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ABSTRACT

Three essential criteria are important for activity planning, includ-

ing: (1) finding a group of attendees familiar with the initiator,

(2) ensuring each attendee in the group to have tight social rela-

tions with most of the members in the group, and (3) selecting an

activity period available for all attendees. Therefore, this paper

proposes Social-Temporal Group Query to find the activity time

and attendees with the minimum total social distance to the initia-

tor. Moreover, this query incorporates an acquaintance constraint to

avoid finding a group with mutually unfamiliar attendees. Efficient

processing of the social-temporal group query is very challenging.

We show that the problem is NP-hard via a proof and formulate

the problem with Integer Programming. We then propose two ef-

ficient algorithms, SGSelect and STGSelect, which include effec-

tive pruning techniques and employ the idea of pivot time slots to

substantially reduce the running time, for finding the optimal so-

lutions. Experimental results indicate that the proposed algorithms

are much more efficient and scalable. In the comparison of solu-

tion quality, we show that STGSelect outperforms the algorithm

that represents manual coordination by the initiator.

1. INTRODUCTION
Three essential criteria are important for activity initiation, in-

cluding: (1) finding a group of attendees familiar with the initiator,

(2) ensuring each attendee in the group to have tight social relations

with most of the members in the group, and (3) selecting an activ-

ity period available for all attendees. For example, if a person has

a given number of complimentary tickets for a movie and would

like to invite some friends, she usually prefers choosing a set of

mutually close friends and the time that all of them are available.

Nowadays, most activities are still initiated manually via phone, e-

mail, messenger, etc. However, a growing number of systems are

able to gather and make available some information required for

activity initiation. For example, social networking websites, such

as Facebook [2] and LinkedIn [5], provide the social relations and

contact information, and web collaboration tools, such as Google

Calendar [3], allow people to share their available time to friends

and co-workers. Even with the availability of the above informa-
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tion, nevertheless, an activity initiator still needs to manually de-

cide the suitable time and desirable attendees for activity planning,

which can be very tedious and time-consuming. Thus, it is desir-

able to provide an efficient activity planning service that automati-

cally suggests the attendees and time for an activity.

To support the aforementioned service, we formulate a new query

problem, named Social-Temporal Group Query (STGQ), which con-

siders the available time of candidate attendees and their social re-

lationship. Given an activity initiator, we assume that friends on her

social network (i.e., her friends together with friends of friends) are

candidate attendees. We also assume that the available time slots

of the candidate attendees have been made available for the sys-

tem in charge of query processing (e.g., via web collaboration tools

with the corresponding privacy setting1), and the social relation-

ship between friends is quantitatively captured as social distance

[10, 12, 13], which measures the closeness between friends. An

STGQ comes with the following parameters, (1) the activity size,

denoted by p, to specify the number of expected attendees, (2) the

length of time for the activity, denoted by m, (3) a social radius

constraint, denoted by a number s, to specify the scope of can-

didate attendees, and (4) an acquaintance constraint, denoted by

a number k, to govern the social relationship between attendees.

The primary goal is to find a set of activity attendees and a suit-

able time which match the specified number of attendees in (1)

and the activity length in (2) respectively, such that the total so-

cial distance between the initiator and all invited attendees is min-

imized. Additionally, the social radius constraint in (3) specifies

that all the candidate attendees are located no more than s edges

away from the initiator on her social network, while the acquain-

tance constraint in (4) requires that each attendee can have at most

k other unacquainted attendees.2 As such, by controlling s and k

based on desired social atmosphere, suitable attendees and time are

returned. Example 1 in the Appendix A shows an illustrative exam-

ple. Note that, in situations where the time of the planned activity is

pre-determined (e.g., complimentary tickets for a concert or a sport

event in a specified day), the aforementioned STGQ can be simpli-

fied as a Social Group Query (SGQ) (i.e., without considering the

temporal constraint). In this paper, we first examine the processing

1To process STGQ, it is not necessary for a user to share the sched-
ule to friends. However, we assume that any friend can initiate an
STGQ, and the query processing system can look up the available
time of the user, just like the friend making a call to ask the avail-
able time. Different privacy policies or different schedules can be
set for different friends, just like answering different available time,
or even not answering, for various friends. The above privacy and
schedule setting is beyond the scope of this paper.
2Note that the social radius constraint is specified in terms of num-
ber of edges, rather than the social distance, so the users can easily
specify the constraint.
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strategies for SGQ and then take further steps to extend our study

on the more complex STGQ.

For SGQ, a simple approach is to consider every possible p at-

tendees and find the total social distance. This approach needs to

evaluate C
f−1

p−1 candidate groups, where f is the number of can-

didate attendees. In the current social network [8], the average

number of friends for a user is around 100. Therefore, if an ini-

tiator would like to invite 10 attendees out of her 100 friends, the

number of candidate groups is in the order of 1013. Note that the

above scenario considers only the friends of the user as candidate

attendees, and the number of candidate groups will significantly

increase if the friends of each friend are also included. To sequen-

tially choose the attendees at each iteration, giving priority to close

friends based on their social distances to the activity initiator may

lead to a smaller total social distance in the beginning, but does not

always end up with a solution that satisfies the acquaintance con-

straint, especially for an activity with a small k. On the other hand,

giving priority to a set of people who know each other to address

the acquaintance constraint does not guarantee to find the solution

with the minimum total social distance. Therefore, to select each

attendee, the challenge comes from the dilemma of (1) reducing

the total social distance at each iteration and (2) ensuring that the

solution eventually follows all constraints of this problem.

Based on the above observations, in this paper, we first prove

that SGQ is NP-hard and then propose an algorithm, called SGSe-

lect, to find the optimal solution. We design three strategies, access

ordering, distance pruning, and acquaintance pruning, to effectively

prune the search space and reduce the processing time. During the

selection of each attendee, we address both the social distance and

connectivity of the attendee, together with the characteristics of the

social network for other attendees that have not been considered, in

order to find the optimal solution. Moreover, to consider the tempo-

ral dimension, we formulate STGQ as an optimization problem and

derive an Integer Programming optimization model, which can be

modified to support SGQ as well. Processing STGQ is significantly

more challenging than processing SGQ because there may exist nu-

merous time periods with different candidate groups. To solve the

problem, a simple approach is to sequentially explore the temporal

dimension and consider every possible activity period with m time

slots. This approach then chooses the corresponding optimal SGQ

attendees for each activity period, and identifies the period with

the smallest total social distance. However, this approach requires

solving numerous SGQ problems and thereby is computationally

intensive. In contrast, in this paper, we propose an algorithm, called

STGSelect, to solve the problem. In addition to the strategies for

SGSelect, we first identify pivot time slots, which are the time slots

only required to be explored in the temporal dimension to reduce

the running time. Moreover, we propose the availability pruning

strategy for Algorithm STGSelect, and the strategy is able to lever-

age the correlation of the available time slots among candidate at-

tendees, to avoid exploring an activity period eventually with fewer

than p available attendees.

The contributions of this paper are summarized as follows.

• We formulate two new and useful queries for an activity ini-

tiator, namely, SGQ and STGQ, to obtain the optimal set of

attendees and a suitable activity time. SGQ can be used to

plan for various types of activities by specifying the social

radius constraint s and the acquaintance constraint k, while

STGQ also takes into account the temporal constraint. We

prove that these two problems are NP-hard.

• We design Algorithm SGSelect and STGSelect to find the

optimal solutions to SGQ and STGQ, respectively. We de-

rive an Integer Programming optimization model for STGQ,

which can also support SGQ. Moreover, we devise various

strategies, including access ordering, distance pruning, ac-

quaintance pruning, pivot time slots, and availability prun-

ing, to prune unnecessary search space and obtain the op-

timal solution in smaller time. Our research result can be

adopted in social networking websites and web collaboration

tools as a value-added service.

The rest of this paper is summarized as follows. In Section 2,

we introduce the related works. Section 3 formulates SGQ and ex-

plains the details of Algorithm SGSelect. Section 4 extends our

study on SGQ to the more complex STGQ. The details of Algo-

rithm STGSelect are also included. We present the experimental

results in Section 5 and conclude this paper in Section 6.

2. RELATED WORKS
There is a tremendous need for activity planning. Even though

some web applications, e.g., Meetup [6], have been developed to

support activity coordination, these applications still require users

to manually assign the activity time and participants. For example,

using Meetup [6] or the Events function in Facebook [1], an activ-

ity initiator can specify an activity time and manually select some

friends to send invitations to. In response, these friends inform the

activity initiator whether they are able to attend or not. Obviously,

the above-described manual activity coordination process is tedious

and time-consuming. In contrast, the proposed STGQ, complemen-

tary to the above web applications, is able to automatically find a

group of close friends to get together at a suitable activity time.

There are some related works on group formation (e.g., [10]),

team formation (e.g., [14, 15]), and community search (e.g., [20]),

but they focus on different scenarios and objectives. In addition,

none of the above works consider the temporal dimension, i.e.,

schedules of attendees, to find a suitable activity time. Specifically,

the work [10] uses real data to analyze the long-term evolution of

the group formation in global social networks. On the contrary,

we concern the social neighborhood of the activity initiator (i.e.,

her egocentric social network), since our goal is to find an opti-

mal group of mutual acquaintances for the initiator. The studies

on team formation [14, 15] find a group of experts covering all re-

quired skills, and minimize the communications cost between these

experts. In contrast, we aim to find a group of friends satisfying so-

cial constraints and having common available time slots. The work

[20] considers an unweighted social graph and studies the commu-

nity search problem. The problem is to find a compact commu-

nity that contains particular members, with the objective such as

minimizing the total degree in the community. However, we con-

sider a weighted social graph and minimize the total social distance

within the group. Moreover, our problem includes an acquaintance

constraint to ensure that each attendee can have at most k other

attendees unacquainted. This constraint is important because it al-

lows us to adapt to the nature activity. In addition, the work [20]

only provides an upper bound on the community size, instead of

the exact number. Thus, users thereby may obtain a solution with

an undesirably small number of attendees.

By minimizing the total social distance among the attendees, we

are actually forming a cohesive subgroup in the social network. In

the field of social network analysis, researches on finding various

kinds of cohesive subgroups such as clique, n-club [17], and k-plex

[19] have been conducted. However, most previous studies focus

on finding all maximal cohesive subgroups or the maximum cohe-
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sive subgroups, but the total social distance is not considered. For

example, finding the maximum k-plexes is discussed in [11, 16,

18], and enumeration of all maximal k-plexes is discussed in [21].

Instead of finding these extreme cases, we allow the activity initia-

tor to specify an arbitrary group size. Note that the maximal sub-

groups or the maximum subgroups in the egocentric network of the

initiator may not qualify the specified size. Hence, these existing

works are not applicable to the SGQ problem. Besides, to the best

of our knowledge, none of previous works on cohesive subgroups

have considered the schedule of group members. Therefore, the

STGQ problem is not addressed previously.

3. SOCIAL GROUP QUERY
In this section, we present the fundamental problem, namely So-

cial Group Query (SGQ), which focuses on finding the optimal

group of attendees satisfying the social radius constraint and the

acquaintance constraint. In the following, we first present the prob-

lem formulation and research challenges in Section 3.1, and then

prove that SGQ is NP-hard. Afterward, we propose an algorithm

that can effectively prune unnecessary search space to obtain the

optimal solution in Section 3.2.

3.1 Problem Definition
Given an activity initiator q and her social graph G = (V,E),

where each vertex v is a candidate attendee, and the distance on

each edge eu,v connecting vertices u and v represents their social

closeness. A social group query SGQ(p, s, k), where p is an ac-

tivity size, s is a social radius constraint, and k is an acquaintance

constraint, finds a set F of p vertices from G to minimize the total

social distance between q and every vertex v in F , i.e.,
∑

v∈F dv,q ,

where dv,q is the length of the minimum-distance path between v

and q with at most s edges, such that each vertex in F is allowed to

share no edge with at most k other vertices in F .

The initiator can specify different s for different kinds of activi-

ties. For example, the initiator can ensure that all invited attendees

are directly acquainted with her by specifying s = 1. On the other

hand, for a party, the initiator can specify a larger s such that some

friends of friends can also be invited to the party. Moreover, the

initiator can vary k for different kinds of activities, e.g., a small k

for a gathering where all the attendees know each other very well,

while a larger k for a more diverse event. Note that the size of so-

lution space, i.e., the number of candidate groups, rapidly grows

when p and s increase. On the other hand, k serves as a filter to

determine whether each candidate group satisfies the acquaintance

constraint. Indeed, processing SGQ is an NP-hard problem (see

Appendix B.1 for a formal proof). Fortunately, while the problem

is very challenging, it is still tractable when the size of s and p are

reasonable. In Section 3.2, we design an efficient query processing

algorithm by pruning unqualified candidate groups.

THEOREM 1. SGQ is NP-hard.

PROOF. We prove the theorem in Appendix B.1.

3.2 Algorithm Design
In this section, we propose a novel algorithm, namely SGSelect,

to solve SGQ efficiently. Our idea is to first derive a feasible graph

GF = (VF , EF ) from G based on our observation on the social

radius constraint, such that there exists a path with at most s edges

from q to each vertex in GF . Starting from q, we iteratively explore

GF to derive the optimal solution. At each iteration, we keep track

of the set of vertices that satisfy the acquaintance constraint as the

intermediate solution obtained so far (denoted as VS). Initially, we

set VS = {q}, and let VA denote the set of remaining vertices in

VF , i.e., VA = VF − VS . We select a vertex in VA and examine

whether it is feasible (i.e., following the acquaintance constraint) to

move this vertex to VS at each iteration, until VS has p vertices and

the process stops.

The selection of a vertex from VA at each iteration is critical

to the performance of query processing. It is essential to avoid

choosing a vertex v that may significantly increase the total social

distance or lead to violation of the acquaintance constraint. Based

on our analysis on various properties and constraints in SGQ, we

observe that the access order of nodes in constructing candidate

groups is a key factor to the overall performance. It is important to

take a priority to consider nodes that are very likely to be included

in the final answer group, i.e., the optimal solution, which may fa-

cilitate effective early pruning of unqualified solutions. Addition-

ally, social radius and acquaintance constraints can be exploited to

facilitate efficient pruning of vertices which would not lead to the

eventual answer. We summarize our ideas as follows.

Access ordering. To guide an efficient exploration of the so-

lution space, we access vertices in VA following an order that in-

corporates (1) the increment of the total social distance and (2) the

feasibility for the acquaintance constraint. Accordingly, we define

the notion of interior unfamiliarity and exterior expansibility of VS

to test the feasibility of examined vertices to the acquaintance con-

straint during the vertex selection.

Distance pruning. To avoid exploring vertices in VA that do

not lead to a better solution in terms of total social distance, Algo-

rithm SGSelect keeps track of the best feasible solution obtained

so far and leverages its total social distance to prune unnecessary

examinations of certain search space.

Acquaintance pruning. We explore the properties of the ac-

quaintance constraint to facilitate search space pruning. Specifi-

cally, we define the notion of inner degree of the vertices in VA and

derive its lower bound, such that a feasible solution can be derived

from vertices in VS and VA. The lower bound is designed to de-

tect the stop condition when there exists no feasible solution after

including any vertex in VA.

To find the optimal solution, Algorithm SGSelect may incur an

exponential time in query processing because SGQ is NP-hard. In

the worst case, all candidate groups may need to be considered.

However, by employing the above pruning strategies, the average

running time of Algorithm SGSelect can be effectively reduced, as

to be shown in Section 5. In the following, we present the details

of the proposed algorithm.

3.2.1 Radius Graph Extraction

Obviously, the social radius constraint can effectively prune un-

necessary candidates in the social network of the activity initiator.

Thus, Algorithm SGSelect first extracts the vertices that satisfy the

social radius constraint. A simple approach to ensure that the so-

cial radius constraint holds is to find the minimum-edge path (i.e.,

the shortest path with the minimum number of edges) between q

and every other vertex, and then remove those vertices that have

their minimum-edge paths longer than s edges. Nevertheless, the

minimum-distance path with at most s edges and the minimum-

edge path can be different. As a result, the total distance of the

minimum-edge path may not be the minimum distance. Moreover,

the minimum-distance path may consist of more than s edges which

does not satisfy the social radius constraint. To address the above

problem, we define the notion of i-edge minimum distance, which

represents the total distance of the minimum-distance path with no

more than i edges as follows.
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Definition 1. The i-edge minimum distance between the vertex

v and the vertex q is div,q = minu∈Nv

{
di−1
v,q , d

i−1
u,q + cu,v

}
, where

Nv is the set of neighboring vertices of v.

Based on dynamic programming, Algorithm SGSelect computes

the i-edge minimum distance between the vertex v and the vertex

q by iteratively deriving div,q in terms of di−1
u,q of each neighboring

vertex u, for 1 ≤ i ≤ s. Initially, we set d0v,q as ∞ for every ver-

tex v, v 6= q. We set d0q,q as 0 and derive d1v,q for every vertex v

in Nq . At the next iteration, we update d2v,q for v if there exists a

neighbor u of v such that d1u,q+cu,v is smaller than d1v,q . This case

indicates that there is an alternate path from v to q via a neighbor

u, and the path has a smaller total distance. Our algorithm repeats

the above iterations with at most s times for each vertex. There-

fore, each vertex v with dsv,q < ∞ is extracted in our algorithm to

construct a feasible graph GF = (VF , EF ). In the graph, the total

distance of the minimum-distance path with at most s edges (i.e.,

dsv,q) is adopted as the social distance between v and q (i.e., dv,q).

In other words, we can ensure that every vertex in VF satisfies the

social radius constraint. Therefore, we consider GF in evaluating

the SGQ for the rest of this paper.

3.2.2 Access Ordering

After constructing the feasible graph GF , Algorithm SGSelect

iteratively explores GF to find the optimal solution. Initially, the

intermediate solution set VS includes only q, and the remaining

vertex set VA is VF − {q}. At each iteration afterward, we select

and move a vertex from VA to VS in order to expand the interme-

diate solution in VS . Therefore, VS represents a feasible solution

when |VS | = p, and the vertices in VS satisfy the acquaintance

constraint. Next, our algorithm improves the feasible solution by

backtracking the above exploration procedure to previous iterations

and choosing an alternative vertex in VA to expand VS . A branch-

and-bound tree is maintained to record the exploration history for

backtracking. This process continues until VS has p vertices.

To reduce the running time and search space, the selection of a

vertex at each iteration is critical. Naturally, we would like to in-

clude a vertex that minimizes the increment of the total social dis-

tance. Nevertheless, the connectivity of the selected vertex imposes

additional requirements for satisfying the acquaintance constraint.

Thus, we introduce the notion of interior unfamiliarity and exte-

rior expansibility with respect to the intermediate solution set VS

to exploit the acquaintance constraint in query processing.

Definition 2. The interior unfamiliarity of VS is U(VS) =
maxv∈VS

|VS − {v} −Nv| , where Nv is the set of neighboring

vertices of v in GF . The set VS − {v} − Nv refers to the set of

non-neighboring vertices of v in VS .

As shown later, the interior unfamiliarity of possible intermedi-

ate solution sets are taken into account in deciding which vertex is

to be included in the process of generating the candidate groups. It

is preferable to first include a well-connected vertex that results in

the intermediate solution set with low interior unfamiliarity since it

may make selections of other vertices in the later iterations easier.

Next, we define the exterior expansibility of an intermediate solu-

tion set VS , denoted by A(VS), as the maximum number of vertices

that VS can be expanded from.

Definition 3. The exterior expansibility of VS is A(VS) =
minv∈VS

{|VA ∩Nv|+ (k − |VS − {v} −Nv|)} , where the first

set (i.e., VA∩Nv) contains the neighboring vertices of v in VA and

the second set (i.e., VS − {v} −Nv) contains the non-neighboring

vertices of v in VS .

Since the number of existing non-neighboring vertices of v in VS

is |VS − {v} −Nv|, we can select at most k − |VS − {v} −Nv|
extra non-neighboring vertices of v from VA to expand VS ; other-

wise, vertex v would have more than k non-neighboring vertices in

VS and violate the acquaintance constraint. Therefore, for a ver-

tex v in VS , there are at most |VA ∩Nv| neighboring vertices and

k−|VS − {v} −Nv| non-neighboring vertices to be selected from

VA in order to expand VS .

When selecting a vertex v to expand VS , we consider both the

increment of the total social distance caused by v and the connec-

tivity of vertices in the new intermediate solution set containing v,

which is captured by U(VS ∪ {v}) and A(VS ∪ {v}). Specifically,

Algorithm SGSelect chooses the vertex v with the minimum social

distance to q that satisfies the following two conditions for interior

unfamiliarity and exterior expansibility, respectively.

Interior Unfamiliarity Condition. The first condition consid-

ers the interior unfamiliarity. Note that a small value of interior un-

familiarity indicates that every vertex v ∈ VS has plenty of neigh-

boring vertices in VS , i.e., the current intermediate solution set VS

is likely to be expanded into feasible solutions satisfying the ac-

quaintance constraint. Based on this observation, we employ the in-

terior unfamiliarity condition, i.e., U(VS ∪{v}) ≤ k
[
|VS∪{v}|

p

]θ
,

where θ ≥ 0 and
|VS∪{v}|

p
is the proportion of attendees that have

been considered, to ensure that the value of interior unfamiliarity

remains small when a vertex v is selected. Note that the right-

hand-side (RHS) of the inequality reaches its maximum, i.e., k,

when θ is fixed as 0. With θ = 0, it is flexible to find a vertex

v with a small social distance. However, if a vertex v resulting in

U(VS ∪ {v}) = k is selected, the vertex with k non-neighboring

vertices in the set VS ∪{v} is required to connect to all the vertices

chosen from VA at later iterations. Thus, the feasibility of select-

ing other qualified vertices in later iterations is thereby decreased.

In contrast, a larger θ allows SGSelect to choose a vertex from VA

that connects to more vertices in VS to ensure the feasibility at later

iterations. Note that the RHS of the condition increases when VS

includes more vertices. On the other hand, the algorithm reduces θ

if there exists no vertex in VA that can satisfy the above condition.

When θ decreases to 0 and the above condition still does not hold

for all vertices, i.e., U(VS ∪ {v}) > k, Algorithm SGSelect re-

moves every v from VA, because adding v to VS does not generate

a feasible solution.

Exterior Expansibility Condition. Now we discuss the sec-

ond condition based on the exterior expansibility, which represents

the maximum number of vertices in VA that can be considered for

expanding the intermediate solution set VS , and this value must

be no smaller than the number of attendees required to be added

later, i.e., p − |VS |. Therefore, SGSelect chooses the vertex v

from VA that can satisfy the exterior expansibility condition, i.e.,

A (VS ∪ {v}) ≥ (p− |VS ∪ {v}|). If the inequality does not hold,

the new intermediate solution set obtained by adding v is not ex-

pansible, as shown by the following lemma.

LEMMA 1. Given that A (VS) < (p− |VS |), there must exist

at least one vertex v in VS such that v cannot follow the acquain-

tance constraint for every possible selection of vertices from VA.

PROOF. If A (VS) < (p− |VS |), then we can find at least one

vertex v in VS such that |VA ∩Nv| + (k − |VS − {v} −Nv|) <

(p− |VS |). In other words, (k − |VS − {v} −Nv|) < (p− |VS |)
− |VA ∩Nv|. As mentioned above, |VS − {v} −Nv| is the num-

ber of non-neighboring vertices for v, and k − |VS − {v} −Nv|
thereby represents the ”quota” for v to choose non-neighbor ver-
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tices from VA. For any possible selection V̂A ⊆ VA, let λ̂A de-

note the number of neighbor vertex of v in V̂A. Since λ̂A ≤

|VA ∩Nv|, (p− |VS |) − |VA ∩Nv| ≤ (p− |VS |) − λ̂A. There-

fore, if A (VS) < (p− |VS |), then (k − |VS − {v} −Nv|) <

(p− |VS |)− λ̂A, and v does not have enough quota to support V̂A

for satisfying the acquaintance constraint. The lemma follows.

3.2.3 Distance and Acquaintance Pruning

In the following, we further exploit two pruning strategies to re-

duce the search space. Our algorithm aims to obtain a feasible so-

lution early since the total social distance of this solution can be

used for pruning unnecessary candidates. At each iteration, the fol-

lowing distance pruning strategy avoids exploring the vertices in

the remaining vertex set VA if they do not lead to a solution with a

smaller total social distance.

LEMMA 2. The distance pruning strategy stops selecting a ver-

tex from VA to VS if D−
∑

v∈VS
dv,q < (p−|VS |)minv∈VA

dv,q ,

where D is the total social distance of the best feasible solution ob-

tained so far. The distance pruning strategy can prune the search

space with no better solution.

PROOF. If the above condition holds, it is impossible to find

an improved solution by exploring VA, since the total social dis-

tance of any new solution must exceed D when we select p− |VS |
vertices from VA. Algorithm SGSelect considers minv∈VA

dv,q in

distance pruning to avoid sorting the distances of all vertices in VA,

which requires additional computation and may not be scalable for

a large social network. Please note that as the best obtained so-

lution improves at later iterations, we are able to derive a smaller

upper bound in the LHS, and thus prune a larger search space with

distance pruning. The lemma follows.

In addition to pruning the search space that does not lead to a

smaller total social distance, we also propose an acquaintance prun-

ing strategy that considers the feasibility of selecting vertices from

VA, and stops exploring VA if there exists no solution that can sat-

isfy the acquaintance constraint. Earlier in this section, the inte-

rior unfamiliarity and the exterior expansibility consider the con-

nectivity between the vertices in only VS , and the connectivity be-

tween the vertices in VS and VA, respectively. Here the acquain-

tance pruning strategy focuses on the edges between the vertices

in VA. Note that all vertices in VA are excluded from expansion

(and thus the corresponding VS is pruned) if
∑

v∈VA
|VA ∩Nv| <

(p − |VS |)(p − |VS | − k) holds. The LHS of the above inequal-

ity is the total inner degree of all vertices in VA, where the inner

degree of a vertex in VA considers only the edges connecting to

other vertices in VA. The RHS is the lower bound on the total

inner degree on any set of vertices extracted from VA to expand

VS into a solution satisfying the acquaintance constraint. Specif-

ically, our algorithm needs to select p − |VS | vertices from VA,

and hence the inner degree of any selected vertex cannot be smaller

than p−|VS |−k; otherwise, the vertex must be unacquainted with

more than k vertices and violate the acquaintance constraint.

The above strategy can be improved by replacing the LHS of

the inequality with
∑

v∈MA
|VA ∩Nv|, where MA denotes the set

of p − |VS | vertices in VA with the largest inner degrees. There-

fore, with MA, our algorithm is able to stop the search earlier,

and prune off more infeasible solutions because MA ⊆ VA, and∑
v∈MA

|VA ∩ Nv| ≤
∑

v∈VA
|VA ∩ Nv|. However, to obtain

MA, sorting the vertices in VA according to their inner degrees re-

quires additional computation. Therefore, our algorithm finds an-

other value between
∑

v∈MA
|VA ∩ Nv| and

∑
v∈VA

|VA ∩ Nv|,

and the value can be obtained easily. Specifically, the acquaintance

pruning is specified as follows.

LEMMA 3. The acquaintance pruning strategy stops selecting

a vertex from VA to VS if
∑

v∈VA
|VA ∩Nv| − (|VA| − p+ |VS |)

minv∈VA
|VA ∩ Nv| < (p− |VS |) (p− |VS | − k), and the ac-

quaintance pruning strategy can prune the search space with no

feasible solution.

PROOF. To avoid the sorting in
∑

v∈MA
|VA∩Nv|, we consider

only the vertex with the minimum inner degree minv∈VA
|VA ∩

Nv|, and the LHS is an upper bound on
∑

v∈MA
|VA ∩ Nv|. The

reason is that |VA| − p + |VS | is the number of vertices not ex-

tracted from VA, and the second term of the LHS thereby repre-

sents a lower bound on the total inner degree of the vertices not

extracted from VA. Therefore, the LHS is an upper bound on the

total inner degree of the vertices extracted from VA. This up-

per bound can be employed to improve the acquaintance prun-

ing strategy, since
∑

v∈MA
|VA ∩ Nv| ≤

∑
v∈VA

|VA ∩ Nv| −

(|VA| − p+ |VS |)minv∈VA
|VA∩Nv| ≤

∑
v∈VA

|VA∩Nv|. The

lemma follows.

In the following, we prove that our algorithm with the above

strategies finds the optimal solution.

THEOREM 2. SGSelect obtains the optimal solution to SGQ.

PROOF. We prove the theorem in Appendix B.2.

Please refer to Example 2 in Appendix A for illustration of Al-

gorithm SGSelect, and the pseudo code of SGSelect is provided in

Appendix C.

4. SOCIALTEMPORAL GROUP QUERY
In the following, we extend SGQ to STGQ by exploring the tem-

poral dimension and formulate the problem in Section 4.1. STGQ is

more complex than SGQ because there may exist numerous activ-

ity periods with different candidate groups. An intuitive approach

is to first find the SGQ solution for each individual activity pe-

riod and then select the one with the minimum total social distance.

However, this approach is computationally expensive. To address

this issue, in Section 4.2, we identify pivot time slots, the only time

slots required to be explored in the temporal dimension, to facilitate

efficient STGQ processing. Moreover, we propose the availability

pruning strategy to leverage the correlation in the available time

slots among candidate attendees to avoid exploring an unsuitable

activity period.

4.1 Problem Definition
STGQ generalizes SGQ by considering the available time of

each candidate attendee via the availability constraint, which en-

sures that all selected attendees are available in a period of m time

slots. Given an activity initiator q and her social graph G = (V,E),
where each vertex v is a candidate attendee, and the distance on

each edge eu,v connecting vertices u and v represents their so-

cial closeness. A social-temporal group query STGQ(p, s, k,m),
where p is an activity size, s is a social radius constraint, k is an

acquaintance constraint, and m is an activity length, finds a time

slot t and a set F of p vertices from G to minimize the total social

distance between q and every vertex in F , i.e.,
∑

u∈F du,q , where

du,q is the length of the minimum-distance path between u and q

with at most s edges, such that each vertex u in F is allowed to

share no edge with at most k other vertices in F , and u is available

from time slot t to t+m− 1.
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STGQ is also an NP-hard problem because STGQ can be re-

duced to SGQ if every candidate attendee is available in all time

slots. In Section 4.2, we design an efficient query processing al-

gorithm STGSelect by leveraging the idea of pivot time slots to

effectively reduce the number of time slots to be processed. Addi-

tionally, we derive the Integer Programming formulation of STGQ

(see Appendix D), which is included in Section 5 for comparison.

4.2 Algorithm Design
An intuitive approach to evaluate STGQ is to consider the so-

cial dimension and the temporal dimension separately, by sequen-

tially exploring each time slot t and the candidate attendees who

are available from t to t + m − 1 (i.e., m consecutive time slots).

However, the running time significantly grows when the number of

time slots increases. Therefore, we devise Algorithm STGSelect,

which explores the following features in the temporal dimension to

reduce search space and running time.

Pivot time slot. We consider only a limited number of slots,

namely, the pivot time slots, to find the solution. STGSelect returns

optimal solutions even though only parts of the slots are considered.

Access ordering. In addition to interior unfamiliarity and ex-

terior expansibility discussed earlier, we further consider the solu-

tion quality and the feasibility based on the availability constraint.

Algorithm STGSelect constructs the VS with vertices which have

more available time slots in common to find an initial feasible so-

lution and then chooses the vertices in VA with smaller social dis-

tances to improve the solution.

Availability pruning. In addition to the distance and acquain-

tance pruning discussed in Section 3.2, we propose the availability

pruning strategy to stop the algorithm when selecting any vertex

from VA never leads to a solution with m available time slots.

To find the optimal solution, STGSelect is expected to have an

exponential-time complexity because STGQ is NP-hard. In the

worst case, all candidate groups in all time slots may need to be

considered. However, as shown in Section 5, the average running

time of the proposed algorithm with the above strategies can be ef-

fectively reduced, especially for a large m. In the following, we

describe the details of Algorithm STGSelect, paying special atten-

tion on the temporal dimension. Instead of considering the interval

from t to t + m − 1 for each time slot t, our algorithm leverages

the pivot time slots defined as follows to reduce running time.

LEMMA 4. A time slot is a pivot time slot if the ID of the slot

is im, where i is a positive integer. Any feasible solution to STGQ

must include exactly one pivot time slot.

PROOF. If a solution does not span over a pivot time slot, the

solution must have fewer than m slots because there are m−1 time

slots between any two consecutive pivot time slots. If a solution

contains more than one pivot time slot, the solution includes more

than m slots, and the above two cases are not feasible. Moreover,

there must exist an integer i∗ such that the optimal solution resides

in an interval starting from slot (i∗ − 1)m + 1 to (i∗ + 1)m − 1,

corresponding to pivot time slot i∗m. If the optimal solution is not

located in the above interval, the optimal solution must include at

least two pivot time slots and thereby is infeasible, or the optimal

solution must reside in the corresponding interval for pivot time

slot (i∗ − 1)m or (i∗ + 1)m. The lemma follows.

Definition 4. Every vertex v in the feasible graph Gim
F = (V im

F ,

Eim
F ) for pivot time slot im has at least m consecutive available

time slots in the interval from slot (i− 1)m+ 1 to (i+ 1)m− 1.

Moreover, there exists a path from q to v with at most s edges.

For each pivot time slot im, Algorithm STGSelect extends SGS-

elect by considering the temporal information when selecting a ver-

tex from VA to VS . Specifically, let TS denote the set of consecutive

time slots available for all vertices in VS , and TS must contain slot

im. In other words, TS will be a feasible solution to the STGQ

when VS includes p vertices satisfying the acquaintance constraint,

and |TS | ≥ m. At each iteration, for each vertex in VA, Algorithm

STGSelect considers the social distance to q during the selection to

reduce the objective value. However, we also consider the tempo-

ral availability of the vertex to avoid choosing a vertex that leads

to a small increment of the total social distance but ends up with

redundant examination of solutions eventually disqualified by the

availability constraint. In other words, in addition to interior unfa-

miliarity and exterior expansibility as described in Section 3.2, we

define the notion of temporal extensibility as follows.

Definition 5. The temporal extensibility of VS is X(VS) = |TS |
−m. A larger temporal extensibility ensures that many vertices in

VA with good quality in the temporal dimension can be selected by

our algorithm afterward.

Temporal Extensibility Condition. To consider both the so-

lution quality and feasibility in the temporal dimension, Algorithm

STGSelect chooses the vertex u with the minimum social distance

to q, and u must satisfy X(VS ∪ {u}) ≥ (m− 1)
[
p−|VS∪{u}|

p

]φ
,

where φ ≥ 1 and
p−|VS∪{u}|

p
is the proportion of attendees that

have not been considered. The RHS grows when φ decreases, and

the above condition enforces that the result VS ∪{u} must be more

temporal extensible, i.e., more available time slots are shared by all

vertices in the result, and hence more vertices in VA are eligible

to be selected at later iterations. In the extreme case, if φ = 1,

the above condition requires that the result contains almost 2m− 1
available time slots when VS = {q}, because the RHS is close to

m − 1. In contrast, as φ grows, our algorithm is able to choose

a vertex with a smaller social distance because more vertices can

satisfy the above condition. Please note that φ is increased by the

algorithm if there exists no vertex in VA that can satisfy the above

condition, and the RHS approaches 0 in this case. For the case that

leads to X(VS ∪ {u}) < 0, we remove u from VA because adding

u to VS results in unqualified solutions that are infeasible in the

temporal dimension.

In addition to distance pruning and acquaintance pruning that

consider the social dimension, we propose availability pruning in

the temporal dimension. The strategy enables our algorithm to stop

exploring VA if there exists no solution that can satisfy the avail-

ability constraint. The above temporal extensibility considers the

available time slots for vertices in VS . In contrast, availability prun-

ing reduces the search space according to the available time slots

of vertices in VA. Specifically, for each pivot time slot im, let t
+

A

and t
−
A denote the time slots closest to im, such that all vertices

in VA are not available in the two time slots, where t
+

A > im and

t
−
A < im, respectively. Therefore, we are able to stop considering

VA when t
+

A−t
−
A ≤ m. In this case, the solution is infeasible since

the interval starting from t
−
A + 1 to t

+

A − 1 contains fewer than m

time slots. This strategy can be further improved by considering

the number of vertices that are not available for each time slot, and

the availability pruning strategy is formally specified as follows.

LEMMA 5. The availability pruning strategy stops selecting a

vertex from VA to VS if t
+

A(|VA| − p + |VS | + 1) − t
−
A(|VA| −

p+ |VS |+ 1) ≤ m, where t
+

A(n) and t
−
A(n) denote the time slots

closest to im, such that at least n vertices in VA are not available,
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and t
+

A(n) > im and t
−
A(n) < im, respectively. Moreover, the

availability pruning strategy can prune the search space with no

feasible solution.

PROOF. If the above condition holds, there are at most p −
|VS |−1 vertices of VA available in each of the above two slots, and

we can never find a feasible solution because Algorithm STGSelect

is required to choose p−|VS | vertices from VA for a common avail-

able interval with at least m time slots. The lemma follows.

THEOREM 3. STGSelect obtains the optimal solution to STGQ.

PROOF. We prove the theorem in Appendix B.3.

Please refer to Example 3 in Appendix A for illustration of Al-

gorithm STGSelect, and the pseudo code of STGSelect is provided

in Appendix C.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance and analyze the so-

lution quality of the proposed algorithms. We perform a series of

sensitivity tests to study the impact of query parameters with both

real and synthetic datasets. In the following, Section 5.1 describes

the experiment setup. Section 5.2 then presents the experimental

results on performance and solution quality.

5.1 Experiment Setup
We invite 194 people from various communities, e.g., schools,

government, business, and industry to join our experiment, and

Google Calendar [3] is utilized to collect the schedules from them.

The social distance of each edge is derived according to the inter-

action between the two corresponding people [10, 12, 13], such

as the frequency of meeting, phone calls, and mails. Moreover, a

synthetic dataset with 12800 people is generated from a coauthor-

ship network [7], while the schedule of each person in each day

is randomly assigned from the above 194-people real dataset. The

proposed algorithms are implemented in an IBM 3650 server with

two Quadcore Intel X5450 3.00 GHz CPUs and 8 GB RAM.

To evaluate the solution quality, we compare STGSelect with

PCArrange, which is an algorithm imitating the behavior of man-

ual coordination via phone calls, where the initiator q sequentially

invites close friends first and then finds out the common available

time slots. Note that PCArrange does not include the acquaintance

constraint, but we can obtain a parameter kh from each result, such

that every attendee has at most kh other attendees unacquainted.

In other words, kh is the observed k for each activity in PCAr-

range. In addition to STGSelect, we compare PCArrange with an

algorithm STGArrange, which is designed to utilize STGSelect for

finding the smallest k that can achieve the total social distance no

more than the one in PCArrange. In other words, starting from

k = 0, STGArrange incrementally increases k in STGSelect to

find the first solution no worse than the one in PCArrange, in order

to evaluate k.

5.2 Analysis of Experimental Results
For SGQ, we compare Algorithm SGSelect with two other ap-

proaches: the baseline algorithm for SGQ, i.e., considering all pos-

sible candidate groups, and the Integer Programming model for

SGQ in Appendix D with CPLEX [4], which is an integer pro-

gramming optimizer that can support parallel computation. We first

compare the running time of Algorithm SGSelect and the baseline

algorithm for SGQ with different numbers of attendees, i.e., p, in

Figure 1(a). Due to the space constraint, we only include the ex-

perimental results with k = 2 and s = 1, and the trends for other

parameter settings, such as s = 2, are identical. The results indi-

cate that Algorithm SGSelect outperforms the baseline algorithm

for SGQ, and the difference between them becomes more signifi-

cant as p grows. This is because the baseline algorithm for SGQ

considers numerous candidate groups, and the processing effort of

each candidate group increases with p, while Algorithm SGSelect

effectively prunes the solution space with the proposed access or-

dering, distance pruning, and acquaintance pruning strategies. In-

teger programming requires more time than the baseline algorithm

for SGQ because it is a general-purpose optimizer. However, the

running time grows slower because it can support parallel compu-

tation to fully utilize the 8-core processing power in IBM 3650.

In contrast, both SGSelect and the baseline algorithm are single-

thread algorithms, and the results show that SGSelect is much faster

than integer programming for finding the optimal solutions.

Figure 1(b) shows the results with different social radius con-

straints, i.e., s. The reason that Algorithm SGSelect is able to effec-

tively reduce the running time is that it first derives a much smaller

feasible graph GF by exploiting the social radius constraint and

then prunes unnecessary branches. Besides the social radius con-

straint, we also compare the running time of these two approaches

under different acquaintance constraints, i.e., k. As shown in Fig-

ure 1(c), different k only slightly change the running time. This

is because the value of k does not directly affect the number of

candidate groups required to be considered. In addition, the result

shows that Algorithm SGSelect outperforms the baseline algorithm

by near two orders under every value of k. We also compare the al-

gorithms with different network sizes as shown in Figure 1(d), and

we can see that the running time of Algorithm SGSelect is still

much smaller than the time of the baseline algorithm.

To evaluate the performance on STGQ, we compare our algo-

rithm STGSelect with the baseline algorithm for STGQ, i.e., se-

quentially considering each time slot and solving the correspond-

ing SGQ problem. In Figure 1(e), we report the running time of

these two algorithms under different activity lengths, i.e., m. The

results show that Algorithm STGSelect significantly outperforms

the baseline algorithm, especially when m increases. In contrast,

Figure 1(f) presents the running time of Algorithm STGSelect and

the baseline algorithm with different lengths of schedules provided

by users. More time slots need to be considered in a longer sched-

ule. As shown in these two figures, Algorithm STGSelect yields

much less running time, and the difference increases as m or the

schedule length increases. The reason is that with the idea of pivot

time slots, Algorithm STGSelect can concurrently consider m can-

didate activity periods spanning the same pivot time slot, while the

baseline algorithm considers these candidate periods separately.

Figure 1(g) and Figure 1(h) compare k and the total social dis-

tance obtained by STGArrange and PCArrange with different p.

For each p, a smaller k corresponds to a better solution since each

attendee is acquainted with more people in the group. Similarly, a

smaller total social distance represents better solution quality since

the attendees are more familiar with the activity initiator. These two

figures indicate that the quality of the solutions obtained by STGAr-

range outperforms the ones obtained by PCArrange. In other words,

STGArrange is able to find a solution with a much smaller k, while

the total social distance is also smaller than the one in PCArrange.

6. CONCLUSION
To the best of our knowledge, there is no real system and ex-

isting work in the literature that addresses the issues of automatic

activity planning based on social and temporal relationship of an

initiator and activity attendees. In this paper, we define two new
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Figure 1: Experimental results of SGQ and STGQ.

and useful queries, namely, SGQ and STGQ, to obtain the optimal

set of attendees and a suitable activity time. We devise two algo-

rithms, namely, SGSelect and STGSelect, to find the optimal solu-

tions to SGQ and STGQ, respectively. We show that the problem

is NP-hard and propose an Integer Programming model for STGQ,

which can also support SGQ. Various strategies, including access

ordering, distance pruning, acquaintance pruning, pivot time slots,

and availability pruning are explored to prune unnecessary search

space and obtain the optimal solution efficiently. Experimental re-

sults indicate that the proposed algorithm significantly outperforms

the algorithm that represents manual coordination by the initiator.

Our research result can be adopted in social networking websites

and web collaboration tools as a value-added service, and we are

now implementing the proposed algorithms in Facebook.
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APPENDIX

A. ILLUSTRATING EXAMPLES

EXAMPLE 1. Consider a toy example, as illustrated in Figure

2, where Casey Affleck would like to invite some friends to dis-

cuss a new movie in which he is going to play. Figure 2(a) shows

a possible social network of Casey Affleck, constructed based on

the cooperation relationship extracted from Yahoo! Movies [9].

Assume that Casey Affleck is trying to find three mutually ac-

quainted friends. Issuing an SGQ with p = 4 and s = 1, which

returns {George Clooney, Robert De Niro, Casey Affleck, Michelle

Monaghan}, does not work since the three close friends of Casey

Affleck are not acquainted to each other (as shown in Figure 2(a)).

Instead, by issuing an SGQ with p = 4, s = 1, and k = 0, a better

list of invitees {George Clooney, Brad Pitt, Julia Roberts, Casey

Affleck}, where everyone knows each other very well, is obtained.

To answer this query, all directly connected friends of Casey Af-

fleck, together with Casey Affleck himself, i.e., {George Clooney,

Robert De Niro, Brad Pitt, Julia Roberts, Casey Affleck, Michelle

Monaghan}, are candidates. Thus, an intuitive approach to answer

this SGQ is to first enumerate ten (i.e., C6−1

4−1 = 10) possible four-

person candidate groups including Casey Affleck himself. Figure

2(b) illustrates the enumeration process of candidate groups, in ac-

cordance with the increasing order of user IDs. Note that the num-

bers 64 and 65 indicate the total social distances of qualified can-

didate groups. These ten non-duplicate candidate groups constitute

the whole solution space, from which we eliminate the ones dis-

qualified by the acquaintance constraint. Finally, we obtain the final

answer {George Clooney, Brad Pitt, Julia Roberts, Casey Affleck},

i.e., the group with the smallest total social distance among quali-

fied candidate groups.

Note that the initiator may also loosen the social constraints (i.e.,

s > 1 and k > 0) to consider more candidates. Assume that Casey

Affleck issues another SGQ, inviting five friends taking the six-seat

chartered plane to visit the refugee children in Haiti with him. Now

Casey Affleck issues an SGQ with p = 6, s = 2 and k = 2, and

the number of candidates is enlarged to eight (and the number of

candidate groups is enlarged to C8−1

6−1 = 21) since the friends of his

friends can also be considered. The optimal result for this SGQ is

{Angelina Jolie, George Clooney, Robert De Niro, Brad Pitt, Julia

Roberts, Casey Affleck}, and we can see that this is a tight group

satisfying the social constraints in the sample social network.

However, Casey Affleck finds out that these six attendees have

no available time in common when he expects the length of activity

time as 3, i.e., three consecutive time slots. Figure 2(c) shows the

schedule of candidates, with their available time slots marked by

circles. Therefore, he turns to issue an STGQ with p = 6, s = 2,

k = 2 and m = 3. An intuitive approach to find the answer is

to issue an SGQ independently for each activity period of length

3. In this example, the time interval [ts1, ts6] can be divided into

four candidate activity periods, [ts1, ts3], [ts2, ts4], [ts3, ts5] and

[ts4, ts6]. For each activity period, the candidate attendees need to

be available for all the time slots in this activity period in order to

be considered.

After issuing four SGQs, the obtained result is {Angelina Jolie,

George Clooney, Robert De Niro, Brad Pitt, Matt Damon, Casey

Affleck} for both of [ts2, ts4] and [ts3, ts5]. Therefore, the intu-

itive approach returns the group {Angelina Jolie, George Clooney,

Robert De Niro, Brad Pitt, Matt Damon, Casey Affleck} and the

activity period [ts2, ts4] (or [ts3, ts5]) as the optimal solution. ✷

(a)

(b)

 ts1 ts2 ts3 ts4 ts5 ts6 

v1  O O O O  

v2 O O O O O  

v3  O O O O O 

v4 O O O O O O 

v5 O  O O O  

v6  O O  O  

v7  O O O O O 

v8 O O O O  O 

 (c)

{v7}
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{v7,v3,v6}

{v7,v4,v6}

{v7,v2,v3,v4}
{v7,v2,v3,v6}
{v7,v2,v3,v8}

{v7,v2,v4,v6}=64
{v7,v2,v4,v8}

{v7,v2,v6,v8}

{v7,v3,v4,v6}=65
{v7,v3,v4,v8}

{v7,v3,v6,v8}

{v7,v4,v6,v8}
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Michelle Monaghan 

(V8)

30

Figure 2: An illustrative example for SGQ and STGQ. (a) The

sample social network, (b) the dendrogram of candidate group

enumeration and (c) schedules of candidate attendees.

EXAMPLE 2. In this illustrating example for SGSelect, we re-

visit the social network in Figure 2(a) and assume that v7 is the ini-

tiator issuing an SGQ with p = 4, s = 1, and k = 1. All candidate

attendees vi with d1vi,v7 < ∞ are extracted and placed in Figure

3(a), with their social distances to v7 listed in Figure 3(b).3 In the

beginning, VS = {v7} and VA = {v2, v3, v4, v6, v8}. We first

consider selecting v2 (i.e., the vertex with the smallest social dis-

tance) from VA to expand VS . Afterward, we have A(VS∪{v2}) =
34 and (p − |VS ∪ {v2}|) = 4 − 2 = 2, which means that the ex-

terior expansibility condition holds if we select v2. In addition, we

find U(VS ∪ {v2}) = 05 and k
[
|VS∪{v2}|

p

]θ
= 1 × ( 2

4
)2 = 1

4

(assume θ = 2), which means the interior unfamiliarity condition

also holds, and hence v2 is selected. Now we have VS = {v2, v7}
and VA = {v3, v4, v6, v8}, and the next vertex to be considered

is v3 according to the social distance. The exterior expansibility

condition holds when v3 is selected, since A(VS ∪ {v3}) = 1 ≥
(p − |VS ∪ {v3}|) = 1; however, it violates the interior unfamil-

iarity condition, since U(VS ∪ {v3}) = 1 > k
[
|VS∪{v3}|

p

]θ
=

1× ( 3
4
)2 = 9

16
. We do not reduce the θ here because there are still

more vertices in VA, and we put v3 in parenthesis and temporarily

skip it. The current VA is {(v3), v4, v6, v8}, and the next vertex to

be considered is v6. We select v6 since both of the exterior expan-

sibility condition and the interior unfamiliarity condition hold, and

then we have VS = {v2, v6, v7} and VA = {v3, v4, v8}. Again,

selecting v3 violates the interior unfamiliarity condition, and we

temporarily skip v3. When selecting v8, we find out that it violates

3Some small modifications are made for better illustration.
4To find A(VS ∪ {v2}), we derive |VA ∩Nv7 | + (k −
|VS − {v7} −Nv7 |) = 4 + (1 − 0) = 5 and |VA ∩Nv2 | + (k −
|VS − {v2} −Nv2 |) = 2 + (1 − 0) = 3, and then choose the
smaller one. Therefore, we have A(VS ∪ {v2}) = 3.
5To calculate U(VS ∪ {v2}), we first need to consider the value
of |VS − {v7} −Nv7 | and |VS − {v2} −Nv2 |, and then choose
the larger one. Since |VS − {v7} −Nv7 | = |∅| = 0 and
|VS − {v2} −Nv2 | = |∅| = 0, we have U(VS ∪ {v2}) = 0.
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(a)

(b)

(vi) (di,7) 

v2 17 

v3 18 

v4 27 

v6 23 

v8 25 

 

 ts1 ts2 ts3 ts4 ts5 ts6 ts7 

v2 O O O O O O O 

v3  O O  O O  

v4 O O O O O  O 

v6  O O O O O O 

v7 O O O O O O  

v8 O  O  O O  

 
(c)

v2
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v6 v314

18

19
23

17

29

27v8 25

20

v7

Figure 3: Another illustrative example for SGQ and STGQ. (a)

The sample social network, (b) the social distances of candidate

attendees and (c) the schedules of candidate attendees.

the exterior expansibility condition and then remove v8 from VA.

Therefore, we choose v4 instead and obtain the first feasible solu-

tion {v2, v4, v6, v7} (total social distance = 64). Note that if we

set a small θ and allow v3 to be selected earlier, it leads to the gen-

eration of an infeasible candidate group {v2, v3, v6, v7}, instead of

the first feasible solution. If we can obtain the first feasible solu-

tion early, we are able to leverage the distance pruning strategy.

Now we backtrack one step to the state VS = {v2, v6, v7} and

VA = {(v3)}, and we reduce θ since there is no other vertex in

VA. However, selecting v3 still violates the interior unfamiliarity

condition when we reduce θ to 0, since U(VS ∪ {v3}) = 2 and

k
[
|VS∪{v3}|

p

]θ
= 1 × ( 4

4
)0 = 1. Therefore, we can remove v3

and backtrack to the state VS = {v2, v7} and VA = {(v3), v4, v8}.

In this branch, we first remove v8 due to the violation of the exte-

rior expansibility condition, and later we select v4 and v3 to obtain

the second feasible solution {v2, v3, v4, v7} (total social distance

= 62). Note that when reducing θ to 0 here, the interior unfamiliar-

ity condition holds and we can select v3, since U(VS ∪ {v3}) = 1

and k
[
|VS∪{v3}|

p

]θ
= 1 × ( 4

4
)0 = 1. Now we further backtrack

to the state VS = {v7} and VA = {v3, v4, v6, v8}
6 and select

v3. However, since 62 − 18 < (4 − 2) × 23, the distance prun-

ing strategy then stops selecting a vertex from VA. Later, we find

out that there is no need to explore the last state VS = {v7} and

VA = {v4, v6, v8}, since (1 + 1 + 0) − (3 − 4 + 1) × 0 <

(4− 1)× (4− 1− 1) and hence the acquaintance pruning strategy

stops selecting a vertex from VA. Therefore, we return the optimal

solution {v2, v3, v4, v7} with the total social distance as 62. ✷

EXAMPLE 3. In this illustrating example for STGSelect, we

extend the SGQ in Example 2 by considering the length of ac-

tivity time as 3 (i.e., m = 3). When processing an STGQ, the

schedules of candidate attendees provided in Figure 3(c) should

be considered as well. Since m = 3, ts3 and ts6 are selected to

be pivot time slots. For the first pivot time slot ts3, VS = {v7}
and VA = {v2, v3, v4, v6, v8} in the beginning. As obtained in

Example 2, both of the exterior expansibility condition and the in-

terior unfamiliarity condition hold when selecting v2. Note that

STGSelect also evaluates the temporal extensibility condition when

6There is no parenthesis for v3, because we leave the branch of
VS = {v2, v7}.

selecting a vertex to ensure the feasibility in the temporal dimen-

sion. Since (m − 1)
[
p−|VS∪{v2}|

p

]φ
= 2 × ( 2

4
)2 = 1

2
(assume

φ = 2) and X(VS ∪ {v2}) = 27, the temporal extensibility condi-

tion also holds, and hence we can select v2 from VA to VS . Now

we have VS = {v2, v7} and VA = {v3, v4, v6, v8}. The later ver-

tex selection ordering is identical to Example 2 since there is no

violation on the temporal constraint, and we also obtain the first

feasible solution {v2, v4, v6, v7} (total social distance = 64) avail-

able in the activity period [ts2, ts4]. Until we select v3 in the state

VS = {v2, v4, v7} and VA = {(v3)}, we find out that the tem-

poral extensibility condition does not hold when selecting v3, and

then we increase φ since there is no other vertex in VA that we can

choose. However, since X(VS ∪ {v3}) = 2− 3 = −1, the tempo-

ral extensibility condition does not hold even when the RHS of the

inequality approaches 0. Therefore, we can remove v3 and back-

track to the state VS = {v7} and VA = {v3, v4, v6, v8}. As shown

in Example 2, the later branches violate the social constraints and

hence lead to no feasible group. Therefore, {v2, v4, v6, v7} is the

only feasible group available in activity periods extended from the

pivot time slot ts3.

Next, we start processing the second pivot time slot, i.e., ts6.

Different from ts3, we have VS = {v7} and VA = {v2, v3, v6, v8}
in the beginning. Since v4 is not available in the pivot time slot,

we can directly remove it without further consideration. We then

obtain VS = {v2, v7} and VA = {v3, v6, v8} because selecting v2
violates no constraint. Note that the LHS of the availability pruning

condition is t
+

A(|VA|−p+ |VS |+1)− t
−
A(|VA|−p+ |VS |+1) =

t
+

A(3− 4 + 2 + 1)− t
−
A(3− 4 + 2 + 1) = t

+

A(2)− t
−
A(2). Since

there are 2 vertices, i.e., v3 and v8, in VA not available in ts4,

t
−
A(2) = 4. Besides, there are 2 vertices, i.e., v3 and v8, in VA

not available in ts7, t
+

A(2) = 7. Therefore, the availability pruning

condition holds since t
+

A(2)−t
−
A(2) = 7−4 ≤ m, and we can stop

selecting vertices from VA to VS . Then we backtrack one step to

the state VS = {v7} and VA = {v3, v6, v8}. We can skip this final

branch since the acquaintance pruning condition holds. Therefore,

there exists no feasible group available in activity periods extended

from ts6. Finally, we return the group {v2, v4, v6, v7} and the time

period [ts2, ts4] as the optimal result. ✷

B. PROOFS

B.1 Proof of Theorem 1
In the following, we prove that SGQ is NP-hard with the reduc-

tion from problem k-plex, which is NP-hard [11]. A k-plex with

c vertices is a subgraph in a graph G = (V ,E), such that every

vertex in the subgraph can share no edge with at most k − 1 other

vertices in the subgraph. Problem k-plex with parameters c and k

is to decide if G has a k-plex with c vertices. We prove that SGQ

is NP-hard with the reduction from problem k-plex. Specifically,

we construct a weighted graph G(V,E) by letting V as {q} ∪ V

and letting E as E. We then add c edges into E to make q connect

to all the other vertices. The distance of every edge is 1. In the

following, we prove that there exists a feasible group F with c+ 1
attendees in G for SGQ with s = 1 and k = k − 1, if and only if

there exists a k-plex with c vertices in G.

We first prove the sufficient condition. If we remove q from F ,

every vertex in F still shares no edge with at most k − 1 other

vertices, since q connects to all the other vertices. In other words,

7Ts = {ts1, ts2, ts3, ts4, ts5} since v2 and v7 are available in
them. Hence |Ts| = 5 and X(VS ∪ {v2}) = 5− 3 = 2.
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F − {q} with c vertices corresponds to a k-plex with size c in G.

We then prove the necessary condition. If there exists a k-plex with

size c in G, F with q and the c vertices must all satisfy the social

radius constraint with s as 1, since all the c vertices connect to q in

G. Moreover, since each vertex in the k-plex shares no edge with at

most k − 1 other vertices, F with q and the c vertices must satisfy

the acquaintance constraint. The theorem follows.

B.2 Proof of Theorem 2
In radius graph extraction, each of the removed vertices has no

path with at most s edges connecting to q, and no feasible solu-

tion thereby contains these vertices. Algorithm SGSelect includes

three strategies: access ordering, distance pruning, and acquain-

tance pruning. For each VS , the interior unfamiliarity condition

only decides the order of selecting a vertex from VA, while Lemma

1 shows that the exterior expansibility does not consider the ver-

tex violating the acquaintance constraint. After we choose a ver-

tex u from VA, Lemma 2 shows that the distance pruning speci-

fies a lower bound on the total social distance that is derived from

VA. Therefore, the distance pruning will prune off only the solu-

tion with a larger total social distance. Moreover, Lemma 3 shows

that the acquaintance pruning specifies the lower bound on the total

inner degree on any set of vertices extracted from VA in any fea-

sible solution. If we choose the required number of vertices with

the largest inner degrees from VA and the result cannot exceed the

above lower bound, the connectivity is too small for VA to obtain a

feasible solution. The theorem follows.

B.3 Proof of Theorem 3
Each pivot time slot is separated from a neighbor pivot time slot

with m−1 time slots. Therefore, Lemma 4 shows that any feasible

solution must include exactly one pivot time slot. In addition, the

proposed algorithm considers the interval with 2m−1 slots for each

pivot time slot, and we derive the best solution by extending Algo-

rithm SGSelect with the temporal extensibility. Moreover, Lemma

5 shows that the availability pruning discards VA only when there

exists no feasible solution satisfying the availability constraint by

incorporating any vertex from VA. The solution obtained by Al-

gorithm STGSelect is optimal because the algorithm chooses the

pivot time slot and the corresponding group with the smallest total

social distance at the end of the algorithm. The theorem follows.

C. PSEUDO CODES

Algorithm 1 SGSelect

Require: Graph G(V,E), activity size p, social radius constraint
with size s, and acquaintance constraint with size k

Ensure: Optimal group F

1: d0q,q = 0, d0u,q = ∞ for u 6= q;
2: for i = 1 to s do

3: diq,q = 0;
4: for all vertex u 6= q in V do

5: diu,q = di−1
u,q ;

6: for all vertex v in Nu do

7: if di−1
v,q + cu,v < diu,q then

8: diu,q = di−1
v,q + cu,v;

9: Extract all vertices w in V with dsw,q < ∞ and form the set
VF ;

10: VS = {q}, VA = VF − {q}, TD = ∞, D = ∞, F = ∅;
11: ExpandSG(VS , VA, TD);
12: if D 6= ∞ then

13: Output F ;
14: else

15: Output “Failure”;

Algorithm 2 ExpandSG

Function:

ExpandSG(inVS , inVA, inTD)

1: VS = inVS , VA = inVA, TD = inTD;
2: while |VS |+ |VA| ≥ p do

3: if there is any unvisited vertex in VA then

4: Select an unvisited vertex u with the minimum social dis-
tance to q and mark u as visited;

5: else if θ > 0 then

6: Reduce θ and mark remaining vertices in VA as unvisited;
7: else

8: BREAK;
9: if u satisfies the exterior expansibility condition then

10: if u satisfies the interior unfamiliarity condition then

11: VS = VS +{u}, VA = VA−{u}, TD = TD+du,q;
12: if the distance pruning condition holds for TD or the

acquaintance pruning condition holds for VA then

13: BREAK;
14: else if |VS | < p then

15: ExpandSG(VS , VA, TD);
16: else

17: D = TD, F = VS ;
18: BREAK;
19: else if θ = 0 then

20: VA = VA − {u};
21: else

22: VA = VA − {u};

Algorithm 3 STGSelect

Require: Graph G(V,E), activity size p, social radius constraint
with size s, acquaintance constraint with size k, and activity
length m

Ensure: Optimal group F and activity period P

1: d0q,q = 0, d0u,q = ∞ for u 6= q;
2: for i = 1 to s do

3: diq,q = 0;
4: for all vertex u 6= q in V do

5: diu,q = di−1
u,q ;

6: for all vertex v in Nu do

7: if di−1
v,q + cu,v < diu,q then

8: diu,q = di−1
v,q + cu,v;

9: Extract all vertices w in V with dsw,q < ∞ and form the set
VF ;

10: Select a pivot time slot every m time slots, i.e., select time slots
with ID as im, where i is a positive integer;

11: while there is any unprocessed pivot time slot im and q is
available in im do

12: VS = {q}, VA = VF − {q} − {vertices not available in
im}, TD = ∞, D = ∞, F = ∅, TP = [(i − 1)m +
1, (i+ 1)m− 1], P = ∅;

13: ExpandSTG(VS , VA, TD, TP, im);
14: Remove pivot time slot im;
15: if D 6= ∞ then

16: Output F and P ;
17: else

18: Output “Failure”;
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Algorithm 4 ExpandSTG

Function:

ExpandSTG(inVS , inVA, inTD, inTP, inIM)

1: VS = inVS , VA = inVA, TD = inTD, TP = inTP ,
im = imIM ;

2: while |VS |+ |VA| ≥ p do

3: if there is any unvisited vertex in VA then

4: Select an unvisited vertex u with the minimum social dis-
tance to q and mark u as visited;

5: else

6: if θ > 0 then

7: Reduce θ and mark remaining vertices in VA as unvis-
ited;

8: else if φ < a predetermined threshold t then

9: Increase φ and mark remaining vertices in VA as unvis-
ited;

10: if φ ≥ t then

11: set the RHS of the temporal extensibility condition
as 0;

12: else

13: BREAK;
14: if u satisfies the exterior expansibility condition then

15: if u satisfies the interior unfamiliarity condition then

16: if u satisfies the temporal extensibility condition then

17: VS = VS + {u}, VA = VA − {u}, TD = TD +
du,q;

18: Update TP using the available time slots of u;
19: if the distance pruning condition holds for TD or

the acquaintance pruning condition holds for VA or

the availability pruning condition holds for VA then

20: BREAK;
21: else if |VS | < p then

22: ExpandSTG(VS , VA, TD, TP, im);
23: else

24: D = TD, F = VS , P = TP ;
25: BREAK;
26: else if φ ≥ t then

27: VA = VA − {u};
28: else if θ = 0 then

29: VA = VA − {u};
30: else

31: VA = VA − {u};

D. INTEGER PROGRAMMING FORMULA

TION OF STGQ
In the following, we model STGQ as an Integer Programming

problem, where the formulation can support SGQ by removing the

constraints for the temporal dimension. The derived model, to-

gether with any Integer Programming commercial solver, such as

CPLEX [4], can obtain the optimal solution.

We first define a number of decision variables in the formula-

tion. Let δu denote the social distance from q to u, δu ≥ 0. Let

binary variable φu denote whether vertex u is in F . Let binary vari-

able πu,i,j denote if ei,j is located in the shortest-path from q to u,

where i is ascendant to j in the path. Let binary variable τt denote

if the activity starts in slot t. The problem is to minimize the total

social distance from q to all vertices in F , i.e.,

min
∑

u∈F

δu.

However, because F needs to be decided in the problem, too, the
above function becomes non-linear thus cannot act as the objective

function for STGQ. To address the above problem, we propose an

alternative linear objective function, i.e.,

min
∑

u∈V

δu,

which considers set V instead of F . Therefore, to obtain the correct

objective value, we need to design a constraint that ensures that

δu = 0 for every u not in F . Specifically, the proposed formulation

includes the following constraints.∑
u∈V φu = p. (1)
φq = 1. (2)∑

v∈Nu
φv ≥ (p− 1)φu − k, ∀u ∈ V. (3)∑

i∈Nq
πu,q,i = φu, ∀u ∈ V , u 6= q. (4)∑

i∈Nu
πu,i,u = φu, ∀u ∈ V , u 6= q. (5)∑

i∈Nj
πu,i,j −

∑
i∈Nj

πu,j,i = 0,

∀u, j ∈ V , u 6= q, j 6= q, and j 6= u. (6)∑
ei,j∈E ci,jπu,i,j = δu, ∀u ∈ V. (7)∑

ei,j∈E πu,i,j ≤ s, ∀u ∈ V , u 6= q. (8)∑
1≤t≤T−m+1

τt = 1, ∀u ∈ V , u 6= q. (9)

φu ≤ 1− τt + au,t̂,

∀u ∈ V , 1 ≤ t ≤ T −m+ 1, and t ≤ t̂ ≤ t+m− 1. (10)

Constraint (1) guarantees that exactly p vertices are selected in

solution set F , and vertex q must be one of them as stated in con-

straint (2), to ensure that an activity with size p, including the ini-

tiator, can be obtained. Constraint (3) specifies the acquaintance

constraint and guarantees that every vertex u in F , i.e., φu = 1,

can have no social link with at most k vertices. In other words, at

least p − 1 − k neighbors of u must belong to F , where 1 corre-

sponds to u itself. If u is not in F , φu = 0, we let constraint (3)
become non-enforcing because this constraint does not restrict the

value of φv for each neighbor v of u.

For each vertex u, constraints (4) − (8) find a path from q to u

and the corresponding distance, if u is chosen in F , i.e., φu = 1.

Specifically, if φu is 1, constraints (4) and (5) select an incident

edge for q and u to be included in the path, respectively. In this

case, for every other vertex j, constraint (6) ensures that either j is

not in the path, or j has one ascendant and one descendant neigh-

bor vertices in the path. Constraint (7) then derives δu according

to the total distance in the path, i.e.,
∑

ei,j∈E ci,jπu,i,j , and the

objective function of the formulation enforces that the path must be

the shortest one. If φu is 0, constraints (4) and (5) do not create

the path for u, and the distance δu appearing in the objective func-

tion is thereby 0 according to constraint (7). Constraint (8) states

the social radius constraint and ensures that the path cannot include

more than s edges.

The last two constraints find the time slot in which the activity

begins, and the proposed formulation can support SGQ by discard-

ing the two constraints. Constraint (9) specifies that the activity

must begin in no later than slot T−m+1, where T is the largest ID

of a time slot; otherwise, the activity must span fewer than m slots.

The last constraint prohibits a candidate attendee u from joining the

activity if u is not available in the corresponding period. Specifi-

cally, if the activity starts at t and spans the slots from t to t+m−1,

i.e., τt = 1, φu must be 0 if u is not available, i.e., au,t̂ is 0, for

any slot t̂ in the period. If au,t̂ = 1, u is allowed, but not enforced,

to join the activity. In contrast, if the activity does not start from

t, i.e., τt = 0, we let this constraint become a non-enforcing one

because φu is not restricted in this case.
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