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59655 Villeneuve d’Ascq Cedex France
Stephane.Malek@math.univ-lille1.fr

Tel 03 20 43 42 40

May, 23 2013

Abstract

We study a family of singularly perturbed small step size difference-differential nonlinear equations in
the complex domain. We construct formal solutions to these equations with respect to the perturbation
parameter ε which are asymptotic expansions with 1−Gevrey order of actual holomorphic solutions on
some sectors in ε near the origin in C. However, these formal solutions can be written as sums of formal
series with a corresponding decomposition for the actual solutions which may possess a different Gevrey
order called 1+−Gevrey in the literature. This phenomenon of two levels asymptotics has been already
observed in the framework of difference equations, see [6]. The proof rests on a new version of the
so-called Ramis-Sibuya theorem which involves both 1−Gevrey and 1+−Gevrey orders. Namely, using
classical and truncated Borel-Laplace transforms (introduced by G. Immink in [18]), we construct a set
of neighboring sectorial holomorphic solutions and functions whose difference have exponentially and
super-exponentially small bounds in the perturbation parameter.

Key words: asymptotic expansion, Borel-Laplace transform, Cauchy problem, difference equation, integro-

differential equation, nonlinear partial differential equation, singular perturbation. 2000 MSC: 35C10,

35C20.

1 Introduction

We consider a family of singularly perturbed small step size difference-differential nonlinear
problem of the form

(1) ε∂t∂
S
z Xi(t, z, ε) + a∂Sz Xi(t, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

bk(z, ε)

ts+1
(∂k0t ∂

k1
z Xi)(t+ k2ε, z, ε) + P (z, ε,Xi(t, z, ε))

∗The author is partially supported by the french ANR-10-JCJC 0105 project and the PHC Polonium 2013
project No. 28217SG.
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for given initial data

(2) (∂jzXi)(t, 0, ε) = ϕj,i(t, ε) , 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1,

where ε is a complex parameter, S is some positive integer, a ∈ C∗ is some complex number
with arg(a) 6= 0, ν is some integer larger than 2 and A1 is a finite subset of N4 which satisfies
the constraints (115). The coefficients bk(z, ε), k ∈ A1 of the linear part belong to O{z, ε}
and P (z, ε,X) ∈ O{z, ε}[X] where O{z, ε} denotes the space of holomorphic functions in (z, ε)
near the origin in C2. The initial data ϕj,i(t, ε) are assumed to be holomorphic on products
of two sectors (T ∩ {|t| > h}) × Ei ⊂ C2, for some h > 0 large enough, where T is a fixed
open unbounded sector centered at 0 and E = {Ei}0≤i≤ν−1 is a family of open bounded sectors
centered at the origin whose union form a covering of V \ {0}, where V is some neighborhood of
0.

In the paper [24], we have considered singular singularly perturbed nonlinear problems

(3) εt2∂t∂
S
z ui(t, z, ε) = F (t, z, ε, ∂t, ∂z)ui(t, z, ε) + P (t, z, ε, ui(t, z, ε))

for given initial data

(4) (∂jzui)(t, 0, ε) = φj,i(t, ε) , 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1,

where F is some differential operator with polynomial coefficients and P some polynomial. The
initial data φj,i(t, ε) were assumed to be holomorphic on products (T ∩ {|t| < h′}) × Ei, for
some h′ > 0 small enough. Under suitable constraints on the shape of the equation (3) and
on the initial data (4), we have shown the existence of a formal series û(ε) =

∑
k≥0 hkε

k/k!
with coefficients hk belonging to the Banach space F of bounded holomorphic functions on
(T ∩ {|t| < h′})×D(0, δ) (for some δ > 0) equipped with the supremum norm, solution of (3),
which is the 1−Gevrey asymptotic expansion of actual holomorphic solutions ui of (3), (4) on
Ei as F−valued functions, for all 0 ≤ i ≤ ν − 1 (see Definition 4 1)).

We mention also the work [21] of A. Lastra and the author, where a q−analog of the problem
(3), (4) was investigated. The discretization was performed with respect to the variable t
meaning that ∂t was replaced by the q−difference operator (f(qt)− f(t))/(qt− t) for a complex
q ∈ C∗ with |q| > 1 (which formally tends to ∂t as q tends to 1).

In this work we address the same question as in our previous papers [21], [24], namely our
main goal is the construction of actual holomorphic solutions Xi(t, z, ε) to the problem (1), (2)
on domains (T ∩ {|t| > h}) ×D(0, δ) × Ei for some small disc D(0, δ) and the analysis of their
asymptotic expansions as ε tends to 0. More precisely, we can present our main statements as
follows.

Main results We choose a set of directions di ∈ R, 0 ≤ i ≤ ν − 1, such that di 6= arg(a) with
the property that

di + arg(t)− arg(ε) ∈ (−π/2, π/2)

for all ε ∈ Ei and t ∈ T ∩ {|t| > h}. We make the assumption that the initial Cauchy data
ϕj,i(t, ε) (given in (2)) can be written as Laplace transforms

ϕj,i(t, ε) =

∫
Ldi

Vj,i(τ, ε)e
− tτ
ε dτ

on (T ∩ {|t| > h}) × Ei along halflines Ldi = R+e
√
−1di for directions di ∈ (−π/2, π/2) and as

truncated Laplace transforms

ϕj,i(t, ε) =

∫ Γi log(Ωit/ε)

0
Vj,i(τ, ε)e

− tτ
ε dτ
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on (T ∩{|t| > h})×Ei, for well chosen complex numbers Ωi ∈ C and Γi ∈ Ldi, for directions di ∈
[−π,−π/2)∪(π/2, π], where Vj,i(τ, ε) are holomorphic functions satisfying the growth constraints
(117) and (118).

Then, in Theorem 1, we construct a family of holomorphic and bounded functions Xi(t, z, ε),
0 ≤ i ≤ ν − 1 on the products (T ∩ {|t| > h})×D(0, δ)×Ei for some radius δ > 0 small enough
with the property that

(∂jzXi)(t, 0, ε) = ϕj,i(t, ε) , 0 ≤ i ≤ ν − 1 , 0 ≤ j ≤ S − 1,

and whose differences Xi+1(t, z, ε)−Xi(t, z, ε) satisfy the exponential and super-exponential flat-
ness estimates (121) and (122) on Ei+1 ∩ Ei. Moreover, for all integers i ∈ {0, . . . , ν − 1} with
di ∈ (−π/2, π/2), we prove that Xi(t, z, ε) is an actual solution of the problem (1), (2).

In a second step (described in Theorem 2), we show the existence of a formal series

X̂(ε) =
∑
k≥0

Hk
εk

k!

whose coefficients Hk belong to the Banach space E of bounded holomorphic functions on (T ∩
{|t| > h}) × D(0, δ), which solves the equation (1) and is the 1−Gevrey asymptotic expansion
of Xi on Ei as E−valued functions. However, this formal series X̂(ε) and the corresponding
functions Xi own a fine structure which involves two levels of asymptotics. Namely, X̂(ε) and
Xi(t, z, ε) can be written as sums

X̂(ε) = a(ε) + X̂1(ε) + X̂2(ε) , Xi(t, z, ε) = a(ε) +X1
i (ε) +X2

i (ε)

where a(ε) is a convergent series near ε = 0 with coefficients in E and X̂1(ε) (resp. X̂2(ε)) is
a formal series with coefficients in E which is the 1−Gevrey asymptotic expansion (resp. the
1+−Gevrey asymptotic expansion) of the E−valued function X1

i (ε) (resp. X2
i (ε)) on Ei in the

sense of Definition 4, for all 0 ≤ i ≤ ν − 1. In particular, the coefficients H2
k , k ≥ 2, of the

formal series X̂2(ε) satisfy estimates of the following form: there exist two constants C,M > 0
such that

(5) ||H2
k ||E ≤ CMk(k/ log k)k

for all k ≥ 2.

We stress the fact that this kind of phenomenon with two levels of asymptotics has already
been observed in the framework of linear difference systems of the form Y (s + 1) = A(s)Y (s)
for meromorphic matrices A(s) at ∞ in [6] (see especially Example 1 therein). These authors
denote the estimates of the form (5) what they called 1+−Gevrey type growth since a sequence
which is s−Gevrey for any s > 1 is 1+−Gevrey but a 1−Gevrey sequence is not necessary
1+−Gevrey (recall that s−Gevrey order means that estimates of the form CMk(k/e)k/s hold
for some constants C,M > 0). More recently G. Immink has extended their study to the
nonlinear situation and has also proposed a resummation procedure which constructs actual
holomorphic solutions of difference systems from formal series solutions using modified Laplace
transforms and acceleration kernels, see [18].

The Cauchy problem (1), (2) we consider in this work comes within the framework of the
asymptotic analysis of singularly perturbed difference-differential equations with small advance
or delay, which becomes a growing domain of research these last years and has numerous appli-
cations to engineering problems and biology, see for instance [13] and references therein.
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In the context of differential equations most of the statements in the literature are dedicated
to problems of the form

ε∂tx(t, ε) = f(t, ε, x(t, ε), x(t± δ, ε))

for some vector valued function f , where ε > 0 is a small parameter and δ > 0 may or not depend
on ε, and concern the study of asymptotic behaviour of their solutions x(t, ε) as ε tends to 0.
For general and abstract convergence results we quote [1] and references therein for a historical
overview. For the construction of solutions x(t, ε) having asymptotic expansions of the form

(6) x(t, ε) =

n−1∑
l=0

xl(t)ε
i +Rn(t, ε)

with error bounds estimates for the remainder Rn for some integers n ≥ 2, we refer to [16] and
[31].

In the framework of partial differential equations, we mention [28] and [32] where formal
asymptotic expansion like (6) have been obtained for solutions to reaction-diffusion equations
with small delay.

Nevertheless, these problems when working with a complex parameter ε and with solutions
in analytic functions spaces are still quite unstudied although some important and interesting
results have been obtained for small step size difference equations, see [12], [14], [15] and for
singularly perturbed elliptic partial differential equations, see [27].

In the following, we explain our main results and the principal arguments needed in their
proofs. In a first part, we construct a holomorphic function V (τ, z, ε) near the origin with
respect to (τ, z) and on a punctured disc with respect to ε which solves an integro-differential
problem whose coefficients are meromorphic functions with respect to (τ, ε) with a pole at ε = 0,
see (108), (109). The main novelty compared to our previous studies on singular perturbation
problems, see [21], [23], [24], [25], is that the coefficients of (108) now have at most polynomial
growth with respect to τ on the half plane C+ = {τ ∈ C/Re(τ) ≥ 0} but exponential growth
on the half plane C− = {τ ∈ C/Re(τ) < 0}. For suitable initial data satisfying the conditions
(117), (118), we show that V (τ, z, ε) can be analytically continued to functions Vi(τ, z, ε) defined
on products Udi ×D(0, δ) × Ei where Udi , 0 ≤ i ≤ ν − 1, are suitable open unbounded sectors
with small aperture (see Definition 3 and below). If Udi is contained in C+, then Vi(τ, z, ε) has
at most exponential growth rate with respect to (τ, ε), namely there exist C,K > 0 such that

(7) sup
z∈D(0,δ)

|Vi(τ, z, ε)| ≤ C exp(K|τ |/|ε|)

for all τ ∈ Udi , all ε ∈ Ei. When Udi belongs to C−, Vi(τ, z, ε) owns an exponential growth rate
with respect to ε but a super-exponential growth rate with respect to τ , more precisely there
exist C,K1,K2 > 0 with

(8) sup
z∈D(0,δ)

|Vi(τ, z, ε)| ≤ C exp(K1
|τ |
|ε|

+ exp(K2|τ |))

for all τ ∈ Udi , all ε ∈ Ei.
In a second part, we construct actual solutions Xi(t, z, ε) of our problem (1), (2) as Laplace

transforms

(9) Xi(t, z, ε) =

∫
Lγi

Vi(τ, z, ε)e
−tτ
ε dτ
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along halflines Lγi ⊂ Udi , when Udi ⊂ C+, which defines a bounded holomorphic function on the
product (T ∩ {|t| > h})×D(0, δ)×Ei, provided that h > 0 is large enough. On the other hand,
when Udi is located in C−, we construct bounded holomorphic functions Xi(t, z, ε) as truncated
Laplace transform (as introduced by G. Immink in [18])

(10) Xi(t, z, ε) =

∫ Γi log(Ωit/ε)

0
Vi(τ, z, ε)e

−tτ
ε dτ

for some complex numbers Ωi ∈ C and Γi ∈ Udi , for all (t, z, ε) ∈ (T ∩ {|t| > h})×D(0, δ)× Ei.
We stress the fact that these functions (10) do not solve the equation (1), but they share with

(9) the following crucial properties for our scope: the functions (cocyle) Gi(ε) = Xi+1(t, z, ε)−
Xi(t, z, ε), for 0 ≤ i ≤ ν − 1 (with the convention Xν = X0) are exponentially flat as ε tends
to 0 on Ei+1 ∩ Ei as E−valued functions, where E is the Banach space of bounded holomorphic
functions on (T ∩ {|t| > h}) × D(0, δ) equipped with the supremum norm. Moreover, when
Udi∩Udi+1

6= ∅ and Udi , Udi+1
⊂ C−, the function Gi(ε) is even super-exponentially flat, meaning

that there exist K,L,M > 0 such that

(11) ||Gi(ε)||E ≤ K exp(−M
|ε|

log
L

|ε|
)

for all ε ∈ Ei+1 ∩Ei. In the proof, we use as in [24] deformations of the integration’s paths in Xi

with the help of the estimates (7) and (8) (Theorem 1).
In the last part, we establish a new version of the Ramis-Sibuya theorem (Theorem (RS) in

Section 5.1) with two levels of 1−Gevrey and of 1+−Gevrey type estimates. It is worthwhile
noting that the classical Ramis-Sibuya criterion has shown to be very useful to investigate
the phenomenon of the so-called multi-summability (which involves several Gevrey orders) of
solutions to systems of meromorphic linear differential equations, see [26], nonlinear equations,
see [30], and nonlinear systems of difference equations, see [5].

By applying this criterion to our given cocycle Gi, we deduce the main result of this paper
(Theorem 2), namely the existence of a formal series solution of (1)

X̂(ε) =
∑
k≥0

Hk
εk

k!
∈ E[[ε]]

which is the 1−Gevrey asymptotic expansion of Xi(t, z, ε) on Ei for all 0 ≤ i ≤ ν − 1 and such
that the couple (X̂,Xi) shares a three terms decomposition

X̂(ε) = a(ε) + X̂1(ε) + X̂2(ε) , Xi(t, z, ε) = a(ε) +X1
i (ε) +X2

i (ε)

where a(ε) is a convergent series at ε = 0, X̂1(ε) is the 1−Gevrey asymptotic expansion of Xi(ε)
on Ei and X̂2(ε) is the 1+−Gevrey asymptotic expansion of X2

i (ε) on Ei, for any 0 ≤ i ≤ ν − 1.

The paper is organized as follows.
In Section 2, we consider parameter depending nonlinear convolution differential Cauchy prob-
lems with singular and exponential growing coefficients. We construct solutions of these equa-
tions in parameter depending Banach spaces of holomorphic functions on sectors with exponen-
tial and super-exponential growths.
In Section 3, we construct holomorphic solutions Xi to our problem (1), (2) on some sectors Ei
as Laplace transform of solutions to nonlinear convolution problems studied in the section 2.
In the section 4, we show flatness estimates of exponential type for the cocycle Gi = Xi+1 −Xi
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where the Xi are constructed in Section 3. We complete this cocycle on the full family E with
the help of truncated Laplace transform of solutions to singular problems studied in Section 2.
Moreover, we give flatness estimates that can be of super-exponential growth on some intersec-
tions Ei+1 ∩ Ei.
In the last section, we first state a new version of the Ramis-Sibuya theorem in the framework
of 1−Gevrey and 1+−Gevrey type estimates and we finally prove our main result.

2 A global Cauchy problem with singular complex parameter

2.1 Banach spaces of holomorphic functions on sectors with exponential and
super-exponential growths

We denote D(0, r) the open disc centered at 0 with radius r > 0 in C. Let Sd be an open bounded
or unbounded sector with bisecting direction d ∈ R and E be an open sector with finite radius
rE , both centered at 0 in C. By convention, these sectors do not contain the origin in C. For
any open set D ⊂ C, we denote O(D) the vector space of holomorphic functions on D. In this

section 2, we set Ω = (Sd∪D(0, r))×E . Let b > 1 a real number and let rb(β) =
∑β

n=0 1/(n+1)b

for all integers β ≥ 0.

Definition 1 Let ε ∈ E and σ > 0, σ′ ≥ 0 be real numbers. We denote SEβ,ε,σ,σ′,Ω the vector
space of all functions v ∈ O(Sd ∪D(0, r)) such that

||v(τ)||β,ε,σ,σ′,Ω := sup
τ∈Sd∪D(0,r)

|v(τ)|(1 +
|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β)|τ | − exp(σ′rb(β)|τ |)

)
is finite. Let δ > 0 be a real number. We define SG(ε, σ, σ′, δ,Ω) to be the vector space of all
functions v(τ, z) =

∑
β≥0 vβ(τ)zβ/β! that belong to O(Sd ∪D(0, r)){z} such that

||v(τ, z)||(ε,σ,σ′,δ,Ω) :=
∑
β≥0

||vβ(τ)||β,ε,σ,σ′,Ω
δβ

β!

is finite. One can check that the normed space (SG(ε, σ, σ′, δ,Ω), ||.||(ε,σ,σ′,δ,Ω)) is a Banach space.

Remark: These norms are appropriate modifications of the norms introduced by G. Immink
in [18] and those of the author introduced in the work [24]. Notice that for σ′ = 0, the space
SG(ε, σ, 0, δ,Ω) coincides with the space G(ε, σ, δ,Ω) defined in [24].

In the next proposition, we study the rate of growth of the functions belonging to the latter
Banach spaces.

Proposition 1 Let v(τ, z) ∈ SG(ε, σ, σ′, δ,Ω). Let 0 < δ1 < 1. There exists a constant C > 0
(depending on ||v||(ε,σ,σ′,δ,Ω) and δ1) such that

(12) |v(τ, z)| ≤ C(1 +
|τ |2

|ε|2
)−1 exp

(
σζ(b)

|ε|
|τ |+ exp(σ′ζ(b)|τ |)

)
for all τ ∈ Sd ∪D(0, r), all z ∈ C such that |z|δ < δ1, where ζ(b) =

∑∞
n=0 1/(n+ 1)b.
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Proof Let v(τ, z) =
∑

β≥0 vβ(τ)zβ/β! be in SG(ε, σ, σ′, δ,Ω). By definition, there exists a
constant c1 > 0 (depending on ||v||(ε,σ,σ′,δ,Ω)) such that

|vβ(τ)| ≤ c1(1 +
|τ |2

|ε|2
)−1 exp

(
σ

|ε|
rb(β)|τ |+ exp(σ′rb(β)|τ |)

)
β!(

1

δ
)β

for all β ≥ 0, all τ ∈ Sd ∪D(0, r). Let 0 < δ1 < 1. From the definition of ζ(b), we deduce that

(13) |v(τ, z)| ≤ c1(1 +
|τ |2

|ε|2
)−1

∑
β≥0

exp

(
σ

|ε|
rb(β)|τ |+ exp(σ′rb(β)|τ |)

)
(δ1)β

≤ c1(1 +
|τ |2

|ε|2
)−1 exp

(
σζ(b)

|ε|
|τ |+ exp(σ′ζ(b)|τ |)

)
1

1− δ1
,

for all z ∈ C such that |z|δ < δ1 < 1, all τ ∈ Sd ∪ D(0, r). Finally, from (13), we deduce the
estimates (12). 2

In the next proposition, we study some linear operators of multiplication by polynomials and
exponential functions acting on the space SG(ε, σ, σ′, δ,Ω).

Proposition 2 Let k0 ≥ 0 be a non negative integer and let k1, k2 ∈ N∗.

1) Let σ′ > 0. Assume that the condition

(14) k1 ≥ bk0 +
k2b

σ′

holds. Moreover, we assume that the function τ 7→ exp(−k2τ) is unbounded on the sector
Sd. Then, for all ε ∈ E, the operator v(τ, z) 7→ exp(−k2τ)τk0∂−k1z v(τ, z) is a bounded linear
operator from (SG(ε, σ, σ′, δ,Ω), ||.||(ε,σ,σ′,δ,Ω)) into itself. Moreover, there exists a constant C1 >
0 (depending on k0, k1, k2, σ, σ

′, b), which does not depend on ε ∈ E, such that

(15) || exp(−k2τ)τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω) ≤ C1|ε|k0δk1 ||v(τ, z)||(ε,σ,σ′,δ,Ω)

for all v ∈ SG(ε, σ, σ′, δ,Ω), all ε ∈ E.

2) Let σ′ ≥ 0. Assume that the condition

(16) k1 ≥ bk0

holds. Then, for all ε ∈ E, the operator v(τ, z) 7→ τk0∂−k1z v(τ, z) is a bounded linear operator from
(SG(ε, σ, σ′, δ,Ω), ||.||(ε,σ,σ′,δ,Ω)) into itself. Moreover, there exists a constant Č1 > 0 (depending
on k0, k1, σ, b), which does not depend on ε ∈ E, such that

(17) ||τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω) ≤ Č1|ε|k0δk1 ||v(τ, z)||(ε,σ,σ′,δ,Ω)

for all v ∈ SG(ε, σ, σ′, δ,Ω), all ε ∈ E.

Proof 1) Let v(τ, z) ∈ SG(ε, σ, σ′, δ,Ω). By definition, we have

(18) || exp(−k2τ)τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω) =
∑
β≥k1

|| exp(−k2τ)τk0vβ−k1(τ)||β,ε,σ,σ′,Ω
δβ

β!
.
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Lemma 1 There exists a constant C1.1 > 0 (depending on k0, k1, k2, σ, σ
′) such that

(19) || exp(−k2τ)τk0vβ−k1(τ)||β,ε,σ,σ′,Ω ≤ C1.1|ε|k0(1 + β)bk0+
k2b

σ′ ||vβ−k1(τ)||β−k1,ε,σ,σ′,Ω

for all β ≥ k1.

Proof We can write

| exp(−k2τ)τk0vβ−k1(τ)| = | exp(−k2τ)τk0 |

× exp

(
σ

|ε|
rb(β − k1)|τ |+ exp(σ′rb(β − k1)|τ |)

)
(1 +

|τ |2

|ε|2
)−1

× |vβ−k1(τ)|(1 +
|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β − k1)|τ | − exp(σ′rb(β − k1)|τ |)

)
for all τ ∈ Sd ∪D(0, r). From this latter equality, we deduce

(20) || exp(−k2τ)τk0vβ−k1(τ)||β,ε,σ,σ′,Ω ≤ A(ε, β)||vβ−k1(τ)||β−k1,ε,σ,σ′,Ω

where

(21) A(ε, β) = sup
τ∈Sd∪D(0,r)

exp(k2|τ |)|τ |k0 exp

(
σ

|ε|
rb(β − k1)|τ |+ exp(σ′rb(β − k1)|τ |)

)
× exp

(
− σ

|ε|
rb(β)|τ | − exp(σ′rb(β)|τ |)

)
Lemma 2 The following inequality holds

(22) sup
τ∈Sd∪D(0,r)

|τ |k0 exp(
σ

|ε|
rb(β − k1)|τ | − σ

|ε|
rb(β)|τ |) ≤ (

k0e
−1

σk1
)k0 |ε|k0(1 + β)bk0

for all β ≥ k1.

Proof From the fact that

(23) rb(β)− rb(β − k1) ≥ k1

(β + 1)b

for all β ≥ k1, we deduce that

(24) |τ |k0 exp(
σ

|ε|
rb(β − k1)|τ | − σ

|ε|
rb(β)|τ |) ≤ |τ |k0 exp(− σ

|ε|
k1

(1 + β)b
|τ |)

for all τ ∈ Sd ∪D(0, r). From (24) and the classical equality

(25) sup
x≥0

xm1 exp(−m2x) = (m1/m2)m1e−m1

for any real numbers m1,m2 > 0, we get (22). 2

Lemma 3 There exists a constant d > 0 (depending on k1,k2 and σ′) such that

(26) exp
(
k2|τ |+ exp(σ′rb(β − k1)|τ |)− exp(σ′rb(β)|τ |)

)
≤ exp(

k2b

σ′
log(1 + β) + d)

for all β ≥ k1, all τ ∈ Sd ∪D(0, r).
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Proof With the help of the inequality (23) and from the Taylor formula we know that for all
τ ∈ Sd ∪D(0, r), all β ≥ 0 there exists a constant c ∈ (σ′rb(β − k1)|τ |, σ′rb(β)|τ |) such that

(27) exp(σ′rb(β − k1)|τ |)− exp(σ′rb(β)|τ |)

= σ′|τ |(rb(β − k1)− rb(β))ec ≤ −σ′|τ | k1

(1 + β)b
exp(σ′rb(β − k1)|τ |)

The next inequality will the useful. Let a, b, c > 0 be real numbers. Then,

(28) sup
x≥0

cx− axebx ≤ max(c,
c

b
(log(

c

ab
)− 1)).

Indeed, for all x ≥ 1, we have cx − axebx ≤ ψ(x) = cx − aebx. If log( cab)/b ≥ 1, the function ψ
gets it’s maximum value c

b(log( cab) − 1) on [1,+∞) at x0 = log( cab)/b. If log( cab)/b < 1, ψ gets
it’s maximum value c− aeb ≤ c on [1,+∞) at x0 = 1. On the other hand, for all 0 ≤ x ≤ 1, we
have that cx− axebx ≤ c.

Using (28), we deduce that

sup
τ∈Sd∪D(0,r)

k2|τ | − σ′|τ |
k1

(1 + β)b
exp(σ′rb(β − k1)|τ |)

≤ max(k2,
k2

σ′rb(β − k1)
(log(

k2

(σ′)2k1rb(β − k1)
(1 + β)b)− 1))

for all β ≥ k1. From this latter inequality, we deduce the existence of a constant d > 0 (depending
on k1,k2, and σ′) such that

sup
τ∈Sd∪D(0,r)

k2|τ | − σ′|τ |
k1

(1 + β)b
exp(σ′rb(β − k1)|τ |) ≤ k2b

σ′
log(1 + β) + d

for all β ≥ k1. The inequality (26) follows. 2

Gathering the estimates (22) and (26) yields a constant C1.1 > 0 (depending on k0, k1, k2, σ, σ
′)

such that

(29) A(ε, β) ≤ C1.1|ε|k0(1 + β)bk0+
k2b

σ′

for all β ≥ k1. From (20) and (29) the lemma 1 follows.
Now, from (18) and (19), we deduce

(30) || exp(−k2τ)τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω)

≤
∑
β≥k1

C1.1|ε|k0(1 + β)bk0+
k2b

σ′
(β − k1)!

β!
||vβ−k1(τ)||β−k1,ε,σ,σ′,Ωδk1

δβ−k1

(β − k1)!
.

Now, from the assumption (14), we get a constant C1.2 > 0 (depending on b, k0, k1, k2, σ
′) such

that

(31) (1 + β)bk0+
bk2
σ′

(β − k1)!

β!
≤ C1.2

for all β ≥ k1. Finally, from (30) together with (31) we get (15).

2) Let v(τ, z) ∈ SG(ε, σ, σ′, δ,Ω). By definition, we have

(32) ||τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω) =
∑
β≥k1

||τk0vβ−k1(τ)||β,ε,σ,σ′,Ω
δβ

β!
.
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Lemma 4 There exists a constant Č1.1 > 0 (depending on k0, k1, σ) such that

(33) ||τk0vβ−k1(τ)||β,ε,σ,σ′,Ω ≤ Č1.1|ε|k0(1 + β)bk0 ||vβ−k1(τ)||β−k1,ε,σ,σ′,Ω

for all β ≥ k1.

Proof The explanation relies on the beginning of Lemma 1. If one puts k2 = 0 in the estimates
(20) one gets

(34) ||τk0vβ−k1(τ)||β,ε,σ,σ′,Ω ≤ Ǎ(ε, β)||vβ−k1(τ)||β−k1,ε,σ,σ′,Ω

where

(35) Ǎ(ε, β) = sup
τ∈Sd∪D(0,r)

|τ |k0 exp

(
σ

|ε|
rb(β − k1)|τ |+ exp(σ′rb(β − k1)|τ |)

)
× exp

(
− σ

|ε|
rb(β)|τ | − exp(σ′rb(β)|τ |)

)
≤ sup

τ∈Sd∪D(0,r)
|τ |k0 exp(

σ

|ε|
rb(β − k1)|τ |)

× exp(− σ

|ε|
rb(β)|τ |).

Therefore, Lemma 4 is a consequence of Lemma 2 together with (34), (35). 2

Now, from (32) and (33), we get

(36) ||τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω)

≤
∑
β≥k1

Č1.1|ε|k0(1 + β)bk0
(β − k1)!

β!
||vβ−k1(τ)||β−k1,ε,σ,σ′,Ωδk1

δβ−k1

(β − k1)!
.

Now, from the assumption (16), we get a constant Č1.2 > 0 (depending on b, k0, k1) such that

(37) (1 + β)bk0
(β − k1)!

β!
≤ Č1.2

for all β ≥ k1. Finally, the result follows from (36) and (37). 2

Proposition 3 Let k0 ≥ 0 be a non negative integer and let k2 ∈ N∗.

1) Let σ > σ̃ > 0, σ′ > σ̃′ > 0 be real numbers. We assume that the function τ 7→ exp(−k2τ) is
unbounded on the sector Sd. Then, there exists a constant C̃1 > 0 (depending on k0, k2, σ, σ̃, σ

′, σ̃′)
such that

(38) || exp(−k2τ)τk0v(τ, z)||(ε,σ,σ′,δ,Ω) ≤ C̃1|ε|k0 ||v(τ, z)||(ε,σ̃,σ̃′,δ,Ω)

for all v ∈ SG(ε, σ̃, σ̃′, δ,Ω), all ε ∈ E.

2) Let σ > σ̃ > 0 be real numbers. Then, there exists a constant C̃1.1 > 0 (depending on k0, σ, σ̃)
such that

(39) ||τk0v(τ, z)||(ε,σ,0,δ,Ω) ≤ C̃1.1|ε|k0 ||v(τ, z)||(ε,σ̃,0,δ,Ω)

for all v ∈ SG(ε, σ̃, 0, δ,Ω), all ε ∈ E.
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Proof 1) Let v(τ, z) ∈ SG(ε, σ̃, σ̃′, δ,Ω). By definition, we have

(40) || exp(−k2τ)τk0v(τ, z)||(ε,σ,σ′,δ,Ω) =
∑
β≥0

|| exp(−k2τ)τk0vβ(τ)||β,ε,σ,σ′,Ω
δβ

β!
.

Lemma 5 There exists a constant C̃1 > 0 (depending on k0, k2, σ, σ̃, σ
′, σ̃′) such that

(41) || exp(−k2τ)τk0vβ(τ)||β,ε,σ,σ′,Ω ≤ C̃1|ε|k0 ||vβ(τ)||β,ε,σ̃,σ̃′,Ω

for all β ≥ 0.

Proof We can write

| exp(−k2τ)τk0vβ(τ)| = | exp(−k2τ)τk0 |

× exp

(
σ̃

|ε|
rb(β)|τ |+ exp(σ̃′rb(β)|τ |)

)
(1 +

|τ |2

|ε|2
)−1

× |vβ(τ)|(1 +
|τ |2

|ε|2
) exp

(
− σ̃

|ε|
rb(β)|τ | − exp(σ̃′rb(β)|τ |)

)
for all τ ∈ Sd ∪D(0, r). From this latter equality, we get

(42) || exp(−k2τ)τk0vβ(τ)||β,ε,σ,σ′,Ω ≤ B(ε, β)||vβ(τ)||β,ε,σ̃,σ̃′,Ω

where

(43) B(ε, β) = sup
τ∈Sd∪D(0,r)

exp(k2|τ |)|τ |k0 exp

(
σ̃

|ε|
rb(β)|τ |+ exp(σ̃′rb(β)|τ |)

)
× exp

(
− σ

|ε|
rb(β)|τ | − exp(σ′rb(β)|τ |)

)
for all β ≥ 0. Moreover, using the estimates (25), we deduce that

(44) sup
τ∈Sd∪D(0,r)

|τ |k0 exp(−(σ − σ̃)rb(β)

|ε|
|τ |) ≤ |ε|k0(

k0e
−1

σ − σ̃
)k0

for all β ≥ 0.
On the other hand, there exists a constant d̃ > 0 (depending on k2, σ

′, σ̃′) such that

(45) exp
(
k2|τ |+ exp(σ̃′rb(β)|τ |)− exp(σ′rb(β)|τ |)

)
≤ exp(d̃)

for all β ≥ 0, all τ ∈ Sd ∪ D(0, r). Indeed, from the Taylor formula, we know that for all
τ ∈ Sd ∪D(0, r), all β ≥ 0 there exists a constant c ∈ (σ̃′rb(β)|τ |, σ′rb(β)|τ |) such that

(46) exp(σ̃′rb(β)|τ |)− exp(σ′rb(β)|τ |)
= (σ̃′ − σ′)rb(β)|τ |ec ≤ −(σ′ − σ̃′)rb(β)|τ | exp(σ̃′rb(β)|τ |)

From (28) we deduce that

(47) sup
τ∈Sd∪D(0,r)

k2|τ | − (σ′ − σ̃′)rb(β)|τ | exp(σ̃′rb(β)|τ |)

≤ max(k2,
k2

σ̃′rb(β)

(
log(

k2

(σ′ − σ̃′)σ̃′(rb(β))2
)− 1

)
)
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for all β ≥ 0. From (46) and (47), one deduces (45). Finally, from (44) and (45), one obtains
a constant C̃1 > 0 (depending on k0, k2, σ, σ̃, σ

′, σ̃′) such that B(ε, β) ≤ C̃1|ε|k0 for all β ≥ 0.
Hence, the lemma 5 follows. 2

The estimates (38) result from (40) and (41).

2) Let v(τ, z) ∈ SG(ε, σ, 0, δ,Ω). By definition, we have

(48) ||τk0v(τ, z)||(ε,σ,0,δ,Ω) =
∑
β≥0

||τk0vβ(τ)||β,ε,σ,0,Ω
δβ

β!
.

Lemma 6 There exists a constant C̃1.1 > 0 (depending on k0, σ, σ̃) such that

(49) ||τk0vβ(τ)||β,ε,σ,0,Ω ≤ C̃1.1|ε|k0 ||vβ(τ)||β,ε,σ̃,0,Ω

for all β ≥ 0.

Proof The arguments relies on the beginning of Lemma 5. If one puts σ′ = 0, σ̃′ = 0 and k2 = 0
in (42), one gets

(50) ||τk0vβ(τ)||β,ε,σ,0,Ω ≤ B̃(ε, β)||vβ(τ)||β,ε,σ̃,0,Ω

where

(51) B̃(ε, β) = sup
τ∈Sd∪D(0,r)

|τ |k0 exp(
σ̃

|ε|
rb(β)|τ |)× exp(− σ

|ε|
rb(β)|τ |)

for all β ≥ 0. Gathering (50) and (44) yields Lemma 6. 2

The estimates (39) follow from (48) and (49). 2

In the next proposition, we study linear operators of multiplication by bounded holomorphic
functions.

Proposition 4 Let h(τ, z, ε) be a holomorphic function on (Sd ∪ D(0, r)) × D(0, ρ) × E, for
some ρ > 0, bounded by some constant M > 0. Let 0 < δ < ρ. Then, the linear operator of
multiplication by h(τ, z, ε) is continuous from (SG(ε, σ, σ′, δ,Ω), ||.||(ε,σ,σ′,δ,Ω)) into itself, for all
ε ∈ E. Moreover, there exists a constant C2 (depending on M ,δ,ρ), independent of ε, such that

(52) ||h(τ, z, ε)v(τ, z)||(ε,σ,σ′,δ,Ω) ≤ C2||v(τ, z)||(ε,σ,σ′,δ,Ω)

for all v(τ, z) ∈ SG(ε, σ, σ′, δ,Ω), for all ε ∈ E.

Proof Let h(τ, z, ε) =
∑

β≥0 hβ(τ, ε)zβ/β! be holomorphic on (Sd ∪D(0, r))×D(0, ρ)× E such
that there exists M > 0 with

sup
τ∈Sd∪D(0,r),z∈D(0,ρ),ε∈E

|h(τ, z, ε)| ≤M.

Let v(τ, z) =
∑

β≥0 vβ(τ)zβ/β! ∈ SG(ε, σ, σ′, δ,Ω). By construction, we have that

(53) ||h(τ, z, ε)v(τ, z)||(ε,σ,σ′,δ,Ω) ≤
∑
β≥0

(
∑

β1+β2=β

||hβ1(τ, ε)vβ2(τ)||β,ε,σ,σ′,Ω
β!

β1!β2!
)
δβ

β!
.
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From the Cauchy formula, we have

sup
τ∈Sd∪D(0,r),ε∈E

|hβ(τ, ε)| ≤M(
1

δ′
)ββ!

for any δ < δ′ < ρ, for all β ≥ 0. By definition, we deduce that

(54) ||hβ1(τ, ε)vβ2(τ)||β,ε,σ,σ′,Ω ≤Mβ1!(
1

δ′
)β1 ||vβ2(τ)||β,ε,σ,σ′,Ω ≤Mβ1!(

1

δ′
)β1 ||vβ2(τ)||β2,ε,σ,σ′,Ω

for all β1, β2 ≥ 0 such that β1 + β2 = β. From (53) and (54), we deduce that

||h(τ, z, ε)v(τ, z)||(ε,σ,σ′,δ,Ω) ≤M(
∑
β≥0

(
δ

δ′
)β)||v(τ, z)||(ε,σ,σ′,δ,Ω)

which yields (52). 2

In the next proposition, we give norm estimates for the convolution product.

Proposition 5 Let f ,g be in SG(ε, σ, σ′, δ,Ω). Then, the function

(f ∗ g)(τ, z) =

∫ τ

0
f(τ − s, z)g(s, z)ds

belongs to SG(ε, σ, σ′, δ,Ω). Moreover, there exists a (universal) constant C3 > 0 such that

(55) ||(f ∗ g)(τ, z)||(ε,σ,σ′,δ,Ω) ≤ C3|ε|||f(τ, z)||(ε,σ,σ′,δ,Ω)||g(τ, z)||(ε,σ,σ′,δ,Ω)

for all f, g ∈ SG(ε, σ, σ′, δ,Ω).

Proof Let
f(τ, z) =

∑
β≥0

fβ(τ)zβ/β! , g(τ, z) =
∑
β≥0

gβ(τ)zβ/β!

be in SG(ε, σ, σ′, δ,Ω). By construction of f ∗ g, we have that

(56) ||
∫ τ

0
f(τ − s, z)g(s, z)ds||(ε,σ,σ′,δ,Ω)

≤
∑
β≥0

(
∑

β1+β2=β

β!

β1!β2!
||
∫ τ

0
fβ1(τ − s)gβ2(s)ds||β,ε,σ,σ′,Ω)

δβ

β!
.

Lemma 7 There exists a (universal) constant C3 > 0 such that

(57) ||
∫ τ

0
fβ1(τ − s)gβ2(s)ds||β,ε,σ,σ′,Ω ≤ C3|ε|||fβ1(τ)||β1,ε,σ,σ′,Ω||gβ2(τ)||β2,ε,σ,σ′,Ω

for all β ≥ 0 and all β1, β2 ≥ 0 with β1 + β2 = β.

Proof We write

|
∫ τ

0
fβ1(τ − s)gβ2(s)ds| = |

∫ τ

0
fβ1(τ − s)(1 +

|τ − s|2

|ε|2
)

× exp

(
− σ

|ε|
rb(β1)|τ − s| − exp(σ′rb(β1)|τ − s|)

)
× gβ2(s)(1 +

|s|2

|ε|2
) exp

(
− σ

|ε|
rb(β2)|s| − exp(σ′rb(β2)|s|)

)

×
exp

(
σ
|ε|(rb(β1)|τ − s|+ rb(β2)|s|) + exp(σ′rb(β1)|τ − s|) + exp(σ′rb(β2)|s|)

)
(1 + |s|2

|ε|2 )(1 + |τ−s|2
|ε|2 )

ds|
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for all τ ∈ Sd ∪D(0, r). We deduce that

(58) |
∫ τ

0
fβ1(τ − s)gβ2(s)ds| ≤ ||fβ1(τ)||β1,ε,σ,σ′,Ω||gβ2(τ)||β2,ε,σ,σ′,Ω

×
∫ 1

0

|τ | exp
(
σ|τ |
|ε| (rb(β1)(1− h) + rb(β2)h) + exp(σ′rb(β1)|τ |(1− h)) + exp(σ′rb(β2)|τ |h)

)
(1 + |τ |2

|ε|2 (1− h)2)(1 + |τ |2
|ε|2 h

2)
dh.

In the next step we will show that there exists a constant C3 > 0 such that

(59) I(|τ |, |ε|, β, β1, β2) = (1 +
|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β)|τ | − exp(σ′rb(β)|τ |)

)

×
∫ 1

0

|τ | exp
(
σ|τ |
|ε| (rb(β1)(1− h) + rb(β2)h) + exp(σ′rb(β1)|τ |(1− h)) + exp(σ′rb(β2)|τ |h)

)
(1 + |τ |2

|ε|2 (1− h)2)(1 + |τ |2
|ε|2 h

2)
dh

≤ |ε|C3

for all τ ∈ Sd ∪D(0, r), all ε ∈ E , for all β ≥ 0, all β1, β2 ≥ 0 with β1 + β2 = β. Indeed, from
the fact that rb is increasing, we first have that

(60) rb(β1)(1− h) + rb(β2)h ≤ rb(β)

for all 0 ≤ h ≤ 1, all β1, β2 ≥ 0 with β1 + β2 = β. Then, from (60), we get that

(61) exp(− σ

|ε|
rb(β)|τ |) exp(

σ|τ |
|ε|

(rb(β1)(1− h) + rb(β2)h)) ≤ 1

for all τ ∈ Sd ∪D(0, r), all ε ∈ E , for all β ≥ 0, all β1, β2 ≥ 0 with β1 + β2 = β and all h ∈ [0, 1].
On the other hand, since rb is increasing, we get that

(62) exp(σ′rb(β1)|τ |(1− h)) + exp(σ′rb(β2)|τ |h)− exp(σ′rb(β)|τ |)
≤ exp(σ′rb(β)|τ |(1− h)) + exp(σ′rb(β)|τ |h)− exp(σ′rb(β)|τ |) = ϕ(h)

for all h ∈ [0, 1], for all τ ∈ Sd ∪D(0, r), all ε ∈ E , for all β ≥ 0, all β1, β2 ≥ 0 with β1 + β2 = β.
By construction, one has ϕ(0) = ϕ(1) = 1. Moreover, by direct computation, one can check
that ϕ′(h) ≤ 0 if 0 ≤ h ≤ 1/2 and ϕ′(h) ≥ 0 if 1/2 ≤ h ≤ 1. So that ϕ(h) ≤ 1 for all h ∈ [0, 1].

From (61) and (62), we deduce that

(63) I(|τ |, |ε|, β, β1, β2) ≤ J(|τ |, |ε|) =

∫ 1

0

e(1 + |τ |2
|ε|2 )|τ |

(1 + |τ |2
|ε|2 (1− h)2)(1 + |τ |2

|ε|2 h
2)
dh

for all τ ∈ Sd ∪D(0, r), all ε ∈ E . On the other hand, we have that

(64)
J(|ε||τ |, |ε|)
|ε|

=

∫ 1

0

e(1 + |τ |2)|τ |
(1 + |τ |2(1− h)2)(1 + |τ |2h2)

dh.

From Corollary 4.9 of [10], we know that the right hand side of (64) is a bounded function of
|τ | on R+. We deduce that there exists a (universal) constant C3 > 0 such that

(65) sup
|τ |≥0

J(|τ |, |ε|)
|ε|

= sup
|τ |≥0

J(|ε||τ |, |ε|)
|ε|

≤ C3
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for all ε ∈ E . We get from (63) and (65) that the inequality (59) holds. Finally, the inequality
(57) follows from (58) and (59). 2

From (56) and (57), we get that (55) holds with the constant C3 from Lemma 7. 2

2

Corollary 1 Let s, k0 ≥ 0 be non negative integers and let k1, k2 ∈ N∗.

1) Let σ′ > 0. Assume that the condition

(66) k1 ≥ bk0 +
k2b

σ′

holds. Moreover, we assume that the function τ 7→ exp(−k2τ) is unbounded on the sector Sd.
Then, for all ε ∈ E, the operator

v(τ, z) 7→
∫ τ

0
(τ − h)s exp(−k2h)hk0∂−k1z v(h, z)dh

is a bounded linear operator from (SG(ε, σ, σ′, δ,Ω), ||.||(ε,σ,σ′,δ,Ω)) into itself. Moreover, there
exists a constant C4 > 0 (depending on s, k0, k1, k2, σ, σ

′, b), which does not depend on ε ∈ E,
such that

(67) ||
∫ τ

0
(τ − h)s exp(−k2h)hk0∂−k1z v(h, z)dh||(ε,σ,σ′,δ,Ω) ≤ C4|ε|s+k0+1δk1 ||v(τ, z)||(ε,σ,σ′,δ,Ω)

for all v ∈ SG(ε, σ, σ′, δ,Ω), all ε ∈ E.

2) Assume that the condition

(68) k1 ≥ bk0

holds. Let q(τ) be a holomorphic function bounded by some constant M > 0 on Sd ∪ D(0, r).
Then, for all ε ∈ E, the operator

v(τ, z) 7→
∫ τ

0
(τ − h)sq(h)hk0∂−k1z v(h, z)dh

is a bounded linear operator from (SG(ε, σ, 0, δ,Ω), ||.||(ε,σ,0,δ,Ω)) into itself. Moreover, there exists
a constant C4.1 > 0 (depending on s, k0, k1, σ, b,M), which does not depend on ε ∈ E, such that

(69) ||
∫ τ

0
(τ − h)sq(h)hk0∂−k1z v(h, z)dh||(ε,σ,0,δ,Ω) ≤ C4.1|ε|s+k0+1δk1 ||v(τ, z)||(ε,σ,0,δ,Ω)

for all v ∈ SG(ε, σ, 0, δ,Ω), all ε ∈ E.

Proof 1) Using Proposition 5, there exists a universal constant C3 > 0 for which

(70) ||
∫ τ

0
(τ − h)s exp(−k2h)hk0∂−k1z v(h, z)dh||(ε,σ,σ′,δ,Ω)

≤ C3|ε|||τ s||(ε,σ,σ′,δ,Ω)|| exp(−k2τ)τk0∂−k1z v(τ, z)||(ε,σ,σ′,δ,Ω)
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holds. Moreover, using the estimates (25) we notice that

(71) ||τ s||(ε,σ,σ′,δ,Ω) = ||τ s||0,ε,σ,σ′,Ω ≤ ||τ s||0,ε,σ,0,Ω = |ε|s((se
−1

σ
)s + (

(s+ 2)e−1

σ
)s+2).

Finally, gathering (15), (70) and (71) yields (67).

2) Again, due to Proposition 5, we get a universal constant C3 > 0 such that

(72) ||
∫ τ

0
(τ − h)sq(h)hk0∂−k1z v(h, z)dh||(ε,σ,0,δ,Ω)

≤ C3|ε|||τ s||(ε,σ,0,δ,Ω)||q(τ)τk0∂−k1z v(τ, z)||(ε,σ,0,δ,Ω)

Using (17) and (52) together with (71) and (72) give the result. 2

2.2 A global Cauchy problem

We keep the same notations as in the previous section. In the following, we introduce some
definitions. Let A1 (resp. A2) be a finite subset of N4 (resp. N).
For all k = (s, k0, k1, k2) ∈ A1, we denote Ik a finite subset of N. For all n ∈ Ik, we denote
an,k(τ, z, ε) some bounded holomorphic function on (Sd ∪D(0, r))×D(0, ρ)×E , for some ρ > 0.
For all k ∈ A1, we consider

ak(τ, z, ε) =
∑
n∈Ik

an,k(τ, z, ε)ε
−n

which are holomorphic functions on (Sd ∪ D(0, r)) × D(0, ρ) × E . For all l ∈ A2, we denote
αl(τ, z, ε) some bounded holomorphic function on (Sd ∪D(0, r))×D(0, ρ)× E .

Let S ≥ 1 be an integer. We consider the following equation

(73) ∂Sz V (τ, z, ε) =
∑
k∈A1

ak(τ, z, ε)

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z V (h, z, ε)dh

+
∑
l∈A2

αl(τ, z, ε)V
∗l(τ, z, ε)

where V ∗1 = V and V ∗l1 , l1 ≥ 2, stands for the convolution product of V applied l1 − 1 times
with respect to τ .
We state the main result of this section.

Proposition 6 1) We make the following assumptions.

There exist real numbers σ′ > σ̃′ > 0 such that, for all k ∈ A1, all n ∈ Ik, we have

(74) S ≥ k1 + bk0 +
k2b

σ′
, s+ k0 + 1 ≥ n , S > k1.

For all l ∈ A2, we have

(75) l ≥ 2.

For all 0 ≤ j ≤ S − 1, we consider a function τ 7→ Vj(τ, ε) that belongs to SE0,ε,σ̃,σ̃′,Ω, for some
σ̃ > 0 and all ε ∈ E. We assume that the function τ 7→ exp(−k2τ) is unbounded on the sector
Sd.
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Then, there exist constants I > 0, R > 0 and δ > 0 (independent of ε) such that if we assume
that

(76)
S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E, the equation (73) with initial data

(77) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1,

has a unique solution V (τ, z, ε) in the space SG(ε, σ, σ′, δ,Ω), for some σ > σ̃, for all ε ∈ E,
which satisfies moreover the estimates

||V (τ, z, ε)||(ε,σ,σ′,δ,Ω) ≤ δSR+ I,

for all ε ∈ E.

2) We assume that the next conditions hold.

For all k ∈ A1, all n ∈ Ik,

(78) S ≥ k1 + bk0 , s+ k0 + 1 ≥ n , S > k1

hold and for all l ∈ A2, we have

(79) l ≥ 2.

For all 0 ≤ j ≤ S − 1, we consider a function τ 7→ Vj(τ, ε) that belongs to SE0,ε,σ̃,0,Ω, for some
σ̃ > 0 and all ε ∈ E. We make the assumption that the function τ 7→ exp(−k2τ) is bounded on
the sector Sd.

Then, there exist constants I > 0, R > 0 and δ > 0 (independent of ε) such that if we assume
that

(80)

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,0,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E, the equation (73) with initial data

(81) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1,

has a unique solution V (τ, z, ε) in the space SG(ε, σ, 0, δ,Ω), for some σ > σ̃, for all ε ∈ E, which
satisfies moreover the estimates

||V (τ, z, ε)||(ε,σ,0,δ,Ω) ≤ δSR+ I,

for all ε ∈ E.

Proof We consider

w(τ, z, ε) =

S−1∑
j=0

Vj(τ, ε)
zj

j!



18

where Vj(τ, ε) are given in (77) or (81). For all ε ∈ E , we define a map Aε from O(Sd∪D(0, r)){z}
into itself by

Aε(U(τ, z)) =
∑
k∈A1

ak(τ, z, ε)

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1−Sz U(h, z)dh

+
∑
k∈A1

ak(τ, z, ε)

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z w(h, z, ε)dh

+
∑
l∈A2

αl(τ, z, ε)((∂
−S
z U(τ, z) + w(τ, z, ε))∗l1)

In the following, we only plan to give details for the point 1) since exactly the same lines of
arguments apply for the point 2) of the Proposition 6 with the help of the point 2) of Propositions
2,3 and Corollary 1 instead.

In the next lemma, we show that Aε is a Lipschitz shrinking map from and into a small ball
in a neighborhood of the origin of SG(ε, σ, σ′, δ,Ω), for some σ > σ̃, σ′ > σ̃′.

Lemma 8 Under the conditions (74), (75), let a real number I be such that

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E. Then, for a good choice of I > 0,
a) there exist real numbers 0 < δ < ρ, σ > σ̃, σ′ > σ̃′ and R > 0 (not depending on ε) such that

(82) ||Aε(U(τ, z))||(ε,σ,σ′,δ,Ω) ≤ R

for all U(τ, z) ∈ B(0, R), for all ε ∈ E, where B(0, R) is the closed ball centered at 0 with radius
R in SG(ε, σ, σ′, δ,Ω),
b) we have

(83) ||Aε(U1(τ, z))−Aε(U2(τ, z))||(ε,σ,σ′,δ,Ω) ≤
1

2
||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

for all U1, U2 ∈ B(0, R), for all ε ∈ E.

Proof First of all, for all 0 ≤ h ≤ S − 1, 0 ≤ j ≤ S − 1− h, we have that

||Vj+h(τ, ε)||j,ε,σ̃,σ̃′,Ω ≤ ||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ω.

We deduce that ∂hzw(τ, z, ε) ∈ SG(ε, σ̃, σ̃′, δ,Ω) and that

(84) ||∂hzw(τ, z, ε)||(ε,σ̃,σ̃′,δ,Ω) ≤
S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ω
δj

j!
≤ I

for all 0 ≤ h ≤ S − 1.

We first show the estimates (82).
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Let σ > σ̃, σ′ > σ̃′, R > 0 and U(τ, z) ∈ SG(ε, σ, σ′, δ,Ω) with ||U(τ, z)||(ε,σ,σ′,δ,Ω) ≤ R.
Under the assumptions (74), from Proposition 4 and Corollary 1, we get a constant C5 > 0
(independent of ε) such that

(85) ||an,k(τ, z, ε)ε−n
∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1−Sz U(h, z)dh||(ε,σ,σ′,δ,Ω)

≤ C5|ε|s+k0+1−nδS−k1 ||U(τ, z)||(ε,σ,σ′,δ,Ω)

for all k ∈ A1, all n ∈ Ik.
Again under the assumptions (74) with the help of Propositions 3, 1) and Proposition 5 and

the estimates (71), (84), we get constants C6, C7 > 0 (independent of ε) such that

(86) ||an,k(τ, z, ε)ε−n
∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z w(h, z, ε)||(ε,σ,σ′,δ,Ω)

≤ C6|ε|1−n||τ s||(ε,σ,σ′,δ,Ω)|| exp(−k2τ)τk0∂k1z w(τ, z, ε)||(ε,σ,σ′,δ,Ω)

≤ C7|ε|s+k0+1−n||∂k1z w(τ, z, ε)||(ε,σ̃,σ̃′,δ,Ω) ≤ C7I|ε|s+k0+1−n

for all k ∈ A1, all n ∈ Ik.
On the other hand, since the convolution product is commutative, from the binomal formula,

we can write

(∂−Sz U(τ, z) + w(τ, z, ε))∗l = (∂−Sz U(τ, z))∗l + (w(τ, z, ε))∗l

+
∑

l1+l2=l,l1≥1,l2≥1

l!

l1!l2!
(∂−Sz U(τ, z))∗l

1 ∗ (w(τ, z, ε))∗l
2

for all l ≥ 2. From Proposition 2, 2) and Proposition 5 we get a constant C8 > 0 (independent
of ε) such that

(87) ||(∂−Sz U(τ, z) + w(τ, z, ε))∗l||(ε,σ,σ′,δ,Ω)

≤ C8|ε|l−1(δSlRl + I l +
∑

l1+l2=l,l1≥1,l2≥1

l!

l1!l2!
δSl

1
Rl

1
I l

2
) = C8|ε|l−1(δSR+ I)l

for all l ∈ A2. From Proposition 4 we get a constant C9 > 0 (independent of ε) such that

(88) ||αl(τ, z, ε)(∂−Sz U(τ, z) + w(τ, z, ε))∗l)||(ε,σ,σ′,δ,Ω)

≤ C9||(∂−Sz U(τ, z) + w(τ, z, ε))∗l||(ε,σ,σ′,δ,Ω)

for all l ∈ A2. From (87) and (88), we get that

(89) ||αl(τ, z, ε)(∂−Sz U(τ, z) + w(τ, z, ε))∗l)||(ε,σ,σ′,δ,Ω) ≤ C8C9|ε|l−1(δSR+ I)l

for all l ∈ A2. Now, we choose δ,R, I > 0 such that

(90)
∑
k∈A1

∑
n∈Ik

|ε|s+k0+1−n(C5δ
S−k1R+ C7I) +

∑
l∈A2

C8C9|ε|l−1(δSR+ I)l ≤ R

for all ε ∈ E . From the inequalities (85), (86) and (89), we deduce that

||Aε(U(τ, z))||(ε,σ,σ′,δ,Ω) ≤ R
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for all ε ∈ E .

We prove now the estimates (83).

Let R > 0 and let U1, U2 ∈ B(0, R). Under the assumptions (74), from Proposition 4 and
Corollary 1, 1) we get a constant C10 > 0 (independent of ε) with

(91) ||an,k(τ, z, ε)ε−n
∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1−Sz (U1(h, z)− U2(h, z))dh||(ε,σ,σ′,δ,Ω)

≤ C10|ε|s+k0+1−nδS−k1 ||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

for all k ∈ A1, all n ∈ Ik. As in the part a), we can write from the binomial formula

(92) (∂−Sz U1(τ, z) + w(τ, z, ε))∗l − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l

= (∂−Sz U1(τ, z))∗l − (∂−Sz U2(τ, z))∗l

+
∑

l1+l2=l,l1≥1,l2≥1

l!

l1!l2!
((∂−Sz U1(τ, z))∗l

1 − (∂−Sz U2(τ, z))∗l
1
) ∗ (w(τ, z, ε))∗l

2

for all l ≥ 2. On the other hand, we have that

(93) (∂−Sz U1(τ, z))∗2 − (∂−Sz U2(τ, z))∗2

= (∂−Sz U1(τ, z)− ∂−Sz U2(τ, z)) ∗ (∂−Sz U1(τ, z) + ∂−Sz U2(τ, z))

and, for all l1 ≥ 3, we can write

(94) (∂−Sz U1(τ, z))∗l
1 − (∂−Sz U2(τ, z))∗l

1
=
(
∂−Sz U1(τ, z)− ∂−Sz U2(τ, z)

)
∗
(

(∂−Sz U1(τ, z))∗l
1−1 + (∂−Sz U2(τ, z))∗l

1−1

+

l1−2∑
k=1

(∂−Sz U2(τ, z))∗k ∗ (∂−Sz U1(τ, z))∗l
1−k−1

 .

Using (93) and (94), from Propositions 2, 2) and 5 we get a constant C11 > 0 (independent of
ε) such that

(95) ||(∂−Sz U1(τ, z))∗l
1 − (∂−Sz U2(τ, z))∗l

1 ||(ε,σ,σ′,δ,Ω)

≤ (C11|ε|l
1−1δSl

1
Rl

1−1)||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

for all l1 ∈ A2. From (92), (95), we get a constant C12 > 0 (independent of ε) such that

(96) ||(∂−Sz U1(τ, z) + w(τ, z, ε))∗l − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l||(ε,σ,σ′,δ,Ω)

≤ C12|ε|l−1(δSlRl−1 +
∑

l1+l2=l,l1≥1,l2≥1

l!

l1!l2!
δSl

1
Rl

1−1I l
2
)||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

= C12|ε|l−1R−1((δSR+ I)l − I l)||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

for all l ∈ A2. From Proposition 4 we get a constant C13 > 0 (independent of ε) such that

(97) ||αl(τ, z, ε)((∂−Sz U1(τ, z) + w(τ, z, ε))∗l − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l)||(ε,σ,σ′,δ,Ω)

≤ C13||(∂−Sz U1(τ, z) + w(τ, z, ε))∗l − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l||(ε,σ,σ′,δ,Ω)
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for all l ∈ A2. Gathering (96) and (97), we get that

(98) ||αl(τ, z, ε)((∂−Sz U1(τ, z) + w(τ, z, ε))∗l − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l)||(ε,σ,σ′,δ,Ω)

≤ C12C13|ε|l−1R−1((δSR+ I)l − I l)||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω)

for all l ∈ A2. Now, we choose δ,R, I > 0 such that

(99)
∑
k∈A1

∑
n∈Ik

C10|ε|s+k0+1−nδS−k1 +
∑
l∈A2

C12C13|ε|l−1R−1((δSR+ I)l − I l) ≤ 1

2

for all ε ∈ E . From the inequalities (91), (98), we deduce that

||Aε(U1(τ, z))−Aε(U2(τ, z))||(ε,σ,σ′,δ,Ω) ≤
1

2
||U1(τ, z)− U2(τ, z)||(ε,σ,σ′,δ,Ω),

for all ε ∈ E .
Finally, we choose δ,R, I > 0 is such a way that the conditions (90) and (99) hold simulta-

neously. This yields Lemma 8. 2

Now, let the assumptions (74), (75) hold. We choose the constants I,R, δ as in the lemma 8.
Assume that

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S−1, for all ε ∈ E . From Lemma 8 and the classical contractive mapping theorem
on complete metric spaces, we deduce that the map Aε has a unique fixed point (called U(τ, z, ε))
in the closed ball B(0, R) ⊂ SG(ε, σ, σ′, δ,Ω), for all ε in E , which means that Aε(U(τ, z, ε)) =
U(τ, z, ε) with ||U ||(ε,σ,σ′,δ,Ω) ≤ R. Finally, we get that the function

V (τ, z, ε) = ∂−Sz U(τ, z, ε) + w(τ, z, ε)

satisfies the Cauchy problem (73), (77), for all τ ∈ Sd ∪ D(0, r), all z ∈ D(0, δ), all ε ∈ E .
Moreover, from Proposition 2, 2) we deduce that

||V (τ, z, ε)||(ε,σ,σ′,δ,Ω) ≤ δSR+ I,

for all ε ∈ E . 2

3 Analytic solutions in a complex parameter of a singularly per-
turbed Cauchy problem

Definition 2 Let V (τ, ε) be a holomorphic function on some punctured polydisc

Ωτ0,ε0 = D(0, τ0)× (D(0, ε0) \ {0})

where 0 < τ0 < |a| and 0 < ε0 < 1, with a ∈ C∗ such that arg(a) 6= 0. We make the assumption
that the function τ 7→ V (τ, ε) belongs to SE0,ε,σ̃,σ̃′,Ωτ0,ε0

, for some σ̃, σ̃′ > 0, all ε ∈ D(0, ε0)\{0}.
Let Ud be an open unbounded sector centered at 0, with bisecting direction d and with small

opening. Let E be an open sector centered at 0 such that E ⊂ D(0, ε0). We denote by

Ω(d, E) = (Ud ∪D(0, τ0))× E .
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We also assume that there exists an open unbounded sector T centered at 0 such that

d+ arg(t)− arg(ε) ∈ (−π/2, π/2)

for all t ∈ T .
1) Let d ∈ (−π/2, π/2) with d 6= arg(a). We assume that a /∈ Ud. We assume that the

function (τ, ε) 7→ V (τ, ε) can be extended to an analytic function (τ, ε) 7→ VUd,E(τ, ε) on Ω(d, E)
and that the function τ 7→ VUd,E(τ, ε) belongs to SE0,ε,σ̃,0,Ω(d,E), for all ε ∈ E.

2) Let d ∈ [−π,−π/2) ∪ (π/2, π] with d 6= arg(a). We assume that a /∈ Ud. We assume
that the function (τ, ε) 7→ V (τ, ε) can be extended to an analytic function (τ, ε) 7→ VUd,E(τ, ε) on
Ω(d, E) and that the function τ 7→ VUd,E(τ, ε) belongs to SE0,ε,σ̃,σ̃′,Ω(d,E), for all ε ∈ E.

If 1) holds, we say that the set {V, VUd,E , a, σ̃, σ̃′, T } is (σ̃, 0)−admissible and if 2) holds, we say
that the set {V, VUd,E , a, σ̃, σ̃′, T } is (σ̃, σ̃′)−admissible.

Let A1 (resp. A2) be a finite subset of N4 (resp. N). For all k = (s, k0, k1, k2) ∈ A1, we
denote by bk(z, ε) some bounded holomorphic function on D(0, ρ) × E , for some ρ > 0. For all
l ∈ A2, we denote by cl(z, ε) some bounded holomorphic function on D(0, ρ)×E . Let a ∈ C∗ be
a complex number with arg(a) 6= 0, S ≥ 1 be an integer and d ∈ (−π/2, π/2) with d 6= arg(a).
We consider the following singularly perturbed Cauchy problem

(100) ε∂t∂
S
z XUd,E(t, z, ε) + a∂Sz XUd,E(t, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

bk(z, ε)

ts+1
(∂k0t ∂

k1
z XUd,E)(t+ k2ε, z, ε) +

∑
l∈A2

cl(z, ε)X
l
Ud,E(t, z, ε)

for given initial data

(101) (∂jzXUd,E)(t, 0, ε) = ϕj,Ud,E(t, ε) , 0 ≤ j ≤ S − 1,

where the functions ϕj,Ud,E(t, ε) are constructed in the following manner. For all 0 ≤ j ≤ S − 1,
let {Vj , Vj,Ud,E , a, σ̃, σ̃′, T } be a (σ̃, 0)−admissible set, then we consider the function

ϕj,Ud,E(t, ε) =

∫
Lγ

Vj,Ud,E(τ, ε) exp(− tτ
ε

)dτ

where Lγ = R+e
iγ ⊂ Ud ∪ {0} is a halfline where γ depends on t and ε in such a way that there

exists δ1 > 0 with
cos(γ + arg(t)− arg(ε)) ≥ δ1

for all t ∈ T with |t| > σ̃/δ1 and ε ∈ E . By construction, the function ϕj,Ud,E(t, ε) is holomorphic
and bounded on (T ∩ {|t| > σ̃/δ1})× E .

Proposition 7 We make the following assumptions.

There exist real numbers σ′ > σ̃′ > 0 such that, for all k ∈ A1, we have

(102) S ≥ k1 + bk0 +
k2b

σ′
, S > k1,

and for all l ∈ A2, we have

(103) l ≥ 2.
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Then, there exist constants I > 0 and δ > 0 (independent of ε) such that if we assume that

(104)
S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,0,Ωτ0,ε0
δj

j!
≤ I ,

S−1−h∑
j=0

||Vj+h,Ud,E(τ, ε)||0,ε,σ̃,0,Ω(d,E)
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E, the Cauchy problem (100), (101) has a solution (t, z, ε) 7→
XUd,E(t, z, ε) which is holomorphic and bounded on a domain (t, z, ε) ∈ (T ∩ {|t| > σζ(b)/δ1})×
D(0, δ/2)×E for some σ > σ̃. The function XUd,E(t, z, ε) can be written as a Laplace transform

(105) XUd,E(t, z, ε) =

∫
Lγ

VUd,E(τ, z, ε) exp(− tτ
ε

)dτ

where VUd,E(τ, z, ε) is a holomorphic function on the domain (Ud ∪D(0, τ0))×D(0, δ/2)×E and
satisfies the following estimates: there exists a constant CΩ(d,E) > 0 (independent of ε) such that

(106) |VUd,E(τ, z, ε)| ≤ CΩ(d,E)(1 +
|τ |2

|ε|2
)−1 exp(

σζ(b)

|ε|
|τ |)

for all (τ, z, ε) ∈ (Ud ∪ D(0, τ0)) × D(0, δ/2) × E. Moreover, the function VUd,E(τ, z, ε) is the
analytic continuation of a function V (τ, z, ε) which is holomorphic on a punctured polydisc
D(0, τ0) × D(0, δ/2) × (D(0, ε0) \ {0}) and fulfills the next estimates: there exists a constant
CΩτ0,ε0

> 0 (independent of ε) such that

(107) |V (τ, z, ε)| ≤ CΩτ0,ε0
(1 +

|τ |2

|ε|2
)−1 exp(

σζ(b)

|ε|
|τ |)

for all τ ∈ D(0, τ0), all z ∈ D(0, δ/2) and all ε ∈ D(0, ε0) \ {0}.

Proof We consider the following Cauchy problem

(108) ∂Sz V (τ, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

(−1)k0bk(z, ε)

(a− τ)ε1+s+k0s!

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z V (h, z, ε)dh

+
∑
l∈A2

cl(z, ε)

a− τ
V ∗l(τ, z, ε)

for the given initial data

(109) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1.

From the assumptions (102), (103) together with (104) we deduce that the conditions (78), (79)
and (80) from Proposition 6, 2) are fulfilled for the problem (108), (109). We deduce that the
problem (108), (109) has a unique solution V (τ, z, ε) that belongs to the space SG(ε, σ, 0, δ,Ωτ0,ε0),
for some σ > σ̃. In particular, V (τ, z, ε) is holomorphic on the punctured polydisc D(0, τ0) ×
D(0, δ/2)× (D(0, ε0) \ {0}) and using Proposition 1, it satisfies also (107).

In the second step of the proof, we show that the function V (τ, z, ε) can be analytically
continued to a function VUd,E(τ, z, ε) on (Ud ∪ D(0, τ0)) × D(0, δ/2) × E which satisfies (106).
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Indeed, by construction, the function V (τ, z, ε) solves also the problem

(110) ∂Sz V (τ, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

(−1)k0bk(z, ε)

(a− τ)ε1+s+k0s!

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z V (h, z, ε)dh

+
∑
l∈A2

cl(z, ε)

a− τ
V ∗l(τ, z, ε)

with the given initial conditions

(111) (∂jzV )(τ, 0, ε) = Vj,Ud,E(τ, ε) , 0 ≤ j ≤ S − 1,

for all τ ∈ D(0, τ0), z ∈ D(0, δ/2) and ε ∈ E . Gathering the assumptions (102), (103) and (104)
we deduce that the conditions (78), (79) and (80) from Proposition 6, 2) are fulfilled for the
problem (110), (111). We get that the problem (110), (111) has a unique solution VUd,E(τ, z, ε)
that belongs to the space SG(ε, σ, 0, δ,Ω(d, E)) for some σ > σ̃. In particular, VUd,E(τ, z, ε)
defines a holomorphic function on (Ud ∪D(0, τ0)) ×D(0, δ/2) × E , coincides with V (τ, z, ε) on
D(0, τ0)×D(0, δ/2)× E and fills (106) due to Proposition 1.

In the last part of the proof, it remains to show that the Laplace transform

XUd,E(t, z, ε) =

∫
Lγ

VUd,E(τ, z, ε) exp(− tτ
ε

)dτ

satisfies the problem (100), (101) on the domain (T ∩ {|t| > σζ(b)/δ1}) ×D(0, δ/2) × E . This
is a consequence of the classical properties of the Laplace transform that we recall in the next
lemma, see [2], [9] for references.

Lemma 9 Let m ≥ 0 be an integer. Let w1(τ), w2(τ) be holomorphic functions on the un-
bounded sector Ud such that there exist C,K > 0 with

|wj(τ)| ≤ C exp(K|τ |) , j = 1, 2

for all τ ∈ Ud. We denote

w1 ∗ w2(τ) =

∫ τ

0
w1(τ − s)w2(s)ds

their convolution product on Ud. We denote by D an unbounded sector centered at 0 for which
there exists δ1 > 0 with

d+ arg(t) ∈ (−π/2, π/2) , cos(d+ arg(t)) ≥ δ1,

for all t ∈ D. Then the following identities hold for the Laplace transforms∫
Ld

τm exp(−tτ)dτ =
m!

tm+1
, ∂t(

∫
Ld

w1(τ) exp(−tτ)dτ) =

∫
Ld

(−τ)w1(τ) exp(−tτ)dτ,∫
Ld

w1 ∗ w2(τ) exp(−tτ)dτ = (

∫
Ld

w1(τ) exp(−tτ)dτ)(

∫
Ld

w2(τ) exp(−tτ)dτ)

where Ld = R+e
id ⊂ Ud ∪ {0}, for all t ∈ D ∩ {|t| > K/δ1}.

2
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4 Construction of a Banach valued cocyle

We keep the notations of Section 3. We recall the definition of a good covering.

Definition 3 For all 0 ≤ i ≤ ν − 1, we consider open sectors Ei centered at 0, with radius ε0
such that Ei ∩Ei+1 6= ∅, for all 0 ≤ i ≤ ν − 1 (with the convention that Eν = E0), which are three
by three disjoint and such that ∪ν−1

i=0 Ei = U \ {0}, where U is some neighborhood of 0 in C. Such
a set of sectors {Ei}0≤i≤ν−1 is called a good covering in C∗.

Let {Ei}0≤i≤ν−1 be a good covering in C∗. For all 0 ≤ j ≤ S − 1, for all 0 ≤ i ≤ ν − 1,
we consider directions di ∈ R with di 6= arg(a), 0 ≤ i ≤ ν − 1, for some a ∈ C∗ and a
family of sets {Vj , Vj,Udi ,Ei , a, σ̃, σ̃

′, T } which are (σ̃, 0)−admissible when di ∈ (−π/2, π/2) and
(σ̃, σ̃′)−admissible when di ∈ [−π,−π/2)∪(π/2, π]. We make the assumption that there exists a
least one integer 0 ≤ i0 ≤ ν−1 such that di0 , di0+1 ∈ [−π,−π/2)∪(π/2, π] with Udi0 ∩Udi0+1

6= ∅.
For di ∈ (−π/2, π/2), we consider the Laplace transform

(112) ϕj,Udi ,Ei(t, ε) =

∫
Lγi

Vj,Udi ,Ei(τ, ε) exp(− tτ
ε

)dτ

where Lγi = R+e
√
−1γi ⊂ Udi ∪ {0} is a halfline where γi may depend on t and ε in such a way

that there exists δ1 > 0 with

cos(γi + arg(t)− arg(ε)) ≥ δ1

for all t ∈ T with |t| > σ̃/δ1 and ε ∈ Ei.
We choose a real number σ′′ > σ̃′ and a real number θi such that

arg(t)− arg(ε) + θi 6= π

for all t ∈ T , all ε ∈ Ei. The function log(z) denotes also the principal branch of the logarithm
of z which is holomorphic on {z ∈ C∗/arg(z) 6= π}.

For di ∈ [−π,−π/2) ∪ (π/2, π], we choose γi with e
√
−1γi ∈ Udi that may depend on t and ε

in such a way that there exists δ1 > 0 with

(113) cos(γi + arg(t)− arg(ε)) ≥ δ1

for all t ∈ T , all ε ∈ Ei. Due to the formula

arg(log(
t

ε
e
√
−1θi)) = arctan(

arg(t)− arg(ε) + θi

log | tε |
)

for all t ∈ T with |t| > µT provided that µT > 0 is large enough, all ε ∈ Ei, we notice that

e
√
−1γi log( tεe

√
−1θi) ∈ Udi for all ε ∈ Ei, all t ∈ T for |t| > µT . We consider the truncated

Laplace transform (introduced in [18])

(114) ϕj,Udi ,Ei,γi,σ
′′,θi(t, ε) =

∫ e
√
−1γi log( t

ε
e
√
−1θi )/(σ′′ζ(b))

0
Vj,Udi ,Ei(τ, ε) exp(− tτ

ε
)dτ

where the integration is made along the segment [0, e
√
−1γi log( tεe

√
−1θi)/(σ′′ζ(b)], for all t ∈ T ,

all ε ∈ Ei.
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The following theorem is crucial in order to establish our main result (Theorem 2) that will
be stated in the next section. In this theorem we construct by means of Laplace transforms
and truncated Laplace transforms a family of bounded holomorphic functions XUdi ,Ei(t, z, ε) on
products (T ∩ {|t| > h}) ×D(0, δ/2) × Ei, for h > 0 large enough and δ > 0 small enough, for
all 0 ≤ i ≤ ν − 1, whose differences

∆i(ε) = XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε)

satisfy exponential and super-exponential flatness estimates on the intersections Ei+1 ∩ Ei. The
sequence of functions ∆i(ε), 0 ≤ i ≤ ν − 1, viewed as functions from Ei into the Banach space E
of bounded holomorphic functions on (T ∩ {|t| > h})×D(0, δ/2) equipped with the supremum
norm will be called a (Banach valued) cocycle according to the terminology of [26].

Theorem 1 We make the following assumptions.

There exists σ′ > σ̃′ such that, for all k ∈ A1, we have

(115) S ≥ k1 + bk0 +
k2b

σ′
, S > k1,

and for all l ∈ A2, we have

(116) l ≥ 2.

Then, there exist constants I > 0 and δ > 0 (independent of ε) such that if we assume that for
all di ∈ (−π/2, π/2),

(117)
S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,0,Ωτ0,ε0
δj

j!
≤ I ,

S−1−h∑
j=0

||Vj+h,Udi ,Ei(τ, ε)||0,ε,σ̃,0,Ω(di,Ei)
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ Ei and for all di ∈ [−π,−π/2) ∪ (π/2, π],

(118)

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,σ̃′,Ωτ0,ε0
δj

j!
≤ I ,

S−1−h∑
j=0

||Vj+h,Udi ,Ei(τ, ε)||0,ε,σ̃,σ̃′,Ω(di,Ei)
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ Ei, there exists a family of holomorphic and bounded functions
XUdi ,Ei(t, z, ε), 0 ≤ i ≤ ν− 1, on the product (T ∩{|t| > µT })×D(0, δ/2)×Ei with the following
properties:

1) If di ∈ (−π/2, π/2), then XUdi ,Ei(t, z, ε) is the solution of the equation (100) with initial data

(119) (∂jzXUdi ,Ei)(t, 0, ε) = ϕj,Udi ,Ei(t, ε) , 0 ≤ j ≤ S − 1.

2) If di ∈ [−π,−π/2) ∪ (π/2, π], then XUdi ,Ei(t, z, ε) satisfies

(120) (∂jzXUdi ,Ei)(t, 0, ε) = ϕj,Udi ,Ei,γi,σ
′′,θi(t, ε) , 0 ≤ j ≤ S − 1.

3) For all 0 ≤ i ≤ ν − 1, there exist constants h ≥ µT , Ki,Mi > 0 such that

(121) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1,Ei+1
(t, z, ε)−XUdi,Ei

(t, z, ε)| ≤ Kie
−Mi|ε|
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for all ε ∈ Ei ∩ Ei+1 where by convention Eν = E0, dν = d0.
4) If di+1, di ∈ [−π,−π/2)∪ (π/2, π] and if moreover Udi ∩Udi+1

6= ∅, then there exist constants
h ≥ µT , Ki,Mi > 0 and Li > 1 with

(122) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1,Ei+1
(t, z, ε)−XUdi,Ei

(t, z, ε)| ≤ Ki exp(−Mi

|ε|
log

Li
|ε|

)

for all ε ∈ Ei ∩ Ei+1.

Proof If di ∈ (−π/2, π/2), we consider the solution XUdi ,Ei(t, z, ε) of the equation (100) with
initial data

(∂jzXUdi ,Ei)(t, 0, ε) = ϕj,Udi ,Ei(t, ε) , 0 ≤ j ≤ S − 1.

constructed as in Proposition 7. Recall that the function XUdi ,Ei(t, z, ε) can be written as a
Laplace transform

(123) XUdi ,Ei(t, z, ε) =

∫
Lγi

VUdi ,Ei(τ, z, ε) exp(− tτ
ε

)dτ

where VUdi ,Ei(τ, z, ε) is a holomorphic function on the domain (Udi ∪D(0, τ0)) ×D(0, δ/2) × Ei
and satisfies the following estimates: there exists a constant CΩ(di,Ei) > 0 (independent of ε)
such that

(124) |VUdi ,Ei(τ, z, ε)| ≤ CΩ(di,Ei)(1 +
|τ |2

|ε|2
)−1 exp(

σζ(b)

|ε|
|τ |)

for all (τ, z, ε) ∈ (Udi ∪ D(0, τ0)) × D(0, δ/2) × Ei, for some σ > σ̃. Moreover, the function
VUdi ,Ei(τ, z, ε) is the analytic continuation of a function V (τ, z, ε) which is holomorphic on a
punctured polydisc D(0, τ0)×D(0, δ/2)× (D(0, ε0) \ {0}) and fulfills the next estimates: there
exists a constant CΩτ0,ε0

> 0 (independent of ε) such that

(125) |V (τ, z, ε)| ≤ CΩτ0,ε0
(1 +

|τ |2

|ε|2
)−1 exp(

σζ(b)

|ε|
|τ |)

for all τ ∈ D(0, τ0), all z ∈ D(0, δ/2) and all ε ∈ D(0, ε0) \ {0}.
If di ∈ [−π,−π/2) ∪ (π/2, π], we consider the following Cauchy problem

(126) ∂Sz VUdi ,Ei(τ, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

(−1)k0bk(z, ε)

(a− τ)ε1+s+k0s!

∫ τ

0
(τ − h)s exp(−k2h)hk0∂k1z VUdi ,Ei(h, z, ε)dh

+
∑
l∈A2

cl(z, ε)

a− τ
V ∗lUdi ,Ei

(τ, z, ε)

with the given initial conditions

(127) (∂jzVUdi ,Ei)(τ, 0, ε) = Vj,Udi ,Ei(τ, ε) , 0 ≤ j ≤ S − 1,

for all τ ∈ D(0, τ0) ∪ Udi , z ∈ D(0, δ/2) and ε ∈ Ei. Gathering the assumptions (115), (116)
and (118) we deduce that the conditions (74), (75) and (76) from Proposition 6, 1) are fulfilled
for the problem (126), (127). We get that the problem (126), (127) has a unique solution
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VUdi ,Ei(τ, z, ε) that belongs to the space SG(ε, σ, σ′, δ,Ω(di, Ei)) for σ > σ̃ and σ′ > σ̃′. In
particular, VUdi ,Ei(τ, z, ε) defines a holomorphic function on (Udi ∪ D(0, τ0)) × D(0, δ/2) × Ei,
coincides with V (τ, z, ε) on D(0, τ0)×D(0, δ/2)× E and satisfies the estimates

(128) |VUdi ,Ei(τ, z, ε)| ≤ CΩ(di,Ei)(1 +
|τ |2

|ε|2
)−1 exp

(
σζ(b)

|ε|
|τ |+ exp(σ′ζ(b)|τ |)

)
for all (τ, z, ε) ∈ (Udi ∪D(0, τ0))×D(0, δ/2)× Ei, due to Proposition 1.

Now, we define the truncated Laplace transform

(129) XUdi ,Ei(t, z, ε) =

∫ e
√
−1γi log( t

ε
e
√
−1θi )/(σ′′ζ(b))

0
VUdi ,Ei(τ, z, ε) exp(− tτ

ε
)dτ

for all (t, z, ε) ∈ (T ∩ {|t| > µT }) ×D(0, δ/2) × Ei, where σ′′ > σ′ > σ̃′ and γi are chosen as in
(114).

In order to provide estimates for the differences of the functions XUdi ,Ei(t, z, ε), we consider
several cases.

Lemma 10 If di, di+1 ∈ (−π/2, π/2), then there exist constants h ≥ µT , Ki,Mi > 0 such that

(130) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1,Ei+1
(t, z, ε)−XUdi,Ei

(t, z, ε)| ≤ Kie
−Mi|ε|

for all ε ∈ Ei ∩ Ei+1.

Proof Let i an integer with 0 ≤ i ≤ ν − 1 such that di, di+1 ∈ (−π/2, π/2). From the fact that
τ 7→ V (τ, z, ε) is holomorphic on D(0, τ0) for all (z, ε) ∈ D(0, δ/2)× (D(0, ε0) \ {0}), the integral

of τ 7→ V (τ, z, ε) exp(−tτ/ε) along the union of a segment starting from 0 to (τ0/2)e
√
−1γi+1 ,

an arc of circle with radius τ0/2 connecting (τ0/2)e
√
−1γi+1 and (τ0/2)e

√
−1γi and a segment

starting from (τ0/2)e
√
−1γi to 0, is equal to zero. Therefore, using the representation (123), we

can rewrite the difference XUdi+1
,Ei+1 −XUdi ,Ei as a sum of three integrals,

(131) XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε) =

∫
Lτ0/2,γi+1

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ

−
∫
Lτ0/2,γi

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ +

∫
C(τ0/2,γi,γi+1)

V (τ, z, ε)e−
tτ
ε dτ

where Lτ0/2,γi = [τ0/2,+∞)e
√
−1γi , Lτ0/2,γi+1

= [τ0/2,+∞)e
√
−1γi+1 and C(τ0/2, γi, γi+1) is an

arc of circle with radius τ0/2 connecting (τ0/2)e
√
−1γi with (τ0/2)e

√
−1γi+1 with a well chosen

orientation.

We give estimates for I1 = |
∫
Lτ0/2,γi+1

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ |. By construction, the direc-

tion γi+1 (which depends on ε,t) is chosen in such a way that cos(γi+1 + arg(t) − arg(ε)) ≥ δ1,
for all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩ {|t| > µT }, for some fixed δ1 > 0. From the estimates (124), we
get

(132) I1 ≤
∫ +∞

τ0/2
CΩ(di+1,Ei+1)(1 +

r2

|ε|2
)−1e

σζ(b)r
|ε| e

− r|t||ε| cos(γi+1+arg(t)−arg(ε))
dr

≤
∫ +∞

τ0/2
CΩ(di+1,Ei+1)e

(σζ(b)−δ1|t|) r|ε|dr

=
CΩ(di+1,Ei+1)|ε|
δ1|t| − σζ(b)

e
−(δ1|t|−σζ(b)) τ02

1
|ε| ≤

CΩ(di+1,Ei+1)ε0

δ2
e
− δ2τ0/2|ε|
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for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ1, for some δ2 > 0, and for all ε ∈ Ei+1 ∩ Ei.

We give also estimates for I2 = |
∫
Lτ0/2,γi

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ |. By construction, the direction

γi (which depends on ε,t) is chosen in such a way that there exists a fixed δ1 > 0 with cos(γi +
arg(t)− arg(ε)) ≥ δ1, for all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩ {|t| > µT }. From the estimates (124), we
deduce as above that

(133) I2 ≤
CΩ(di,Ei)ε0

δ2
e
− δ2τ0/2|ε|

for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ1, for some δ2 > 0, and for all ε ∈ Ei+1 ∩ Ei.

Finally, we get estimates for I3 = |
∫
C(τ0/2,γi,γi+1) V (τ, z, ε)e−

tτ
ε dτ |. From the estimates (125),

we have

(134) I3 ≤ |
∫ γi+1

γi

CΩτ0,ε0
(1 +

(τ0/2)2

|ε|2
)−1e

σζ(b)τ0
2|ε| e

− |t|τ0
2|ε| cos(θ+arg(t)−arg(ε)) τ0

2
dθ|

By construction, the arc of circle C(τ0/2, γi, γi+1) is chosen in such a way that that cos(θ +
arg(t) − arg(ε)) ≥ δ1, for all θ ∈ [γi, γi+1] (if γi < γi+1)), θ ∈ [γi+1, γi] (if γi+1 < γi)), for all
t ∈ T , all ε ∈ Ei ∩ Ei+1. From (134), we deduce that

(135) I3 ≤ |γi+1 − γi|CΩτ0,ε0

τ0

2
e
−((δ1|t|−σζ(b)) τ02 ) 1

|ε| ≤ |γi+1 − γi|CΩτ0,ε0

τ0

2
e
− δ2τ0

2|ε|

for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ1, for some δ2 > 0, and for all ε ∈ Ei+1 ∩ Ei.

Finally, collecting the inequalities (131), (132), (133), (135) we obtain that the estimates
(130) hold. 2

Lemma 11 If di ∈ (−π/2, π/2) and di+1 ∈ [−π,−π/2) ∪ (π/2, π] or di+1 ∈ (−π/2, π/2) and
di ∈ [−π,−π/2) ∪ (π/2, π] then there exist constants h ≥ µT , Ki,Mi > 0 such that

(136) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε)| ≤ Kie

−Mi|ε|

for all ε ∈ Ei ∩ Ei+1.

Proof Assume that di ∈ (−π/2, π/2) and di+1 ∈ [−π,−π/2) ∪ (π/2, π]. The other alternative
can be handled in a similar way. We know that τ 7→ V (τ, z, ε) is holomorphic on D(0, τ0) for all
(z, ε) ∈ D(0, δ/2) × (D(0, ε0) \ {0}). Therefore, the integral of τ 7→ V (τ, z, ε) exp(−tτ/ε) along
the segment

[0,
τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))]

followed by an arc of circle with radius τ0/2 connecting

τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))) and

τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi )))

and along the segment

[
τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))), 0]
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is equal to zero. So that, using the representations (123) and (129) we can rewrite the difference
XUdi+1

,Ei+1 −XUdi ,Ei as a sum of three integrals,

(137) XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε) =

∫
Lτ0/2,γi+1,t

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ

−
∫
Lτ0/2,γi,t,∞

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ +

∫
C(τ0/2,γi,γi+1,t)

V (τ, z, ε)e−
tτ
ε dτ

where

Lτ0/2,γi,t,∞ = [
τ0

2
,+∞)e

√
−1(γi+arg(log( t

ε
e
√
−1θi ))),

Lτ0/2,γi+1,t = [
τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))), e

√
−1γi+1

log( tεe
√
−1θi+1)

σ′′ζ(b)
]

and C(τ0/2, γi, γi+1, t) is an arc of circle with radius τ0/2 connecting

τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))) with

τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))

with a well chosen orientation.

We show estimates for the first integral

I1 = |
∫
Lτ0/2,γi+1,t

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ |

From the estimates (128), we deduce that

(138) I1 ≤
∫ | log( tε e

√
−1θi+1)|

σ′′ζ(b)

τ0/2
CΩ(di+1,Ei+1)(1 +

h2

|ε|2
)−1 exp(

σζ(b)

|ε|
h+ exp(σ′ζ(b)h))

× exp(−Re(
t

ε
h exp(

√
−1(γi+1 + arg(log(

t

ε
e
√
−1θi+1))))))dh.

We know that

(139) | log(
t

ε
e
√
−1θi+1)| = ((log | t

ε
|)2 + (arg(t)− arg(ε) + θi+1)2)1/2,

arg(log(
t

ε
e
√
−1θi+1)) = arctan(

arg(t)− arg(ε) + θi+1

log | tε |
)

for all t ∈ T with |t| > µT provided that µT > 0 is large enough, all ε ∈ Ei ∩Ei+1. Therefore, we
can choose µT > 0 large enough such that there exists a constant 0 < C14 < σ′′/σ′ (depending
on µT ) with

(140) | log(
t

ε
e
√
−1θi+1)| ≤ C14 log | t

ε
|

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. Moreover, using (139) we deduce from (113) that
there exists δ′1 > 0 (which may be smaller than δ1 defined in (113)) with

(141) Re(
t

ε
h exp(

√
−1(γi+1 + arg(log(

t

ε
e
√
−1θi+1)))))

= | t
ε
|h cos(γi+1 + arg(t)− arg(ε) + arctan(

arg(t)− arg(ε) + θi+1

log | tε |
)) ≥ δ′1|

t

ε
|h
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for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. From (138), (140) and (141) we get that

(142) I1 ≤
∫ C14 log | tε |

σ′′ζ(b)

τ0/2
CΩ(di+1,Ei+1) exp(

σζ(b)

|ε|
h+ exp(σ′ζ(b)h)) exp(−δ′1|

t

ε
|h)dh

≤ CΩ(di+1,Ei+1) exp(| t
ε
|
σ′C14
σ′′ )

∫ C14 log | tε |
σ′′ζ(b)

τ0/2
exp(−(δ′1|t| − σζ(b))

h

|ε|
)dh

= CΩ(di+1,Ei+1) exp(| t
ε
|
σ′C14
σ′′ )

|ε|
δ′1|t| − σζ(b)

×
(

exp(−(δ′1|t| − σζ(b))
τ0

2|ε|
)− exp(−(δ′1|t| − σζ(b))

C14 log | tε |
σ′′ζ(b)|ε|

)

)
.

Now, from the choice of the constant C14 in (140), we can choose 0 < δ2 < δ′1/4 such that

(143) |t| > σζ(b)

δ′1 − 4δ2
, (
|t|
ε0

)
σ′C14
σ′′ −1 ≤ δ2τ0

for all t ∈ T ∩ {|t| ≥ µT } (whenever µT is large enough). Therefore, we deduce that

(144) exp(| t
ε
|
σ′C14
σ′′ ) exp(−(δ′1|t| − σζ(b))

τ0

2|ε|
) ≤ exp(−δ2τ0

|t|
|ε|

) ≤ exp(−δ2τ0
µT
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. Gathering (142) and (144) yields

(145) I1 ≤
CΩ(di+1,Ei+1)ε0

4δ2µT
exp(−δ2τ0

µT
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1.

We give estimates for the second integral

I2 = |
∫
Lτ0/2,γi,t,∞

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ |.

From (124), we get that

(146) I2 ≤
∫ +∞

τ0/2
CΩ(di,Ei)(1 +

h2

|ε|2
)−1 exp(

σζ(b)

|ε|
h)

× exp(−Re(
t

ε
h exp(

√
−1(γi + arg(log(

t

ε
e
√
−1θi))))))dh.

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. As before, with the help of (113) and (139), we get
a constant δ′1 > 0 (which can be smaller than δ1 from (113)) with

(147) Re(
t

ε
h exp(

√
−1(γi + arg(log(

t

ε
e
√
−1θi)))))

= | t
ε
|h cos(γi + arg(t)− arg(ε) + arctan(

arg(t)− arg(ε) + θi

log | tε |
)) ≥ δ′1|

t

ε
|h
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for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. Hence,

(148) I2 ≤
∫ +∞

τ0/2
CΩ(di,Ei)e

(σζ(b)−δ′1|t|)
r
|ε|dr

=
CΩ(di,Ei)|ε|
δ′1|t| − σζ(b)

e
−(δ′1|t|−σζ(b))

τ0
2

) 1
|ε| ≤

CΩ(di,Ei)ε0

δ2
e
− δ2τ0/2|ε|

for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ′1, for some δ2 > 0, and for all ε ∈ Ei+1 ∩ Ei.

Finally, we treat the third integral

I3 = |
∫
C(τ0/2,γi,γi+1,t)

V (τ, z, ε)e−
tτ
ε dτ |

From the estimates (125), we have

(149) I3 ≤ |
∫ γi+1+arg(log( t

ε
e
√
−1θi+1 ))

γi+arg(log( t
ε
e
√
−1θi ))

CΩτ0,ε0
(1 +

(τ0/2)2

|ε|2
)−1e

σζ(b)τ0
2|ε| e

− |t|τ0
2|ε| cos(θ+arg(t)−arg(ε)) τ0

2
dθ|

Bearing in mind (139), the arc of circle C(τ0/2, γi, γi+1, t) is chosen in such a way that cos(θ +
arg(t)− arg(ε)) ≥ δ′1, for some 0 < δ′1 < δ1 where δ1 is defined in (113), for all

θ ∈ [γi + arg(log(
t

ε
e
√
−1θi)), γi+1 + arg(log(

t

ε
e
√
−1θi+1))] if γi < γi+1,

θ ∈ [γi+1 + arg(log(
t

ε
e
√
−1θi+1)), γi + arg(log(

t

ε
e
√
−1θi))] if γi+1 < γi,

for all t ∈ T , all ε ∈ Ei ∩ Ei+1. From (149) and using (139) we deduce that

(150) I3 ≤ (|γi+1 − γi|+ π)CΩτ0,ε0

τ0

2
e
−((δ′1|t|−σζ(b))

τ0
2

) 1
|ε| ≤ (|γi+1 − γi|+ π)CΩτ0,ε0

τ0

2
e
− δ2τ0

2|ε|

for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ′1, for some δ2 > 0, and for all ε ∈ Ei+1 ∩ Ei.
Finally, by collecting (137), (145), (148), (150) we deduce that the estimates (136) hold. 2

Lemma 12 If di, di+1 ∈ [−π,−π/2) ∪ (π/2, π], then there exist constants h ≥ µT , Ki,Mi > 0
such that

(151) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε)| ≤ Kie

−Mi|ε|

for all ε ∈ Ei ∩ Ei+1.

Proof Let di, di+1 ∈ [−π,−π/2) ∪ (π/2, π]. We know that τ 7→ V (τ, z, ε) is holomorphic on
D(0, τ0) for all (z, ε) ∈ D(0, δ/2)× (D(0, ε0) \ {0}). Therefore, the integral of
τ 7→ V (τ, z, ε) exp(−tτ/ε) along the segment

[0,
τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))]

followed by an arc of circle with radius τ0/2 connecting

τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))) and

τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi )))
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and along the segment

[
τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))), 0]

is equal to zero. Hence, using the representation (129) we can rewrite the difference XUdi+1
,Ei+1−

XUdi ,Ei as a sum of three integrals,

(152) XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε) =

∫
Lτ0/2,γi+1,t

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ

−
∫
Lτ0/2,γi,t

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ +

∫
C(τ0/2,γi,γi+1,t)

V (τ, z, ε)e−
tτ
ε dτ

where

Lτ0/2,γi,t = [
τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))), e

√
−1γi

log( tεe
√
−1θi)

σ′′ζ(b)
],

Lτ0/2,γi+1,t = [
τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))), e

√
−1γi+1

log( tεe
√
−1θi+1)

σ′′ζ(b)
]

and C(τ0/2, γi, γi+1, t) is an arc of circle with radius τ0/2 connecting

τ0

2
e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))) with

τ0

2
e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))

with a well chosen orientation.

Using the same arguments as in the proof of (145), we get a constant δ2 > 0 such that

(153) |
∫
Lτ0/2,γi+1,t

VUdi+1
,Ei+1(τ, z, ε)e−

tτ
ε dτ | ≤

CΩ(di+1,Ei+1)ε0

4δ2µT
exp(−δ2τ0

µT
|ε|

),

|
∫
Lτ0/2,γi,t

VUdi ,Ei(τ, z, ε)e
− tτ
ε dτ | ≤

CΩ(di,Ei)ε0

4δ2µT
exp(−δ2τ0

µT
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1.
On the other hand, following a similar outline from the proof of (150) yields a constant

δ2 > 0 with

(154) |
∫
C(τ0/2,γi,γi+1,t)

V (τ, z, ε)e−
tτ
ε dτ | ≤ (|γi+1 − γi|+ π)CΩτ0,ε0

τ0

2
e
− δ2τ0

2|ε|

for all t ∈ T ∩ {|t| > µT }, with |t| ≥ (δ2 + σζ(b))/δ′1, for all ε ∈ Ei+1 ∩ Ei.
Finally, taking into account (152), (153), (154), we get the estimates (151). 2

Lemma 13 If di+1, di ∈ [−π,−π/2)∪ (π/2, π] and if moreover Udi ∩Udi+1
6= ∅, then there exist

constants h ≥ µT , Ki,Mi > 0 and Li > 1 such that

(155) sup
t∈T ∩{|t|>h},z∈D(0,δ/2)

|XUdi+1,Ei+1
(t, z, ε)−XUdi,Ei

(t, z, ε)| ≤ Ki exp(−Mi

|ε|
log

Li
|ε|

)

for all ε ∈ Ei ∩ Ei+1.



34

Proof Let di+1, di ∈ [−π,−π/2) ∪ (π/2, π] and we assume moreover that Udi ∩ Udi+1
6= ∅.

In that case, the function τ 7→ V (τ, z, ε) which is holomorphic on D(0, τ0) for all (z, ε) ∈
D(0, δ/2) × (D(0, ε0) \ {0}) can be analytically continued on the domain Udi+1

∪ Udi (which is
now a sector since Udi ∩ Udi+1

6= ∅) by a function VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε) on (Udi+1

∪ Udi) ×
D(0, δ/2)× (Ei∩Ei+1) which coincides with VUdi ,Ei(τ, z, ε) on Udi×D(0, δ/2)×Ei∩Ei+1 and with
VUdi+1

,Ei+1(τ, z, ε) on Udi+1
×D(0, δ/2)× (Ei ∩ Ei+1) and which satisfies moreover the estimates

(156) |VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)|

≤ CΩ(di,di+1,Ei,Ei+1)(1 +
|τ |2

|ε|2
)−1 exp

(
σζ(b)

|ε|
|τ |+ exp(σ′ζ(b)|τ |)

)
for all (τ, z, ε) ∈ (Udi+1

∪ Udi)×D(0, δ/2)× (Ei ∩ Ei+1) for some constant CΩ(di,di+1,Ei,Ei+1) > 0.
Using (139), we can choose µT > 0 large enough and some constants 0 < C15 < C16 < σ′′/σ′

with

(157) C15 log | t
ε
| ≤ | log(

t

ε
e
√
−1θi)| ≤ C16 log | t

ε
| , C15 log | t

ε
| ≤ | log(

t

ε
e
√
−1θi+1)| ≤ C16 log | t

ε
|

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. The integral of

τ 7→ VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε) exp(−tτ/ε)

along the segment

[0,
C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))]

followed by an arc of circle with radius
C15 log | t

ε
|

σ′′ζ(b) connecting

C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))) and

C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+arg(log( t

ε
e
√
−1θi )))

and along the segment

[
C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))), 0]

is equal to zero. Therefore, using the representation (129) we can rewrite the differenceXUdi+1
,Ei+1−

XUdi ,Ei as a sum of three integrals,

(158) XUdi+1
,Ei+1(t, z, ε)−XUdi ,Ei(t, z, ε) =

∫
L
C15 log | tε |
σ′′ζ(b) ,γi+1,t

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ

−
∫
L
C15 log | tε |
σ′′ζ(b) ,γi,t

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ

+

∫
C(

C15 log | tε |
σ′′ζ(b) ,γi,γi+1,t)

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ

where

LC15 log | tε |
σ′′ζ(b) ,γi,t

= [
C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))), e

√
−1γi

log( tεe
√
−1θi)

σ′′ζ(b)
]

LC15 log | tε |
σ′′ζ(b) ,γi+1,t

= [
C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 ))), e

√
−1γi+1

log( tεe
√
−1θi+1)

σ′′ζ(b)
]
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and C(
C15 log | t

ε
|

σ′′ζ(b) , γi, γi+1, t) is an arc of circle with radius
C15 log | t

ε
|

σ′′ζ(b) connecting

C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+arg(log( t

ε
e
√
−1θi ))) with

C15 log | tε |
σ′′ζ(b)

e
√
−1(γi+1+arg(log( t

ε
e
√
−1θi+1 )))

with a well chosen orientation.

We provide estimates for the first integral

I1 = |
∫
L
C15 log | tε |
σ′′ζ(b) ,γi+1,t

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ |

From the estimates (156) and (157) we deduce that

(159) I1 ≤
∫ C16 log | tε |

σ′′ζ(b)

C15 log | tε |
σ′′ζ(b)

CΩ(di,di+1,Ei,Ei+1)(1 +
h2

|ε|2
)−1 exp(

σζ(b)

|ε|
h+ exp(σ′ζ(b)h))

× exp(−Re(
t

ε
h exp(

√
−1(γi+1 + arg(log(

t

ε
e
√
−1θi+1))))))dh.

From (141), (157) and (159), we deduce that

(160) I1 ≤ CΩ(di,di+1,Ei,Ei+1) exp(| t
ε
|
σ′C16
σ′′ )

∫ C16 log | tε |
σ′′ζ(b)

C15 log | tε |
σ′′ζ(b)

exp(−(δ′1|t| − σζ(b))
h

|ε|
)dh

= CΩ(di,di+1,Ei,Ei+1) exp(| t
ε
|
σ′C16
σ′′ )

|ε|
δ′1|t| − σζ(b)

×
(

exp(−(δ′1|t| − σζ(b))
C15 log | tε |
σ′′ζ(b)|ε|

)− exp(−(δ′1|t| − σζ(b))
C16 log | tε |
σ′′ζ(b)|ε|

)

)
.

From the choice of C16 in (157), we can select a constant 0 < δ2 < δ′1/2 such that

(161) |t| > σζ(b)

δ′1 − 2δ2
, (
|t|
ε0

)
σ′C16
σ′′ −1 ≤ δ2 log(

µT
ε0

)
C15

σ′′ζ(b)

for all t ∈ T ∩ {|t| > µT } (whenever µT is large enough). Hence, we deduce that

(162) exp(| t
ε
|
σ′C16
σ′′ ) exp(−(δ′1|t| − σζ(b))

C15 log | tε |
σ′′ζ(b)|ε|

)

≤ exp(− δ2C15

σ′′ζ(b)

|t|
|ε|

log | t
ε
|) ≤ exp(−δ2C15µT

σ′′ζ(b)

log |µTε |
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. Taking into account (160) and (162), we deduce

(163) I1 ≤
CΩ(di,di+1,Ei,Ei+1)ε0

2δ2µT
exp(−δ2C15µT

σ′′ζ(b)

log |µTε |
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1.
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Using similar estimates as above, one can also get the following estimates: there exists δ2 > 0
such that

(164) |
∫
L
C15 log | tε |
σ′′ζ(b) ,γi,t

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ |

≤
CΩ(di,di+1,Ei,Ei+1)ε0

2δ2µT
exp(−δ2C15µT

σ′′ζ(b)

log |µTε |
|ε|

)

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1.

In the last part, we consider the third integral

I3 = |
∫
C(

C15 log | tε |
σ′′ζ(b) ,γi,γi+1,t)

VUdi+1
∪Udi ,Ei∩Ei+1(τ, z, ε)e−

tτ
ε dτ |.

From (156), we deduce that

(165) I3 ≤ |
∫ γi+1+arg(log( t

ε
e
√
−1θi+1 ))

γi+arg(log( t
ε
e
√
−1θi ))

×CΩ(di,di+1,Ei,Ei+1)

× exp(
σC15 log | tε |
|ε|σ′′

+ exp(σ′
C15 log | tε |

σ′′
))

× e−
|t|C15 log | tε |
|ε|σ′′ζ(b) cos(θ+arg(t)−arg(ε))C15 log | tε |

σ′′ζ(b)
dθ|

Using (139), the arc of circle C(
C15 log | t

ε
|

σ′′ζ(b) , γi, γi+1, t) can be chosen in such a way that cos(θ +

arg(t)− arg(ε)) ≥ δ′1, for all

θ ∈ [γi + arg(log(
t

ε
e
√
−1θi)), γi+1 + arg(log(

t

ε
e
√
−1θi+1))] if γi < γi+1,

θ ∈ [γi+1 + arg(log(
t

ε
e
√
−1θi+1)), γi + arg(log(

t

ε
e
√
−1θi))] if γi+1 < γi,

for all t ∈ T ∩ {|t| > µT }, all ε ∈ Ei ∩ Ei+1. From (165) and using (139) we deduce that

(166) I3 ≤ (|γi+1 − γi|+ π)CΩ(di,di+1,Ei,Ei+1) exp(| t
ε
|
σ′C15
σ′′ )

C15 log | tε |
σ′′ζ(b)

× exp(−(δ′1|t| − σζ(b))
C15 log | tε |
σ′′ζ(b)|ε|

)

for all t ∈ T ∩ {|t| > µT } and for all ε ∈ Ei+1 ∩ Ei.
From the choice of C15 in (157), we can select a constant 0 < δ2 < δ′1/3 such that

(167) |t| ≥ σζ(b)

δ′1 − 3δ2
, (
|t|
ε0

)
σ′C15
σ′′ −1 ≤ δ2 log(

µT
ε0

)
C15

σ′′ζ(b)

for all t ∈ T ∩ {|t| > µT } (whenever µT is large enough). Therefore, we get that

(168) exp(| t
ε
|
σ′C15
σ′′ ) exp(− δ2C15

σ′′ζ(b)
| t
ε
| log | t

ε
|) ≤ exp(| t

ε
|
σ′C15
σ′′ ) exp(− δ2C15

σ′′ζ(b)
| t
ε
| log(

µT
ε0

)) ≤ 1
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for all t ∈ T ∩ {|t| > µT } and for all ε ∈ Ei+1 ∩ Ei. Moreover, from (25), we deduce that

(169)
C15 log | tε |
σ′′ζ(b)

exp(− δ2C15

σ′′ζ(b)
| t
ε
| log | t

ε
|) ≤

C15 log | tε |
σ′′ζ(b)

exp(− δ2C15

σ′′ζ(b)

µT
ε0

log | t
ε
|)

≤ C15

σ′′ζ(b)
sup
x≥0

x exp(−δ2C15µT
σ′′ζ(b)ε0

x) =
ε0e
−1

δ2µT

for all t ∈ T ∩ {|t| > µT } and for all ε ∈ Ei+1 ∩ Ei. From (166), (168), (169), we get that

(170) I3 ≤ (|γi+1 − γi|+ π)CΩ(di,di+1,Ei,Ei+1)
ε0e
−1

δ2µT
exp(− δ2C15

σ′′ζ(b)
| t
ε
| log | t

ε
|)

≤ (|γi+1 − γi|+ π)CΩ(di,di+1,Ei,Ei+1)
ε0e
−1

δ2µT
exp(− δ2C15

σ′′ζ(b)

µT
|ε|

log |µT
ε
|)

for all t ∈ T ∩ {|t| > µT } and for all ε ∈ Ei+1 ∩ Ei.
Finally, gathering (158), (163), (164) and (170), we deduce that the estimates (155) hold. 2

2

5 Existence of formal series solutions in the complex parameter
for the singularly perturbed problem and asymptotic expan-
sions with two levels

5.1 A Ramis-Sibuya theorem with two levels

Definition 4 Let (E, ||.||E) be a Banach space over C. We denote E[[ε]] the space of all formal
series

∑
k≥0 akε

k with coefficients ak in E for all integers k ≥ 0. Let f : E → E be a holomorphic

function on a bounded open sector E centered at 0. Let f̂(ε) =
∑

k≥0 akε
k ∈ E[[ε]] be a formal

series.
1) We say that f has the formal series f̂ as 1−Gevrey asymptotic expansion if, for any closed

proper subsector W ⊂ E centered at 0, there exist C,M > 0 such that

(171) ||f(ε)−
N−1∑
k=0

akε
k||E ≤ CMN (N/e)N |ε|N

for all N ≥ 1, all ε ∈ W.
2) We say that f has the formal series f̂ as 1+−Gevrey asymptotic expansion if, for any

closed proper subsector W ⊂ E centered at 0, there exist C,M > 0 such that

(172) ||f(ε)−
N−1∑
k=0

akε
k||E ≤ CMN (N/ logN)N |ε|N

for all N ≥ 2, all ε ∈ W. In particular, the formal series f̂ is itself of 1+−Gevrey type, meaning
that there exist two constants C ′,M ′ > 0 such that ||ak||E ≤ C ′M ′k(k/logk)k for all k ≥ 2.
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In this section, we give a new version of the classical Ramis-Sibuya theorem (see [17], Theorem
XI-2-3) that involves two kinds of Gevrey levels, the 1−Gevrey order and the 1+−Gevrey order.

Theorem (RS) Let (E, ||.||E) be a Banach space over C and {Ei}0≤i≤ν−1 be a good covering in
C∗, see Definition 3. For all 0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into the
Banach space (E, ||.||E) and let the cocycle ∆i(ε) = Gi+1(ε) − Gi(ε) be a holomorphic function
from the sector Zi = Ei+1 ∩ Ei into E (with the convention that Eν = E0 and Gν = G0). We
make the following assumptions.

1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all 0 ≤ i ≤ ν − 1.

2) For some finite subset I1 ⊂ {0, . . . ν−1} and for all i ∈ I1, the functions ∆i(ε) are exponentially
flat on Zi, for all 0 ≤ i ≤ ν − 1. This means that there exist constants Ki,Mi > 0 such that

(173) ||∆i(ε)||E ≤ Kie
−Mi/|ε|

for all ε ∈ Zi.

3) For all i ∈ I2 = {0, . . . , ν − 1} \ I1, the functions ∆i(ε) are super-exponentially flat on Zi, for
all 0 ≤ i ≤ ν − 1. This means that there exist constants Ki,Mi > 0 and Li > 1 such that

(174) ||∆i(ε)||E ≤ Ki exp(−Mi

|ε|
log

Li
|ε|

)

for all ε ∈ Zi.

Then, there exist a convergent power series a(ε) ∈ E{ε} near ε = 0 and two formal series
Ĝ1(ε), Ĝ2(ε) ∈ E[[ε]] such that Gi(ε) owns the following decomposition

Gi(ε) = a(ε) +G1
i (ε) +G2

i (ε)

where G1
i (ε) is holomorphic on Ei and has Ĝ1(ε) as 1−Gevrey asymptotic expansion on Ei,

G2
i (ε) is holomorphic on Ei and carries Ĝ2(ε) as 1+−Gevrey asymptotic expansion on Ei, for all

0 ≤ i ≤ ν − 1.

Proof We consider two holomorphic cocycles ∆1
i (ε) and ∆2

i (ε) defined on the sectors Zi in the
following way:

∆1
i (ε) =

{
∆i(ε) if i ∈ I1

0 if i ∈ I2

, ∆2
i (ε) =

{
0 if i ∈ I1

∆i(ε) if i ∈ I2

for all ε ∈ Zi, all 0 ≤ i ≤ ν − 1. We will need the following two lemma.

Lemma 14 For all 0 ≤ i ≤ ν − 1, there exist bounded holomorphic functions Ψ1
i : Ei → C such

that

(175) ∆1
i (ε) = Ψ1

i+1(ε)−Ψ1
i (ε)

for all ε ∈ Zi, where by convention Ψ1
ν(ε) = Ψ1

0(ε). Moreover, there exist coefficients ϕ1
m ∈ E,

m ≥ 0, such that for each 0 ≤ l ≤ ν − 1 and any closed proper subsector W ⊂ El, centered at 0,
there exist two constants K̆l, M̆l > 0 with

(176) ||Ψ1
l (ε)−

M−1∑
m=0

ϕ1
mε

m||E ≤ K̆l(M̆l)
M (

M

e
)M |ε|M

for all ε ∈ W, all M ≥ 1.
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Proof The proof is a consequence of Lemma XI-2-6 from [17] which provides the so-called
classical Ramis-Sibuya theorem in Gevrey classes. 2

Lemma 15 For all 0 ≤ i ≤ ν − 1, there exist bounded holomorphic functions Ψ2
i : Ei → C such

that

(177) ∆2
i (ε) = Ψ2

i+1(ε)−Ψ2
i (ε)

for all ε ∈ Zi, where by convention Ψ2
ν(ε) = Ψ2

0(ε). Moreover, there exist coefficients ϕ2
m ∈ E,

m ≥ 0, such that for each 0 ≤ l ≤ ν − 1 and any closed proper subsector W ⊂ El, centered at 0,
there exist two constants K̂l, M̂l > 0 with

(178) ||Ψ2
l (ε)−

M−1∑
m=0

ϕ2
mε

m||E ≤ K̂l(M̂l)
M (

M

logM
)M |ε|M

for all ε ∈ W, all M ≥ 2.

Proof We will follow the same arguments as in Lemma XI-2-6 from [17] with appropriate
modifications in the asymptotic expansions of the functions constructed with the help of the
Cauchy-Heine transform.

For all 0 ≤ l ≤ ν − 1, we choose a segment

Cl = {te
√
−1θl , t ∈ [0, r]} ⊂ El ∩ El+1.

These ν segments divide the open punctured disc D(0, r) \ {0} into ν open sectors Ẽ0, . . . , Ẽν−1

where
Ẽl = {ε ∈ C∗/θl−1 < arg(ε) < θl, |ε| < r} , 0 ≤ l ≤ ν − 1,

where by convention θ−1 = θν−1. Let

Ψ2
l (ε) =

−1

2π
√
−1

ν−1∑
h=0

∫
Ch

∆2
h(ξ)

ξ − ε
dξ

for all ε ∈ Ẽl, for 0 ≤ l ≤ ν− 1, be defined as a sum of Cauchy-Heine transforms of the functions
∆2
h(ε). By deformation of the paths Cl−1 and Cl without moving their endpoints and letting the

other paths Ch, h 6= l−1, l untouched (with the convention that C−1 = Cν−1), one can continue
analytically the function Ψ2

l onto El. Therefore, Ψ2
l defines a holomorphic function on El, for all

0 ≤ l ≤ ν − 1.
Now, take ε ∈ El ∩ El+1. In order to compute Ψ2

l+1(ε)−Ψ2
l (ε), we write

(179) Ψ2
l (ε) =

−1

2π
√
−1

∫
Ĉl

∆2
l (ξ)

ξ − ε
dξ +

−1

2π
√
−1

ν−1∑
h=0,h6=l

∫
Ch

∆2
h(ξ)

ξ − ε
dξ,

Ψ2
l+1(ε) =

−1

2π
√
−1

∫
Čl

∆2
l (ξ)

ξ − ε
dξ +

−1

2π
√
−1

ν−1∑
h=0,h6=l

∫
Ch

∆2
h(ξ)

ξ − ε
dξ

where the paths Ĉl and Čl are obtained by deforming the same path Cl without moving its
endpoints in such a way that:
(a) Ĉl ⊂ El ∩ El+1 and Čl ⊂ El ∩ El+1,
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(b) Γl,l+1 := −Čl + Ĉl is a simple closed curve with positive orientation whose interior contains
ε.

Therefore, due to the residue formula, we can write

(180) Ψ2
l+1(ε)−Ψ2

l (ε) =
1

2π
√
−1

∫
Γl,l+1

∆2
l (ξ)

ξ − ε
dξ = ∆2

l (ε)

for all ε ∈ El ∩ El+1, for all 0 ≤ l ≤ ν − 1 (with the convention that Ψ2
ν = Ψ2

0).
In a second step, we derive asymptotic properties of Ψ2

l . We fix an 0 ≤ l ≤ ν − 1 and a
proper closed sector W contained in El. Let C̃l (resp. C̃l−1) be a path obtained by deforming
Cl (resp. Cl−1) without moving the endpoints in order that W is contained in the interior of
the simple closed curve C̃l−1 + γl − C̃l (which is itself contained in El), where γl is a circular arc

joining the two points re
√
−1θl−1 and re

√
−1θl . We get the representation

(181) Ψ2
l (ε) =

−1

2π
√
−1

∫
C̃l

∆2
l (ξ)

ξ − ε
dξ +

−1

2π
√
−1

∫
C̃l−1

∆2
l−1(ξ)

ξ − ε
dξ

+
−1

2π
√
−1

ν−1∑
h=0,h6=l,l−1

∫
Ch

∆2
h(ξ)

ξ − ε
dξ

for all ε ∈ W. One assumes that the path C̃l is given as the union of a segment Ll = {te
√
−1wl/t ∈

[0, r1]} where r1 < r and wl > θl and a curve Γl = {µl(τ)/τ ∈ [0, 1]} such that µl(0) = r1e
√
−1wl ,

µl(1) = re
√
−1θl and r1 ≤ |µl(τ)| < r for all τ ∈ [0, 1). We also assume that there exists a

positive number σ < 1 with |ε| ≤ σr1 for all ε ∈ W. By construction of the path Γl, we get that

the function ε 7→ 1
2π
√
−1

∫
Γl

∆2
l (ξ)
ξ−ε dξ defines an analytic function on the open disc D(0, r1).

It remains to give estimates for the integral 1
2π
√
−1

∫
Ll

∆2
l (ξ)
ξ−ε dξ. Let M ≥ 0 be an integer.

From the usual geometric series expansion, one can write

(182)
1

2π
√
−1

∫
Ll

∆2
l (ξ)

ξ − ε
dξ =

M∑
m=0

α2
l,mε

m + εM+1El,M+1(ε)

where

(183) α2
l,m =

1

2π
√
−1

∫
Ll

∆2
l (ξ)

ξm+1
dξ , El,M+1(ε) =

1

2π
√
−1

∫
Ll

∆2
l (ξ)

ξM+1(ξ − ε)
dξ

for all ε ∈ W.
Gathering (174) and (183), we get some constants Kl,Ml > 0 and Ll > 1 such that

(184) ||α2
l,m||E ≤

Kl

2π

∫ r1

0

exp(−Ml
τ log Ll

τ )

τm+1
dτ ≤ Kl

2π

∫ +∞

0

exp(−Ml
τ log Ll

τ )

τm+1
dτ

=
Kl

2π

∫ +∞

0
um−1 exp(−Mlu log(Llu))du = Al,m

Lemma 16 There exist two constants Ǩl, M̌l > 0 such that

(185) Al,m ≤ Ǩl(M̌l)
m(

m

logm
)m

for all m ≥ 2.
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Proof Since Ll > 1, one gets that Al,m ≤ Kl
2πBl,m where

Bl,m =

∫ +∞

0
um−1 exp(−Mlu log(u))du

for all m ≥ 1. We consider now the function

L(t) =

∫ +∞

0
exp(−Mlu log(u)) exp(tu)du

which defines an entire function on C. Now, we follow the example 2.6 p. 125 of [11] (see also
Example 7.5 p. 83 from [29]), in order to give the leading term behaviour of L(t) as t tends to
infinity using the Laplace method. For all t ∈ C, we have that

|L(t)| ≤ I(|t|) =

∫ +∞

0
exp(−Mlu log(u)) exp(|t|u)du.

The function f(u) = |t|u −Mlu log(u) reaches his unique maximum at u = exp( |t|Ml
− 1) = ξ.

Now, we make the change of variable u = ξs in the integral I(|t|) which yields

I(|t|) = ξ

∫ +∞

0
eξMl(s−s log(s))ds.

Now, the function h(s) = Ml(s − s log s) takes its unique maximum value at s = 1, with
h(1) = Ml and h′′(1) = −Ml. From Proposition 2.5 p. 125 in [11] (Laplace method), we get
that

(186) ξ

∫ +∞

0
eξMl(s−s log(s))ds ∼ (

2π

Ml
)1/2ξ1/2eξMl

as ξ tends to +∞ (where f(ξ) ∼ g(ξ) means that f and g are equivalent as ξ → +∞). Therefore,
we get a constant K̊l > 0 such that

(187) |L(t)| ≤ K̊le
1
2

(
|t|
Ml
−1)

exp(Mle
|t|
Ml
−1

)

for all t ∈ C, which means that L(t) has at most super-exponential growth at infinity.
From the Cauchy formula, for all k ≥ 2, one can write the derivative of order k of L at 0 in

the form

L(k)(0) =
k!

2
√
−1π

∫
C(0,R)

L(ξ)

ξk+1
dξ

for any circle C(0, R) centered at 0 with radius R > 0. Now, take the particular radius R =
Ml log k. From (187) and the Stirling formula, we get two constants Ǩl, M̌l > 0 such that

(188) |L(k)(0)| ≤ Ǩl(M̌l)
k(

k

log k
)k

for all k ≥ 2. On the other hand, by derivation under the sign
∫

, one also gets an other
expression for the Taylor coefficients of L at 0,

(189) L(k)(0) = Bl,k+1

for all k ≥ 0. Gathering (188) and (189) yields the lemma. 2
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Moreover, as above, one can choose a positive number η > 0 (depending on W) such that
|ξ − ε| ≥ |ξ| sin(η) for all ξ ∈ Ll and all ε ∈ W. Again by (174), (183) and Lemma 16 we obtain
two constants K̃l, M̃l > 0 with

(190) ||El,M+1(ε)||E ≤
Kl

2π sin(η)

∫ r1

0

exp(−Ml
τ log Ll

τ )

τM+2
dτ ≤ K̃l(M̃l)

M+1(
M + 1

log(M + 1)
)M+1

for all ε ∈ W.
Using comparable arguments, one can give estimates of the form (182), (184), (185) and

(190) for the other integrals

−1

2π
√
−1

∫
C̃l−1

∆2
l−1(ξ)

ξ − ε
dξ ,

−1

2π
√
−1

∫
Ch

∆2
h(ξ)

ξ − ε
dξ

for all h 6= l, l − 1.
As a consequence, for any 0 ≤ l ≤ ν − 1, there exist coefficients ϕ2

l,m ∈ E, m ≥ 0 and two

constants K̂l, M̂l > 0 such that

(191) ||Ψ2
l (ε)−

M−1∑
m=0

ϕ2
l,mε

m||E ≤ K̂l(M̂l)
M (M/ logM)M |ε|M

for all M ≥ 2, all ε ∈ W.
From (174) and (180), we have in particular that there exist two constants K̂l, M̂l > 0 with

(192) ||Ψ2
l+1(ε)−Ψ2

l (ε)||E ≤ K̂le
−M̂l/|ε|

for all ε ∈ El ∩ El+1 and all 0 ≤ l ≤ ν − 1. From Theorem XI-3-2 in [17], we deduce that
Ψ2
l+1(ε) − Ψ2

l (ε) has the formal series 0̂ as 1−Gevrey asymptotic expansion. From the unicity
of the asymptotic expansions on sectors, we deduce that all the formal series

∑
m≥0 ϕ

2
l,mε

m,

0 ≤ l ≤ ν − 1, are equal to some formal series denoted Ĝ2(ε) =
∑

m≥0 ϕ
2
mε

m ∈ E[[ε]]. The
Lemma 15 follows. 2

We consider now the bounded holomorphic functions

ai(ε) = Gi(ε)−Ψ1
i (ε)−Ψ2

i (ε)

for all 0 ≤ i ≤ ν − 1, all ε ∈ Ei. By definition, for i ∈ I1 or i ∈ I2, we have that

ai+1(ε)− ai(ε) = Gi+1(ε)−Gi(ε)−∆1
i (ε)−∆2

i (ε) = Gi+1(ε)−Gi(ε)−∆i(ε) = 0

for all ε ∈ Zi. Therefore, each ai(ε) is the restriction on Ei of a holomorphic function a(ε) on
D(0, r) \ {0}. Since a(ε) is moreover bounded on D(0, r) \ {0}, the origin turns out to be a
removable singularity for a(ε) which, as a consequence, defines a convergent power series on
D(0, r).

Finally, one can write the following decomposition

Gi(ε) = a(ε) + Ψ1
i (ε) + Ψ2

i (ε)

for all ε ∈ Ei, all 0 ≤ i ≤ ν − 1. Moreover, a(ε) is a convergent power series, Ψ1
i (ε) has the

series Ĝ1(ε) =
∑

m≥0 ϕ
1
mε

m as 1−Gevrey asymptotic expansion on Ei and Ψ2
i (ε) carries the series

Ĝ2(ε) =
∑

m≥0 ϕ
2
mε

m as 1+−Gevrey asymptotic expansion on Ei, for all 0 ≤ i ≤ ν − 1. The
theorem (RS) follows. 2
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5.2 Existence of formal series solutions in the complex parameter for the
singularly perturbed problem

We are now ready to state the main result of this paper.

Theorem 2 Let us assume that the conditions (115), (116), (117), (118) hold. Then, there
exists a formal series

X̂(t, z, ε) =
∑
k≥0

Hk(t, z)
εk

k!
∈ E[[ε]]

where the functions Hk belong to the Banach space E = O((T ∩ {|t| > h}) × D(0, δ/2)) of
holomorphic and bounded functions on the set (T ∩ {|t| > h}) × D(0, δ/2) equipped with the
supremum norm, for some δ, h > 0, which solves the singular equation

(193) ε∂t∂
S
z X̂(t, z, ε) + a∂Sz X̂(t, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

bk(z, ε)

ts+1
(∂k0t ∂

k1
z X̂)(t+ k2ε, z, ε) +

∑
l∈A2

cl(z, ε)X̂
l(t, z, ε)

and owns the following properties. The formal series X̂ can be decomposed into a sum of three
terms

X̂(t, z, ε) = a(t, z, ε) + X̂1(t, z, ε) + X̂2(t, z, ε)

where a(t, z, ε) ∈ E{ε} is a convergent series near ε = 0 and X̂1(t, z, ε), X̂2(t, z, ε) belong to
E[[ε]]. Moreover, for all 0 ≤ i ≤ ν − 1, the E−valued function ε 7→ XUdi ,Ei(t, z, ε) constructed in
Theorem 1 shares a similar decomposition

XUdi ,Ei(t, z, ε) = a(t, z, ε) +X1
Udi ,Ei

(t, z, ε) +X2
Udi ,Ei

(t, z, ε)

where ε 7→ X1
Udi ,Ei

(t, z, ε) is a E−valued function owning X̂1(t, z, ε) as 1−Gevrey asymptotic

expansion on Ei and where ε 7→ X2
Udi ,Ei

(t, z, ε) is a E−valued function having X̂2(t, z, ε) as

1+−Gevrey asymptotic expansion on Ei.

Proof Let us consider the tuple of functions (XUdi ,Ei(t, z, ε))0≤i≤ν−1 constructed in Theorem
1. For all 0 ≤ i ≤ ν − 1, we define Gi(ε) := (t, z) 7→ XUdi ,Ei(t, z, ε), which is, by construction,
a holomorphic and bounded function from Ei into the Banach space E = O((T ∩ {|t| > h}) ×
D(0, δ/2)), where T , h, δ are defined in Theorem 1.

From the estimates (121), we get that the cocycle ∆i(ε) = Gi+1(ε) −Gi(ε) is exponentially
flat on Zi = Ei+1 ∩ Ei, for all 0 ≤ i ≤ ν − 1. Moreover, if di, di+1 ∈ [−π,−π/2) ∪ (π/2, π] and if
Udi ∩Udi+1

6= ∅, then from (122) we deduce that ∆i(ε) = Gi+1(ε)−Gi(ε) is super-exponentially

flat on Zi. Hence, from the theorem (RS) stated above, there exist a formal series Ĝ(ε) ∈ E[[ε]]
which is the sum of a convergent series a(ε) ∈ E{ε} and two formal series Ĝ1(ε), Ĝ2(ε) ∈ E[[ε]]
such that Gi(ε) gets the corresponding decomposition

(194) Gi(ε) = a(ε) +G1
i (ε) +G2

i (ε)

for all ε ∈ Ei, where G1
i (ε) is holomorphic on Ei and has Ĝ1(ε) as 1−Gevrey asymptotic expan-

sion on Ei and where G2
i (ε) defines a holomorphic function on Ei owning Ĝ2(ε) as 1+−Gevrey

asymptotic expansion on Ei, for all 0 ≤ i ≤ ν − 1.
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We put

Ĝ(ε) =: X̂(t, z, ε) =
∑
k≥0

Hk(t, z)
εk

k!
.

It remains to show that the formal series X̂(t, z, ε) satisfies the equation (193). Let 0 ≤ i ≤ ν−1
such that di ∈ (−π/2, π/2). From (194), Gi(ε) has in particular Ĝ(ε) as 1−Gevrey asymptotic
expansion on Ei (since 1+−Gevrey asymptotic implies 1−Gevrey asymptotic on sectors). As a
result, we get

(195) lim
ε→0,ε∈Ei

sup
(t,z)∈(T ∩{|t|>h})×D(0,δ/2)

|∂lεXUdi ,Ei(t, z, ε)−Hl(t, z)| = 0

for all l ≥ 0. By the construction given in Theorem 1, the function XUdi ,Ei(t, z, ε) satisfies the
equation (100).

Now, we take the derivative of order l with respect to ε of the left and the right hand
side of the equation (100). From the Leibniz rule and the classical chain rule, we get that
∂lεXUdi ,Ei(t, z, ε) satisfies the following equation

(196) ε∂t∂
S
z ∂

l
εXUdi ,Ei(t, z, ε) + l∂t∂

S
z ∂

l−1
ε XUdi ,Ei(t, z, ε) + a∂Sz ∂

l
εXUdi ,Ei(t, z, ε)

=
∑

k=(s,k0,k1,k2)∈A1

1

ts+1

∑
h1+h2=l

l!

h1!h2!
∂h1ε bk(z, ε)

×

 ∑
h2,1+h2,2=h2

h2!

h2,1!h2,2!
k
h2,1
2 (∂

h2,1+k0
t ∂k1z ∂

h2,2
ε XUdi ,Ei)(t+ k2ε, z, ε)

)

+
∑
l1∈A2

∑
h0+···+hl1=l

l!
∂h0ε cl1(z, ε)

h0!
Πl1
j=1

∂
hj
ε XUdi ,Ei(t, z, ε)

hj !

for all l ≥ 1, all (t, z, ε) ∈ (T ∩ {|t| > h})×D(0, δ/2)× Ei. Letting ε tends to zero in (196) and
using (195) yields the recursion

(197) ∂t∂
S
z (
Hl−1(t, z)

(l − 1)!
) + a∂Sz (

Hl(t, z)

l!
) =

∑
k=(s,k0,k1,k2)∈A1

1

ts+1

∑
h1+h2=l

(∂h1ε bk)(z, 0)

h1!

×

 ∑
h2,1+h2,2=h2

1

h2,1!h2,2!
k
h2,1
2 (∂

h2,1+k0
t ∂k1z Hh2,2)(t, z)

)

+
∑
l1∈A2

∑
h0+···+hl1=l

(∂h0ε cl1)(z, 0)

h0!
Πl1
j=1

Hhj (t, z)

hj !

for all l ≥ 1, all (t, z) ∈ (T ∩ {|t| > h})×D(0, δ/2).
Since bk(z, ε) and cl1(z, ε) are analytic with respect to ε at 0, we have that

(198) bk(z, ε) =
∑
h≥0

(∂hε bk)(z, 0)

h!
εh , cl1(z, ε) =

∑
h≥0

(∂hε cl1)(z, 0)

h!
εh

On the other hand, by taking the Taylor expansion of the function (∂k0t ∂
k1
z Hk)(ξ, z) at the point

ξ = t, we get that

(199) (∂k0t ∂
k1
z Hk)(t+ k2ε, z) =

∑
h≥0

(∂k0+h
t ∂k1z Hk)(t, z)

h!
kh2 ε

h
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for all ε near the origin, for all k ≥ 0. Therefore, one can write

(200) (∂k0t ∂
k1
z X̂)(t+ k2ε, z, ε) =

∑
k≥0

∑
h≥0

(∂k0+h
t ∂k1z Hk)(t, z)

h!
kh2
εh+k

k!

=
∑
l≥0

(
∑

l1+l2=l

kl12 (∂k0+l1
t ∂k1z Hl2)(t, z)

l1!l2!
)εl

as a formal power series in ε. Finally, using the recursion (197) together with the expansions
(198), (200), one checks that the formal series X̂(t, z, ε) solves the equation (193). 2
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