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On Small-Signal Stability of Wind Power System
with Full-Load Converter Interfaced Wind Turbines

Thyge Knüppel, Vladislav Akhmatov, Jørgen N. Nielsen, Kim H.Jensen, Andrew Dixon, Jacob Østergaard

Abstract—Small-signal stability analysis of power system os-
cillations is a well established field within power system analysis,
but not much attention has yet been paid to systems with a
high penetration of wind turbines and with large wind power
plants. In this paper an analysis is presented which assess the
impact of full-load converter interfaced wind turbines on power
system small-signal stability. The study is based on a 7 generator
network with lightly damped inter-area modes. A detailed wind
turbine model with all grid relevant control functions is used in
the study. Furthermore is the wind power plant (WPP) equipped
with a WPP voltage controller and comparisons are presented.
The models of wind turbine and WPP voltage controller are
kindly provided by Siemens Wind Power A/S for this work. The
study is based on modal analysis which are complemented with
simulations on the nonlinear system.

Index Terms—wind turbines, wind power plant, wind power
plant controller, power systems, small-signal stability, modal
analysis

I. I NTRODUCTION

W ITH the rapid development in installed capacity of
wind power and with the increasing size of each

installation, the role and impact of wind power on power
system operation is changing. In 2008 in USA alone 8.5 GW
of new wind power based generation capacity was installed
which accounts for over 40 % of the total capacity added
in USA in 2008 [1]. In grid codes from some transmission
system operators this development is already noted, given
that large wind power plants (WPP) are termed power park
modules and must comply with similar requirements to those
for other generation units. In continuation of this, large WPPs
are often equipped with a supervisory voltage and frequency
controller, i.e. a controller on park level designed to coordinate
the response of the individual units in the park. The effect
and intention of such supervisory controllers on park level
is that the combined responses of the wind turbines (WT),
evaluated at the interface between the WPP and the power
system, are comparable to other power plants. The ability of
WPPs to deliver active power reserves are treated in a number
of publications [2]–[5], as well as voltage and reactive power
control [6], [7]. In some countries, for instance Denmark,
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WPPs are already applied for ancillary services, e.g. frequency
reserve.

Regarding power system stability investigations, consider-
able attention has been paid to low voltage fault-ride-through
(FRT) capabilities of the WTs, i.e. the ability of the WTs to
stay connected during external disturbances in the grid and
provide necessary voltage support [7]–[9]. With increasing
penetration of wind power and increasing size of each installed
WPP new stability considerations arise. A topic of increasing
importance is the effect of WPPs on power system small-signal
stability, including influence on power system oscillations.

The damping of critical inter-area oscillations is affected by
a number of factors such as network topography, generator ex-
citation control, HVDC control, transmission line power flows,
etc. [10]. Also, the presence of non-synchronous generation
units reportedly can have an impact on the damping of inter-
area oscillations. In [11]–[13] comparisons are presentedof
the influence on power system oscillations of WPPs based on
fixed-speed induction generators (FSIG) and doubly fed in-
duction generators (DFIG). In the studies it is generally found
that FSIG WTs increase the damping of the power oscillations.
References [11], [13] also report increased damping from the
DFIG machine while [12] notes that the DFIG does not have
any significant effect on the damping.

In [14] the influence is analyzed of the voltage/VAR control
mode of DFIG based WPPs on inter-area oscillations. The
study found that increasing the penetration of wind power
generally had a favorable effect, with increased frequencyand
damping of the inter-area mode between a weak and a stronger
system. With the WPP in voltage control mode [14] found
that, for some parameter-set, an adverse interaction is noticed;
it is, however, noted that these effects can be avoided with
appropriate tuning of the voltage controller.

In [15], [16] a generic small-signal stability model is devel-
oped for fixed- and variable-speed WTs with corresponding
collector and utility grid where the units are connected. The
approach is based on sensitivity analysis and singular value
decomposition.

A few publications have investigated the possibility of
using variable-speed WPPs actively to damp power system
oscillations [17]–[20]. In a recent PhD thesis by Elkingtonit
is concluded that DFIG based WPPs can provide a positive
contribution to damping of power system oscillations by
adding an auxiliary controller [21].

In this paper the impact of full-load converter interfaced
wind turbines on small-signal stability, e.g. participation in
power system oscillations, is investigated. The system is
analyzed for the WPP with and without WPP voltage con-
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troller. The analysis is based on a 7 generator network, which
illustrates some aspects of the dynamic behavior of the UK
power system, namely inter-area oscillations between major
areas of the system.

The paper is organized as follows. In section II the basis
for the analysis is established with a description of modal
analysis and power system oscillations. Section III presents
the study case, the analyzed WT concept, and the base
characteristics of the study case, while section IV presents the
case studies performed and the results of the analysis. Finally,
the discussion and conclusion are found in sections V and VI,
respectively.

II. M ETHOD

Power system oscillations are inherent in interconnected
power systems based on synchronous generators [22]. Power
system oscillations and the application of eigenvalue analysis
as means of analysis are well described in the literature,
e.g. [10], [23]. Another approach is to base the analysis on
signal processing of measured data [24]–[26]. When analyzing
very large systems this measurement based approach has the
advantage that it is not dependent on the accuracy of a large
dynamic model.

A. Eigenvalue Analysis

The analysis is based on the nonlinear set of system
equations, dynamic relations as well as network equations,
which are linearized in an operating point to obtain a linear
system in the classical state space form

ẋ = Ax + Bu

y = Cx + Du
(1)

wherexn×1 is the state vector,ur×1 the input vector,ym×1

the output vector,An×n is the system state matrix,Bn×r

the input matrix,Cm×n the output matrix, andDm×r the
feed forward matrix. To analyze the dynamic performance of
the system in (1) it is often useful to perform a similarity
transformation to diagonalizeA, i.e. decouple the system
dynamics.

Aφφφi = λiφφφi, for i = 1, 2, . . . , n (2)

where the eigenvalue,λi, is found as the solution of

det(A − λiI) = 0 (3)

and whereIn×n is the identity matrix andφφφn×1

i
the right

eigenvector for theith eigenvalue, also commonly referred to
as the mode-shape for theith mode. Similar to the formulation
in (2), the left eigenvector is defined as

ψψψiA = λiψψψi, for i = 1, 2, . . . , n (4)

whereψψψ1×n

i
is the left eigenvector for theith eigenvalue.

In compact notation for alln eigenvalues, the right and left
eigenvector matrices are defined as

ΦΦΦ = [φφφ1 φφφ2 . . . φφφn] ΨΨΨ =
[

ψψψT

1
ψψψT

2
. . . ψψψT

n

]T

(5)

Further, for power system studies the eigenvector matricesare
usually scaled to satisfyΨΨΨΦΦΦ = I.

The right eigenvector,φφφi, describes how the activity of the
ith mode is distributed on then state variables, while the left
eigenvector,ψψψi, weighs the contribution of then state variables
on theith mode. The entrywise product ofφφφi andψψψT

i
is thus

a measure of the importance of the states within the individual
modes and is referred to as the participation factors

pi = [φφφ1iψψψi1 φφφ2iψψψi2 . . . φφφniψψψin]
T
, (6)

or in compact notation

P = ΦΦΦ ⊗ΨΨΨT (7)

where⊗ denotes the entrywise product of two equal sized
matrices, andPn×n is the participation factor matrix.

The eigenvalues provide important information on the dy-
namics of the system, i.e. the frequency and damping of any
oscillations. If theith eigenvalue is given asλi = a ± jb,
the natural frequency,ωn, the damped frequency,ωd, and the
damping ratio,ζ, are defined as

ωn =
√

a2 + b2
[

rad
sec

]

, ωd= b

[

rad
sec

]

, ζ =
−a

ωn

[−]

From classical control theory of continuous time systems, it
is given that modeλi is asymptotically stable only ifa < 0.

It should be remembered that power systems in general
are nonlinear while the modal analysis is based on a linear
approach. Thus, the results from the modal analysis are only
valid in proximity of the linearization point and should be
perceived as a snapshot of the dynamic system behavior. The
method of normal forms offer a framework for extending
the modal analysis to include higher order terms and thereby
capture dynamics not captured by a linear model [27], [28].
This method is especially important for stressed, highly non-
linear power systems which are not accurately described by
the linear approximation in (1). Other means of ensuring the
validity of the linear analysis is to complement with nonlinear
time-domain simulations after which the dynamic response is
evaluated.

To gain deeper insight into the dynamic behavior of the
system, a series of modal analysis is often conducted where
certain system parameter(s) are gradually changed. Analyzing
the movement of the eigenvalues in the complex plane reveals
the influence of the varied parameter to overall system dynam-
ics and small-signal stability.

B. Power System Oscillations

In an interconnected power system the speed of the syn-
chronous generators will constantly adjust according to the im-
balance between generation and demand, where a production
surplus will cause overspeeding of the generators; and vice-
versa. It must be noted that the applied governor control is to
keep the synchronous speed, i.e. the nominal grid frequency
within a required narrow range of operation.

Power system oscillations are typically divided into three
groups depending on its global (or local) scale.

• inter-area oscillations where a group of generators in one
area oscillates against a group of machines in another
area, typicallyf ∈ [0.1 0.3] Hz
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• intra-area oscillations where a group of generators in one
area oscillates against a group of machines in the same
area, typicallyf ∈ [0.4 0.7] Hz

• local-area or intermachine oscillations involve genera-
tors which are located close to each other, typically
f ∈ [0.7 2.0] Hz. This includes adverse interaction be-
tween equipment control systems.

Many factors, beside the frequency of oscillation, do, however,
determine the nature of the oscillations, and the concepts
of mode-shape and participation factor are used to correctly
identify the source, nature, and significance of a mode.

III. STUDY CASE

A. Case Network

The study is based on the 18 node, 7 generator system
depicted in Fig. 1, which furthermore consists of 6 loads, and
an aggregated WPP with corresponding collector grid. The
system represents a large network that has been reduced to
a small number of nodes. In TABLE VIII the generator rat-
ings, transformer reactances, and load distributions are given,
while the synchronous machine dynamic data and the network
parameters are given in TABLE IX and XI, respectively.

The network model has been developed in collaboration
with National Grid as an extension of the three generator sys-
tem presented in [11] to achieve a higher level of flexibilityand
numerical stability. The network model is tuned for a light load
situation and the distribution of load and generation implies
a southbound power flow of approximately1 900 MW. Note
that the model does not accurately represent particular aspects
of the UK network, and hence should not be used to draw
conclusions regarding the performance of this network. The
developed model does, however, assist in the understanding
of power oscillations between major areas of the UK power
system.
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Fig. 1. Single-line diagram of the analyzed case network.

B. Wind Turbine Technology

The WT concept for this study is a variable-speed, pitch
controlled, full-load converter interfaced WT and is illustrated

in Fig. 2 and further described in [29]. A block diagram
showing the overall connections is shown in Fig. 3. The
applied model is kindly provided by Siemens Wind Power
A/S being a key market player of such variable-speed WTs.

Gear IG
∼

=

=

∼

Fig. 2. Wind turbine concept used in the analysis, i.e. full-load converter
interfaced WT.
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Fig. 3. Overall block diagram of the WT model.

The applied model includes:

• Aerodynamic model. A variable wind speed aerodynamic
model which includes power coefficient with pitch angle
and tip-speed ratio.

• Shaft model. Implements a two-mass model of rotor,
gearbox, and generator.

• Converter system. The WT converter system comprises a
generator side and a network side converter including all
required control of the injected active and reactive power
as well as DC link voltage control.

• DC link. Implements the link, including the DC ca-
pacitance, between the machine and the network side
converter.

• Fault ride through. Monitors for system faults and shapes
the current injection into the grid upon detection.

In the study, an aggregated WT model is used and the
analysis thus only considers the main interaction between the
power system and the WPP.

C. Wind Power Plant Collector Grid

The collector grid is modeled as a T-equivalent with the
entire capacitance lumped as a shunt and with half the in-
ductance and half the resistance as a series impedance on
each side. ForPWPP = 180 MW the network parameters are
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given in TABLE X. The collector grid parameters are scaled
according to the size of the WPP such that the same voltage
profile is achieved, i.e.

zscale=
SB

base

Sbase,WPP
R = zscaleR

B

XL = zscaleX
B

L BC =
BB

C

zscale

where the superscript.B refers to the values in TABLE X with
PWPP = 180 MW.

D. Wind Power Plant Voltage Controller

The WPP voltage controller is an outer, corrective controller
that controls the voltage at the point of common connection
(PCC) at the interface to the power system. The WPP voltage
controller distributes voltage set-points to the individual WTs
based on the conditions at the PCC, where the WT voltage
controller controls the voltage at the WT terminals according
to its set-point.

The block diagram of the WPP voltage controller is shown
in Fig. 4 and the relation to the WT system is shown in the
block diagram in Fig. 3. The droop controller prevents chasing
of adjacent units both controlling the voltage by dividing
the responsibility between the units. Furthermore, the droop
controller ensures that a predictable amount of reactive power
is delivered for a given deviation from the nominal voltage.
The applied model of the WPP voltage controller has been
kindly provided by Siemens Wind Power for this analysis,
although Siemens Wind Power does not necessarily apply
exactly the same control.

Kd PI
VrefξQPCC

VPCC,ref

-

+

-
LP

LP
VPCC

Fig. 4. Block diagram of the WPP voltage droop controller. LP:Low-Pass
filter, PI: PI-controller.

The operation of the WPP voltage controller is dependent
on the strength of the grid and the controller must be carefully
tuned for the conditions at the PCC. For this analysis, a 4 %
droop, i.e.Kd = 0.04, is used and the WPP voltage controller
is tuned to deliver 90 % of its response within 1 second in a
well-damped manner [30].

A simulation is presented in Fig. 5 where a step-change is
applied to the set-point of the exciter of the nearby generator
G2. The shown step-response is withPWPP = 504 MW. As
shown in Fig. 4 the WPP responds in a fast and well-damped
manner, delivering the scheduled reactive power within 1 sec-
ond. The set-point change atG2 inflicts a perturbation in
the electromagnetic torque atG2, noticed by the swing in
delivered active power. For the WPP the reactive power output
is increased without affecting the delivery of active power.
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Fig. 5. Time simulation showing the response of the WPP voltage controller
to a step on the voltage reference onG2. PWPP = 504 MW.

E. Generator Models

The synchronous generators are modeled as round rotor
machines using the standard RMS model. The generators are
aggregated machines, each representing several smaller and
larger generation units; the total capacity for each unit isgiven
in TABLE VIII and the parameters for the dynamic model in
TABLE IX.

Parameters for the synchronous machines with correspond-
ing exciter- and PSS models are selected to represent the
dominant unit type in each area. Furthermore is each gener-
ator equipped with a standard IEEEG0 governor. Parameters,
exciter- and PSS models have kindly been provided by Na-
tional Grid for this study.

F. Characteristics of Case Network

A list of dominant eigenvalues is given in TABLE I. Three
lightly damped inter-area modes are present in the system,
λ1−3; the modal characteristics are given in TABLE II and the
mode shapes in Fig. 6. Furthermore are three voltage controller
modes selected for closer attention,λ4−6, as the analysis will
show that these modes are sensitive to the size of the WPP.

TABLE I
QUALITATIVE DESCRIPTION OF DOMINANT EIGENVALUES.

λ1 Inter-area mode betweenG1−2 andG3−7

λ2 Inter-area mode betweenG4,7 andG5−6

λ3 Inter-area mode betweenG4 andG7

λ4 Voltage controller common mode,G1, G2, WPP
λ5 Voltage controller common mode,G2, WPP
λ6 Voltage controller common mode,G2, WPP

TABLE II
CHARACTERISTIC FOR THREE INTER-AREA MODES IN BASE CASE

WITHOUT WIND POWER.

# λ ωd ζ
[-] [Hz] [-]

λ1 −0.275 ± j3.10 0.493 0.088
λ2 −0.658 ± j6.26 0.997 0.105
λ3 −0.643 ± j8.83 1.41 0.073
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Fig. 6. Mode shape for generator speed states for three inter-area modes for
the system with no wind power connected.

In TABLE III are the participation factors for the inter-
area modes shown for the generator rotor angle states. The
mode shape for three inter-area modes,λ1−3, are given in
Fig. 6 where the characteristic180o displacement between
oscillating groups of generators is seen. The characteristics of
the inter-area modes given in TABLE I are determined from
the participation factors in TABLE III and the mode shapes in
Fig. 6.

TABLE III
NORMALIZED ROTOR ANGLE PARTICIPATION FACTORS FOR THE

INTER-AREA MODESλ1−3 FOR THE SYSTEM WITH NO WIND POWER

CONNECTED.

State variable |pj1| |pj2| |pj3|
δ (G1) 0.21 < 10−2 < 10−4

δ (G2) 0.11 < 10−2 < 10−4

δ (G3) < 10−2 0.01 0.01
δ (G4) 0.03 0.28 0.07
δ (G5) 0.04 0.02 < 10−2

δ (G6) 0.08 0.18 < 10−2

δ (G7) 0.01 0.02 0.42

The modal analysis is a linear method and it should thus
be complemented with dynamic simulations on the nonlinear
system. In Fig. 7 and 8 the dynamic response is shown after a
three-phase short-circuit at linel48. For now, there is no wind
power in the system. The fault is applied midway between
the busses, on a single circuit, and it is cleared after 140 ms.
Fig. 7 shows the active and reactive power flow on the double
circuit l48 during and after the short-circuit. From the dynamic
response the damping ratio,ζ, and the damped frequency of
oscillation,ωd are computed as

δ = 1

3
ln

(

1294 − 1150

1181 − 1150

)

= 0.5119

ζ =
δ

√

δ2 + (2π)2
= 0.081

ωd =
(

1

3
(7.523 − 1.391)

)

−1
= 0.49

The short-circuit excites inter-area oscillationλ1 between
G1−2 and G3−7, which is noted by the grouping of the
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Fig. 7. Active and reactive power flow on linel48 after a short-circuit on
one of thel48 lines.

generators in Fig. 8 where the generator rotor speeds are
plotted, cf. mode shape plot in Fig. 6.
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Fig. 8. Generator rotor speeds after a short-circuit on one of the l48 lines.

IV. SELECTED CASES

The aim of the study is to analyze the influence of increased
wind power penetration on power oscillations in the system,
with emphasis on the previously mentioned inter-area modes.

Two cases with a varying penetration of wind power are
investigated and compared to the base case with only syn-
chronous generation

1) Psetp of G2 is reduced as penetration of wind power is
increased while the MVA rating is maintained

2) MVA rating of G2 is reduced as penetration of wind
power is increased while the loading ofG2 is maintained

In all cases and for all wind power penetration levels, active
power production is shifted between onlyG2 and the WPP
and the power flow in the system is thus unchanged.

In case 1 the introduction of wind power does not displace
any conventional units and only the active power set-point is
reduced to accommodate the power produced by the WPP.
While in case 2, the wind power displaces conventional units
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and the MVA rating ofG2 is reduced accordingly. In each case
the size of the WPP is varied linearly from36 to 1 000 MW
in 10 steps.

A. Local WT Voltage Control

When only local voltage control is employed in the WPP,
the WTs control to achieve a voltage of 1 pu at the terminals.

The modal characteristics of the three selected inter-
area modes,λ1−3, are presented in TABLE IV for
PWPP = 1000 MW. When compared to the modal character-
istics of the base case in TABLE II it is clear that the three
inter-area modes are largely unaffected by the1 000 MW WPP.

TABLE IV
CHARACTERISTICS FOR THREE INTER-AREA MODESλ1−3 WITH

1 000 MW OF WIND POWER.

# λ ωd ζ
[-] [Hz] [-]

Case 1 λ1 −0.280 ± j3.13 0.498 0.089
Case 1 λ2 −0.663 ± j6.26 0.996 0.105
Case 1 λ3 −0.644 ± j8.83 1.40 0.073
Case 2 λ1 −0.287 ± j3.24 0.516 0.088
Case 2 λ2 −0.666 ± j6.27 0.997 0.106
Case 2 λ3 −0.644 ± j8.83 1.41 0.073

An overview of the complex plane with system eigenvalues,
as the WPP penetration increases, is depicted in Fig. 9 for both
cases. A comparison of the selected eigenvalues in TABLE I
is given in Fig. 10. From Fig. 9 and Fig. 10 it should be noted
that the inter-area modes,λ1−3, only exhibit little movement
in the complex plane, whereas the movement of the common
voltage controller modes,λ4−6, is more significant.
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15

20
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=
(λ

)
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Fig. 9. System eigenvalues in the complex plane.

The participation factors measure the participation of each
state variable in the eigenvalues and thus how each mode is
shaped. In TABLE V selected participation factors are listed
for inter-area mode,λ1; namely, generator rotor angle states
and WPP mechanical generator, rotor, and shaft states. Further-
more is the largest participation over all WPP states given.
The maximum WPP participation is in both cases found in
the reactive power controller. Note that only the participation
factors for modeλ1 are given, however, similar results are
obtained forλ2−3. It should be noticed that the participation
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Fig. 10. Comparison of selected system eigenvalues.

factors for the WPP mechanical states are orders of magnitude
smaller than those of the synchronous generators; hereby
implying that the WPP does not participate in the oscillation.

TABLE V
COMPARISON OF SELECTED PARTICIPATION FACTORS FOR INTER-AREA

MODE, λ1 , FOR CASE1 AND 2. FOR THE WPPPARTICIPATION FACTORS

ARE SHOWN FOR MECHANICAL GENERATOR-, ROTOR- AND SHAFT-ANGLE

STATES, AND THE MAXIMUM PARTICIPATION OVER ALL WPPSTATES.
PWPP = 1 000 MW.

State variables |pj1| case 1 |pj1| case 2
δ (G1) 0.22 0.28
δ (G2) 0.10 0.05
δ (G3) < 10−2 < 10−2

δ (G4) 0.03 0.03
δ (G5) 0.04 0.03
δ (G6) 0.08 0.07
δ (G7) 0.01 0.01

δg (WPP) < 10−7 < 10−7

δr (WPP) < 10−5 < 10−5

δs (WPP) < 10−5 < 10−5

max
x

(|p1|) (WPP) < 10−2 < 10−2

For case 1 withPWPP = 1000 MW, the mode shapes are
given in Fig. 11 for the generator speed states for the three
inter-area modes,λ1−3. The inter-area characteristics in terms
of generator grouping are not significantly changed by the
WPP. Similar mode shapes are obtained for case 2.

B. Wind Power Plant Voltage Controller

The modal characteristics of the three selected inter-
area modes,λ1−3, are presented in TABLE VI for
PWPP = 1000 MW and with WPP voltage controller. When
compared to the modal characteristics of the case with only
local WT voltage control in TABLE IV, it is clear that the three
inter-area modes are largely unaffected by the WPP voltage
controller.

A comparison of the eigenvalue movement as the wind
power penetration increases from36 to 1 000 MW is given in
Fig. 12; again only limited movement of the three inter-area
modes are noticed. The mode shapes for the generator speed
states for the three inter-area modes are given in Fig. 13 for
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Fig. 11. Mode shape for the generator speed state for three inter-area modes.
The presented mode shapes are for case 1 withPWPP = 1000 MW

TABLE VI
CHARACTERISTICS FOR THREE INTER-AREA MODESλ1−3 WITH

1 000 MW OF WIND POWER ANDWPPVOLTAGE CONTROLLER.

# λ ωd ζ
[-] [Hz] [-]

Case 1 λ1 −0.278 ± j3.13 0.499 0.088
Case 1 λ2 −0.663 ± j6.26 0.996 0.105
Case 1 λ3 −0.644 ± j8.83 1.40 0.073
Case 2 λ1 −0.287 ± j3.25 0.517 0.088
Case 2 λ2 −0.668 ± j6.27 0.997 0.106
Case 2 λ3 −0.644 ± j8.83 1.40 0.073

−0.285 −0.28 −0.275 −0.27
3

3.2

3.4

=
(λ

)

λ1

−0.67 −0.66 −0.65
6.25

6.26

6.27
λ2

−0.6445 −0.644 −0.6435 −0.643
8.826

8.828

8.83

=
(λ

)

λ3

−2.5 −2 −1.5 −1
4

4.5

5
λ4

−6 −5.5 −5 −4.5
14

15

16

=
(λ

)

<(λ)

λ5

−5.5 −5 −4.5 −4
20

21

22

<(λ)

λ6 Case 1
Case 2

Fig. 12. Comparison of selected system eigenvalues with WPP voltage
controller.

case 1 withPWPP = 1000 MW. Similar results are obtained
for case 2 whereG2 is gradually displaced.

In TABLE VII the participation factors are given for inter-
area modeλ1 for case 1 and 2. Similar results are found for
inter-area modesλ2−3. As noted in section IV-A the WPP
participation in the oscillation is orders of magnitude smaller
than for the synchronous machines. The largest participation
factor for both case 1 and 2 is for the input filter for the
PCC voltage measurement which is slightly larger than for
the reactive current controller.
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Fig. 13. Mode shape for the generator speed state for three inter-area modes.
The presented mode shapes are for case 1 withPWPP = 1000 MW and with
a WPP voltage controller in service.

TABLE VII
COMPARISON OF SELECTED PARTICIPATION FACTORS FOR INTER-AREA

MODE, λ1 , FOR CASE1 AND 2. FOR THE WPPPARTICIPATION FACTORS

ARE SHOWN FOR MECHANICAL GENERATOR-, ROTOR- AND SHAFT-ANGLE

STATES, AND THE MAXIMUM PARTICIPATION OVER ALL WPPSTATES.
PWPP = 1 000 MW.

State variables |pj1| case 1 |pj1| case 2
δ (G1) 0.22 0.28
δ (G2) 0.10 0.04
δ (G3) < 10−2 < 10−2

δ (G4) 0.03 0.03
δ (G5) 0.03 0.03
δ (G6) 0.08 0.07
δ (G7) 0.01 0.01

δg (WPP) < 10−7 < 10−7

δr (WPP) < 10−5 < 10−5

δs (WPP) < 10−5 < 10−5

max
x

(|p1|) (WPP) < 10−2 < 10−2

V. D ISCUSSION

This paper presents a modal analysis of full-load converter
interfaced WTs. Focus of the work is the impact increased
wind power penetration has on power system inter-area oscil-
lations. The study is based on a 18 node, 7 generator power
system model to which the WPP is connected. The system
model represents a large network with a reduced number of
nodes and has been developed in collaboration with National
Grid to assist in the understanding of power oscillations
between major areas of the UK power system. The attached
WPP is modeled as an aggregated machine which includes
all grid significant components [29]. The WPP is furthermore
equipped with a voltage controller that controls the voltage at
the interface to the external grid.

To accommodate the production from additional generation
units, assuming that load and power transfer to neighboring
systems does not increase, the production from the existing
units should decrease accordingly to keep the power balance.
Two ways this can happen are1) all units stay connected but
with reduced active power output, or2) a proportion of the
existing units are taken out of service to ensure good utilization
of the units in service.
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Three inter-area modes are monitored as the penetration
of wind power increases, and both with and without WPP
voltage controller the inter-area modes seem largely unaffected
by the increased capacity of the WPP. Comparing the inter-
area characteristics in TABLE II, IV, and VI it is noted that
the damping of the three inter-area modes is almost constant,
while the frequency of oscillation, especially forλ1, increases
slightly. For inter-area modeλ1 the damped frequency of
oscillation increases by 4 % in case 2 where the synchronous
generator,G2, is being displaced by the WPP.

The WPP voltage controller does not significantly change
the modal properties of the system. A comparison of the results
in section IV-A and IV-B shows a large degree of uniformity,
with the trajectories in the complex plane in Fig. 10 and 12
being almost identical.

The degree of interaction of the WPP in the power sys-
tem oscillations is evaluated with the aid of participation
factors. The participation in the system oscillations of the
WPP mechanical system are orders of magnitude smaller than
those computed for the synchronous machines. This could
imply a decoupling between the grid dynamics and the WPP
mechanical system by the full-load converter.

VI. CONCLUSION

In this paper a modal analysis is presented where the im-
pact of full-load converter interfaced wind turbines on power
system oscillations is evaluated. The analysis is repeatedfor
various wind power penetration levels, two different strategies
for accommodating the wind energy, and with and without a
wind power plant voltage controller.

The study found that the inter-area modes were largely
unaffected by the increased capacity of the wind power plant.
The damping of three selected inter-area modes was almost
unchanged for the analyzed cases while smaller increases,
< 4 %, were seen in the damped frequency of oscillation.

Generally, a very small participation from the wind turbines
was found in the system oscillatory modes, hence implying
that the wind power plant does not interact with these system
modes.

APPENDIX A
SYSTEM PARAMETERS

TABLE VIII
GENERATOR RATINGS, TRANSFORMER REACTANCES, AND LOAD

CHARACTERISTICS. TRANSFORMER RATING IS SAME AS GENERATOR

RATING AND THE REACTANCE IS GIVEN ON THIS BASE.

Generators Transformers Loads
[MVA] [%] [MVA]

G1 3 000 T1 XL = 16 L3 755 + j220
G2 2 400 T2 XL = 16 L4 4 320 + j1 580
G3 1 000 T3 XL = 16 L5 3 200 + j954
G4 7 300 T4 XL = 16 L6 6 310 + j2 030
G5 2 900 T5 XL = 16 L7 2 910 + j960
G6 5 500 T6 XL = 16 L8 2 500 + j775
G7 2 800 T7 XL = 16

TABLE IX
MACHINE PARAMETERS FOR ALL SYNCHRONOUS GENERATORS ON

MACHINE BASE.

G1 G2 G3 G4 G5 G6 G7

H [s] 4.237 4.464 4.358 5.562 5.474 4.879 4.066
D [s] 0 0 0 0 0 0 0
Rs [pu] 0.002 0.001 0.010 0.001 0.002 0.001 0.002
Xl [pu] 0.167 0.187 0.167 0.169 0.167 0.180 0.183
Xd [pu] 2.360 2.116 2.001 2.470 2.235 2.158 2.510
Xq [pu] 2.261 2.043 1.937 2.301 2.113 2.069 2.447
X′

d
[pu] 0.297 0.312 0.293 0.278 0.269 0.300 0.313

X′

q [pu] 0.297 0.312 0.293 0.278 0.609 0.300 0.313
X′′

d
[pu] 0.209 0.250 0.219 0.203 0.198 0.227 0.226

X′′

q [pu] 0.209 0.248 0.227 0.248 0.209 0.237 0.226
T ′

do
[s] 0.692 1.008 0.933 0.721 1.002 1.004 0.691

T ′

qo [s] 0.692 1.008 0.933 0.721 1.002 1.004 0.691
T ′′

do
[s] 0.031 0.023 0.036 0.019 0.032 0.065 0.026

T ′′

qo [s] 0.031 0.064 0.040 0.020 0.047 0.071 0.026

TABLE X
WPPCOLLECTOR NETWORK PARAMETERS FORPWPP = 180 MW

Network Park trafo.
R XL BC XT

[Ω] [Ω] [µS] [%]
0.086 0.070 3219.7 12.2

TABLE XI
NETWORK PARAMETERS

R XL BC

[Ω] [Ω] [µS]
l18 0 4.00 0
l28 0 32.00 0
l38 11.93 114.64 0
l48 6.47 64.37 1189.91
l34 0.40 4.91 1007.73
l47 0.09 1.28 902.17
l57 2.35 30.20 1512.05
l67 0.38 4.88 1502.76
l56 1.70 26.17 1475.95
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