

If limk→∞ Vλk2(k)
(x) > ess infΩ V0, then

lim
k→∞

(

αk2(k) − λ−1
k2(k)Vλk2(k)

(x)
)

= −∞, and n0(x) = 0 follows.

Hence

Ωn = {n0 > 0} ⊆ {V0 = ess inf
Ω
V0}

and in analogy

{V0 < 0} ⊆ {p0 = 0}, Ωp = {p0 > 0} ⊆ {V0 = ess sup
Ω
V0},

in particular {n0 > 0} ∩ {p0 > 0} = ∅. Now it is easy to see that the triple
(n0, p0, V0) has the properties as specified in 5. of the theorem. It remains
to be shown that there is at most one minimizer of F in C∗. Assume that
(n∗, p∗) is a minimizer of F in C∗. If n0−p0 6= n∗−p∗, then by strict convexity
we would obtain

F ((n0 + n∗)/2, (p0 + p∗)/2)

=

∫

Ω

|∇V [((n0 − p0 − C)/2) + ((n∗ − p∗ − C)/2)]|2 dx

<
1

2

∫

Ω

|∇V [n0 − p0 − C]|2 dx+
1

2

∫

Ω

|∇V [n∗ − p∗ − C]|2 dx

=
F (n0, p0) + F (n∗, p∗)

2
.
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Hence n∗ − p∗ = n0 − p0 and therefore n∗ = n0 + ρ, p∗ = p0 + ρ for some
ρ ∈ L1(Ω) with

∫

Ω
ρ dx = 0. We have on Ω \ Ωn n0 = 0, hence ρ ≥ 0, and

we have in analogy ρ ≥ 0 on Ω \Ωp. Since Ωn and Ωp are disjoint we obtain
ρ ≥ 0, hence ρ = 0.

Remark 2. a) Point 3 of Theorem 5 represents the case, where the limit
satisfies local charge-neutrality everywhere in Ω.
b) The limit V0 in point 5 of Theorem 5 is the unique solution of a double
obstacle problem. The coincidence set Ωn of the smaller obstacle ess infΩ V0 is
the set where the electron density n equals the doping profile, the coincidence
set Ωp of the larger obstacle ess supΩ V0 is the set where the hole density p
equals the negative doping profile and the noncoincidence set Ω\ (Ωn ∪Ωp) is
the depletion (vacuum) region where n = p = 0. Note that the double obstacle
problem for V0 is somewhat nonstandard since the obstacles are not a-priorily
given but determined by the constraints

∫

Ωn
C+ dx = N and

∫

Ωp
C− dx = P

on the coincidence sets. However, the a-posteriori regularity theory for the
free boundaries is by now standard [Caf00]. They are (locally) C1,α-surfaces
if the inhomogeneity C(x) is Cα.

Appendix A: Analysis of Jλ

We shall explain in a simple case the connection between the functionals Jλ

and Eλ, thus introducing for simplicity several technical assumptions that
can be removed with a more detailed analysis.

Consider as in the introduction the functional

Jλ[Φ] =
λ

2

∫

Ω

|∇Φ|2 dx−
∫

Ω

C(x)Φ dx

+

∫

Ω

G(α[Φ] + Φ) dx+

∫

Ω

G(β[Φ] − Φ) dx

−Nα[Φ] − Pβ[Φ],

where α = α[Φ] and β = β[Φ] are determined by the condition
∫

Ω

g(α[Φ] + Φ) dx = N, (29)

∫

Ω

g(β[Φ] − Φ) dx = P, (30)
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with g = G′ ≥ 0, g 6≡ 0, lims→−∞ g(s) = 0 and bounded Ω ⊆ R
d. Note that

for Φ ∈ L∞(Ω), the map α 7→
∫

Ω
g(α + Φ) dx is well defined, continuous by

Lebesgue’s theorem of dominated convergence and converges to 0 and +∞ as
α tends to −∞ and +∞, respectively. Analogous properties of course hold
for the map β 7→

∫

Ω
g(β−Φ) dx. Note also that if g is nondecreasing (which

is the case if G is convex), then g′ is a positive measure on R. If we further
assume that g′ ∈ L∞

loc(R) and g′ > 0 on R, then the functionals α[.] and β[.]
are actually C1 on L∞(Ω), and

dα[φ] · χ = −
∫

Ω
g′(α[φ] + φ)χ dx

∫

Ω
g′(α[φ] + φ) dx

dβ[φ] · χ =

∫

Ω
g′(β[φ] − φ)χ dx

∫

Ω
g′(β[φ] − φ) dx

Proposition 6. Assume A1 and A5. If G ∈ C2(R), G′′ = g′ ∈ L∞
loc(R),

g′ > 0 on R and lim
s→+∞

g(s) = +∞, lim
s→−∞

g(s) = 0, then Φλ is a weak solution

of

λ∆Φλ = g(α[Φλ] + Φλ) − g(β[Φλ] − Φλ) − C(x) (31)

in H1 ∩L∞(Ω) subject to homogeneous Neumann boundary conditions if and
only if it is a critical point of Jλ[Φ] in H1 ∩ L∞(Ω). The functional Jλ[Φ] is
strictly convex, so Φλ is unique.

Proof. A straightforward calculation shows that for any φ, χ ∈ H1∩L∞(Ω),

dJλ[φ] · χ =

∫

Ω

[

λ∇φ · ∇χ+

(

g(α[φ] + φ) − g(β[φ] − φ) − C(x)

)

χ

]

dx

+

[
∫

Ω

(g(α[φ] + φ) dx−N

]

dα[φ] · χ

+

[
∫

Ω

(g(β[φ] − φ) dx− P

]

dβ[φ] · χ .

Using the constraints (29) and (30), we find that dJλ[Φλ] · χ = 0 exactly
means that Φλ is a weak solution of (31).

To prove the convexity of Jλ, we shall consider φ1 and φ2 in H1 ∩L∞(Ω).
Denoting ψ = φ2−φ1, φ

t = tφ1+(1−t)φ2 and j(t) = Jλ[φ
t] for any t ∈ (0, 1),
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a direct computation shows that

j′(t) =

∫

Ω

[

λ∇φt · ∇ψ +

(

g(α[φt] + φt) + g(β[φt] − φt) − C(x)

)

ψ

]

dx ,

and

j′′(t) = λ

∫

Ω

|∇ψ|2 dx+

∫

Ω

[

g′(α[φt] + φt) − g′(β[φt] − φt)
]

|ψ|2 dx

− (
∫

Ω
g′(α[φt] + φt)ψ dx)2

∫

Ω
g′(α[φt] + φt) dx

− (
∫

Ω
g′(β[φt] − φt)ψ dx)2

∫

Ω
g′(β[φt] − φt) dx

≥ λ

∫

Ω

|∇ψ|2 dx

by the Cauchy-Schwarz inequality.

To prove the boundedness from below of Jλ, it is actually simpler to
consider the functional

Eλ(n, p) =

∫

Ω

H(n) dx+

∫

Ω

H(p) dx+
1

2λ

∫

Ω

|∇V [n− p− C]|2 dx

with H ′ = h and g related according to A4. Note that A2 and A3 are conse-
quences of the assumptions of Proposition 6. This functional has (according
to Theorem 3) a unique minimizer (nλ, pλ) in C such that

Φλ = λ−1Vλ

λ∆Φλ = nλ − pλ − C
with nλ = g(α[Φλ] + Φλ) and pλ = g(β[Φλ] − Φλ) ,

which is a critical point of Jλ, so (by convexity) Jλ is bounded from below
by Jλ[Φλ].

Note also that the constraints (29) and (30) can be rewritten as

α[Φλ] + Φλ = h(nλ)
β[Φλ] − Φλ = h(pλ)

,

where we make use of nλ, pλ > 0 on Ω due to g > 0 on R. This is why

α[Φλ]N =
∫

Ω
(h(nλ) − Φλ)nλ dx

β[Φλ]P =
∫

Ω
(h(pλ) + Φλ)pλ dx
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and therefore

Jλ[Φλ] = −λ
2

∫

Ω

Φλ ∆Φλ dx+

∫

Ω

G(α[Φλ]+Φλ)dx+

∫

Ω

G(β[Φλ]−Φλ)dx

−
∫

Ω

CΦλ dx−N α[Φλ] − P β[Φλ]

= −1

2

∫

Ω

(nλ − pλ − C)Φλ dx+

∫

Ω

(Goh(nλ) − nλh(nλ)) dx

+

∫

Ω

(Goh(pλ) − pλh(pλ)) dx+

∫

Ω

Φλ(nλ − pλ − C) dx

= −
∫

Ω

H(nλ) dx−
∫

Ω

H(pλ) dx−
1

2λ

∫

Ω

|∇Vλ[nλ − pλ − C]|2 dx

= −Eλ[nλ, pλ]

using the fact that d
dt

[th(t) −Goh(t)] = h(t), and H(t) = th(t) −Goh(t) (up
to a constant which is chosen here equal to 0).

Appendix B: Unbounded domains

In this section we shall investigate (19)-(24) on unbounded domains. In this
case the analysis has to overcome several additional difficulties and further
assumptions are needed.

We put

C∞
c (Ω) = {φ ⇂ Ω : φ ∈ C∞

c (Rd)},

and we assume

V.1 There is a linear operator V : L1
loc(Ω) ⊃ dom(V ) → L1

loc(Ω), such that
for all f ∈ dom(V ), the function V [f ] is a weak solution of

−∆V [f ] = f, + homogeneous Neumann boundary conditions,
(32)

i.e.

−
∫

Ω

V [f ]∆φ dx =

∫

Ω

fφ dx, ∀φ ∈ C∞
c (Ω).
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V.2 The set dom2(V ) := {f ∈ dom(V ) : ∇V [f ] ∈ L2(Ω : R
d)} contains

T :=

{

ρ ∈ L∞(Ω) : (supp(ρ) ⊂⊂ Ω) ∧
(
∫

Ω

ρ dx = 0

)}

,

and for all f ∈ dom2(V ),
∫

Ω

∇V [f ] · ∇V [ρ] dx =

∫

Ω

V [f ]ρ dx, ∀ρ ∈ T.

V.3 If (fn)n∈N is a sequence in dom2(V ) with

fn ⇀ f, weakly in L1(Ω) as n→ ∞,

and if (∇V [fn])n∈N
is bounded in L2(Ω : R

d), then f ∈ dom(V ) and

lim
n→∞

∫

Ω

V [fn]φ dx =

∫

Ω

V [f ]φ dx, ∀φ ∈ C∞
c (Ω).

Remark 3. a) It is easy to see that V.1, V.2, V.3 hold for bounded domains
Ω where dom(V ) is the set of all f ∈ L1(Ω) with

∫

Ω
f dx = 0 for which a

function Z ∈ H1(Ω) exists such that
∫

Ω
Z dx = 0 and

∫

∇Z · ∇φ dx =
∫

Ω
fφ dx for all φ ∈ H1(Ω), compare the definition of “V [f ]” in the previous

sections.
b) Assumptions V.1-V.3 apply in particular to Ω = R

d, d ∈ N, and to
respective half-space problems, see the discussion below.
c) The verification of V.1-V.3 of the examples of b) rely on the knowledge
of a Green’s function. Whenever such a function is available, then one may
proceed similiar as in b) to investigate the validity of V.1, V.2, V.3.
d) We note that (as e.g. in case of Ω = R

d, d ≥ 3) the domain dom(V )
of the operator V [.] may consist of functions which do not satisfy the global
electroneutrality condition

∫

Ω
f dx = 0.

Example 1 Ω = R. We set dom(V ) = L1(R) and introduce for x ∈ R and
for f ∈ dom(V ),

E(f)(x) := −
∫ x

−∞

f(s) ds, V (x) :=















∫ x

0

E(f)(s) ds , x ≥ 0

−
∫ 0

x

E(f)(s) ds , x < 0

.
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It is easy to see: E : dom(V ) → L∞(R) is non-expansive, i.e. Lipschitz-
continuous with Lipschitz constant 1.
Furthermore, V ′ = E(f) and V ′′ = −f in the sense of distributions (see, e.g.,
[Rud]).
Hence V : dom(V ) → C1(R) satisfies V.1.
If ρ ∈ L∞(R) has compact support and satisfies

∫

R
ρ dx = 0, then E(ρ) has

compact support, too. Since E(ρ) ∈ L∞(R) we deduce V ′[ρ] = E(ρ) ∈ L2(R),
thus T =

{

ρ ∈ L∞(R) : (supp(ρ) ⊂⊂ R) ∧
(∫

R
ρ dx = 0

)}

⊆ dom2(V ).
Now let f ∈ dom2(V ) and let ρ ∈ T. We take a sequence (fn)n∈N in C∞

c (R)
with fn → f strongly in L1(Ω) as n → ∞ (see, e.g. [Ada]) and

∫

R
fn dx = 0

for all n ∈ N. Then V [fn] ∈ C∞
c (R) for all n ∈ N and therefore

∫

R

ρV [fn] dx = −
∫

R

V [ρ]V ′′[fn], n ∈ N.

Since V [ρ] and V ′′[fn] are continuously differentiable and since V [ρ] is com-
pactly supported, we calculate by means of an integration by parts,

−
∫

R

V [ρ]V ′′[fn] =

∫

R

V ′[fn]V ′[ρ] dx =

∫

R

E(fn)E(ρ) dx, n ∈ N.

Since E(ρ) ∈ L∞(R) is compactly supported and since E(fn) → E(f)
strongly in L∞(R), we deduce

∫

R
E(fn)E(ρ) dx →

∫

R
E(f)E(ρ) dx as n →

∞. On the other hand it is easy to see that E(fn) → E(f) strongly in L∞(R)
implies V [fn] → V [f ] in L1

loc(R) as n → ∞. This settles
∫

R
ρV [fn] dx →

∫

R
ρV [f ] dx as n→ ∞ and therefore

∫

R

V ′[f ]V ′[ρ] dx

=

∫

R

E(f)E(ρ) dx = lim
n→∞

∫

R

E(fn)E(ρ) dx = lim
n→∞

∫

R

V [fn]ρ dx

=

∫

R

V [f ]ρ dx.

It remains to verify V.3. If fn ⇀ f weakly in L1(R), then (fn)n∈N is
bounded in L1(R). Hence (V ′[fn])n∈N = (E(fn))n∈N is bounded in L∞(R).
Furthermore, since the indicator function of (−∞, x) is in L∞(R) for each
x ∈ R, we deduce E(fn)(x) → E(f)(x) as n → ∞ for all x ∈ R. As a
consequence, V [fn](x) → V [f ](x) for all x ∈ R. Due to uniform boundedness
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of (E(fn))n∈N in L∞(R) we also have: V [fn] → V [f ] in L1
loc(R) as n → ∞.

Hence V [fn] → V [f ] in the sense of distributions as well.

Example 2 Ω = R
2. We set dom(V ) := L1(R2). The Green’s function of

the Laplace operator is

K(x) := − 1

2π
log |x|, x ∈ R

2, x 6= 0.

Since K(x) ∈ L1
loc(R

2) we have for each f ∈ L1(R2),

K ⋆ f :=

∫

R2

K(.− y)f(y) dy ∈ L1
loc(R

2).

For f ∈ L1(R2) we set

V [f ] := −K ⋆ f.

V [.] certainly satisfies V.1.
We observe for i = 1, 2,

∂iV [f ] = −(∂iK) ⋆ f, ∂iK(x) = − 1

2π

1

|x|
xi

|x| ,

in the sense of distributions.
In the sequel we shall use several estimates on V [f ] and on ∇V [f ]. These

results can be found in [ArNi],

Proposition 7. (Follows from Lemma 3.3c) in [ArNi]) There is a positive
real number K8 such that: If

f ∈ L1(R2) ∩ L2(R2), and

∫

R2

f dx = 0, and

∫

R2

|x| |f(x)| dx <∞,

then ∇V [f ] ∈ L2(R2 : R
2) and

‖∇V [f ]‖L2(R2:R2) ≤ K8

(

‖f‖L2(R2) +

∫

R2

|x| |f(x)| dx
)

.

Proposition 8. (Follows from Lemma 3.1 in [ArNi]) There is a positive
real number K9 such that: If

f ∈ L1(R2), and

∫

R2

f dx = 0,
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then for all x ∈ R
2,

|V [f ](x)| ≤ K9

(

∫

R2

(1 + |y|) |f(y)| dy +

(
∫

R2

(1 + |y|)2 |f(y)|2 dy
)

1
2

)

.

Proposition 9. (Follows from Lemma 3.1 in [ArNi]) There is a positive
real number K10 such that: If

f ∈ L1(R2), and

∫

R2

f dx = 0,

then V [f ] ∈ L6(R2) with

‖V [f ]‖L6(R2) ≤ K10.

(

∫

R2

(1 + |y|) |f(y)| dy +

(
∫

R2

(1 + |y|) 3
2 |f(y)| 32 dy

)
2
3

)

.

Now we shall verify V.2. If ρ ∈ L∞(R2) is compactly supported with
∫

R2 ρ dx = 0, then ρ fullfills the requirements of Proposition 7. Hence
∇V [ρ] ∈ L2(R2 : R

2) and therefore ρ ∈ dom2(V ).
Let f ∈ dom2(V ). Then the function (x, y) → K(x− y)f(y)ρ(x) belongs

to L1(R2 × R
2). Hence due to the Fubini-Tonelli Theorem,

∫

R2

V [f ]ρ dx = −
∫

R2

(
∫

Rd

K(x− y) f(y) dy

)

ρ(x) dx

= −
∫

R2×R2

K(x−y) f(y) ρ(x) d(x, y) = −
∫

R2

(
∫

R2

K(x− y) ρ(x) dx

)

f(y) dy

= −
∫

R2

(
∫

R2

K(y − x) ρ(x) dx

)

f(y) dy =

∫

R2

V [ρ]f dx,

where we made use of K(−x) = K(x). Thus, in order to verify V.2, it
remains to prove

∫

R2

∇V [f ] · ∇V [ρ] dx =

∫

R2

V [ρ]f dx.

We take a sequence (ρn)n∈N in C∞
c (R2) with limn→∞ ‖ρ− ρn‖L2(R2) = 0, see

[Ada]. We can assume: There is R ∈ (0,∞) such that supp(ρ) ⊆ {|y| ≤ R}
and supp(ρn) ⊆ {|y| ≤ R} for all n ∈ N. We deduce from Proposition 7:

∇V [ρn] → ∇V [ρ] strongly in L2(R2 : R
2) as n→ ∞. (33)
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Furthermore, since K ∈ L1
loc(R

2) and since ρn ∈ C∞
c (R2), we have V [ρn] ∈

C∞(R2) for all n ∈ N, see e.g. [Ada].
Let us take Θ ∈ C∞(R) with Θ = 1 on (−∞, 0] and Θ = 0 on [1,∞). For

k ∈ N we introduce

Θk : R
2 → R, Θk(x) = Θ

( |x|
k

− 1

)

.

Then Θk ∈ C∞
c (R2) for all k ∈ N, hence ΘkV [ρn] ∈ C∞

c (R2) for all n, k ∈ N.
We calculate for all n, k ∈ N,

∫

R2

f (ΘkV [ρn]) dx = −
∫

R2

V [f ] ∆(ΘkV [ρn]) dx =

∫

R2

∇V [f ]·∇(ΘkV [ρn]) dx

=

∫

R2

(∇V [f ] · ∇Θk) V [ρn] dx+

∫

R2

(∇V [f ] · ∇V [ρn]) Θk dx,

where made use of V [ρn] ∈ L∞(R2) (which follows from Proposition 8) and
∇V [ρn] ∈ L2(R2 : R

2) for all n ∈ N.
We consider the limit n→ ∞ now.
Due to Proposition 8 the sequence (V [ρn])n∈N is bounded in L∞(R2). By

Proposition 9 the sequence (V [ρn])n∈N converges strongly in L6(R2), to V [ρ]
as n→ ∞. Hence for all k ∈ N,

lim
n→∞

∫

R2

f (ΘkV [ρn]) dx = lim
n→∞

∫

{k≤|x|≤2k}

f (ΘkV [ρn]) dx

=

∫

{k≤|x|≤2k}

f (ΘkV [ρ]) dx =

∫

Rd

f (ΘkV [ρ]) dx.

Similiar argumentations (in particular exploiting the fact that each integra-
tion is in fact an integration over a fixed (i.e. independent of n ∈ N) bounded
domain) yield for all k ∈ N,

lim
n→∞

∫

R2

(∇V [f ] · ∇Θk) V [ρn] dx =

∫

R2

(∇V [f ] · ∇Θk) V [ρ] dx,

lim
n→∞

∫

R2

(∇V [f ] · ∇V [ρn]) Θk dx =

∫

R2

(∇V [f ] · ∇V [ρ]) Θk dx.
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Hence for all k ∈ N,
∫

R2

(f V [ρ]) Θk dx =

∫

R2

(∇V [f ] · ∇Θk) V [ρ] dx+

∫

R2

(∇V [f ] · ∇V [ρ]) Θk dx.

(34)

Now we consider the limit k → ∞. Since f V [ρ], (∇V [f ] · ∇V [ρn]) ∈ L1(Rd)
and since limk→∞ Θk(x) = 1 for all x ∈ R

d with 0 ≤ Θk ≤ 1 for all k ∈ N,
we have

lim
k→∞

∫

R2

(f V [ρ]) Θk dx =

∫

R2

f V [ρ] dx, (35)

lim
k→∞

∫

R2

(∇V [f ] · ∇V [ρ]) Θk dx =

∫

R2

∇V [f ] · ∇V [ρ] dx. (36)

Furthermore, for all k ∈ N and for all x ∈ R
d,

|∇Θk(x)| ≤
sups∈[0,1] |Θ′(s)|

k
=:

K11

k
.

Now we have for all k ∈ N,
∣

∣

∣

∣

∫

R2

(∇V [f ] · ∇Θk) V [ρ] dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

{k≤|x|≤2k}

(∇V [f ] · ∇Θk) V [ρ] dx

∣

∣

∣

∣

≤
∫

{k≤|x|≤2k}

|∇V [f ]| |∇Θk| |V [ρ]| dx

≤ K11

k
‖V [ρ]‖L∞(R2)

√
3k2π

(
∫

{k≤|x|≤2k}

|∇V [f ]|2 dx
)

1
2

≤ 4K11 ‖V [ρ]‖L∞(R2)

(
∫

{k≤|x|≤2k}

|∇V [f ]|2 dx
)

1
2

. (37)

Due to |∇V [f ]| ∈ L2(R2 : R
2),

lim
k→∞

∫

{k≤|x|≤2k}

|∇V [f ]|2 dx = 0.

We deduce from (37),

lim
k→∞

∫

R2

(∇V [f ] · ∇Θk) V [ρ] dx = 0. (38)
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Employing (35), (36), (38) we deduce from (34) by passing to the limit k →
∞,

∫

R2

f V [ρ] dx =

∫

R2

∇V [f ] · ∇V [ρ] dx.

Finally, let us verify V.3. Let φ ∈ L∞(R2) be compactly supported, let’s
say supp(φ) ⊆ {|y| ≤ R} for some positive R. Then it is easy to deduce for
all x ∈ R

2,
∣

∣

∣

∣

∫

R2

K(x− y)φ(y) dy

∣

∣

∣

∣

≤ ‖φ‖L∞(R2)

∫

{|y|≤R}

|K(y)| dy ≤ KR ‖φ‖L∞(R2),

where KR is a positive number only depending on R. As a consequence,
K ⋆ φ ∈ L∞(R2). Now let (fn)n∈N be a sequence in L1(R2) with fn ⇀ f
weakly in L1(R2) as n→ ∞. Then for all φ ∈ L∞(R2) with compact support,

lim
n→∞

∫

R2

fn(y) (K ⋆ φ)(y) dy =

∫

R2

f(y) (K ⋆ φ)(y) dy,

while on the other hand for all n ∈ N by the Fubini-Tonelli Theorem,

∫

R2

V [fn]φ dx = −
∫

R2

(
∫

R2

K(x− y) f(y) dy

)

φ(x) dx

= −
∫

R2

(
∫

R2

K(x− y) φ(x) dx

)

f(y) dy = −
∫

R2

fn(y) (K ⋆ φ)(y) dy,

and
∫

R2

V [f ]φ dx = −
∫

R2

f(y) (K ⋆ φ)(y) dy

as well.

Example 3 Ω = R
d, d ≥ 3. We set dom(V ) := L1(Rd). The Green’s function

of the Laplace operator is

K(x) :=
1

ωd(d− 2) |x|d−2
, x ∈ R

d, x 6= 0,

where ωd is the (d−1)-dimensional surface measure of the unit sphere in R
d.

Since K ∈ L1(Rd) + L∞(Rd) we have for each f ∈ L1(Rd),

K ⋆ f =

∫

Rd

K(.− y)f(y) dy ∈ L1(Rd) + L∞(Rd).
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For f ∈ L1(Rd) we set

V [f ] := −K ⋆ f.

V [.] certainly satisfies V.1.
We observe for all i = 1, . . . , d,

∂iV [f ] = −(∂iK) ⋆ f, ∂iK(x) = − 1

ωd |x|d−1

xi

|x| ,

in the sense of distributions. Furthermore, for each i = 1, . . . , d, the function
∂iK belongs to L1(Rd) + L∞(Rd).

Now let ρ ∈ L∞(Rd) be compactly supported1. We take R ∈ (0,∞) with
supp(ρ) ⊆ {|y| ≤ R}. Then ρ ∈ Lp(Rd) for all p ∈ [1,∞] and we calculate
for all i = 1, . . . , d, for all x ∈ R

d and for all q ∈ (1, d
d−1

), p = q
q−1

,

|∂iV [ρ](x)| =
1

ωd

∣

∣

∣

∣

∫

Rd

|x− y|1−dxi − yi

|x− y|ρ(y) dy
∣

∣

∣

∣

≤ 1

ωd

∫

Rd

|x−y|1−d|ρ(y)| dy

=
1

ωd

∫

|y|≤R

|x− y|1−d|ρ(y)| dy ≤ 1

ωd

(
∫

|y|≤R

|x− y|q(1−d) dy

)1/q

‖ρ‖Lp(Rd)

≤ ‖ρ‖Lp(Rd)

ωd

(
∫

|y|≤R

|y|q(1−d) dy

)1/q

=
‖ρ‖Lp(Rd)

ω
1/p
d

(
∫ R

0

s(d−1)(1−q) ds

)1/q

=
R1−d+(d/q)

(d+ q − dq)1/q ω
1/p
d

‖ρ‖Lp(Rd), (39)

and the estimate |∂iV [ρ](x)| ≤ R ‖ρ‖L∞(Rd) follows in analogy.
On the other hand, we have for all x ∈ R

d with |x| > 2R,

|∂iV [ρ](x)| ≤ 1

ωd

(
∫

|y|≤R

|x− y|q(1−d) dy

)1/q

‖ρ‖Lp(Rd)

≤ (|x| − R)1−d

ωd

(
∫

|y|≤R

1 dy

)1/q

‖ρ‖Lp(Rd) =
Rd/q

d1/q ω
1/p
d

(|x|−R)1−d ‖ρ‖Lp(Rd),

(40)

and the estimate |∂iV [ρ](x)| ≤ Rd

d
(|x| −R)1−d ‖ρ‖L∞(Rd), |x| > R, follows in

analogy.

1
∫

Rd ρ dx = 0 is not required here.
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We set for p ∈ (d,∞),

K(d, p, R) :=























ω
−1/p
d max

{

(p− 1)1− 1
p R1− d

p

(p− d)1− 1
p

,
R(d− d

p

d1− 1
p

}

, p ∈ (d,∞)

max

{

R,
Rd

d

}

, p = ∞
.

Furthermore, we put

ud,R(x) :=

{

1 , |x| ≤ R+ 1

(|x| −R)1−d , |x| > R+ 1
.

Then we deduce from (39), (40):

|∂iV [ρ]| ≤ K(d, p, R) ‖ρ‖Lp(Rd) ud,R, p ∈ (d,∞]. (41)

Since ud,R ∈ Lr(Rd) for all r ∈ (d/(d− 1),∞], we deduce from (41):

∀p ∈ (d,∞], ∀r ∈ (d/(d− 1),∞] :

There is a constant K4(d, r, p, R) ∈ (0,∞) such that

‖∇V [ρ]‖Lr(Rd:Rd) ≤ K4 ‖ρ‖Lp(Rd). (42)

In particular: ∇V [ρ] ∈ L2(Rd : R
d). Hence ρ ∈ dom2(V ).

Remark 4. In a similiar way one can prove the estimate

|V [ρ]| ≤ K1(d, p, R) ‖ρ‖Lp(Rd) vd,R, (43)

where

p ∈ (d/2,∞], ρ ∈ L∞(Rd), supp(ρ) ⊆ {|y| ≤ R},

and

K1(d, p, R) :=























1

(d− 2) ω
1/p
d

max

{

(p− 1)1− 1
p R2− d

p

(2p− d)1− 1
p

,
Rd− d

p

d1− 1
p

}

, p ∈ (d
2
,∞)

1

d− 2
max

{

R2

2
,
Rd

d

}

, p = ∞
,
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vd,R(x) :=

{

1 , |x| ≤ R+ 1

(|x| −R)2−d , |x| > R+ 1
.

Then one can proceed as above to derive from (43) that V [ρ] ∈ Lr(Rd) for all
r ∈ ( d

d−2
,∞] and furthermore

∀p ∈ (d/2,∞], ∀r ∈ (d/(d− 2),∞] :

There is a constant K5(d, r, p, R) ∈ (0,∞) such that

‖V [ρ]‖Lr(Rd) ≤ K5 ‖ρ‖Lp(Rd). (44)

The estimates (41), (42), (43), (44) allow to proceed similiar as for d = 2.
Let f ∈ dom2(V ) and let ρ ∈ L∞(Rd) be compactly supported. Then the

function (x, y) 7→ K(x − y) f(y) ρ(x) belongs to L1(Rd × R
d). We proceed

as for d = 2 with the aid of the Fubini-Tonelli Theorem to conclude
∫

Rd

V [f ]ρ dx =

∫

Rd

V [ρ]f dx,

and it remains to prove

∫

Rd

∇V [f ] · ∇V [ρ] dx =

∫

Rd

V [ρ]f dx.

We take a sequence (ρn)n∈N in C∞
c (Rd) with limn→∞ ‖ρ− ρn‖L2d(Rd) = 0, see

[Ada]. We can assume: There is R ∈ (0,∞) such that supp(ρ) ⊆ {|y| ≤ R}
and supp(ρn) ⊆ {|y| ≤ R} for all n ∈ N. We deduce from (41):

∇V [ρn] → ∇V [ρ] strongly in L2(Rd : R
d) as n→ ∞. (45)

Furthermore, since K ∈ L1
loc(R

d) and since ρn ∈ C∞
c (Rd), we have V [ρn] ∈

C∞(Rd) for all n ∈ N, see e.g. [Ada].
Let us take Θ ∈ C∞(R) with Θ = 1 on (−∞, 0] and Θ = 0 on [1,∞). For

k ∈ N we introduce2

Θk : R
d → R, Θk(x) = Θ(|x| − k).

2The function Θk is different from the corresponding function for d = 2.
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Then Θk ∈ C∞
c (Rd) for all k ∈ N, hence ΘkV [ρn] ∈ C∞

c (Rd) for all n, k ∈ N.
We calculate for all n, k ∈ N,

∫

Rd

f (ΘkV [ρn]) dx = −
∫

Rd

V [f ] ∆(ΘkV [ρn]) dx =

∫

Rd

∇V [f ]·∇(ΘkV [ρn]) dx

=

∫

Rd

(∇V [f ] · ∇Θk) V [ρn] dx+

∫

Rd

(∇V [f ] · ∇V [ρn]) Θk dx,

where made use of V [ρn] ∈ L∞(Rd) and ∇V [ρn] ∈ L2(Rd : R
d) for all n ∈ N.

We consider the limit n→ ∞ now.
Due to (44) the sequence (V [ρn])n∈N is bounded in L∞(Rd) and converges

strongly in Lr(Rd), r ∈ ( d
d−2

,∞) to V [ρ] as n→ ∞. Hence for all k ∈ N,

lim
n→∞

∫

Rd

f (ΘkV [ρn]) dx = lim
n→∞

∫

{k≤|x|≤k+1}

f (ΘkV [ρn]) dx

=

∫

{k≤|x|≤k+1}

f (ΘkV [ρ]) dx =

∫

Rd

f (ΘkV [ρ]) dx.

Similiar argumentations (in particular exploiting the fact that each integra-
tion is in fact an integration over a fixed (i.e. independent of n ∈ N) bounded
domain) yield for all k ∈ N,

lim
n→∞

∫

Rd

(∇V [f ] · ∇Θk) V [ρn] dx =

∫

Rd

(∇V [f ] · ∇Θk) V [ρ] dx,

lim
n→∞

∫

Rd

(∇V [f ] · ∇V [ρn]) Θk dx =

∫

Rd

(∇V [f ] · ∇V [ρ]) Θk dx.

Hence for all k ∈ N,
∫

Rd

(f V [ρ]) Θk dx =

∫

Rd

(∇V [f ] · ∇Θk) V [ρ] dx+

∫

Rd

(∇V [f ] · ∇V [ρ]) Θk dx.

(46)

Now we consider the limit k → ∞. Since f V [ρ], (∇V [f ] · ∇V [ρn]) ∈ L1(Rd)
and since limk→∞ Θk(x) = 1 for all x ∈ R

d with 0 ≤ Θk ≤ 1 for all k ∈ N,
we have

lim
k→∞

∫

Rd

(f V [ρ]) Θk dx =

∫

Rd

f V [ρ] dx, (47)
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lim
k→∞

∫

Rd

(∇V [f ] · ∇V [ρ]) Θk dx =

∫

Rd

∇V [f ] · ∇V [ρ] dx. (48)

Furthermore, for all k ∈ N and for all x ∈ R
d,

|∇Θk(x)| ≤ sup
s∈[0,1]

|Θ′(s)| =: K2.

Now we have for all k ∈ N,

∣

∣

∣

∣

∫

Rd

(∇V [f ] · ∇Θk) V [ρ] dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

{k≤|x|≤k+1}

(∇V [f ] · ∇Θk) V [ρ] dx

∣

∣

∣

∣

≤
∫

{k≤|x|≤k+1}

|∇V [f ]| |∇Θk| |V [ρ]| dx

≤ K2

(
∫

{k≤|x|≤k+1}

|∇V [f ]|2 dx
)

1
2
(
∫

{k≤|x|≤k+1}

|V [ρ]|2 dx
)

1
2

. (49)

If we take R ∈ (0,∞) with supp(ρ) ⊆ {|y| ≤ R}, then we have due to (43)
for all k ∈ N with k > max{2R,R+ 1},
∫

{k≤|x|≤k+1}

|V [ρ]|2 dx ≤ K1(d,∞, R) ‖ρ‖∞
∫

{k≤|x|≤k+1}

(|x| −R)2−d dx

= ωd K1(d,∞, R) ‖ρ‖∞
∫ k+1

k

(s−R)4−2d sd−1 ds

≤ 22d−4 ωd K1(d,∞, R) ‖ρ‖∞
∫ k+1

k

s3−d ds

≤ 22d−4 ωd K1(d,∞, R) ‖ρ‖∞, (50)

while on the other hand due to |∇V [f ]| ∈ L2(Rd),

lim
k→∞

∫

{k≤|x|≤k+1}

|∇V [f ]|2 dx = 0.

We deduce from (49) and from (50),

lim
k→∞

∫

Rd

(∇V [f ] · ∇Θk) V [ρ] dx = 0. (51)
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Employing (47), (48), (51) we deduce from (46) by passing to the limit k →
∞,

∫

Rd

f V [ρ] dx =

∫

Rd

∇V [f ] · ∇V [ρ] dx.

The verification of V.3 can be performed in analogy to d = 2.

Example 4 Ω = {x ∈ R
d : x1 > 0}, d ∈ N. In this case we consider for

f ∈ L1(Ω) the Poisson equation

−∆V = f ∗, in R
d, (52)

where for (x1, . . . , xd) ∈ R
d,

f ∗(x1, . . . , xd) =















f(x1, . . . , xd) , x1 > 0

f(−x1, x2, . . . , xd) , x1 < 0

0 , else

.

Then we set V [f ] := VRd[f ∗] ⇂ Ω, where VRd [.] is the solution operator of (52)
as discussed in the previous examples. The verification of V.1, V.2, V.3 is
straight-forward.

For λ > 0, the equation

λ∆Φ = n− p− C

with n = g(α[Φ] + Φ) and p = g(β[Φ] − Φ) has no solution with n and p
in L1(Ω) if g > 0 on R (i.e. if h = −∞). In that case it is essential to
introduce a confinement by an external potential W , see [BDM99], i.e. one
has to replace (19) - (24) by

λ∆Φ = n[Φ] − p[Φ] − C(x), x ∈ Ω, (53)

n[Φ] = g(α[Φ] +W + Φ), (54)

p[Φ] = g(β[Φ] +W − Φ), (55)

∫

Ω

n[Φ] dx =

∫

Ω

g(α[Φ] + Φ −W ) dx = N, (56)

∫

p[Φ] dx =

∫

Ω

g(β[Φ] − Φ −W ) dx = P, (57)

with W → ∞ as |x| → ∞.
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Remark 5. One may ask about the physical interpretation of W , in partic-
ular whether W can be viewed as electrostatic potential. The problem with
two species of particles with opposite sign charges is that an external elec-
trostatic potential cannot be confining for both species, except if W = |x|2
(by rescaling), but it is then not possible to have a charge density C unless
it is concentrated at the origin, see [BDM99]. The physical problem is then
the question of the free expansion of two species of particles with opposite
charges but same total charge, which has already been studied (for the whole
space case) in [BDM99]. We shall therefore keep in mind that if one only
wishes to consider electrostatic models of W , then for h = −∞, the only
realistic cases correspond to W = |x|2 when Ω is a cone and C ≡ 0, or either
N = 0 or P = 0 and W confining.

We proceed as in the previous sections to analyze (19)-(22), (56), (57) by
means of the functional Eλ, formally defined as

Eλ(n, p) = Ea(n, p) +
1

λ
Eel(n, p),

Ea(n, p) :=

∫

Ω

H(n) dx+

∫

Ω

H(p) dx+

∫

Ω

(n+ p)W dx,

Eel(n, p) :=
1

2

∫

Ω

|∇V [n− p− C]|2 dx, (58)

where (n, p) ∈ C, i.e. n, p ∈ L1
+(Ω) with ‖n‖L1(Ω) = N and ‖p‖L1(Ω) = P . As

in the previous sections we set the electrostatic energy Eel(n, p) equal to ∞
whenever n−p−C /∈ dom2(V ). The confining potential W of (58) is assumed
to be bounded below. Hence the last integral of Ea(n, p) has a well-defined
value in R ∪ {∞}. A bit more delicate is the integrability of H(n), H(p).
In contrast to the situation for bounded domains, the convexity of H is not
sufficient to assign to each of the first two integrals of Ea(n, p) a value in
R ∪ {∞}. In fact, we have to impose an additional assumption included in
the following

Proposition 10. Let Ω ⊆ R
d, d ∈ N, be a nonvoid domain. Let N,P ≥ 0

and let W ∈ L1
loc(Ω) be bounded below. Furthermore, assume A.2 - A.5,

V.1 - V.3 and

A.6 There are µ, ν ∈ R with nN := g(µ−W ), pP := g(ν −W ) ∈ L1(Ω),
∫

Ω

nN dx = N,

∫

Ω

pP dx = P,
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and H−(nN), H−(pP ) ∈ L1(R).

Then Eλ is bounded below on C.

Proof. We exploit the convexity of H . We have for each n ∈ L1
+(Ω) with

∫

Ω
n dx = N ,

((H(n) + nW ) − (H(nN) + nN W )) = H(n) −H(nN) +W (n− nN)

≥ H ′(nN) (n− nN ) +W (n− nN )

= (h(nN ) +W ) (n− nN ) ≥ µ (n− nN),

because h(nN ) = h(g(µ −W )) = µ −W whenever nN > 0 and h(nN ) (n −
nN) = h(nN )n ≥ (µ−W )n = (µ−W ) (n− nN ) whenever nN = 0. Hence,

∫

Ω

(

H(n) + nW

)

dx−
∫

Ω

(

H(nN) + nNW

)

dx

≥
∫

Ω

µ (n− nN ) dx = µ

(
∫

Ω

n dx−
∫

Ω

nN dx

)

= µ (M −M) = 0,

and the inequality
∫

Ω

(

H(p) + pW

)

dx−
∫

Ω

(

H(pP ) + pPW

)

dx ≥ 0

with p ∈ L1
+(Ω) with

∫

Ω
p dx = P follows analogously. Due to the assumup-

tion H−(nN ), H−(pP ) ∈ L1(Ω) and due to the assumed boundedness of W
from below we deduce that

∫

Ω
(H(nN) + nNW ) dx,

∫

Ω
(H(pP ) + pPW ) dx

have values in R ∪ {∞}.
Remark 6. a) Since g is strictly increasing there is at most one pair (µ, ν) ∈
R

2 satisfying A.6.
b) If N = 0 and if g > 0 on R (i.e. if and only if h = −∞), then there is
no µ ∈ R with

∫

Ω
g(µ −W ) dx = N = 0. Hence, if one wishes to consider

the case N = 0 with h = −∞, then one has to modify the functional Eλ

by cancelling (or setting to zero, respectively) all terms which involve n. We
leave the details of the corresponding analysis to the reader.
c) Proposition 10 does not exclude Eλ ≡ ∞ on C.

Now let us turn our attention to the existence of minimizers of Eλ in C.
As an example, we state the following result in case of h = +∞ for which a
purely variational argument provides an immediate answer.
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Theorem 11. Let Ω ⊆ R
d, d ∈ N, be a nonvoid domain. Let N,P > 0 and

let W ∈ L1
loc(Ω). Furthermore, assume A.2 - A.6, V.1 - V.3 and

1. C ∈ L1(Ω).

2. W is bounded below. lim infx∈Ω, |x|→∞W (x) = ∞.

3. h = ∞.

4. Ea + Eel 6≡ ∞ on C.

5. Ea(nN , pP ) < ∞ (that is, H(nN) + H(pP ) + (nN + pP )W ∈ L1(Ω)),
where nN , pP are as in A.6.

Then Eλ has a unique minimizer (n0, p0) in C and the triple (Φ0, n0, p0) =
(−λ−1V0, n0, p0) with V0 = V [n0 − p0 −C] is a solution (the unique “equilib-
rium solution”) of (53)-(57).

Remark 7. a) Assumption 4. Eλ 6≡ ∞ on C implies in case of Ω = R
1,

Ω = R
2 or in case of Ω ⊂ R

d, d ∈ N, with meas(Ω) < ∞ global charge
neutrality N − P =

∫

Ω
C which is not the case for Ω = R

d, d ≥ 3
b) By straight-forward modifications one can also include N = 0, P > 0 or
N > 0, P = 0.

Proof. Eλ is bounded below by Proposition 10. Furthermore, Eλ 6≡ ∞ on C.
Hence infC Eλ > −∞. We apply a standard minimization argument. Since
Eλ is strictly convex, Eλ has at most one minimizer. This minizer is shown
to exist by taking the limit of a minimizing sequence (nk, pk)k∈N. The limit
(n0, p0) of this sequence belongs to C because of the weak-L1 compactness
of any minimizing sequence according to the Dunford-Pettis criterion: there
is no concentration because H is superlinear at ∞ (h = ∞) and no vanish-
ing (because of the growth of W at ∞) in the language of concentration-
compactness theory.

As shown in the proof of Proposition 10, we haveH(n)+H(p)+(n+p)W ≥
H(nN)+H(pP )+(nN +pP )W ∈ L1(Ω) for all (n, p) ∈ C. Hence the functional
Ea

λ is lower semicontinuous with respect to weak convergence in L1(Ω) and
we have
∫

Ω

H(n0) dx+

∫

Ω

H(p0) dx+

∫

Ω

W (n0 + p0) dx

≤ lim inf
k→∞

∫

Ω

H(nk) dx+

∫

Ω

H(pk) dx+

∫

Ω

W (nk + pk) dx. (59)
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Furthermore, since (∇Vk)k∈N, Vk = V [nk − pk − C], is bounded in L2(Ω :
R

d), we have - maybe after extracting a subsequence but without changing
notations - for all i = 1, . . . , d,

∂iVk ⇀ Zi, weakly in L2(Ω) as k → ∞,

hence
∫

Ω

(Z2
1 + . . .+ Z2

d) dx ≤ lim inf
k→∞

∫

Ω

|∇Vk|2 dx. (60)

Since C ∈ L1(Ω) we have nk − pk − C ⇀ n0 − p0 − C weakly in L1(Ω) as
k → ∞. We deduce from V.3, Vk → V0 = V [n0 − p0 − C] in the sense of
distributions. Hence Zi = ∂iV0, i = 1, . . . , d and we deduce Eλ(n0, p0) ≤
lim infk→∞Eλ(nk, pk) = infC Eλ from (59) and (60).

Now we shall derive the associated variational inequalities. With the aid
of V.2 we deduce from standard arguments,

h(n0) +W + λ−1V0 = α on {n0 > 0}, h(p0) +W − λ−1V0 = β on {p0 > 0},

for some α, β ∈ R. In case of h > −∞ the function H is differentiable on each
compact subset of [0,∞) and in this case we obtain by standard arguments

h+W + λ−1V0 ≥ α on {n0 = 0}, h+W − λ−1V0 ≥ β on {p0 = 0},

and we conclude n0 = g (α−W − λ−1V0), p0 = g (β −W + λ−1V0),
i.e. (−λ−1V0, n0, p0) is a solution of (53)-(57). It remains to consider the case
h = −∞. It sufficies to prove: n0 > 0 and p0 > 0 almost everywhere on
Ω. This is shown in an indirect way. If n0 = 0 on a subset Ω0 of Ω with
meas(Ω0) > 0, then there is a compact subset K0 of Ω0 with meas(K0) > 0
as well and one can take a test function φ ∈ L∞(Ω) which is compactly
supported in Ω, ran(φ) = {c0,−c1} (where c0, c1 are positive real numbers),
φ(x) = c0 if and only if x ∈ K0, φ

−1(−c1) ⊆ {ε ≤ n0 ≤ ε−1} (where ε ∈ (0, 1)
is apropriately chosen), and

∫

Ω
φ dx = 0. We observe: (n0+δφ, p0) ∈ C for all

sufficiently small δ. Since (n0, p0) minimizes Eλ in C one has for all sufficiently
small δ ∈ (0,∞),

Eλ(n0 + δ, p0) − Eλ(n0, p0) ≥ 0,

while it is not difficult to deduce from h = −∞ via V.2 that limδ→0(Eλ(n0 +
δ, p0) −Eλ(n0, p0))/δ = −∞. Hence n0 > 0 almost everywhere on Ω. p0 > 0
almost everywhere on Ω follows in analogy.
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Remark 8. a) Propositon 11 highlights the role of the confining potential W
which ensures weak compactness of minimizing sequences of Eλ.
b) One may ask whether each solution (Φ0, n0, p0) of (19)-(22), (56), (57)
is actually a minimizer of Eλ in C. The discussion of this (very natural)
question, however, requires rather technical additional assumptions (and is
therefore omitted here): In contrast to the situation for bounded domains
there is no a priori estimate which ensures Eλ(n0, p0) <∞.

The introduction of the confining potential W is inevitable whenever h =
−∞. Let us turn our attention to a discussion of (19)-(24) (i.e. the model
equations without W ) in the case h > −∞ now.

In this situation it is possible to build solutions with compact support as
follows (we recall: without any external confinement potential !).

Take a Φ ∈ C2(Ω) with compact support in Ω and consider nλ = g(α+Φ)
and pλ = g(β − Φ) for α and β such that h − α > 0 > β − h. The density
nλ (respectively pλ) is supported in the set corresponding to Φ > h − α
(respectively Φ < β − h). We may then define

C = −λ∆Φ + g(α + Φ) − g(β − Φ) ,

and compute N and P corresponding to α, β and Φ. Then the triple
(Φ, nλ, pλ) is certainly a solution of (19)-(24). In particular, we observe that
global neutrality holds due to the fact that Φ has a compact support. N 6= 0
(respectively P 6= 0) holds if and only if ess supΩΦ > h − α (respectively
ess infΩΦ < β − h).

We note that this construction actually does not depend on whether Ω
is bounded or not, but only on the condition supp(Φ) ⊂⊂ Ω. The condition
that Φ has a compact support can be replaced by the condition that Φ is equal
to a constant Φ∞ outside a compact subset of Ω, with h− α > Φ∞ > β − h.
In unbounded domains, it is actually sufficient to assume that Φ = Φ∞ in a
neighborhood of ∂Ω and

β − h < lim inf
|x|→∞, x∈Ω

Φ(x) ≤ lim sup
|x|→∞, x∈Ω

Φ(x) < h− α .

If there exists a solution Φ with Φ−Φ∞ compactly supported in Ω for a
constant Φ∞ ∈ (β − h, h− α), then the global neutrality condition

N − P −
∫

Ω

C dx = 0 (61)
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holds, but this is not necessarily the case if Ω is unbounded. Consider for
instance a radial potential Φ which is asymptotically periodic, oscillating
between two values in (β − h, h − α), with C = −∆Φ for |x| large enough
(case h > −∞): C is clearly not in L1(Ω).

The global electroneutrality does not either hold in the presence of an
external potential W . We can for instance (see [Dol91]) consider in Ω = R

d

(d ≥ 3) the equation

∆Φ = N
eΦ−W (x)

∫

Ω
eΦ−W (x) dx

− P
e−Φ−W (x)

∫

Ω
e−Φ−W (x) dx

with lim|x|→+∞ Φ(x) = 0, W (x) = 1
2
|x|2, C ≡ 0. If N 6= P , the global

electroneutrality condition (61) is not satisfied. This example is easy to gen-
eralize to any potential W such that lim inf |x|→+∞ |x|d−2W (x) = +∞ and
e−W ∈ L1(Rd) and C ∈ L1(Rd) (with compact support for example). More
striking is the fact that we can state an existence result without global elec-
tronuetrality even in the case without confining potential (W ≡ 0) provided
d ≥ 3 (and h > −∞).

ACKNOWLEDGEMENT

This research was partially supported by the grant ERBFMRXCT970157
(TMR-Network) from the EU.

References

[Ada] R.A. Adams, Sobolev Spaces, Academic Press, 1975.

[AMT98] A. Arnold, P.A. Markowich, G. Toscani, On large time asymp-
totics for drift-diffusion Poisson systems, Preprint ESI no. 655 (1999),
Preprint TMR “Asymptotic Methods in Kinetic Theory” no. 12 (1998),
submitted to Transp. Theo. Stat. Phys.

[AMTU98] A. Arnold, P.A. Markowich, G. Toscani, A. Unterreiter, On loga-
rithmic Sobolev inequalities, Csiszár-Kullback inequalities, and the rate
of convergence to equilibrium for Fokker-Planck type equations, Preprint
TMR “Asymptotic Methods in Kinetic Theory” no. 1 (1998).

48



[ArNi] A. Arnold, F. Nier, The Two-Dimensional Wigner-Poisson Problem
for an Electron Gas in the Charge Neutral Case, Math Meth Appl Sci
14 (1991), 595–613.

[BiDo99] P. Biler, J. Dolbeault, Long time behavior of solutions to Nernst-
Planck and Debye-Hückel drift-diffusion systems, to appear in Annales
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