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On Singular Perturbation Problems with
Robin Boundary Condition

HENRI BERESTYCKI – JUNCHENG WEI

Abstract. We consider the following singularly perturbed elliptic problem

ε2�u − u + f (u) = 0, u > 0 in �,

ε
∂u

∂ν
+ λu = 0 on ∂�,

where f satisfies some growth conditions, 0 ≤ λ ≤ +∞, and � ⊂ R
N (N > 1)

is a smooth and bounded domain. The cases λ = 0 (Neumann problem) and
λ = +∞ (Dirichlet problem) have been studied by many authors in recent years.
We show that, there exists a generic constant λ∗ > 1 such that, as ε → 0, the
least energy solution has a spike near the boundary if λ ≤ λ∗, and has an interior
spike near the innermost part of the domain if λ > λ∗. Central to our study is the
corresponding problem on the half space.

Mathematics Subject Classification (2000): 35B35 (primary), 35J40, 92C40
(secondary).

1. – Introduction

In the recent years, many works have been devoted to the study of the
following singularly perturbed problems:

(1.1) ε2�u − u + f (u) = 0, u > 0 in �,

with either Neumann boundary condition

(1.2)
∂u

∂ν
= 0 on ∂�,

or Dirichlet boundary condition

(1.3) u = 0 on ∂�.

Pervenuto alla Redazione il 3 aprile 2002 ed in forma definitiva il 30 gennaio 2003.
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Here � ⊂ R
N is a smooth and bounded domain, ν denotes the outward normal,

and f satisfies some structure conditions. A typical f is f (u) = u p, 1 < p <
N+2
N−2 if N ≥ 3, and 1 < p < ∞ if N = 1, 2.

In [26], [27], Ni and Takagi showed that, under some conditions on f (u),
as ε → 0, the least energy solution for (1.1) with Neumann boundary condition
(1.2) has a unique maximum point, say Pε , on ∂�. Moreover, H(Pε) →
maxP∈∂� H(P), where H(P) is the mean curvature function on ∂�. On the
other hand, Ni and Wei in [30] showed that, as ε → 0, the least energy solution
for (1.1) with Dirichlet boundary condition (1.3) has a unique maximum point,
say Qε , in �. Furthermore, d(Qε, ∂�) → maxQ∈� d(Q, ∂�), where d(Q, ∂�)

is the distance function from Q to ∂�.
Since then, many papers further investigated the higher energy solutions for

(1.1) with either (1.2) or (1.3). These solutions are called spike layer solutions.
A general principle is that the interior spike layer solutions are generated by
distance functions. We refer the reader to the articles [1], [6], [8], [9], [10],
[13], [14], [17], [20], [29], [31], [33], [34] and the references therein. On the
other hand, the boundary peaked solutions are related to the boundary mean
curvature function. This aspect is discussed in the papers [2], [5], [15], [19],
[32], [35], [36], and the references therein. A good review of the subject is to
be found in [25].

It is a natural question to ask what happens if we replace (1.2) or (1.3)
by the following Robin boundary conditions (or boundary conditions of the
third kind)

(1.4) a
∂u

∂ν
+ (1 − a)u = 0 on ∂�,

where 0 < a < 1. Such Robin boundary conditions are particularly interesting
in biological models where they often arise. We refer the reader to [7] for
this aspect.

The main purpose of this paper is to answer the above question.
First of all, we rewrite (1.4) in the following form

(1.5) ε
∂u

∂ν
+ λu = 0 on ∂�,

where λ = ε(1−a)
a > 0. (The term ε ∂u

∂ν
is an appropriate scaling with respect to

ε2�u, as we shall see later.) We shall investigate the role of λ on the properties
of least-energy solutions, which we shall define now.

Similar to [26] and [30], we can define the following energy functional
associated with (1.5):

(1.6) Jε[u] := ε2

2

∫
�

|∇u|2 + 1

2

∫
�

u2 −
∫

�

F(u) + ελ

2

∫
∂�

u2,

where F(u) = ∫ u
0 f (s)ds, u ∈ H 1(�).
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Assume that f has superlinear growth. Then, for each fixed λ, by taking
a function e(x) ≡ k for some constant k in �, and choosing k large enough,
we have Jε(e) < 0, for all ε ∈ (0, 1). Then for fixed λ, and for each ε ∈ (0, 1),
we can define the so-called mountain-pass value

(1.7) cε,λ = inf
h∈�

max
0≤t≤1

Jε[h(t)]

where � = {h : [0, 1] → H 1(�)|h(t) is continuous, h(0) = 0, h(1) = e}.
Under some further conditions on f , which we will specify later, similar

to [26] or [30], cε,λ can be characterized by

(1.8) cε,λ = inf
u 
≡0,u∈H1(�)

sup
t>0

Jε[tu],

which can be shown to be the least among all nonzero critical values of Jε .
(This formulation is sometimes referred to as the Nehari manifold technique.)
Moreover, cε,λ is attained by some function uε,λ which is then called a least-
energy solution. Here and throughout this paper, we say that a function uε,λ

achieves the maximum in (1.8) if it satisfies

cε,λ = sup
t>0

Jε[tuε,λ].

This also applies to similar variational formulations below.
For fixed ε small, as λ moves from 0 (which is (1.2)) to +∞ (which is

(1.3)), by the results of [26], [27] and [30], the asymptotic behavior of uε,λ

changes dramatically: a boundary spike is displaced to become an interior spike.
The question we shall answer is: where is the borderline of λ for spikes to
move inwards?

Note that when N = 1, by ODE analysis, it is easy to see that the borderline
is exactly at λ = 1. In fact, we may assume that � = (0, 1), and as ε → 0,
the least energy solution converges to a homoclinic solution of the following
ODE:

(1.9) w
′′ − w + f (w) = 0 in R

1, w(y) → 0 as |y| → +∞.

Then it follows that

(1.10) (w
′
)2 = w2 − 2F(w), |w′ | < w.

As ε → 0, the limiting boundary condition (1.5) becomes w
′
(0) − λw(0) = 0.

We see from (1.10) that this is possible if and only if λ < 1. A graph of the
homoclinic solution with the Robin boundary condition w

′
(0) − λw(0) = 0 is
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depicted as follows:

Fig. 1. The graph of w(y).

So from now on, we may assume that N ≥ 2.
To state our results, let us first put some assumptions on f . Firstly, since

we look for a positive solution, by the maximum principle, we may extend f
by assuming f (t) = 0 for t ≤ 0. We assume the same assumptions used in
[26], [27] and [30]: we suppose that f : R → R is continuous and satisfy the
following structure conditions

(f1) f
′
(0) = 0.

(f2) For t ≥ 0, f admits the decomposition in C1+σ (R):
f (t) = f1(t) − f2(t)

where (i) f1(t) ≥ 0 and f2(t) ≥ 0 with f1(0) = f
′
1(0) = 0, whence it

follows that f2(0) = f
′
2(0) = 0 by (f1); and (ii) there is a q ≥ 1 such that

f1(t)/tq is nondecreasing in t > 0, whereas f2(t)/tq is non-increasing in
t > 0, and in case q = 1 we require further that the above monotonicity
condition for f1(t)/t is strict.

(f3) f (t) = O(t p) as t → +∞ for some 1 < p < N+2
N−2 and 1 < p < +∞ if

N = 2.

(f4) There exists a constant θ ∈ (0, 1
2 ) such that F(t) ≤ θ t f (t) for t ≥ 0, where

F(t) = ∫ t
0 f (s)ds.

Condition (f1) is first related to the fact that we already include the linear
part (via −u) in the equation. The assumption (f2) is technical while (f3) and
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(f4) are classical assumptions. (f3) is an assumption of compactness (subcritical
growth) and (f4) is used for Palais-Smale condition and implies a superlinear
growth for f , namely, f (t)

t1+δ → +∞ as t → +∞ for some δ > 0.
Examples of f satisfying (f1)-(f4) include:

f (u)=u p−auq with a ≥ 0, 1 < q < p <
N +2

N −2
if N ≥ 3 and +∞ if N =2.

To understand the location of the spikes at the boundary, an essential role is
played by the analogous problem in a half space with Robin boundary condition
on the boundary. Thus we first consider

(1.11)

{
�u − u + f (u) = 0, u > 0 in R

N
+,

u ∈ H 1(RN
+),

∂u

∂ν
+ λu = 0 on ∂R

N
+

where R
N
+ = {(y

′
, yN )|yN > 0} and ν is the outer normal on ∂R

N
+ .

Let

(1.12) Iλ[u] =
∫

R
N+

(
1

2
|∇u|2 + 1

2
u2

)
−

∫
R

N+
F(u) + λ

2

∫
∂R

N+
u2.

As before, we define a mountain-pass vale for Iλ:

(1.13) cλ = inf
v 
≡0,v∈H1(RN+ )

sup
t>0

Iλ[tv].

Our first result deals with the half space problem:

Theorem 1.1.

(1) For λ ≤ 1, cλ is achieved by some function wλ, which is a solution of (1.11).
(2) For λ large enough, cλ is never achieved.
(3) Set

λ∗ = inf{λ|cλ is achieved}.
Then λ∗ > 1 and for λ ≤ λ∗, cλ is achieved, and for λ > λ∗, cλ is not achieved.

Remark 1.1. We do not know if the solution to (1.11) is unique. It would
be interesting to solve this question.

Remark 1.2. It is somewhat surprising that at the borderline number
λ = λ∗, cλ is actually achieved.

Remark 1.3. It is an interesting question to see how λ∗ depends on N
and the nonlinearity f . Note that when N = 1, λ∗ = 1.

Now consider the problem in a bounded domain. It turns out that the
critical number λ∗ in Theorem (1.1) plays an essential role in the study of the
asymptotic behavior of cε,λ and uε,λ defined in a bounded domain. We will show
here that λ∗ is the borderline between (1.2) and (1.3) in an arbitrary domain.

As before, we use H(x0) to denote the boundary mean curvature at x0 ∈ ∂�.
Here is our first result for a general domain.
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Theorem 1.2. Let λ ≤ λ∗ and uε,λ be a least energy solution of (1.1) with (1.5).
Let xε ∈ � be a point where uε,λ reaches its maximum value. Then after passing to
a subsequence, xε → x0 ∈ ∂� and

(1) d(xε, ∂�)/ε → d0, for some d0 > 0,

(2) vε,λ(y) = uε,λ(xε + εy) → wλ(y) in C1 locally, where wλ attains cλ of (1.13)
(and thus is a solution of (1.11)),

(3) the associated critical value can be estimated as follows:

(1.15) cε,λ = εN {cλ − εH(x0) + o(ε)}

where cλ is given by (1.13), and H(x0) is given by the following

(1.16) H(x0) = max
wλ∈Sλ

[
−

∫
R

N+
y

′ · ∇′
wλ

∂wλ

∂yN
H(x0)

]

where Sλ is the set of all solutions of (1.11) attaining cλ, and y
′ = (y1, . . . ,

yN−1), ∇′ = ( ∂
∂y1

, . . . , ∂
∂yN−1

),

(4) H(x0) = maxx∈∂� H̄(x).

Remark 1.4. For λ small, it is easy to see that

(1.17) −
∫

R
N+

y
′ · ∇′

wλ

∂wλ

∂yN
> 0, for all wλ ∈ Sλ

and hence

H(x0) =
(

max
wλ∈Sλ

[
−

∫
R

N+
y

′ · ∇′
wλ

∂wλ

∂yN

])
H(x0).

In this case, the last statement in Theorem 1.2 can be replaced by H(x0) =
maxx∈∂� H(x). We don’t know whether or not (1.17) holds for λ ≤ λ∗. When
λ = 0, the function H(z) is called generalized mean curvature function in [4].

Remark 1.5. When λ ≤ λ∗, the maximum point xε is not on the boundary.
Instead, it is in the order ε distance away from ∂�. This only happens for Robin
boundary problems since in the case of Neumann conditions, the maximum
points lie on the boundary, while for Dirichlet condition, they are interior points
which stay away from the boundary.

On the other hand, when λ > λ∗, a different asymptotic behavior appears.

Theorem 1.3. Let λ > λ∗ and uε,λ be a least energy solution of (1.1) with
(1.5). Let xε ∈ � be a point where uε,λ reaches its maximum value. Then after
passing a subsequence, we have

(1) d(xε, ∂�) → maxx∈� d(x, ∂�),
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(2) vε,λ(y) := uε,λ(xε + εy) → w(y) in C1 locally, where w is the unique solution
of the following problem

(1.18)




�w − w + f (w) = 0 in R
N ,

w > 0, w(0) = maxy∈RN w(y),

w(y) → 0 as |y| → +∞,

(3) the associated critical value can be estimated as follows:

(1.19) cε,λ = εN
[

I [w] + exp
(

−2d(xε, ∂�)

ε
(1 + o(1))

)]

where

(1.20) I [w] = 1

2

∫
RN

(|∇w|2 + w2) −
∫

RN
F(w).

Remark 1.6. According to [16], w is radially symmetric and decreasing,
i.e., w = w(r), r = |y|, w′

(r) < 0 for r > 0. Under the conditions (f1)-(f4), it
follows from the results of [18] and [3] that the solution to (1.18) is unique.

The existence and location of spikes has been studied in detail in the papers
[26], [27] and [30] for Dirichlet or Neumann conditions. Here we rely on the
techniques developed in these works. The main new aspect that is needed here
is concerned with the problem in a half space with Robin boundary condition
(Theorem 1.1). Section 2 is devoted to the proof of that theorem. Actually,
the main novel aspect of this paper is to derive the existence of this separating
value λ∗ given by Theorem 1.1 which governs the location of spikes.

The study of spikes and their locations are carried in Section 3 for Theorem
1.2 and in Section 4 for Theorem 1.3. These two sections are somewhat more
technical. We follow and use the results of the papers [26], [27] and [30].
We only carry out in detail here the new ingredients which are needed in the
computations in order to deal with Robin boundary conditions. Some technical
lemmas are further left to an Appendix.

Throughout the paper C > 0 is a generic constant which is independent of
ε and λ and may change from line to line.

Acknowledgments. The research of the second author is partially sup-
ported by an Earmarked Grant from RGC of Hong Kong.
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2. – Proof of Theorem 1.1

In this section, we analyze problem (1.11). We will make use of the
concentration-compactness method. To this end, it is important to introduce the
problem at +∞ which involves:

(2.1) I ∞ := I [w] = 1

2

∫
RN

(|∇w|2 + w2) −
∫

RN
F(w),

where w is the unique solution to (1.18). Then, by taking v = w(y
′
, yN − R),

it is easy to see that

(2.2) lim
R→+∞

[
sup
t>0

Iλ[tv]
]

= I ∞.

(See the proof of (2.15) below.)
Hence,

(2.3) cλ ≤ I ∞, for λ > 0.

Applying the well-known “concentration-compactness” principle of P.L. Li-
ons [21], [22], we prove the following:

Lemma 2.1. If for some λ > 0,

(2.4) cλ < I ∞,

then cλ is achieved.

Proof. The proof follows from Theorem V.5 (and Remark V.2) of [22]:
here by (f2), we have

f (t)t−q is nondecreasing

for some q ≥ 1 and if q = 1, f (t)
t is strictly increasing. The condition (50′)

of [22] is satisfied. The main idea is the following: let un be a sequence
such that Iλ[un] = cλ. Of the three possibilities for this sequence, vanishing,
dichotomy and compactness, we show that neither vanishing nor dichotomy can
occur, leaving compactness as the only possibility. We omit the details.

Let us first prove (1) of Theorem 1.1. To this end, we take a test function
vR(y) := w(y

′
, yN − R). By (f2), there exists a unique tR such that

(2.5) sup
t>0

Iλ[tvR] = Iλ[tRvR].

(See Lemma 3.1 of [26] or Lemma 5.3 of [30].)
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The asymptotic behavior of w at infinity is given by the following lemma

Lemma 2.2. ([12]) As r → +∞, we have

w(r) = Ae−rr− N−1
2

(
1 − (N − 1)(N − 3)

8

1

r
+ O

(
1

r2

))
,(2.6)

w
′
(r)

w(r)
= −1 − (N − 1)

2r
− (N − 1)(N − 3)

8r2
+ O

(
1

r3

)
,(2.7)

where A > 0 is a generic constant.

We now ready to prove (1) of Theorem 1.1.

Proof of (1) of Theorem 1.1. Set

eN = (0, . . . , 0, 1)T .

Let us now compute Iλ[tRvR] for R large. By Lemma 2.2, we deduce that

(2.8) | f (w(y − ReN ))w(y − ReN )| ≤ Ce−(2+ σ
2 )Rw

σ
2 (y),

and hence we have∫
R

N+
(|∇vR|2 + v2

R) +
∫

∂R
N+

λv2
R =

∫
R

N+
f (w(y − ReN ))w(y − ReN )dy

+
∫

∂R
N+

w(y − ReN )
∂w(y − ReN )

∂ν
dy + λ

∫
∂R

N+
(w(y − ReN ))2dy

=
∫

RN
f (w)w + O(e−(2+ σ

2 )R)

+
∫

∂R
N+

(
w(y − ReN )w

′
(y − ReN )

R

|y − ReN | + λw2(y − ReN )

)
dy

=
∫

RN
f (w)w + O(e−(2+ σ

2 )R)

+
∫

∂R
N+

w2(y − ReN )

(
w

′

w
(y − ReN )

R

|y − ReN | + λ

)
dy.

Put α = |y′ |. So w(y − ReN ) = w(
√

α2 + R2) on ∂R
N
+ . For R  1, we have

√
α2 + R2 = R

√
1 + α2

R2
= R

(
1 + α2

2R2
+ O

(
α4

R4

))

= R + α2

2R
+ O

(
α4

R3

)
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which suggests that we take α = √
Rt .

We consider first λ < 1. By (2.7), we obtain that

(2.9)

∫
∂R

N+
w2(y − ReN )

(
w

′

w
(y − ReN )

R

|y − ReN | + λ

)
dy

= |SN−1|
∫ +∞

0
w2(

√
α2+ R2)

(
λ + R√

α2 + R2

(
−1 − N − 1

2
√

α2 + R2

)

+ O
(

1

R2

))
αN−2dα

= |SN−1|R N−1
2

∫ +∞

0
w2(

√
R2 + Rt2)

(
λ − 1 + O

(
1

R

))
t N−2dt

= |SN−1|R N−1
2 (λ − 1)

∫ +∞

0
w2(

√
R2 + Rt2)t N−2dt

(
1 + O

(
1

R

))
< 0

where |SN−1| is the area of the unit sphere SN−1 in R
N .

Next we consider

(2.10) λ = 1 + c0

R

where c0 > 0 is to be determined. Then we have

1

|SN−1|
∫

∂R
N+

w2(y − ReN )

(
w

′

w
(y − ReN )

R

|y − ReN | + λ

)
dy

=
∫ +∞

0
w2(

√
α2 + R2)

(
1 + c0

R
− R√

α2 + R2
− (N − 1)R

2(α2 + R2)

+O
(

1

R2

))
αN−2dα

= R
N−1

2

∫ +∞

0
w2(

√
R2 + Rt2)

(
c0

R
+ t2

2R
− N − 1

2R
+ O

(
1

R2

))
t N−2dt

= R− N−1
2 A2

∫ +∞

0
e−2R−t2

(
c0

R
+ t2

2R
− N − 1

2R
+ O

(
1

R2

))
t N−2dt

= A2 R− N+1
2 e−2R 1

2

(∫ +∞

0
e−t2

(2c0 + t2 − (N − 1))t N−2dt + O
(

1

R

))

Note that

(N − 1)

∫ +∞

0
t N−2e−t2

dt =
∫ +∞

0
e−t2

dt N−1 = 2
∫ +∞

0
t N e−t2

dt.
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So we obtain

(2.11)

∫
∂R

N+
w2(y − ReN )

(
w

′

w
(y − ReN )

R

|y − ReN | + λ

)
dy

= A2

2
R− N+1

2 e−2R
(

2c0

∫ +∞

0
e−t2

t N−2 −
∫ +∞

0
t N e−t2

dt + O
(

1

R

))
.

Now we choose c0 > 0 so that

(2.12) 4c0

∫ +∞

0
e−t2

t N−2 =
∫ +∞

0
t N e−t2

dt

We conclude that for λ ≤ 1 + c0
R with c0 satisfying (2.12), we have

(2.13)

∫
R

N+
(|∇vR|2 + v2

R) +
∫

∂R
N+

λv2 ≤
∫

RN
f (w(y))w(y) + O(e−(2+ σ

2 )R)

+




|SN−1|R N−1
2 (λ−1)

∫ +∞

0
w2(

√
R2+Rt2)t N−2dt

(
1+O

(
1

R

))
, if λ<1,

|SN−1| A2

2
R− N+1

2 e−2R
(
−1

2

∫ +∞

0
t N e−t2

dt+O
(

1

R

))
, if 1≤λ≤1+ c0

R
.

On the other hand, one easily gets that

(2.14)
∫

R
N+

F(w(y − ReN ))dy =
∫

RN
F(w(y)) + O(e−(2+ σ

2 )R).

Now similar to the computations done in Section 5 of [30], which we omit
here, we obtain immediately that for λ ≤ 1 + c0

R , and R  1,

(2.15) cλ ≤ sup
t>0

Iλ(tvR) = Iλ(tRvR) <
1

2

∫
RN

f (w)w −
∫

RN
F(w) = I ∞,

which, by Lemma 2.1, proves (1) of Theorem 1.1.

Remark 2.1. The inequality (2.15) does not hold for N = 1. Indeed,
this can be seen to follow from the above computations and the fact that in
this case w(y) ∼ e−|y| as |y| → +∞. However, it holds for N ≥ 2 since for

N ≥ 2, w(y) ∼ |y|− N−1
2 e−|y| as |y| → +∞, and the previous computations can

be carried through. Actually, we can see that the algebraic term |y|− N−1
2 helps

for this question.
Let λ∗ be defined by (1.14). By (2.15), for λ ≤ 1 + c0

R and R  1,
cλ < I ∞. Hence cλ is achieved for λ ≤ 1 + c0

R . Thus λ∗ > 1. There are two
cases to be considered: λ∗ = +∞, or 1 < λ∗ < +∞.
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Let us first consider λ∗ = +∞. We will show that it is impossible. That is

Lemma 2.3. For λ sufficiently large, cλ is not achieved.

Proof. We derive this fact by contradiction. Suppose there exists a sequence
of solutions wλn attaining cλn , with λn → +∞. This yields that cλn ≤ I ∞ (by
(2.3)). Moreover, for λ < λn , we have

(2.16) cλ ≤ Iλ[wλn ] < Iλn [wλn ] = cλn ≤ I ∞

which, by Lemma 2.1, yields that cλ is achieved for λ < λn . Hence cλ is
achieved for any λ < +∞ and cλ ≤ I ∞ (by (2.3)). Let us denote the minimizer
as wλ. We also note that as λ → +∞, cλ → I ∞. Moreover, wλ(y) → 0 as
|y| → +∞. By the well-known moving plane method (see [16]), wλ(y) is
symmetric in y

′
, i.e., wλ(y

′
, yN ) = wλ(|y′ |, yN ).

Let Rλ > 0 be such that

(2.17) max
y∈R

N+
wλ(y

′
, yN ) = wλ(0, Rλ).

As λ → +∞, the limiting problem becomes

(2.18)

{
�u − u + f (u) = 0 , u ≥ 0 in R

N
+,

u ∈ H 1(RN
+), u = 0 on ∂R

N
+ .

By the result of Esteban and Lions [11], any solution of (2.18) must
vanish identically. So Rλ → +∞ as λ → +∞. Furthermore, by concentration-
compactness and usual limiting process, we immediately have that

‖wλ(·) − w(| · −RλeN |)‖H1(RN+ )
→ 0,(2.19)

‖wλ(·) − w(| · −RλeN |)‖L∞(RN+ )
→ 0,(2.20)

as λ → +∞. We will show that this is impossible. This is done by expanding
cλ to the second term (Lemma 2.5 below). To this end, we need some delicate
estimates of the difference wλ(·) − w(| · −RλeN |).

We first project the limiting function w to R
N
+ with Robin boundary con-

dition. Let PRw be the unique solution of

(2.21)




�PRw − PRw + f (w(· − ReN )) = 0 , PRw > 0 in R
N
+,

PRw ∈ H 1(RN
+), PRw + λ−1 ∂PRw

∂ν
= 0 on ∂R

N
+ .

Let us set

(2.22) η = λ−1, φR = w(· − ReN ) − PRw(·).
Then φR satisfies the following linear equation

(2.23)




�φR − φR = 0 in R
N
+, φR ∈ H 1(RN

+),

φR + η
∂φR

∂ν
= w(· − ReN ) + η

∂w(· − ReN )

∂ν
on ∂R

N
+ .

The following lemma on φR plays an important role. The proof of it is
technical and is delayed to Appendix A.
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Lemma 2.4. (1). As R → +∞,

(2.24) −R−1 log φR(Rx) − �0(x) → 0,

where �0(x) is the unique viscosity solution of the following problem

(2.25)

{ |∇u|2 = 1 in R
N
+,

u(x) = |x − eN | on ∂R
N
+ .

(In fact, �0 is given explicitly by the relation �0(x) = infz∈∂R
N+
(|z − eN |+ |z − x |).)

(2). By taking a subsequence along R → ∞, the renormalized φR converges
in the sense that

(2.26) VR(y) := φR(y + ReN )

φR(ReN )
→ V0 as R → +∞,

where V0 is a solution of the following equation

(2.27)
{

�u − u = 0,

u(0) = 1, u > 0 in R
N

and

(2.28) sup
y∈B4R (0)

(e(1+σ1)|y|VR(y)) ≤ C, for any σ1 > 0.

Let us now use Lemma 2.4 to finish the proof of Lemma 2.3. Our basic
idea is to obtain a lower bound for cλ. In fact we will show that

Lemma 2.5. As Rλ → +∞, we have

(2.29) cλ = I [w] + exp(−2Rλ(1 + o(1))).

Proof. This is similar to Section 6 of [30]. Here we give a simplified
proof. We follow the approach in Section 3 of [9].

We first obtain the following global estimates:

(2.30) wλ(y) ≤ Ce−(1−δ)|y−RλeN |

for δ such that (1 − δ)λ−1 < 1, where C may depend on δ but is independent
of Rλ > 0. In fact, we consider the domain R

N
+\B1(ReN ). Then it follows

from (2.19) that �wλ − (1 − δ)2wλ ≥ 0 in R
N
+\B1(ReN ). Now we compare wλ

with the function Ce−(1−δ)|y−ReN |. One then derives (2.30) from the Maximum
Principle.

Let vλ(y) := wλ(y + RλeN ) where

y ∈ R
N
−Rλ

:= {(y
′
, yN ) ∈ R

N |yN > −Rλ}.
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Then, by elliptic regularity theory, we have

|∇vλ| + vλ ≤ Ce−4(1−δ)Rλ, for y ∈ R
N
−Rλ

\B4Rλ
(0).

So

(2.31)

cλ = 1

2

∫
R

N+
(|∇wλ|2 + w2

λ) + λ

∫
∂R

N+
w2

λ −
∫

R
N+

F(wλ)

= 1

2

∫
R

N+
wλ f (wλ) −

∫
R

N+
F(wλ)

=
∫

R
N
−Rλ

∩B4R (0)

(
1

2
vλ f (vλ) − F(vλ)

)
+ O(e−3Rλ)

Consider the restriction of vλ to the domain R
N
−Rλ

∩ B4Rλ
(0). We decompose

vλ = PRλ
w + (φRλ

(RλeN ))1−δhλ(y), where 0 < δ < 1 is a small but fixed
number and y ∈ R

N
−Rλ

∩ B4Rλ
(0).

Then hλ satisfies

(2.32) �hλ − hλ + f
′
(PRλ

w)hλ + Nλ + Mλ = 0 in R
N
−Rλ

∩ B4Rλ
(0)

and
∂hλ

∂ν
+ λhλ = 0 on ∂R

N
−Rλ

∩ B4Rλ
(0)

where

Nλ = 1

(φRλ
(RλeN ))1−δ

×
[

f (PRλ
w + (φRλ

(RλeN ))1−δhλ) − f (PRλ
w) − f

′
(PRλ

w)(φRλ
(RλeN ))1−δhλ

]
,

and

Mλ = 1

(φRλ
(RλeN ))1−δ

( f (PRλ
w) − f (w)).

By the mean-value property and Lemma 2.4 (see the proof of Lemma 6.1
of [30]), we see that

(2.33) |Nλ| ≤ C(|w(· − RλeN )| + |wλ|)σ |wλ − w(· − RλeN )|σ |hλ|

and

(2.34) |Mλ| ≤ C(φRλ
(RλeN ))δ(w + wR

λ )σ |VRλ
(y)| ≤ C(φRλ

(RλeN ))δeµ|y|

where µ is such that 1 − σ < µ < 1.
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Hence hλ satisfies

(2.35)




�hλ − hλ + f
′
(PRλ

w)hλ + o(1)hλ + o(1)eµ|y| = 0 in R
N
−Rλ

∩ B4Rλ
(0),

∂hλ

∂ν
+ λhλ = 0 on (∂R

N
−Rλ

) ∩ B4Rλ
(0).

Let Gµ(y) be the unique radial solution of

(2.36) �u − µ2u = 0, u(0) = 1, u > 0 in R
N .

Note that Gµ has the following asymptotic behavior

C1|y|− N−1
2 eµ|y| ≤ Gµ(y) ≤ C2|y|− N−1

2 eµ|y|.

Set

(2.37) Hλ = G−1
µ hλ.

We first claim that

(2.38) ‖Hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

≤ C.

Suppose not. Without loss of generality, we may assume that

‖Hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

= Hλ(yλ) > 0.

Observe that |yλ| ≤ C . Otherwise, suppose that |yλ| → +∞. Then there are
two possibilities:either yλ ∈ ∂(RN

−Rλ
∩ B4Rλ

(0)) or yλ ∈ R
N
−Rλ

∩ B4Rλ
(0). Note

that on ∂R
N
−Rλ

,

Hλ

(
1 + µλ−1 ∂Gµ

∂ν
G−1

µ

)
+ λ−1 ∂ Hλ

∂ν
= 0.

Since on ∂R
N
−Rλ

, 1 + µλ−1 ∂Gµ

∂ν
G−1

µ ≥ 1 − µλ−1 > 0, we know by the Hopf
boundary lemma that yλ 
∈ ∂R

N
−Rλ

. If y ∈ ∂ B4Rλ
(0), then we have Hλ ≤

eµRλe−Rλ ≤ C , which is a contradiction. So yλ ∈ R
N
−Rλ

∩ B4Rλ
(0) and then

�Hλ(yλ) ≤ 0, ∇ Hλ(yλ) = 0. Let us compute �Hλ(yλ). By (2.35), Hλ satisfies

�Hλ + 2G−1
µ ∇Gµ∇ Hλ + (−1 + µ2 + f

′
(PRλ

w))Hλ + o(1)Hλ + o(1) = 0

Thus,
Hλ(yλ) ≤ o(1)Hλ(yλ) + C,
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which yields that Hλ(yλ) ≤ C . This is a contradiction to our assumption that
‖Hλ‖L∞(RN

−Rλ
∩B4Rλ

(0))
→ +∞.

Now define

h̄λ = hλ

‖hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

.

Note that since |y|λ ≤ C , one sees that

‖Hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

∼ ‖hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

and hence ‖hλ‖L∞(RN
−Rλ

∩B4Rλ
(0))

→ +∞. It is easy to see that by (2.35),

h̄λ → h0 in C1
loc(R

N ), where h0 satisfies

(2.39) �h0 − h0 + f
′
(w)h0 = 0, |h0| ≤ Ceµ|y|.

By Lemma 6.5 of [30], h0 = ∑N
j=1 aj

∂w
∂yj

for some constants aj . However, by

definition

∇y h̄λ(0) = 1

(φRλ
(RλeN ))1−δ

(∇wλ(RλeN ) − ∇PRλ
w(RλeN ))

= 1

(φRλ
(RλeN ))1−δ

(φRλ
(RλeN )∇VRλ

(0)) → 0.

Hence ∇yh0(0) = 0, which implies that aj = 0, j = 1, ..., N , h0 = 0. This
contradicts the fact that h̄λ → h0 in C1

loc and h̄λ(yλ) ≥ C, |yλ| ≤ C .
Hence (2.38) holds.
Now we can carry the computation as in Section 6 of [30]. By (2.31)

cλ =
∫

R
N
−Rλ

∩B4Rλ
(0)

(
1

2
PRλ

w f (PRλ
w) − F(PRλ

w)

)

+(φRλ
(RλeN ))1−δ

∫
R

N
−Rλ

∩B4Rλ
(0)

(
1

2
PRλ

w f
′
(PRλ

w)− 1

2
f (PRλ

w)

)
hλ+ o(φRλ

(RλeN ))

Note that∫
R

N
−Rλ

∩B4Rλ
(0)

(PRλ
w f

′
(PRλ

w) − f (PRλ
w))hλ

=
∫

R
N
−Rλ

∩B4Rλ
(0)

[( f
′
(PRλ

w)hλ)PRλ
w − f (PRλ

w)hλ]

=
∫

R
N
−Rλ

∩B4Rλ
(0)

[(−�hλ + hλ − Nλ − Mλ)PRλ
w − ( f (PRλ

w) − f (w))hλ+

− (−�PRλ
w + PRλ

w)hλ)]

=
∫

R
N
−Rλ

∩B4Rλ
(0)

PRλ
w(−Mλ) + O((φRλ

(RλeN ))1−δ)
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Hence by Lemma 2.4

(2.40)

cλ =
∫

R
N
−Rλ

∩B4Rλ
(0)

(
1

2
PRλ

w f (w) − F(PRλ
w)

)
+ o(φRλ

(RλeN ))

=
∫

RN

(
1

2
w f (w) − F(w)

)
+ c1φRλ

(RλeN ) + o(φRλ
(RλeN ))

where

c1 =
∫

RN

(
1

2
f (w)V0

)
> 0

by Lemma 4.7 of [30]. By Lemma 2.5, φRλ
(RλeN ) = e−Rλ�R (eN )(1+o(1)) =

e−2Rλ(1+o(1)).
Lemma 2.5 is thus proved.

This lemma shows that for λ large enough

(2.41) cλ > I [w]

which is impossible since we have shown that cλ ≤ I [w].
Lemma 2.3 is therefore proved.

Next we consider the case 1 < λ∗ < +∞. We claim that

Lemma 2.6. For the value λ = λ∗, the infimum cλ in (1.13) is achieved.

Proof. Like Lemma 2.3, we prove it by contradiction. Suppose there exists
a sequence of solutions wλn attaining cλn , with λn ↗ λ∗, λn < λ∗. Suppose
that for λ = λ∗ > 1, cλ is not achieved. This implies that cλ∗ = I ∞ and by
concentration-compactness, there exists Rλ → +∞ such that as λ ↗ λ∗, λ < λ∗

(2.42) ‖wλ − w(· − RλeN )‖H1(RN+ )
→ 0, ‖wλ − w(· − RλeN )‖L∞(RN+ )

→ 0.

The remaining of the proof is exactly the same as that of Lemma 2.3. Note
that in the proof of Lemma 2.3, we only used the property that η = 1

λ
< 1.

(2) and (3) of Theorem 1.1 now follow from Lemma 2.3 and Lemma 2.6.

3. – Proof of Theorem 1.2

Let λ ≤ λ∗ and let uε,λ be a least-energy solution defined in Section 1.
We now study the asymptotic behavior of uε,λ for λ ≤ λ∗ as ε → 0. We will
prove Theorem 1.2 in this section.

We first derive an upper bound for cε,λ.
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Lemma 3.1. Let λ ≤ λ∗. Then for ε sufficiently small, we have

(3.1) cε,λ ≤ εN {cλ − ε H̄(P) + o(ε)} ,

for any P ∈ ∂�, where cλ is given in (1.13) and H(P) is the generalized mean
curvature defined by (1.16).

Proof. Fix any P ∈ ∂�.
By Theorem 1.1 (3), cλ is achieved by some function wλ ∈ H 1(RN

+), which
solves (1.11). Let

(3.2) Sλ = {wλ|wλ solves (1.11) and achieves cλ} .

Since cλ ≤ I ∞, we see that for any wλ ∈ Sλ,

(3.3)
∫

R
N+
(|∇wλ|2 + w2

λ) + λ

∫
∂R

N+
w2

λ − 2
∫

R
N+

F(wλ) ≤ 2cλ = 2I ∞ .

On the other hand, since wλ solves (1.11), we derive the following identity

(3.4)
∫

R
N+
(|∇wλ|2 + w2

λ) + λ

∫
∂R

N+
w2

λ =
∫

R
N+

f (wλ)wλ .

Using the assumption (f4), from (3.3) and (3.4), we see that there exists some
constant C independent of λ such that∫

R
N+
(|∇wλ|2 + w2

λ) ≤ C, ∀wλ ∈ Sλ, ∀λ > 0 .

This shows that the set Sλ is a compact set. So for each fixed P ∈ ∂�, there
exists a wλ ∈ Sλ such that

(3.5) H(P) = −
∫

R
N+

y
′∇′

wλ

∂wλ

∂yN
H(P) = max

wλ∈Sλ

[
−

∫
R

N+
y

′∇′
wλ

∂wλ

∂yN
H(P)

]
.

Now we choose the wλ which achieves the maximum at (3.5). Multiply-
ing (1.11) by |y′ |2 ∂w

∂yN
and integrating by parts, we obtain that

−
∫

R
N+

y
′∇′

wλ

∂wλ

∂yN
= 1

2

∫
∂R

N+
|y′ |2

(
1

2
|∇wλ|2 + 1

2
w2

λ − F(wλ) + λwλ

∂wλ

∂yN

)

So we have another expression for H(P)

(3.6) H(P) = 1

2

∫
∂R

N+
|y′ |2

(
1

2
|∇wλ|2 + 1

2
w2

λ − F(wλ) + λwλ

∂wλ

∂yN

)
H(P)
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Let

(3.7) vε(x) = wλ

(
x − P

ε

)

be our test function. We now compute J [vε].
Without loss of generality, we may assume that P = 0 and that there is a

smooth transformation ρ : � ∩ Br0(0) → R
N
+ such that ρ(0) = 0, ∇ρ(0) = 0,

where r0 > 0 is a small number. Moreover, ∂�∩Br0(0) = {(x
′
, xN )|xN > ρ(x

′
)}.

Now define

(3.8) εy
′ = x

′
, εyN = xN − ρ(x

′
)

Then we have

(3.9)

∫
�

(ε2|∇vε |2 + v2
ε )

= εN


∫

R
N+


(|∇wλ|2 + w2

λ) + ∂

∂yN
(|∇wλ|2 + w2

λ)
1

2

N−1∑
i, j=1

ερi j (0)y
′
i y

′
j






+ O(e− c
ε )

= εN

(∫
R

N+
(|∇wλ|2 + w2

λ) − ε

2
H(P)

∫
∂R

N+
(|∇wλ|2 + w2

λ)|y
′ |2 + o(ε)

)

Similarly we have

(3.10)
∫

�

F(vε) = εN

(∫
R

N+
F(wλ) − 1

2
εH(P)

∫
∂R

N+
F(wλ)|y′ |2 + o(ε)

)

On the other hand

(3.11)

λε

∫
∂�

v2
ε =λε

∫
∂�

v2
ε

(
y

′
,
ρ(εy

′
)

ε

)
dx

′ =λεN
∫

∂R
N+
v2

ε

(
y

′
,
ρ(εy

′
)

ε

)
dy

′

= λεN

(∫
∂R

N+
w2

λ − εH(P)

∫
∂R

N+
wλ

∂wλ

∂yN
|y′ |2 + o(ε)

)
.

So

J [vε] = εN

(
J [wλ] − εH(P)

1

2

∫
∂R

N+
|y′ |2

(
1

2
|∇wλ|2

+1

2
w2

λ − F(wλ) + λwλ

∂wλ

∂yN

)
+ o(ε)

)

By (3.6), this finishes the proof of (3.1).
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Next, we shall obtain a lower bound for cε,λ. Since we do not know if the
solution to (1.11) is unique, we use an idea of [4], where a simplified proof of
the results of [27] and [30] is obtained.

Let uε,λ be a least energy solution of (1.1) with (1.5) and uε,λ(xε) =
maxx∈�̄ uε,λ(x). Then, by the Maximum Principle, we know that xε ∈ �.
Moreover, if d(xε ,∂�)

ε
were not bounded, then, we would have uε,λ → w( x−xε

ε
)

and lim infε→0 ε−N cε,λ ≥ I [w], by the same argument as in [26]. Thus d(xε ,∂�)
ε

is bounded. Let

(3.12) vε,λ(y) = uε,λ(xε + εy), y ∈ �ε = {y|εy + xε ∈ �} .

Then vε,λ converges in the H 1-sense to wλ, a least energy solution of (1.11).
Moreover, as in [26], for certain positive constants a and b, we have

(3.13) vε,λ(y) ≤ ae−b|y| .

Let x̃ε be the closest point to xε on ∂�. After a rotation and a translation,
we may also assume that x̃ε = 0 and that a fixed neighborhood � ∩ Br0(0) of

the set � can be represented as the set {(x
′
, xN )|xN > ρε(x

′
)} with ρε(0) =

0, ∇ρε(0) = 0. For an open set �, we define

(3.14) Jε,�[v] = 1

2

∫
�

(|∇v|2 + v2) + λ

2

∫
∂�

v2 −
∫

�

F(v), v ∈ H 1(�)

From the variational characterization of cε,λ = Jε[uε,λ], we infer that

(3.15) ε−N Jε[uε,λ] ≥ ε−N Jε[tuε,λ] = Jε,�ε [tvε,λ] .

for all t > 0.
Let V = Br0

ε
(0). We now define ṽε on R

N
+ ∩ V as follows

(3.16) ṽε(y
′
, yN ) =




vε,λ(y
′
, yN ), if ρ(εy

′
) > 0 ,

vε,λ

(
y

′
,
ρ(εy

′
)

ε

)
+ ∂vε,λ

∂yN

(
yN − ρ(εy

′
)

ε

)
, if ρ(εy

′
)<0 .

Then ṽε(y
′
, yN ) is a function defined on R

N
+ ∩ V . By (3.13), we may extend

ṽε(y
′
, yN ) to the whole R

N
+ . We still denote such extension as ṽε(y

′
, yN ). Then

(3.17) Jε,�ε [tvε,λ]≥ J
R

N+∩V [t ṽε]+ J
�ε∩V \R

N+
[tvε,λ]− J

R
N+∩V \�ε

[t ṽε]= I1+ I2+ I3

where Ii , i = 1, 2, 3 are defined at the last equality.
Let us choose t = tε so that J

ε,RN+∩V [t ṽε] maximizes in t . Then by the

definition of cλ and the exponential decay of vε,λ, we get that

(3.18) J
ε,RN+∩V [tε ṽε] ≥ cλ + O(e− c

ε )
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Moreover

tε = 1 + o(1)

Next,

I2 = J
�ε∩V \R

N+
[tεvε,λ]

=
∫

B r0
ε

(0)

dy
′
∫ 0

ρ
−
ε (εy

′
)

ε

(
1

2
|∇tεvε,λ|2+ 1

2
(tεvε,λ)

2−F(tεvε,λ)

)
(y

′
, yN )dyN +O(e− c

ε )

+
∫

∂�ε∩{ρε(εy
′
)<0}

λt2
ε v2

ε,λ

(
y

′
,
ρε(εy

′
)

ε

)
−

∫
∂�ε∩{ρε(εy

′
)<0}

λt2
ε v2

ε,λ(x
′
, 0)dσ

and

I3 =
∫

B r0
ε

(0)

dy
′
∫ ρ+(εy

′
)/ε

0

(
1

2
|∇tεvε,λ|2 + 1

2
(tεvε,λ)

2 − F(tεvε,λ)

)
(y

′
, yN )dyN

+ O(e− c
ε ) +

∫
∂�ε∩{ρε(εy

′
)>0}

λt2
ε v2

ε,λ

(
y

′
,
ρε(εy

′
)

ε

)

−
∫

∂�ε∩{ρε(εy
′
)>0}

λt2
ε v2

ε,λ(x
′
, 0)dσ

Note that √
1 + |∇ρε(εy′

)|2 = 1 + O(ε2|y′ |2)

So dσ = (1 + O(ε2|y′ |2))dx
′
.

Since vλ → wλ in C1 locally with uniform exponential decay, by the
Lebesgue’s convergence theorem,

(3.19)
I2 + I3

ε
→−1

2
H(x̃ε)

∫
∂R

N+
|y′ |2

(
1

2
|∇wλ|2+ 1

2
w2

λ−F(wλ)+λwλ

∂wλ

∂yN

)
dy

′

Thus we conclude that

(3.20) ε−N cε,λ ≥ cλ − ε H̄(xε) + o(ε) .

Now comparing (3.1) and (3.20), we have proved Theorem 1.2.
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4. – Proof of Theorem 1.3

Let λ>λ∗ and uε,λ be a least energy solution. Let uε,λ(xε)=maxx∈� uε,λ(x).
We first observe that

(4.1)
d(xε, ∂�)

ε
→ +∞ .

In fact, suppose not. Then d(xε ,∂�)
ε

≤ C and after taking a subsequence, xε →
x0 ∈ ∂�, d(xε ,∂�)

ε
→ d0 ≥ 0. Set vε,λ(y) = uε,λ(xε + εy), y ∈ �ε = {y|εy + xε ∈

�}. Let vε,λ(y) → wλ in H 1-sense, as ε → 0, where wλ is also a solution
of (1.11). By a simple test function w( x−P

ε
) with P ∈ �, we see that

lim
ε→0

ε−N cε,λ ≤ I [w]

and whence

(4.2) Iλ[wλ] ≤ I [w]

On the other hand, Theorem 1.1 (3) yields that for λ > λ∗, cλ = I [w]. Hence
wλ attains cλ, which is impossible by Theorem 1.1 (3).

Thus (4.1) holds. By the same argument as in [26], [27] or [30], we have
that

(4.3) ‖uε,λ(xε + εy) − w(y)‖L∞(�ε) → 0 .

As in Section 3, we first obtain an upper bound for cε,λ.

Lemma 4.1. For ε sufficiently small, we have

(4.4) cε,λ ≤ εN [I [w] + e− 2d(P,∂�)
ε (1+o(1))]

for any P ∈ �.

Proof. This follows immediately from Proposition 5.1 of [30] if we take
the test function P�ε,P w (defined in [30]) and note that

∫
∂�

(P�ε,P w)2 = 0 .

Next we shall obtain a lower bound for cε,λ:
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Lemma 4.2. For ε sufficiently small, we have

(4.5) cε,λ = εN
[

I [w] + e− 2d(xε ,∂�)
ε (1+o(1))

]
.

Now Theorem 1.3 follows from Lemma 4.1 and Lemma 4.2.

The remaining of the paper is devoted to the proof of Lemma 4.2. Let
xε → x0 ∈ �̄. There are two cases to be considered: Case I, x0 ∈ ∂� and
Case II, x0 ∈ �.

Let us fist consider Case II. That is, x0 ∈ �. In the end, we will show
that Case I can be transformed to Case II.

Like in [30], fix any P ∈ � and define wε,P to be the unique solution of
the following problem with Robin boundary conditions:

(4.6)




ε2�wε,P − wε,P + f
(

w

(
x − P

ε

))
= 0 in � ,

λwε,P + ε
∂wε,P

∂ν
= 0 on ∂� .

Put

(4.7) ϕε,P(x) = w

(
x − P

ε

)
− wε,P .

Then ϕε,P satisfies

(4.8)




ε2�ϕε,P − ϕε,P = 0 in �

λϕε,P + ε
∂ϕε,P

∂ν
= λw

(
x − P

ε

)
+ ε

∂w
( x−P

ε

)
∂ν

on ∂� .

On ∂�, we have

λw

(
x − P

ε

)
+ε

∂w
(x−P

ε

)
∂ν

=λw

(
x − P

ε

)
+w

′
(

x − P

ε

) 〈x − P, ν〉
|x − P|

=w

(
x − P

ε

)(
λ− 〈x − P, ν〉

|x − P| +O
(

ε

d(P, ∂�)

))
≥(λ−1−δ)w

(
x − P

ε

)

where λ − δ − 1 > 0. Therefore, there exist two positive constants C1 and C2
such that

(4.9) C1ϕε,P,1 ≤ ϕε,P ≤ C2ϕε,P,1

where ϕε,P,1 satisfies

(4.10)

{ ε2�ϕε,P,1 − ϕε,P,1 = 0 in � ,

ϕε,P,1 + λ−1ε
∂ϕε,P,1

∂ν
= w

(
x − P

ε

)
on ∂� .

The study of (4.10) depends on the following lemma.
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Lemma 4.3 (Lemma 3.8 of [34]). Suppose that d(P, ∂�) > d0 for some
d0 > 0. Let ϕD

ε,P be the unique solution of

(4.11)

{ ε2�ϕD
ε,P − ϕD

ε,P = 0 in � ,

ϕD
ε,P = w

(
x − P

ε

)
on ∂� .

Then for any arbitrarily small δ > 0, the following holds for ε sufficiently small

(4.12)

∣∣∣∣∣ε ∂ϕD
ε,P

∂ν

∣∣∣∣∣ ≤ (1 + δ)ϕD
ε,P .

From Lemma 4.3, we infer that on ∂�,

ϕD
ε,P + λ−1ε

∂ϕD
ε,P

∂ν
≤ ϕD

ε,P(1 + λ−1(1 + δ)) ≤ (1 + λ−1(1 + δ))w

(
x − P

ε

)

and

ϕD
ε,P + λ−1ε

∂ϕD
ε,P

∂ν
≥ ϕD

ε,P(1 − λ−1(1 + δ)) ≥ (1 − λ−1(1 + δ))w

(
x − P

ε

)
.

By comparison principle, it is straightforward to derive the following lemma.

Lemma 4.4. There exist two positive constants C1 and C2 such that

(4.13) C1ϕ
D
ε,P ≤ ϕε,P ≤ C2ϕ

D
ε,P

where ϕD
ε,P satisfies (4.11).

The study of (4.11) is contained in Section 4 of [30]. By Lemma 4.6
of [30] and Lemma 4.4, we derive the following convergence results.

Lemma 4.5.

(i) ϕε,xε (xε + εy)/ϕε,xε (xε) → V0(y) locally, where V0(y) is a solution of (2.27).
Moreover, for any σ > 0,

(4.14) sup
y∈�ε

e−(1+σ)|y||Vε(y) − V0(y)| → 0

(ii) As ε → 0,

(4.15) −ε log(ϕε,xε (xε)) → 2d(x0, ∂�) .

From Lemma 4.5, we can now prove Theorem 1.3. This is similar to the
proof of Lemma 2.5.
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We first obtain the following global estimates:

(4.16) uε,λ ≤ Ce− (1−δ)|x−xε |
ε

for δ such that (1 − δ)λ−1 < 1, where C may depend on δ but is independent
of ε > 0. In fact, we consider the domain �1 := �\BRε(xε) where R is large.
Then we have ε2�uε,λ − (1 − δ)2uε,λ ≥ 0 in �1. Now we compare uε,λ with

the function Ce− (1−δ)|x−xε |
ε . The estimate (4.16) follows from the Maximum

Principle.
Define vε,λ(y) := uε,λ(xε + εy) = wε,xε + (ϕε,xε (xε))

1−δφε(y). Substituting
the expression into the equation for uε,λ yields that φε satisfies

(4.17) �φε − φε + f
′
(wε,xε )φε + Nε + Mε = 0 in �ε

and
∂φε

∂νε

+ λφε = 0 on ∂�ε

where νε is the outerward normal on ∂�ε ,

(4.18)
Nε = 1

(ϕε,xε (xε))1−δ

[
f (wε,xε + (ϕε,xε (xε))

1−δφε) − f (wε,xε )

− f
′
(wε,xε )(ϕε,xε (xε))

1−δφε

]
,

and

(4.19) Mε = 1

(ϕε,xε (xε))1−δ
( f (wε,xε ) − f (w)) .

By the mean-value theorem and Lemma 4.5, we have that

(4.20) |Nε | ≤ C(|wε,xε | + |vε,λ|)σ |vε,λ − wε,xε |σ |φε |
and

(4.21) |Mε | ≤ C(ϕε,xε (xε))
δ(|w| + |wε,xε |)σ |Vε(y)| ≤ C(ϕε,xε (xε))

δeµ|y|

for any 1 − σ < µ < 1.
Hence φε satisfies

(4.22)

{ �φε − φε + f
′
(wε,xε )φε + o(1)φε + o(1)eµ|y| = 0 in �ε ,

∂φε

∂νε

+ λφε = 0 on ∂�ε .

As in the proof of Lemma 2.5 of Section 2, we set

(4.23) �ε = G−1
µ φε ,

where Gµ satisfies (2.36).
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Similar to the proof of (2.38), we obtain the following bound

(4.24) ‖�ε‖L∞(�ε) ≤ C .

Now we can compute in the same manner as in Section 6 of [30]

ε−N cε,λ = ε−N

[
1

2

∫
�

(ε2|∇vε,λ|2 + v2
ε,λ) + λε

∫
∂�

v2
ε,λ −

∫
�

F(vε,λ)

]

= 1

2

∫
�ε

vε,λ f (vε,λ) −
∫

�ε

F(vε,λ)

=
∫

�ε

(
1

2
wε,xε f (wε,xε

)
− F(wε,xε ))

+ (ϕε,xε (xε))
1−δ

∫
�ε

(
1

2
wε,xε f

′
(wε,xε )−

1

2
f (wε,xε )

)
φε+ o(ϕε,xε (xε)).

Note that∫
�ε

(wε,xε f
′
(wε,xε ) − f (wε,xε ))φε =

∫
�ε

[( f
′
(wε,xε )φε)wε,xε − f (wε,xε )φε]

=
∫

�ε

[
(−�φε+φε−Nε−Mε)wε,xε −( f (wε,xε )

− f (w))φε − (−�wε,xε + wε,xε )φε)
]

=
∫

�ε

wε,xε (−Mε) + O((ϕε,xε (xε))
1−δ).

Hence

cε,λ = εN
[∫

�ε

(
1

2
wε,xε f (w) − F(wε,xε )

)
+ o(ϕε,xε (xε))

]

= εN [
∫

RN

(
1

2
w f (w) − F(w)

)
+ c1ϕε,xε (xε) + o(ϕε,xε (xε))]

where

c1 =
∫

RN
(
1

2
f (w)V0) > 0

by Lemma 4.7 of [30].
This proves (4.5) in Case II.

Finally, let us consider the first case: x0 ∈ ∂�. That is, we assume that
dε := d(xε, ∂�) → 0, xε → x0 ∈ ∂�.

We now show that this case can be transformed to Case II by a suitable
change of variables. Let R > 3λ be a large but fixed number.
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Let Jε,� be defined at (3.14) and

cε,λ,� = inf
v 
≡0,v∈H1(�)

max
t>0

Jε,�[tv].

Let

(4.26) ρε = dε

ε
.

By (4.16) and elliptic regularity theory, it is easy to see that

(4.27) |vε,λ| ≤ Ce−R(1−δ)ρε , x ∈ �\�R

where �R = � ∩ BRε(xε).
Now let ūε be the function defined as the unique solution of the following

problem

(4.28)

{
ε2�ūε − ūε + f (uε) = 0 in �R,

ε
∂ ūε

∂ν
+ λūε = 0 on ∂�R .

From (4.27), it follows that

|uε − ūε | ≤ Ce−Rρε

Hence ūε satisfies the equation on �̄R:

(4.29)

{
ε2�ūε − ūε + f (ūε) + O(e−Rρε ) = 0 in �R,

ε
∂ ūε

∂ν
+ λūε = 0 on ∂�R .

Now we rescale �R as follows:

(4.30) x = xε + dε x̄, x̄ ∈ �R = (�R − xε)/dε .

Then we have

(4.31) cε,λ,�R = d N
ε cε̄,λ,�R

where ε̄ = ε
dε

. Note that by (4.1) ε̄ → 0 and

cε̄,λ,�R = Jε̄,�R (uε) = Jε̄,�R (ūε) + O(ε̄N e− R
2ε̄ )

In the new domain �R , ūε attain its global maximum at x̄ε where d(x̄ε,∂�R)→1.

Moreover, ūε satisfies the following equation

(4.32)

{
ε̄2�ūε − ūε + f (ūε) + O(e− R

ε̄ ) = 0 in �R,

ε̄
∂ ūε

∂ν
+ λūε = 0 on ∂�R .

We are now in the Case II with the new domain �R and the new function ūε .
Now following the same proof as in Case II, we obtain that

(4.32) cε̄,λ,�R = ε̄N (I [w] + e− 2
ε̄
(1+o(1))

)

Substituting (4.33) into (4.4), we obtain the lower bound (4.5) in Case I.

Now comparing (4.5) and (4.4) allows us to conclude and derive the proof
of Theorem 1.3.
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5. – Appendix A: Proof of Lemma 2.4

We devote this appendix to the proof of Lemma 2.4. Our main idea is to
use vanishing viscosity method as in Section 4 of [30] and Section 3 of [34].
(For vanishing viscosity method, we refer to [23].) Since our domain is R

N
+

which is unbounded, we have to work with a sufficiently large domain and then
take a limit.

We begin with the following observation: for η < 1 and y ∈ ∂R
N
+ ,

(5.1) C1w(y − ReN ) ≤ w(y − ReN ) + η
∂w(y − ReN )

∂ν
≤ C2w(y − ReN )

for some constants C1, C2 > 0. (Here we have used the asymptotic behavior
of w stated in Lemma 2.2.) Comparison principle yields that

C1φ
1
R ≤ φR ≤ C2φ

1
R

where φ1
R satisfies

(5.2)

{ �φ1
R − φ1

R = 0 in R
N
+, φ1

R ∈ H 1(RN
+)

φ1
R + η

∂φ1
R

∂ν
= w(· − ReN ) on ∂R

N
+ .

This implies that in order to prove Lemma 2.4, it is enough to consider φ1
R .

To study φ1
R , we introduce another problem: fix a large number M > 4, let φ2

R
be the unique solution of

(5.3)

{ �φ2
R − φ2

R = 0 in R
N
+ ∩ BM R(ReN ),

φ2
R + η

∂φ2
R

∂ν
= w(· − ReN ) on ∂(RN

+ ∩ BM R(ReN )).

Since φ1
R ≤ w(y − ReN ), comparison principle (see similar arguments leading

to (2.30)) gives

(5.4) |φ1
R − φ2

R| ≤ Ce−M R .

We have reduced our problem to consider φ2
R only. To study φ2

R , we compare
φ2

R with the following function: let φ3
R be the unique solution of the following

problem

(5.5)




�φ3
R − φ3

R = 0 in R
N
+ ∩ BM R(ReN ),

φ3
R = w(· − ReN ) on ∂(RN

+ ∩ BM R(ReN )).

Put

(5.6) y = Rx, R−1 = α, �α(x) = −α log φ3
R(y).

Then �α(x) satisfies

(5.7)

{ α��α − |∇�α|2 + 1 = 0 in R
N
+ ∩ BM(eN ),

�α = −α log w

( · − eN

α

)
on ∂(RN

+ ∩ BM(eN )).

We shall prove
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Lemma A.
(1) As R → +∞, �α(x) → �M

0 (x), where �M
0 (x) is the unique viscosity solution

of the following problem

(5.8)
{ |∇u|2 = 1 in R

N
+ ∩ BM(eN ),

u = |x − eN | on ∂(RN
+ ∩ BM(eN ))

In fact, �M
0 can be written explicitly

�M
0 (x) = inf

z∈∂(RN+∩BM (eN ))

(|z − eN | + |z − x |).

(2) There exists a positive constant C > 0 such that

‖∇�α‖L∞(RN+∩BM (eN ))
≤ C.

(3) On ∂(RN
+ ∩ BM(eN )), we have as R → +∞,

(5.9)
∂�α

∂ν
→ ∂�M

0

∂ν
.

Lemma 2.4 now follows from Lemma A: in fact, by (5.9), we have that
on ∂(RN

+ ∩ BM R(ReN )), ∣∣∣∂φ3
R

∂ν

∣∣∣ ≤ (1 + δ)φ3
R

for any δ small, which implies that

C1φ
3
R ≤ φ3

R + η
∂φ3

R

∂ν
≤ C2φ

3
R .

Therefore by comparison principle, we derive

(5.10) C2φ
3
R ≤ φ2

R ≤ C2φ
3
R, y ∈ R

N
+ ∩ BM R(ReN ).

Observing that for M large enough, we have

(5.11) �M
0 (x) = �0(x) = inf

z∈∂R
N+
(|z − eN | + |z − x |), x ∈ B4(eN ).

The rest of the proof of Lemma 2.4 is similar to that of Lemma 4.6 of [30].
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It remains to prove Lemma A. To prove Lemma A, it is enough to prove (3) of
Lemma A: in fact, suppose (3) is true, then we have ‖∇�α‖L∞(∂(RN+∩BM (eN )))

≤C

and simple computations shows that

(5.12) �(|∇�α|2) − 2

α
∇�α · ∇(|∇�α|2) ≥ 0 in R

N
+ ∩ BM(eN ).

So by the Maximum Principle, (2) of Lemma A holds. From (2) and by taking
a limiting process as in Appendix A of [30], we obtain (1) of Lemma A.

To prove (3) of Lemma A, we follow the proof of Lemma 3.7 of [34].
The key fact is that for any M > 0, there exists a constant 0 < lM < 1 such
that

(5.13)
∣∣∣ − α log w

(
z1 − eN

α

)
+ α log w

(
z2 − eN

α

) ∣∣∣ < lM |z1 − z2|

for all z1, z2 ∈ ∂R
N
+, |z1|, |z2| ≤ M , where lM is independent of α. (This

corresponds to Lemma 3.5 of [34].) Then we follow the proof of Lemma 3.7
of [34]. (See similar arguments in Section 8.3 of [23].) We omit the details.
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