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Abstract: The aim of this work is to study a quasilinear elliptic equation with singular nonlinearity and data
measure. Existence and non-existence results are obtained under necessary or su�cient conditions on the
data, where themain ingredient is the isoperimetric inequality. Finally, uniqueness results for weak solutions
are given.
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1 Introduction
In this work, we restrict our attention to the study of a class of quasilinear elliptic problem with a singular
nonlinearity and data measure namely

(Pλ)


−∆u = a(x)

uγ + b(x)|∇u|p + λf in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where Ω is an open bounded subset of RN for N ≥ 2, with smooth boundary ∂Ω and f ∈ M+
b(Ω) is a given

�nite nonnegative Radon measure. We assume that a and b are nonnegative functions, γ > 0, λ > 0, p ≥ 1
and |.| designates the euclidean norm inRN . We stress that the problem is singular as one asks to the solution
to be zero on the boundary.

The study of nonlinear elliptic problems with singular nonlinearities is motivated by its various appli-
cations in many �elds. For example, we can mention �uid mechanics, newtonian �uids, and glaciology
[14]. They are also applicable to model problems arising from boundary layer phenomena for viscous �uids
and chemical heterogeneous catalysts. Furthermore, they can be regarded as mathematical models of
electrostatic MEMS devices or Micro-Electro Mechanical systems [20].
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In order to trace the objectives of our work, we will start by recalling some previous studies where three
types of problems were treated: quasilinear equations with regular data, semilinear problems with singular
nonlinearities and coupling of both problems in the regular case.
_ Case where f is regular:

• Case where b ≡ 0, the problem is simply written in the form
−∆u = a(x)

uγ + λf (x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.1)

The homogeneous case (i.e. λ = 0) was considered in the pioneer works of [15, 23] and references therein.
The authors showed using the method of sub- and supersolutions, that if a(x) is a bounded smooth
function, then (1.1) has a classical solution.
The case where a(x) is only a function in L1(Ω) was treated in [13] where the authors obtained some
existence and regularity results for Problem (1.1) depending on the value of γ. In fact, they showed
that if γ ≤ 1, Problem (1.1) has a weak solution u ∈ H1

0(Ω). Otherwise if γ > 1, there exists a solution
u ∈ H1

loc(Ω) such that u
γ+1

2 ∈ H1
0(Ω).

The nonhomogeneous case (i.e. λ > 0) has also been treated in [17], where the authors proved the
existence of bounded solutions to (1.1) in the case where a and f belong to Lq(Ω) for q > N

2 .

• Case where a ≡ 0, the problem writes
−∆u = b(x)|∇u|p + λf (x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.2)

This problem was considered in [8] in the case where 1 < p ≤ 2, b ∈ L∞(Ω) and f is regular enough. The
authors showed that if (1.2) has a subsolution u and a supersolution u in W2,q (q > N) with u ≤ u in Ω,
then there exists a solution u to (1.2) such that u ≤ u ≤ u.
This problem was also studied in [24], where the authors showed that if f ∈ W1,∞(Ω) and (1.2) has
a nonnegative supersolution in W2,q(Ω) for (q > N), then it has a solution no matter the value of p
(1 ≤ p < ∞). An important step in resolving such problems is to obtain an estimate on the norm of the
gradient of the solution in L∞(Ω). The method used to get this estimate was originally introduced by
Bernstein and later developed and systematized in [21, 22, 30, 31].

_ Case where f is only integrable or a Radon measure:

• Case where b ≡ 0 was treated in [26], where two di�erent cases γ ≤ 1 and γ > 1 were distinguished.
For γ ≤ 1, using an approximation argument, the authors obtained the existence of a weak solution
u ∈ W1,q

0 (Ω) of (1.1) for 1 ≤ q < N
N−1 . For γ > 1, existence and uniqueness of the solution were obtained

only inW1,q
loc (Ω) for every 1 ≤ q < N

N−1 such that Tk(u)
γ+1

2 ∈ H1
0(Ω) (where Tk(u) represents the truncated

function of u). The use of the truncations of u was necessary since the presence of the measure f does
not allow to conclude that u

γ+1
2 itself belongs to H1

0(Ω).

• Case where a ≡ 0 was studied in [6]. Since f is a nonnegative integrable function or, more generally
a given �nite nonnegative measure on Ω, it is not regular enough. Hence the usual techniques that
lead to the W1,∞-solutions can not be applied. This di�culty was the main motivation behind the work
[6], where the authors distinguished three cases such that, for di�erent p values in (1.2), existence and
nonexistence results are established. Firstly, considering a linear growth on the gradient, they proved
the existence of a solution for (1.2) using the isoperimetric inequality. Secondly, they showed that if
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p > 1, the existence of a solution is obtained if λ is su�ciently small and the measure f does not charge
the sets ofW1,p′− capacity zero

(
1
p + 1

p′ = 1
)
. Finally, if p = 2, assuming the existence of a supersolution

inW1,2
0 (Ω), the authors obtained the existence of a solution for Problem (1.2).

In [19], the authors studied the existence of weak solutions for the following generalized elliptic Riccati
equation {

−∆u = |∇u|p + µ in Ω,
u = 0 on ∂Ω,

(1.3)

on a bounded domain Ω ∈ RN for N ≥ 3 with smooth boundary ∂Ω, where p ≥ 1 and µ is a nonnegative
function or a �nite positive Borel measure µ ∈ M+(Ω). By involving geometric capacity estimates or
pointwise behavior of Riesz potentials, togetherwith sharp estimates of solutions and their gradients; the
authors established somenecessary and su�cient conditions for the existence of global solutions to (1.3).

_ Case where λ ≡ 0, b(x) ≡ 1 and 1 < p ≤ 2 was treated in [1], in which the model problem was given by
−∆u = a

uγ + |∇u|p in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.4)

The authors proved that if p = 2, (1.4) admits a distributional solution for all a ∈ L1(Ω). The case where
1 < p < 2 was treated di�erently depending on the function a. Indeed, if a(x) ∈ L∞(Ω), then the existence
was obtained for every γ > 0. However, for the general case a(x) ∈ L1(Ω), the existence of a solution to (1.4)
was proved under the condition γ > γ0, where the exact value of the constant γ0 was given.

We conclude this section by recalling some works on the parabolic version of our problem. Recently, the
authors in [12] considered the following singular nonlinear parabolic equation

ut −∆u = a
uγ + µur in Ω × (0, T),

u = 0 on ∂Ω × (0, T),
u(0) = f in Ω,
u > 0 in Ω × (0, T),

(1.5)

where γ > 0, µ ≥ 0, r > 0 and f ∈ M+
b(Ω).

If r > 1, the existence of a solution to (1.5) was established for suitable small data a and f . Otherwise, if
0 < r < 1, there exists a solution for every data.

Closely related to Problem (1.5) is the following one given by (1.6), which has been considered for the
p-laplacian operator in [27] 

ut − ∆pu = a
uγ + f in Ω × (0, T),

u = 0 on ∂Ω × (0, T),
u(0) = u0 in Ω,

(1.6)

where p > 2 − 1
N + 1 and γ > 0.

The authors in [27] proved that if a ∈ L1(Ω × (0, T)), u0 ∈ L1(Ω) and f ∈ M+
b(Ω × (0, T)), then there exists a

nonnegative distributional solution u ∈ L1(0, T;W1,1
loc (Ω)).

Other results concerning the well-posedness of the following triply nonlinear degenerate elliptic
parabolic equation were obtained in [10],

b(u)t − div(A(u,∇ϕ(u)) + ψ(u) = f , u|t=0 = u0. (1.7)
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Existence, uniqueness and continuous dependence on data u0 and f when [b + ψ](R) = R and ϕ ◦ [b + ψ]−1

is continuous, were established.

The main new aspect of this paper is the fact that λ and the functions a and b are not identically zero.
Our aim in this work is to prove the existence of a suitable weak solution to (Pλ). Here, as well as in the proof
of other similar results, the �rst step is to precise in which sense we want to solve our problem. On one hand,
a solution to (Pλ) has to be understood in the weak distributional meaning. On the other hand, we have to
take into account the singular nonlinearity at zero. For this purpose, we adopt the following de�nitions:

De�nition 1.1. Let u ∈ W1,1
loc (Ω). We say that u ≤ 0 on ∂Ω if (u − ϵ)+ ∈ W1,1

0 (Ω) for every ϵ > 0. Furthermore,
u = 0 on ∂Ω if u is nonnegative in Ω and u ≤ 0 on ∂Ω.

De�nition 1.2. If γ > 0, then a weak solution to Problem (Pλ) is a function
u ∈ W1,1

loc (Ω) and u = 0 in ∂Ω in the sense of De�nition 1.1,
∀ω ⊂⊂ Ω, ∃cω , u ≥ cω > 0 in ω,∫
Ω

∇u∇φ =
∫
Ω

a(x)
uγ φ +

∫
Ω

b(x)|∇u|pφ + λ
∫
Ω

fφ, ∀φ ∈ C1
c (Ω).

(1.8)

The rest of our paper is organized as follows. Section 2 is devoted to necessary conditions on the data to get
existence of weak solutions in (Pλ). In section 3, we investigate the existence of a solution for Problem (Pλ),
when p = 1. Three di�erent cases will be treated separately depending on the value of γ : the non-singular
sublinear problem for any γ > 0, the singular sublinear problem for γ < 1 and the strongly singular problem
for γ ≥ 1. Finally, in section 4, we show the uniqueness of a solution of (Pλ) when it exists, for every
1 ≤ p < N

N + 1 and γ > 0.

Now, in what follows, we give necessary conditions for existence. For this purpose, we prove that for
su�ciently large value of λ, the equation (Pλ) has no weak solution.

2 Necessary conditions for existence

2.1 Size condition

Theorem 2.1. Let p > 1, γ > 0 and λ > 0. We suppose that a ∈ L1(Ω)+ and there exists a ball B0 in Ω such that,
b(x) ≥ C0 > 0 a.e x ∈ B0 and

∫
B0

f > 0. Then there exists 0 < λ* < ∞ such that (Pλ) does not have any solution

for λ > λ*.
Furthermore, when (Pλ) has a solution, then

∀φ ∈ C∞0 (B0) λ
∫
B0

φf ≤ Cp
∫
B0

|∇φ|p
′

φp′−1 , (2.1)

where Cp = p − 1
p

p
p−1 C

1
p−1
0

.

Proof. See Theorem 2.1 [Alaa-Pierre, [Theorem 2.1, [6]]] for a similar detailed proof.

Remark 2.2. The condition (2.1) is at the same time a size and regularity condition on f . It is similar to the
results obtained for quasilinear elliptic equations and multidimensional Riccati equations. In other words,
- a regularity condition is required on f as soon as p > 1;
- moreover, a size condition is also required if p > 2.
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For various discussions on the meaning of (2.1) and its relationship with nonlinear capacities, we refer the
reader to [6] and [19].

Proposition 2.3. [Alaa-Pierre, [Proposition 2.2, [6]]]
Under the hypothesis of Theorem 2.1, if Problem (Pλ) has a solution for some λ > 0, then the measure f does
not charge the sets ofW1,p′ -capacity zero.

Remark 2.4. We recall that a compact set K ⊂ Ω is of W1,p′ -capacity zero if there exists a sequence of C∞0 -
functions φn greater than 1 on K and converging to 0 inW1,p′ . The above statement in Proposition 2.3 implies
that (

K compact, W1,p′ − capacity(K) = 0
)

=⇒
∫
K

f = 0.

Obviously, this is not true for any measure f as soon as N > p′ or p > N
N−1 . See [11] for more details.

Proof. of Proposition 2.3
See [6] for a similar detailed proof.

In the following section, we restrict our attention to the existence of a weak solution to (Pλ) for p = 1. To this
aim, we proceed by an approximation argument. Themain step is to get a priori estimates on the approximate
solution sequences, for any value of γ > 0.

3 Existence Results for any �nite nonnegative Radon measure
In this section, we present existence results of which the proofs are based on the isoperimetric inequality [25],
for linear growth on the gradient (p = 1), and for any �nite measure f ∈ M+

b(Ω). Three di�erent problems will
be treated separately in each subsection: the non-singular sublinear problem for any γ > 0, the singular
sublinear problem for γ < 1 and the strongly singular problem for γ ≥ 1.

3.1 Existence of solutions to the non-singular sublinear problem

Let us consider the following regularized problem in which we regularize the singular term a(x)
uγ by a(x)

(u + ε)γ
where ε > 0, to become not singular at the origin. The problem then rewrites

(Pε)

−∆u = a(x)
(u + ε)γ + b(x)|∇u| + λf in Ω,

u = 0 on ∂Ω.
(3.1)

Theorem 3.1. Let a ∈ L1(Ω)+ and b ∈ LN+η(Ω)+. Then, for all γ > 0, λ > 0 and for all f ∈ M+
b(Ω), Problem (Pε)

has a nonnegative weak solution u inW1,q
0 (Ω) for 1 ≤ q < N

N − 1 .

The main tool in the proof of this theorem is the isoperimetric inequality that we will use under the following
form [25].

Lemma 3.2. Let u ∈ W1,1
0 (Ω). Then

−d
dt

∫
[u>t]

|∇u| ≥ Nω
1
N
N µ(t)1− 1

N , (3.2)

where ωN is the Lebesgue measure of the unit ball of RN , and

µ(t) = meas{x ∈ Ω : |u(x)| > t}. (3.3)



Nour Eddine Alaa, Fatima Aqel, and Laila Taourirte, On singular quasilinear elliptic equations | 1289

Proof. of Theorem 3.1

Step 1. Existence for the approximating problem. Let us approximate our Problem (Pε). For this pur-
pose, we de�ne the truncated function Tk as follows

Tk(r) = max(−k,min(r, k)). (3.4)

Now, we truncate the functions a, b and f by considering the three sequences an, bn and fn which are de�ned
by

let n ∈ N, an(x) = min(a(x), n), bn(x) = min(b(x), n), (3.5)

and
fn ∈ C∞0 (Ω), such that fn ≥ 0, ||fn||L1(Ω) ≤ ||f ||Mb(Ω) and fn → f in Mb(Ω). (3.6)

Let us now consider the following approximated problem
un ∈ W1,∞

0 (Ω),
1
n un − ∆un = an(x)

(un + ε)γ + bn(x)|∇un|
1 + 1

n bn(x)|∇un|
+ λfn in Ω. (3.7)

The constant M = max((2n||an||∞)
1

γ+1 − 1
n + 2λn||fn||∞) is a supersolution of (3.7) and M = 0 is a

subsolution. Then by applying the classical theory (see p.34 of [7] and the Main theorem of [2]), we obtain
the existence of un solution of (3.7).

Step 2. Estimates on the approximating solutions. At this level, we will prove the existence of a con-
stant C independent of n such that ∫

Ω

|∇un|q ≤ M, 1 ≤ q < N
N − 1 . (3.8)

First of all, we introduce the following function

pt,h(r) =


0 if r ≤ t,
r − t
h if t ≤ r ≤ t + h,

1 if r > t + h.

(3.9)

We multiply (3.7) by pt,h(un) and then we integrate on Ω to obtain∫
Ω

[
1
n un − ∆un

]
pt,h(un) =

∫
Ω

[
an

(un + ε)γ + bn|∇un|
1 + 1

n bn|∇un|
+ λfn

]
pt,h(un). (3.10)

We observe that
bn|∇un|

1 + 1
n bn|∇un|

≤ b|∇un|, (3.11)

thus,

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
∫

[t≤un≤t+h]

an
(un + ε)γ

un − t
h +

∫
[un≥t+h]

an
(un + ε)γ

+
∫

[un≥t]

b|∇un| + λ||fn||L1(Ω).

(3.12)



1290 | Nour Eddine Alaa, Fatima Aqel, and Laila Taourirte, On singular quasilinear elliptic equations

Since 0 ≤ un − th ≤ 1 on the set [t ≤ un ≤ t + h] and ||fn||L1(Ω) ≤ ||f ||Mb(Ω), we obtain

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
∫

[un≥t]

an
(un + ε)γ + ||b||LN+η(Ω)

 ∫
[un≥t]

|∇un|q


1
q

+ λ||f ||Mb(Ω),

(3.13)

where q = (N + η)′ = N
N−1 − ε(η), ε(η) > 0.

Hence

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
∫

[un≥t]

an
(t + ε)γ + ||b||LN+η(Ω)

 ∫
[un≥t]

|∇un|q


1
q

+ λ||f ||Mb(Ω).

(3.14)

Finally, we get

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C1
εγ + Cq

 ∫
[un≥t]

|∇un|q


1
q

+ Cλ , (3.15)

where C1 = ||a||L1(Ω), Cq = ||b||LN+η(Ω) and Cλ = λ||f ||Mb(Ω). Now, we assume that N ≥ 2 so that q < 2, and we
use the following two inequalities

1
h

∫
[t≤un≤t+h]

|∇un|q ≤

1
h

∫
[t≤un≤t+h]

|∇un|2


q
2 (

µ(t) − µ(t + h)
h

) 2−q
2

(3.16)

and

1
h

∫
[t≤un≤t+h]

|∇un| ≤

1
h

∫
[t≤un≤t+h]

|∇un|q


1
q (

µ(t) − µ(t + h)
h

) q−1
q

. (3.17)

Next, we take the qth power of (3.17) and we multiply it by the square of (3.16) to �nd1
h

∫
[t≤un≤t+h]

|∇un|


q1

h

∫
[t≤un≤t+h]

|∇un|q

 ≤

1
h

∫
[t≤un≤t+h]

|∇un|2


q (

µ(t) − µ(t + h)
h

)
. (3.18)

Now,weplug the inequality (3.15) into theprevious inequality, andwe let h tend to zero, to obtain adi�erential
inequality satis�ed by σn(t) =

∫
[un≥t]

|∇un|q and de�ned in the following sense

− ddt
∫

[un≥t]

|∇un|


q (
−σ

′

n(t)
)
≤
(
C1
εγ + Cq

(
σn(t)

) 1
q + Cλ

)q
. (3.19)

On the other hand, according to the isoperimetric inequality (3.2), we get

Nqω
q
N
n µn(t)q(1− 1

N )(−σ
′

n(t)) ≤
(
C1
εγ + Cq

(
σn(t)

) 1
q + Cλ

)q (
−µ

′

n(t)
)
. (3.20)

Using Young’s inequality on the right hand side term leads to

−σ
′

n(t) ≤ N−qω
−q
N
n

(
D1
εγq + Dq σn(t) + Dλ

)
µn(t)q( 1

N −1)(−µ
′

n(t))), (3.21)
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where D1 = C1
q, Dq = Cqq and Dλ = Cλq. This implies that

−σ
′

n(t) ≤
(
D̂1
εγq + D̂qσn(t) + D̂λ

)
µn(t)q( 1

N −1)(−µ
′

n(t))), (3.22)

where D̂1 = N−qω
−q
N
n D1, D̂q = N−qω

−q
N
n Dq and D̂λ = N−qω

−q
N
n Dλ.

This can be rewritten as

− ddt
(
e−kµn(t)ασn(t)

)
≤ d
dt

(
e−kµn(t)α

) 1
D̂q

(
D̂1
εγq + D̂λ

)
, (3.23)

where α = 1 − q N−1
N and kα = D̂q.

Then by integrating from t = 0 to t = ||un||∞, and knowing σn(||un||∞) = 0 and µn(||un||∞) = 0, we obtain

e−kµn(0)ασn(0) ≤ 1
D̂q

(
D̂1
εγq + D̂λ

)
. (3.24)

Since µn(0) ≤ |Ω|, we get ∫
Ω

|∇un|q ≤ C, (3.25)

where C = ek|Ω|α 1
D̂q

(
D̂1
εγq + D̂λ

)
.

Step 3. Passage to the limit.We have∣∣∣∣∣∣∣∣ an
(un + ε)γ

∣∣∣∣∣∣∣∣
L1(Ω)

≤
||a||L1(Ω)
εγ , (3.26)

and then from (3.7) and (3.25), we deduce

||∆un||L1(Ω) ≤ C and ||un||W1,q
0 (Ω) ≤ C. (3.27)

This yields to the compactness of un inW1,q
0 (Ω) for 1 ≤ q < N

N − 1 . Then there exists a function u such that (up
to not relabeled sub-sequences), the sequence un converges to u strongly inW1,q

0 (Ω), and (un ,∇un) converges
to (u,∇u) a.e in Ω.
Moreover, by compact embedding, we obtain that un converges strongly to u in L1(Ω).
Thus, taking φ in C1

c (Ω), we have that ∣∣∣∣ anφ
(un + ε)γ

∣∣∣∣ ≤ ||φ||L∞(Ω)
εγ a. (3.28)

Applying Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫
Ω

anφ
(un + ε)γ =

∫
Ω

a φ
uγ . (3.29)

Finally, since b ∈ LN+η(Ω), then b|∇un| converges strongly to b|∇u| in L1(Ω). This concludes the proof since
it is straightforward to pass to the limit in the last term containing fn.

3.2 Existence of solutions to the singular sublinear problem and for every
nonnegative Radon measure

Theorem 3.3. Let 0 < γ < 1, a ∈ L∞(Ω)+ and b ∈ LN+η(Ω)+. Then for all λ > 0 and all f ∈ M+
b(Ω), Problem (Pλ)

has a solution u inW1,q
0 (Ω) for every 1 ≤ q < N

N − 1 .
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The proof of Theorem 3.3 strictly follows the main steps of the previous proof of Theorem 3.1. We will then
sketch it by enlightening themain di�erences. Estimateswillmainly be based on the isoperimetric inequality,
and so they will be formally very similar to the previous proof. The main challenge in this case will be to
control the singular term 1

unγ
, for which wewill show that un is bounded from below on the compact subsets

of Ω.

Proof. Step 1. Existence for the approximating problem.
Let us now consider the following approximated problem

un ∈ W1,q
0 (Ω), 1 ≤ q < N

N − 1 ,

−∆un = a(x)(
un + 1

n

)γ + b(x)|∇un| + λf in Ω. (3.30)

The existence of a solution for (3.30) is ensured by Theorem 3.1 by letting ε = 1
n in Problem (Pε).

Step 2. Local uniformbound frombelow.Here,we show that un is bounded frombelowon the compact
subsets of Ω. In particular, we check that the sequence un is such that for every ω ⊂⊂ Ω, there exists a
constant cω > 0 such that

un(x) ≥ cω in ω, for every n ∈ N. (3.31)

In fact, we have
−∆un ≥ λf . (3.32)

Hence, using the uniform Hopf principle as formulated in [3] and [16], there exists a constant C only depend-
ing on Ω such that

Gf ≥ C(Ω)

∫
Ω

fϕ1

ϕ1, (3.33)

where ϕ1 denotes the �rst eigenfunction of −∆ with Dirichlet homogeneous boundary conditions, and G
denotes the inverse in L1(Ω) of the operator −∆ under homogeneous Dirichlet conditions.
Therefore we have

un ≥ λ Gf ≥ λ C(Ω)

∫
Ω

fϕ1

ϕ1. (3.34)

Thus, for all compact subset ω of Ω, there exists a constant cω (not depending on n) such that un ≥ cω, in

which cω can be taken as cω = λC̃(Ω) min{ϕ1(x), x ∈ ω}, where C̃(Ω) = C(Ω)

∫
Ω

fϕ1

.

Step 3. Estimates on the approximating solutions. Let us take φ = pt,h(un) as a test function in the
weak formulation (3.30), where pt,h is given by (3.9). Applying (3.34), we have 1

unγ
≤ C
ϕ1

γ , in which C =(
λ C̃(Ω)

)γ
. Using the fact that un + 1

n ≥ un, we obtain∫
Ω

∇un∇pt,h(un) ≤ C
∫
Ω

a(x)pt,h(un)
ϕ1

γ +
∫
Ω

b(x)|∇un|pt,h(un) + λ
∫
Ω

fpt,h(un),

which implies that

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C
∫

[t≤un≤t+h]

a(x)
ϕ1

γ
(un − t)
h + C

∫
[un≥t+h]

a(x)
ϕ1

γ

+
∫

[un≥t]

b(x)|∇un| + λ||f ||Mb(Ω).
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Since 0 ≤ un − th ≤ 1 on the set [t ≤ un ≤ t + h], we obtain

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C
∫
Ω

a(x)
ϕ1

γ +
∫

[un≥t]

b(x)|∇un| + λ||f ||Mb(Ω).

Therefore

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C
∫
Ω

a(x)
ϕ1

γ + ||b||LN+η(Ω)

 ∫
[un≥t]

|∇un|q


1
q

+ λ||f ||Mb(Ω),

in which q = (N + η)′ = N
N−1 − ε(η), ε(η) > 0.

Thus

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C1

∫
Ω

1
ϕ1

γ + Cq

 ∫
[un≥t]

|∇un|q


1
q

+ Cλ ,

where C1 = C||a||L∞(Ω), Cq = ||b||LN+η(Ω) and Cλ = λ||f ||Mb(Ω).
Analogously to the proof of the previous theorem, we �nally get∫

Ω

|∇un|q ≤ C. (3.35)

Step4.Passage to the limitSimilarly to thepassage to the limit in (3.7),wemayassume that un converges
strongly to u in L1(Ω) and a.e. in Ω.
Thus, taking φ in C1

c (Ω), we have that ∣∣∣∣∣ anφ(
un + 1

n
)γ
∣∣∣∣∣ ≤ ||φ||L∞(Ω)

ϕ1
γ a. (3.36)

Finally, applying Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫
Ω

anφ(
un + 1

n
)γ =

∫
Ω

a φ
uγ . (3.37)

By a straightforward re-adaptation of the previous theorem, u is a solution to (Pλ).

3.3 The strongly singular case: γ ≥ 1

In this case, only local estimates on the approximated solution un can be obtained. Our aim here is mainly to
give global estimates on T

γ+1
2
k (u) in H1

0(Ω) in order to provide at least a weak sense to u on the boundary of Ω.

Theorem 3.4. Let γ ≥ 1, a ∈ L1(Ω)+ and b ∈ LN+η(Ω)+. Then for all f ∈ M+
b(Ω) and λ > 0, (Pλ) has a solution

u inW1,q
loc (Ω) for every 1 ≤ q < N

N − 1 . Furthermore, Tk(u)
γ+1

2 ∈ H1
0(Ω).

Proof. Analogously to Step 1 and Step 2 in the proof of Theorem 3.3, we obtain the existence of a solution un
for the approximated Problem (3.30) for γ ≥ 1, such that for all ω ⊂⊂ Ω, there exists a constant cω > 0 such
that

un(x) ≥ cω in ω. (3.38)

In what follows, we show that Tk(u)
γ+1

2 ∈ H1
0(Ω).

To this aim, let H be a function in C1(R) de�ned by

H(s) =
{

0 if |s| ≥ 1,
s if |s| ≤ 1

2 .
(3.39)
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We introduce the test function
ϕ = H

(un
k

)γ
eβun . (3.40)

Next, we multiply (3.30) (with γ ≥ 1) by ϕ and we integrate on Ω to obtain

γ

k

∫
Ω

|∇un|2H′
(un
k

)
H
(un
k

)γ−1
eβun + β

∫
Ω

|∇un|2H
(un
k

)γ
eβun

=
∫
Ω

an
(un + 1

n )γ
H
(un
k

)γ
eβun +

∫
Ω

bn|∇un|H
(un
k

)γ
eβun

+
∫
Ω

λfH
(un
k

)γ
eβun .

(3.41)

Hence

c(k)
∫
Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 + β

∫
Ω

|∇un|2H
(un
k

)γ
eβun

≤
∫

[un≤k]

an
(un + 1

n )γ
H
(un
k

)γ
eβun +

∫
[un>k]

an
(un + 1

n )γ
H
(un
k

)γ
eβun

+
∫
Ω

bn|∇un|H
(un
k

)γ
eβun +

∫
Ω

λfH
(un
k

)γ
eβun .

(3.42)

By using the de�nition of H given by (3.39), the second term of the right-hand side of the inequality (3.42)
vanishes and for the �rst term, we have∫

[un≤k]

an
(un + 1

n )γ
H
(un
k

)γ
eβun ≤ eβk

∫
Ω

an
(un + 1

n )γ
(un
k

)γ
. (3.43)

Since uγn
(un + 1

n )γ
≤ 1, then ∫

[un≤k]

an
(un + 1

n )γ
H
(un
k

)γ
eβun ≤ Ck||a||L1(Ω). (3.44)

Using Young’s inequality in the third term of (3.42), we obtain

c(k)
∫
Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 + β

∫
Ω

|∇un|2H
(un
k

)γ
eβun

≤ Ck||a||L1 + ε
∫
Ω

|∇un|2H
(un
k

)γ
eβun + C(ε, k)

∫
Ω

b2

+
∫
Ω

λfH
(un
k

)γ
eβun .

(3.45)

Concerning the last term in (3.45), we have

λ
∫
Ω

f H
(un
k

)γ
eβun = λ

∫
[un≤k]

f H
(un
k

)γ
eβun + λ

∫
[un>k]

f H
(un
k

)γ
eβun . (3.46)

Since H
(un
k

)γ
eβun ≤

(un
k

)γ
eβun ≤ eβk on the set [un ≤ k], we get

λ
∫
Ω

f H
(un
k

)γ
eβun ≤ Ck ′||f ||Mb . (3.47)
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Thus

c(k)
∫
Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 + (β − ε)

∫
Ω

|∇un|2H
(un
k

)γ
eβun ≤ Ck||a||L1 + C(ε, k)

∫
Ω

b2 + Ck ′||f ||Mb . (3.48)

Choosing β such that β − ε > 0 leads to

c(k)
∫
Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 ≤ Ck||a||L1 + C(ε, k)

∫
Ω

b2 + Ck ′||f ||Mb . (3.49)

Finally, we get ∫
Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 ≤ Ĉ(k). (3.50)

Now, we observe that ∫
[un≤ k2 ]

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 ≤ ∫

Ω

∣∣∣∣∇H (unk ) γ+1
2
∣∣∣∣2 ≤ Ĉ(k). (3.51)

From the de�nition of H, we obtain that
1
kγ+1

∫
[un≤ k2 ]

|∇u
γ+1

2
n |

2 ≤ Ĉ(k). (3.52)

Consequently ∫
Ω

|∇T k
2

(un)
γ+1

2 |2 ≤ C(k). (3.53)

Even if we replace k2 by k, we obtain the desired result.
Next, we show the boundedness of un inW1,q

loc (Ω) into two steps.
For �xed k > 0, we will make use of the two truncations functions Tk(r) given by (3.4) and Gk(r) de�ned as

Gk(r) = (|r| − k)+ sign(r).

Step 1: G1(un) is bounded inW1,q
0 (Ω) for all 1 ≤ q < N

N − 1 .
In other words, we have to prove that there exists a constant C̄k depending only on k such that∫

[un≥1]

|∇un|q ≤ C̄k . (3.54)

Analogously to the case γ < 1, we take ϕ = pt,h(un) as a test function in (3.30), and we obtain∫
Ω

−∆un pt,h(un) =
∫
Ω

[
an

(un + 1
n )γ

+ bn|∇un| + λfn
]
pt,h(un). (3.55)

Hence

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
∫

[un≥t]

an
(un + 1

n )γ
+
∫

[un≥t]

b|∇un| + λ||f ||Mb(Ω).

Therefore

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
∫
Ω

an
(t + 1

n )γ
+ ||b||LN+η(Ω)

 ∫
[un≥t]

|∇un|q


1
q

+ λ||f ||Mb(Ω), (3.56)
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where q = (N + η)′ = N
N−1 − ε(η), ε(η) > 0. Then, we get

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤
||a||L1(Ω)
tγ + ||b||LN+η(Ω)

 ∫
[un≥t]

|∇un|q


1
q

+ λ||f ||Mb(Ω). (3.57)

We thus get the following inequality

1
h

∫
[t≤un≤t+h]

|∇un|2 ≤ C1
tγ + Cq

 ∫
[un≥t]

|∇un|q


1
q

+ Cλ , (3.58)

where C1 = ||a||L1(Ω), Cq = ||b||LN+η(Ω) and Cλ = λ||f ||Mb(Ω).
Let us now plug the inequality (3.58) into the previous inequality (3.18). By tending h to zero, we obtain a
di�erential inequality satis�ed by the function σn which is de�ned in the following sense σn(t) =

∫
[un≥t]

|∇un|q,

(− ddt

∫
[un≥t]

|∇un|)q(−σ
′

n(t)) ≤
(
C1
tγ + Cqσn(t)

1
q + Cλ

)q
(−µ

′

n(t)). (3.59)

On the other hand, according to the isoperimetric inequality (3.2), we get

Nqω
q
N
n µn(t)q(1− 1

N )(−σ
′

n(t)) ≤
(
C1
tγ + Cq

(
σn(t)

) 1
q + Cλ

)q (
−µ

′

n(t)
)
. (3.60)

Using Young’s inequality on the right-hand side term leads to

−σ
′

n(t) ≤ N−qω
−q
N
n

(
D1
tγq + Dq σn(t) + Dλ

)
µn(t)q( 1

N −1)(−µ
′

n(t))), (3.61)

where D1 = C1
q, Dq = Cqq and Dλ = Cλq. This implies that

−σ
′

n(t) ≤
(
D̂1
tγq + D̂qσn(t) + D̂λ

)
µn(t)q( 1

N −1)(−µ
′

n(t))), (3.62)

where D̂1 = N−qω
−q
N
n D1, D̂q = N−qω

−q
N
n Dq and D̂λ = N−qω

−q
N
n Dλ.

This can be rewritten as

− ddt
(
e−kµn(t)ασn(t)

)
≤ d
dt

(
e−kµn(t)α

) 1
D̂q

(
D̂1
tγq + D̂λ

)
, (3.63)

where α = 1 − q N−1
N and kα = D̂q.

Integrating between 1 and ||un||∞, since σn(||un||∞) = 0 and µn(||un||∞) = 0, we get∫
[un≥1]

|∇un|q ≤ ĈN [ekµn(1)α − 1]. (3.64)

This concludes the statement of Step 1.

Step 2: T1(un) is bounded in H1
loc(Ω).

We have to investigate the behavior of (un) for its small values (un ≤ 1). To do so, we need to prove that
∀ω ⊂⊂ Ω, ∫

ω

|∇T1(un)|2 ≤ C
′
. (3.65)
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First, we take Tγ1 (un) as a test function in (3.30), and we get

γ

∫
ω

|∇T1(un)|2 Tγ−1
1 (un) =

∫
Ω

[
an

(un + 1
n )γ

+ bn|∇un| + λfn
]
Tγ1 (un) ≤ C. (3.66)

Furthermore, according to (3.38), we have un ≥ cω on ω, and we observe that

γ cωγ−1
∫
ω

|∇T1(un)|2 ≤ γ
∫
Ω

|∇T1(un)|2 Tγ−1
1 (un) ≤ C. (3.67)

Now since un = T1(un) + G1(un), we deduce that un is bounded inW1,q
loc (Ω) for every 1 ≤ q < N

N − 1 .
By (3.30), we obtain

||∆un||L1
loc(Ω) ≤ C(ω),

This yields to the compactness of (un) inW1,q
loc (Ω) for 1 ≤ q < N

N − 1 by applying the following Lemma:
Lemma 3.5. [Baras-Pierre, [Lemma A.2, [11]]]
Let un ∈ W1,q

loc (Ω), 1 ≤ q < N
N − 1 such that

||un||W1,q
loc
≤ C and ||∆un||L1

loc(Ω) ≤ C. (3.68)

Then we can extract a subsequence of (un) still denoted un such that

un → u inW1,q
loc (Ω),

un → u almost everywhere in Ω.

Proof. See Lemma A.2 of [11] for a detailed proof.

Now, for the passage to the limit in (3.30), let ω ⊂⊂ Ω and φ ∈ C∞0 (Ω), such that supp φ = ω.
Since un ≥ cω in ω, we have ∣∣∣∣∣ an(

un + 1
n
)γ φ

∣∣∣∣∣ ≤ ||φ||L∞(Ω)
cωγ

a ∈ L1(Ω). (3.69)

Hence, applying Lebesgue’s dominated convergence theorem, we deduce that an(
un + 1

n
)γ converges to a

uγ in

L1
loc(Ω).

Finally, we deduce that u is a solution to (Pλ) by a straightforward re-adaptation of the passage to the
limit in the previous theorem.

4 Uniqueness of weak solutions

Theorem 4.1. Let a ∈ L1(Ω)+, b ∈ LN+η(Ω)+ and 1 ≤ p < N
N − 1 . Then for all γ > 0, λ > 0 and f ∈ M+

b(Ω), the
solution of (Pλ) is unique if it exists.

In order to prove this result, we start by recalling the following technical lemma

Lemma 4.2. Let us consider j(r) = |r|p. The function j is convex and we have

∀r ∈ Rn , ∃A ∈ ∂j(r) such that ∀r̂ ∈ Rn , j(r) − j(r̂) ≥ < A, r − r̂ >, (4.1)

where ∂j(r) is the sub-di�erential of j(r) de�ned as follows:
(i) if p > 1, ∂j(r) := ∇j(r) = p|r|p−2r,
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(ii) if p = 1,

∂j(r) =


r
|r| r = ̸ 0,

{r ∈ Rn; |r| ≤ 1} r = 0.
(4.2)

Consequently, we deduce that for u ∈ W1,p(Ω), there exists A(x) ∈ ∂j(∇u) such that

∀û ∈ W1,p(Ω), |∇u|p − |∇û|p ≥ < A,∇(u − û) > . (4.3)

Furthermore, for 1 < p < N
N−1 , we deduce from statement (i) in Lemma 4.2 that A ∈

(
Lp

′ (Ω)
)N

, in which

the conjugate p′ veri�es 1
p + 1

p′ = 1 and p′ > N. Hence A ∈
(
LN+η(Ω)

)N
for η > 0.

For p = 1, we may deduce from (4.2), that ||A(x)|| ≤ 1, for all x ∈ Ω. Hence A ∈
(
L∞(Ω)

)N . Thus, again we

have A ∈
(
LN+η(Ω)

)N
.

Finally, the uniqueness result that we obtain is a consequence of the following two lemmas:

Lemma 4.3. [Alaa-Pierre,[Lemma 4.6, [6]]]
Let ~a ∈ LN+ε(Ω,Rn), ε > 0, α ≥ 0 and ω a solution of{

ω ∈ W1,1
0 (Ω),

αω − ∆ω ≤ ~a.∇ω inD′(Ω).
(4.4)

Then ω ≤ 0.

Lemma 4.4. Let A ∈
(
LN+η(Ω)

)N
and θ ∈ W1,q

loc (Ω) for 1 ≤ q < N
N − 1 , such that θ ≥ 0 in Ω and θ = 0 on ∂Ω in

the sense of De�nition 1.1. Furthermore, we assume that θ veri�es

−∆θ ≤ A.∇θ inD′(Ω). (4.5)

Then θ = 0 in Ω.

Proof. of Lemma 4.4
We have (θ − ε)+ ∈ W1,q

0 (Ω) for all ε > 0, and by mean of Kato’s inequality up to the boundary (see [28]), we
obtain

−∆(θ − ε)+ ≤ −∆(θ − ε) χ[θ−ε>0]

≤ −∆θ χ[θ−ε>0]

≤ A.∇θ χ[θ−ε>0]

Hence {
(θ − ε)+ ∈ W1,1

0 (Ω),
−∆(θ − ε)+ ≤ A.∇(θ − ε)+ inD′(Ω).

(4.6)

Now using the previous Lemma 4.3, we obtain

θ − ε ≤ 0, i.e. θ ≤ ε, ∀ε > 0, (4.7)

and since θ ≥ 0 in Ω, then θ = 0 in Ω.

Proof. of Theorem 4.1 Let u be a supersolution of (Pλ) and û a subsolution, and let w = u − û.

We take the di�erence between the equations associated to u and û respectively, we obtain

−∆w = a(x)
uγ − a(x)

ûγ + b(x)
(
|∇u|p − |∇û|p

)
. (4.8)
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By the convexity, there exists A ∈ LN+η(Ω,Rn) for η > 0 such that

|∇u|p − |∇û|p ≥ A.∇(u − û). (4.9)

Hence
−∆w ≤ a(x)

uγ − a(x)
ûγ + Ã.∇(u − û), (4.10)

Then by Kato’s inequality, we obtain

−∆w+ ≤ χ[u−û>0]

[
a(x)
uγ − a(x)

ûγ + Ã.∇(u − û)
]
. (4.11)

which implies that
−∆w+ ≤ Ã.∇w+. (4.12)

Therefore, thanks to Lemma 4.4, we get w = 0, which completes the proof.
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