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ABSTRACT

Challenges faced in organizing impromptu activities are the
requirements of making timely invitations in accordance with
the locations of candidate attendees and the social relation-
ship among them. It is desirable to find a group of attendees
close to a rally point and ensure that the selected attendees
have a good social relationship to create a good atmosphere
in the activity. Therefore, this paper proposes Socio-Spatial
Group Query (SSGQ) to select a group of nearby attendees
with tight social relation. Efficient processing of SSGQ is
very challenging due to the tradeoff in the spatial and so-
cial domains. We show that the problem is NP-hard via
a proof and design an efficient algorithm SSGSelect, which
includes effective pruning techniques to reduce the running
time for finding the optimal solution. We also propose a
new index structure, Social R-Tree to further improve the
efficiency. User study and experimental results demonstrate
that SSGSelect significantly outperforms manual coordina-
tion in both solution quality and efficiency.

Categories and Subject Descriptors

H.2.4 [Systems]: Query processing

General Terms

Algorithms

Keywords

Query Processing, Spatial Indexing, Social Networks

1. INTRODUCTION
With the emergence of GPS-enabled mobile devices and

Web 2.0 technology, mobile users can easily capture and
upload their own locations to various location-based social
networking (LBSN) applications, such as Loopt, Geomium,
Buddy Beacon, FindMe, Facebook Place, BrightKite, Meetup,
and Google Map. All these LBSN applications allow users
to share their location information with friends and thus,
as we envisage, may potentially enable instant organization
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of impromptu activities, e.g., having a dinner with friends
nearby. However, with today’s technology, the selection of
invitees for these events still requires significant manual co-
ordination. In this work, we aim to develop new techniques
for an impromptu activity planning service to alleviate this
effort.

Due to the inherited nature as an LBSN application, such
an impromptu activity planning service needs to consider the
following spatial and social factors: i) the selected friends
need to be close enough to a rally point in order to minimize
the waiting time for an activity; and ii) the selected friends
need to have a good social relationship to create a good at-
mosphere in the activity. In other words, challenges faced in
organizing impromptu activities lie in meeting the require-
ments of making timely invitations in accordance with the
locations of candidate invitees and the social relationship
among them. Notice that friends located nearby may not
have tight social relationships with each other, while close
friends may not happen to located near an intended rally
point. Moreover, when the number of intended invitees in-
creases, the invitation process becomes more complicated
and thereby too tedious to coordinate manually. Therefore,
efficient search algorithms that automatically suggest the
most suitable attendees for an activity is a mandate for the
impromptu activity planning service.

As the first step towards the aforementioned impromptu
activity planning service, we propose a new query, namely
Socio-Spatial Group Query (SSGQ), aiming to find a set of
most suitable candidates for a planned activity by taking
into account certain spatial and social constraints. In this
work, we assume that the service provider has access to the
social connectivity of its users and their locations.1 Thus,
given a social graph consisting of socially connected users
and their (published) locations, an SSGQ, specified a rally
point q, the number of activity invitees p, and the average
number of unfamiliar people an invitee may have k, returns a
set of p invitees from the social graph of the activity initiator
such that the average spatial distance for each invitee to
the rally point is minimized. It is worth noting that the
query incorporates a social constraint (denoted by k), to
govern the unfamiliarity between invitees. Each attendee
on average can have no social relationship with at most k
other invitees. With a proper setting of k, the tightness of
social relationships among invitees (and hopefully activity
atmosphere) are ensured. As such, the SSGQ can facilitate

1The privacy issues on the locations and social connectivity
of users are very important but out of scope of this study.
A simple way is to allow each user to specify a friend list
and time intervals, such that only the query issued from
the friends in the list during those intervals can access the
location information and social connectivity of the user.
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users to organize different kinds of activities based on both
the specified spatial and social conditions.

Note that SSGQ can be generalized for supporting other
spatial/social relevant planning services that do not require
a specific initiator. For example, when an user queries a
nearby restaurant using a mobile device, an SSGQ may be
issued to automatically recommend a group of socially close
friends near the restaurant. Moreover, location-based ad-
vertisements can leverage SSGQ to a group of friends for a
preferred restaurant in order to push mobile coupon, which
is beneficial to both customers and restaurants.2 Finally, the
SSGQ is particularly useful for coordinating search and res-
cue operations in some scenarios of emergency and disasters,
such as earthquakes and tsunamis. As social relationship,
e.g., previous co-working experiences of the searchers, and
spatial factor, e.g., distance for searchers to reach the dis-
aster area, are important for success of rescue operations,
the SSGQ can be employed to obtain the most suitable
searchers.

The problem of processing SSGQ efficiently is challenging
due to the tradeoff in the spatial distance and the social rela-
tionships. A simple strategy for processing SSGQ is to enu-
merate all possible groups of p invitees, eliminate those that
do not satisfy the social constraints, and then return the
group with minimal total spatial distance. This approach
needs to evaluate Cf

p candidate groups, where f is the total
number of candidate attendees, in the solution space and
thus is not desirable. Note that, as we will show later, the
problem of processing SSGQ is NP-hard. Nevertheless, due
to the importance of spatial and social factors considered in
SSGQ, we exploit the spatial and social constraints specified
in SSGQ while forming the candidate groups to alleviate the
processing cost. Our idea is to expand the solution space in
a systematical way such that we can efficiently find the so-
lution without examining all candidate groups in details. In
other words, we incrementally select the invitees by giving
priority to those (a) who are located close to the rally point
and (b) who are close friends. Finding a group of friends
who best meet both conditions of (a) and (b) is not trivial.
An algorithm that prioritizes on (a) is inclined to generate
candidate groups with small total spatial distance quickly
but it does not always come up with a solution that satisfies
the familiarity constraint, especially those activities speci-
fied with a small k. On the other hand, an algorithm that
prioritizes on (b) may quickly find a group of friends who
know each other very well but do not easily satisfy the min-
imum total spatial distance. In other words, the challenge
in finding optimal SSGQ answer comes from the dilemma
of (1) reducing the total spatial distance3 and (2) ensuring
that the solution satisfying the familiarity constraint.

Specifically, in this paper, we first prove that SSGQ is an
NP-hard problem but, fortunately, while the problem is very
challenging, it is still tractable since the size of p is relatively
small in most impromptu activities. Therefore, to efficiently
process this query, we design a new algorithm, called SSGS-
elect, to find the optimal solution. We design various strate-
gies, Distance Ordering, Socio-Spatial Ordering, Distance

2Notice that location-based advertisement and social
network-based advertisements have been exploited by web-
sites, such as Google Map and Livingsocial.com. However,
the two aspects have not been considered in an integrated
fashion.
3Reducing the maximum spatial distance of an attendee is
an alternative. This paper proposes to minimize the total
spatial distance because many social activities can begin or
warm up when most attendees arrives, and a few distant
attendees are allowed to arrive late.

Pruning, and Familiarity Pruning, to effectively reduce the
processing time. During the selection of each attendee, we
address both the spatial distance and social connectivity of
the attendee, together with the characteristics of the social
network for other candidate attendees that have not been
considered, in order to prune unnecessary search space and
find the optimal solution efficiently.

The above strategies incrementally consider and examine
each candidate attendee. A potential approach to further
improve the efficiency is to select multiple candidate atten-
dees jointly, because the optimal solution can be constructed
with fewer iterations. When an attendee close to the rally
point is chosen, nearby candidate attendees are potential to
be good candidates for joint selection due to their smaller
spatial distances to the rally point. Nearby candidate atten-
dees can be efficiently identified by leveraging the spatial in-
dex structure, such as R-Tree, since they are usually located
in the same Minimum Bounding Rectangle (MBR) of R-
Tree. Nevertheless, choosing all candidate attendees in the
same MBR may not be able to generate a solution following
the familiarity constraint with k since the social connectiv-
ity among them is not carefully examined. To effectively
tackle this issue, we propose Social R-Tree (SR-Tree), which
incorporates and summarizes the social information for the
candidate attendees in an MBR. In SR-Tree, all candidate
attendees in each MBR are indexed into multiple social clus-
ters with different social densities to support SSGQ with
different k.

With the proposed SR-Tree, SSGSelect is enhanced by a
new strategy, Joint Insertion, which chooses multiple can-
didate attendees simultaneously to reduce the number of
required iterations for finding the optimal solution. We im-
plement SSGSelect in Facebook and conduct user study on
206 people. The contributions of this paper are summarized
as follows.

• We formulate a useful query for social networking ap-
plication, namely, SSGQ, to obtain the optimal set of
attendees. SSGQ can be used to plan for various types
of activities by specifying the familiarity constraint k.
We prove that the problem is NP-hard.

• To efficiently process SSGQ, we propose SSGSelect
with various strategies, including Distance Ordering,
Socio-Spatial Ordering, Distance Pruning, and Famil-
iarity Pruning, for finding the optimal solution. In
addition, we design a new index structure, named SR-
Tree, together with Joint Insertion, to simultaneously
select multiple nodes at each iteration for finding the
optimal solution in smaller time.

• We implement SSGSelect in Facebook and conduct an
user study with 206 people. The results demonstrate
that SSGSelect significantly outperforms manual coor-
dination in both solution quality and efficiency.

The rest of this paper is summarized as follows. Section
2 introduces the related works. Section 3 formulates SSGQ
and prove that it is NP-hard. We design algorithm SSGSe-
lect in Section 4 and enhance it with the proposed SR-Tree
in Section 5. Results of the user study and experiments are
shown in Section 6, and we conclude this paper in Section
7.

2. RELATED WORK
Some LBSN applications, e.g., Meetup, have been devel-

oped for activity coordination. However, an activity ini-
tiator still needs to specify candidate attendees of the ac-
tivity. This is undesirable because social familiarity is not
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ensured, while the waiting time is not minimized, either.
Manual assignment of candidate attendees is tedious and
time-consuming for the initiator, especially for a large ac-
tivity. Thus, SSGQ is very useful for such sites which rec-
ommends suitable attendees with efficient query processing.

In recent works, several researches on finding groups of so-
cially connected members, e.g., team formation [2][3], com-
munity search [4], and Social-Temporal Group Query [7],
have been reported in the literature. Nevertheless, their re-
search context and objectives are totally different from our
study that explores both the spatial and social dimensions
in finding a group for impromptu activity planning. Specif-
ically, team formation [2][3] finds a group of experts with
the required skills, while aiming to minimize the communi-
cations cost between these experts. Community search [4]
finds a compact community that contains particular mem-
bers, aiming to minimize the total degree in the community.
Social-Temporal Group Query [7] checks the available times
of attendees to find the group with the most suitable activ-
ity time. To the best knowledge of the authors, researches
on finding groups that consider constraints in both the spa-
tial and social dimensions have not appeared. In contrast,
our work examines the inter-play in both social and spatial
dimensions, with an objective to find a group of mutually
familiar attendees such that the total spatial distance to a
rally point is minimized. As mentioned, we envisage that
our research result can be employed in various LBSN appli-
cations for group recommendation.

Relevant to our work, spatial queries for selecting a set
of spatial points, aiming to minimize the total spatial dis-
tance, have been proposed for various scenarios [5, 6, 8, 9].
However, in these works, the (social) connectivity among the
spatial points is not considered. Specifically, given two sets
of points P and Q, together with the number of points to be
selected k, Group Nearest Neighbor Query [5] finds a set of k
points in P such that the total spatial distance of the points
to all points in Q is minimized. On the other hand, for a
line segment and a set of points, Continuous Nearest Neigh-
bor Search [6] returns the nearest neighbor of each point
on the line segment, while the Continuous Visible Nearest
Neighbor Queries [8] extends Continuous Nearest Neighbor
Search [6] by incorporating the obstacles in the problem de-
sign, which may affect the visibility or distance between two
points and lead to different results. Meanwhile, Continuous
Obstructed Nearest Neighbor Query [9] retrieves the near-
est neighbor with regard to the obstructed distance, i.e., the
shortest path without crossing any obstacle. Therefore, the
above-mentioned queries focus only on the spatial dimen-
sion and thereby are not applicable to our scenario of LBSN
applications.

3. PROBLEM FORMULATION
Given a social graph G = (V,E), where each vertex v ∈

V is a candidate attendee with a location lv, and any two
mutually acquainted vertices u and v are connected by an
edge eu,v. A Socio-Spatial Group Query SSGQ(p, q, k) finds
a set F of p vertices from G where the total spatial distance
from the vertices in F to the rally point q, i.e.,

∑
v∈F

dv,q,
is minimized and each vertex on average can share no edge
with at most k other vertices in F .

Notice that the three parameters in an SSGQ, i.e., p, q,
and k, determine the size of the answer group, spatial con-
straint, and social constraint of the query, respectively, and
thus have significant implications regarding the processing
strategy. First, as the size of group p increases, the solution
space (which consists of all candidate groups) rapidly grows.

Indeed, we prove that processing SSGQ is an NP-hard prob-
lem but, fortunately, while the problem is very challenging,
it is still tractable since the size of p is relatively small in
most cases. Second, the position of q hints that candidate
invitees located close to q should be considered with prior-
ity as the search criteria aims to minimize the total spatial
distance from members of the group to q. Finally, k dictates
the tightness of social relationship among members of the
group. A small k in SSGQ results in a group of mutually
familiar invitees, while a larger k allows more unfamiliarity
within the returned group of invitees. The spatial and social
constraints can be employed for early pruning of unqualified
candidate groups.

In this paper, we aim to develop efficient query process-
ing algorithms for SSGQ with a new index structure, Social
R-Tree. Moreover, we also devise several access ordering
and pruning strategies to effectively reduce the computation
time. In the next section, we design an efficient query pro-
cessing algorithm by pruning unqualified candidate groups.

In the following, we first prove the hardness result.

Theorem 1. SSGQ is NP-hard.

Proof. We prove that SSGQ is NP-hard with the re-
duction from p-clique. Decision problem p-clique is given a
graph Gc to find whether the graph contains a clique, i.e.,
a complete graph with an edge connecting every two ver-
tices, with p vertices. In SSGQ, we let G = Gc, k = 0, and
dv,q = 1 for every vertex v ∈ V . We first prove the neces-
sary condition. If Gc contains a p-clique, there must exist a
group with the same vertices in the p-clique such that every
person has social relations with all the other attendees of the
group, and the total spatial distance is p. We then prove the
sufficient condition. If G in SSGQ contains a group with the
size as p and k as 0, Gc in problem p-clique must contain a
solution with size p, too. The theorem follows.

4. ALGORITHM DESIGN FOR SSGQ
In this section, we propose Algorithm SSGSelect to find

the optimal solution for SSGQ. To guide an efficient explo-
ration of the search space, we design effective strategies to
selection new attendees and prune unnecessary search space.
Later in Section 5, equipped with SR-Tree, SSGSelect is en-
hanced by Joint Insert to select multiple attendees at each
iteration. Specifically, let SI and SR denote the intermediate
solution set and the remaining set of candidate attendees,
respectively. Initially, SI is empty, and SR is V . At each
iteration afterward, we select a vertex from SR to SI . When
SI includes p vertices and follows the familiarity constraint,
SI is regarded as a feasible solution. Afterward, to improve
the feasible solution, our algorithm backtracks to the pre-
vious iteration and previous SI for choosing another vertex
from SR to SI , while a branch-and-bound tree is maintained
to keep track of the exploration process for backtracking.

The selection of the vertex from SR into SI at each itera-
tion is critical. It is essential to avoid choosing a vertex that
will lead to a large increment of the spatial distance. With
this important factor in mind, Distance Ordering selects a
vertex with a small spatial distance to the rally point q. To
further consider the social connectivity, Socio-Spatial Or-
dering extends Distance Ordering by jointly considering the
spatial and social domains. On the other hand, to trim un-
necessary search space, Distance Pruning effectively avoids
unnecessary exploration of SR that will not lead to a better
solution, by examining the sum of the current total spatial
distance from SI to q and the lower bound of the distance
increment in selecting any vertex from SR. In addition to
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Figure 1: Example of Distance Ordering and
Branch-and-Bound Search.

the above spatial domain, Familiarity Pruning examines so-
cial connectiviy of the vertices in SR and stops choosing any
vertex from SR if eventually it is not able to generate any
feasible solution following the familiarity constraint.

Notice that SSGSelect is able to find the optimal solution
because Distance Pruning only removes unqualified solutions
(the solutions with larger total spatial distances to q), and
Familiarity Pruning only trims infeasible solutions (the so-
lutions that do not follow the familiarity constraints). The
optimal solution does not belong the above two categories.
Moreover, with Socio-Spatial Ordering, SSGSelect exploits
both the spatial and social domain information to guide an
efficient search for the optimal solution.

4.1 Distance Ordering
At each iteration, Distance Ordering selects the vertex

with the minimum spatial distance to q, to minimize the
increment of the total spatial distance for SI . Naturally, a
straightforward approach is to sort all vertices in G before
the algorithm starts. However, this approach is not scalable
for a large social network and is very computation intensive
because q is allowed be different for every SSGQ. In con-
trast, a more efficient approach is leveraging a spatial index
structure, such as R-Tree, and its distance browsing strat-
egy [10] with a priority queue for vertex selection. Each
element in the priority queue is either a vertex or a Mini-
mum Bounding Rectangle (MBR). The distance of a vertex
is its spatial distance to q, while the distance of an MBR M
is the MINDIST (M,q), which denotes the minimum dis-
tance between q and the border of M [1]. Finding the vertex
with the minimum distance can be achieved by iteratively
extracting the first element of the priority queue. Initially,
the priority queue contains only the root MBR of R-Tree.
When the extracted element is an MBR, we traverse the R-
Tree and insert all its child MBRs into the priority queue.
Therefore, the first extracted vertex from the queue is the
one with the minimum distance to q.

For example, Figure 1(a) shows six vertices in an R-Tree,
where q denotes the rally point. Assume that MINDIST
to q for MBRs M0, M1 and M2 are 0, 15 and 3, respectively,
and the actual distances of the vertices to q are marked be-
sides each vertex. Initially, the priority queue contains only
{M0}. Afterward, we extract M0 and insert M1 and M2 into
priority queue. Now the first element of the priority queue
is M2 because MINDIST (M2, q) < MINDIST (M1, q).
Then, M2 is popped from the priority queue with its chil-
dren vertices a, b and c inserted. Now the elements in the
priority queue are {a, b, c,M1}. Therefore, Distance Order-
ing first selects and adds a to SI because its spatial distance
to q is the smallest one.

Figure 1(b) illustrates a part of the branch-and-bound tree

with p = 3, where Distance Ordering iteratively moves the
vertex with the minimum distance to q from in SR to SI .
Notice that SR is {c, d, e, f} during the first visit of the state
with SI = {a, b}, and c is then selected and added to SI

to create a leaf node with SI = {a, b, c} with p = 3 in
Figure 1(b). Since the number of vertices in SI is sufficient
for p, Algorithm SSGSelect backtracks from SI = {a, b, c}
to SI = {a, b}, and SR now becomes {d, e, f} since vertex
c was just considered. Similarly, when backtracked from
SI = {a, b, d} to SI = {a, b}, SR becomes {e, f} since both
c and d has been explored.

4.2 Socio-Spatial Ordering
With R-Tree, we demonstrated that Distance Ordering

can efficiently select the vertex for SI to minimize the in-
crement of the total spatial distance to q, i.e., the objective
value, at each iteration. Nevertheless, it is also desirable that
the selected vertex has good social connectivity to other ver-
tices in SI in order to follow the familiarity constraint. To
incorporate this key factor, Socio-Spatial Ordering enhances
Distance Ordering by considering both the spatial distance
and social connectivity during the selection of a vertex from
SR to SI . Intuitively, when a vertex is extracted from the
priority queue, we select the vertex and add it to SI only
when the vertex satisfies Intra-Familiarity Condition. This
condition ensures that SI together with the selected vertex
leads to a mutually familiar group of attendees specified by
k. If the vertex does not follow the condition, we extract and
examine the next vertex from the priority queue. Therefore,
both spatial and social factors are captured in Socio-Spatial
Ordering.

To ensure that each selected vertex v has good social con-
nectivity to the vertices in SI , a simple approach is to re-
strict that v can be selected only when the number of edges
between v and the vertices in SI exceeds a given threshold.
With a larger threshold, a candidate attendee that is famil-
iar with more attendees in SI is inclined to be chosen, such
that it is easier for any solution growing from SI to satisfy
the familiarity constraint. Nevertheless, the connectivity of
SI is not examined during the selection of a vertex in the
above approach. Intuitively, if SI is already a mutually fa-
miliar group, it is expected that choosing a vertex v with
fewer edges connecting SI is more proper if it can minimize
the total spatial distance. In addition, whether the connec-
tivity of SI is sufficient depends on k, which can be different
in every SSGQ. Therefore, it is desirable to incorporate the
connectivity of the vertices in SI and parameter k during the
selection of a vertex from SR to SI at each iteration. With
the above observations in mind, we propose the following
condition for Socio-Spatial Ordering.

Intra-Familiarity Condition (IFC). When a vertex v
is extracted from the priority queue, we select the vertex
and add it from SR to SI only when the vertex satisfies
Intra-Familiarity Condition. To effectively consider the so-
cial domain, this condition first assumes that v is added to
SI and then examines whether the social connectivity of the
new group SI ∪{v} is sufficient according to the criterion k.
Specifically, let F (SI ∪ {v}) denote the intra-familiarity of
the group,

F (SI ∪ {v}) =
1

|SI ∪ {v}|

∑
v∈SI∪{v}

|Nv |,

where Nv is the set of neighbors of v in SI ∪ {v}. For every
attendee in SI ∪{v}, intra-familiarity represents the average
number of acquainted attendees in SI ∪ {v}. Vertex v is
allowed to be selected and added to SI if it satisfies IFC
specified as follows,
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F (SI ∪ {v}) ≥ |SI ∪ {v}| −
k̂ (|SI ∪ {v}|)

p− 1
− 1,

where k̂ here is a filtering parameter and set as k initially.
Intuitively, when k = p − 1, the activity allows all atten-
dees to be mutually unfamiliar, and Distance Order in this
case is the best strategy. In fact, IFC in this situation be-
comes F (SI ∪{v}) ≥ −1, and Socio-Spatial Ordering here is
identical to Distance Order. In another extreme case with
k = 0, IFC becomes F (SI ∪ {v}) ≥ |SI ∪ {v}| − 1, and each
attendee in SI ∪ {v} needs to be acquainted with all the
others in SI ∪ {v}.

It is worth noting that IFC incorporates a filtering param-

eter k̂, instead of including k directly, in order to properly
handle other cases with 0 < k < p − 1. When k = 0, if no
vertex from SR can satisfy IFC, it is not necessary to add
any vertex v from SR to SI because every solution grow-
ing from SI ∪ {v} cannot follow the familiarity constraint.
When k > 0, it is worth noting that if no vertex from SR can
satisfy IFC, it does not imply that every solution growing
from SI ∪{v} does not have sufficient social connectivity. In
contrast, it is possible to find a vertex v in SR and a solution
growing from SI ∪ {v} following the familiarity constraint,
when other vertices added later bring a sufficient number of
edges to the solution. Therefore, for any SSGQ with k > 0,

Socio-Spatial Ordering sets k̂ as k initially and increases k̂ if
no vertex from SR can satisfy IFC, until at least one vertex
follows IFC and is able to be selected for SI . In other words,
IFC first maintains a high criterion for social connectivity

by setting k̂ as k, in order to prioritize a vertex leading to
sufficient social connectivity. If no vertex from SR can sat-

isfy such a high criterion, IFC increases k̂ to avoid filtering
out any feasible solution, and any vertex in SR that did not

satisfy IFC previously will be examined later with a large k̂.
At each iteration, the vertex chosen by Distance Order-

ing and Socio-Spatial Ordering may be different. The fol-
lowing example demonstrates that the result obtained by
Distance Ordering enjoys a smaller total social distance but
does not follow the familiarity constraint. For the six ver-
tices in Figure 1(a) with the corresponding social graph in
2(a), where p = 3 and k = 0, the exploration of Socio-
Spatial Ordering is shown as the thick line in Figure 2(b).

In this example, at the beginning k̂ = 0 and SI = φ, since
a is the vertex with the minimum spatial distance to q and
F (φ∪{a}) = 0

1
≥ 1−1− 0·1

2
satisfies IFC, Socio-Spatial Or-

dering moves vertex a from SR to SI first and let SI = {a}.
However, F (SI ∪{b}) = 0

2
< 2−1− 0·2

2
, which does not sat-

isfy IFC. Therefore, Socio-Spatial Ordering examines vertex
c and finds F (SI ∪ {c}) = 1

2
· 2 = 1 ≥ 2 − 1 − 0·2

2
, which

satisfies IFC. Therefore, vertex c is moved into SI and now
we have SI = {a, c}. We then try to expand SI by checking
IFC with vertex d. F (SI ∪ {d}) = 1

3
· 6 = 2 ≥ 3 − 1 − 0·3

2
.

Therefore, d is moved to SI , and SI = {a, c, d} now is a fea-
sible solution. By contrast, Distance Ordering first selects
vertex b as shown in the dashed-line in Figure 2(b) and then
sequentially constructs four states {a, b, c}, {a, b, d}, {a, b, e}
and {a, b, f} in the branch-and-bound tree. Unfortunately
all of them cannot follow the familiarity constraint. There-
fore, this example illustrates that it is desirable to jointly
consider spatial and social domain in order to find a feasible
solution for SSGSelect earlier, because this feasible solution
is a key factor for the pruning strategy in the next subsec-
tion.

4.3 Distance Pruning
It is expected that Socio-Spatial Ordering can acquire

the first feasible solution, which follows the familiarity con-

(a)

Distance Ordering

Socio-Spatial Ordering

(b)

Figure 2: Example of Socio-Spatial Ordering.

straint, prior to Distance Ordering because social connec-
tivity is examined during the selection of vertices. With the
first feasible solution and its total spatial distance D as a cri-
terion, SSGSelect is able to prune unnecessary search space,
in which the total spatial distance of any solution is no bet-
ter than D. Moreover, to further improving the pruning
capability, SSGSelect updates D when a better feasible so-
lution is obtained afterward. As shown in our experimental
results in Section 6, pruning of unnecessary search space can
significantly reduce the time to find the optimal solution.

For any intermediate solution SI , there are p−|SI | vertices
required to be selected from SR to SI . Apparently, further
processing of SI is unnecessary if choosing the p− |SI | ver-
tices with the smallest spatial distances to q is not able to
generate a solution better than D. Nevertheless, finding the
p−|SI | vertices with the smallest spatial distances for every
SR in the branch-and-bound tree is inclined to incur more
delay, especially for a large p. Therefore, Distance Pruning
identifies a lower bound and stops processing SI when the
following condition holds,

∑
u∈SI

du,q + (p− |SI |)dvmin,q ≥ D,

where the first term is the total spatial distance from the ver-
tices in SI to q. For SR, only the vertex vmin with the small-
est spatial distance to q is accessed here, and (p−|SI |)dvmin,q

represents a lower bound on the total spatial distance for the
above p− |SI | vertices in SR. Distance Pruning is computa-
tionally efficient since vertex vmin can be extracting from the
priority queue in Section 4.1. On the other hand, if the first
element of the priority queue is an MBR, Distance Pruning
is specified as follows,

∑
v∈SI

dv,q + (p− |SI |)MINDIST (M, q) ≥ D,

where MINDIST (M,q) is the minimum distance between q
and the border ofM . Thus, the spatial distance of every ver-
tex in M must be no smaller than MINDIST (M, q). That
is, MINDIST (M,q) ≤ vmin, and (p−|SI |)MINDIST (M, q)
is a lower bound on the total spatial distance of the above
p− |SI | vertices in SR.

Consider an example with p = 3 with the spatial loca-
tions and social graph shown in Figure 1(a) and 2(a), re-
spectively. After a feasible solution {a, c, d} is explored, its
total spatial distance 27 is assigned to D. When SSGSelect
considers SI = {a, b} and SR = {e, f}, since

∑
u∈SI

du,q +

(p − |SI |)dvmin,q = 11 + 1 · 19 = 30 > 27, Distance Prun-
ing removes states {a, b, e} and {a, b, f}, stops processing
SI = {a, b}, and backtracks to the previous state accord-
ingly.

4.4 Familiarity Pruning
Distance Pruning trims the search space by stopping pro-

cessing SI and backtracks to the previous state in the branch-
and-bound tree, when the total spatial distance from each
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vertex in SR to q is too large to generate a solution better
than the current feasible solution D in hand. In contrast, Fa-
miliarity Pruning examines the social connectivity of all pos-
sible solutions growing from SI . Familiarity Pruning stops
processing SI and backtracks to the previous state if every
possible solution growing from SI via the exploration of SR

is not able to satisfy the familiarity constraint.
The challenge of designing a pruning strategy in social do-

main lies in various social connectivity allowed to appear in
all possible solutions. It is expensive to examine each possi-
ble solution according to the familiarity constraint. There-
fore, to efficiently prune unnecessary search space, Familiar-
ity Pruning derives an upper bound on the social closeness of
every possible solution growing from SR. If the upper bound
indicates that each attendee on average is acquainted with
fewer than p− k− 1 other attendees, every possible solution
is not able to follow the familiarity constraint.

Specifically, the edges in any solution growing from SI

can be divided into three categories: 1) the set of edges EI

connecting any two vertices in SI , 2) the edges of edges ER

connecting any two vertices selected from SR, and 3) the
set of edges EIR connecting any two vertices in SI and the
vertices selected from SR. Apparently, |EI | is

1
2

∑
v∈SI

|NI
v |,

where NI
v is the set of acquainted neighbors of v in SI . Since

the selected vertices in SR is not clear now, a good way is to
find an upper bound on |ER|, i.e.,

1
2
(p−|SI |)maxv∈SR

|NR
v |,

where NR
v is the set of acquainted neighbors of v in SR.

It is an upper bound because the vertex with the maxi-
mum degree in SR is identified, and (p − |SI |) vertices are
selected from SR. Similarly, an upper bound on |EIR| is∑

v∈SI
|InterEdge(v)|, where InterEdge(v) is the set of

edges connecting v in SI to any vertices in SR.
Notice that the number of edges in a feasible solution

is half of the degree sum of all the vertices in the solu-
tion, where the degree of a vertex represents the number
of acquainted neighbors in the solution. Therefore, with the
above three categories of edges, Familiarity Pruning stops
processing SI when the following condition holds,

1

p

[∑
v∈SI

|NI
v |+ (p− |SI |) max

v∈SR

|NR
v |

+2 ·
∑

v∈SI

|InterEdge(v)|

⎤

⎦

< (p− k − 1),

where the left-hand-side is an upper bound on the average
number of attendees acquainted to each person in any feasi-
ble solution growing from SI . In the above condition, each
attendee on average is acquainted with fewer than p− k− 1
other attendees. Familiarity Pruning stops processing SI

and backtracks to the previous state if every possible solu-
tion growing from SI via the exploration of SR is not able
to satisfy the familiarity constraint.

For the social graph in Figure 2(a) with p = 3, k = 0,
if SI = {b, d} and SR = {e, f}, Familiarity Pruning stops
processing SI because 1

3
(0+1 · 1+ 2 · 1) = 1 < (3− 0− 1) =

2. In other words, moving any vertex from SR to SI will
never generate a feasible solution following the familiarity
constraint.

5. ENHANCED STRATEGY FOR SSGQ
The above strategies efficiently select and examine each

candidate attendee. A potential approach to further im-
prove the efficiency is to select multiple candidate attendees
jointly, because the optimal solution can be constructed with
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Figure 3: Illustrations of SR-Tree.

fewer iterations. When an attendee close to the rally point
is chosen, nearby candidate attendees in the same MBR of
R-Tree are also potential to be good candidates for joint
selection due to their smaller spatial distances to the rally
point. Nevertheless, jointly selecting all candidate attendees
in the same MBR may not be able to generate a solution
following the familiarity constraint since the social connec-
tivity among them is not examined. To effectively tackle
this issue, we propose Social R-Tree (SR-Tree), in which
candidate attendees in each MBR are indexed into multiple
social clusters with different social connectivity to support
SSGQ with different k. Equipped with SR-Tree, SSGQ re-
duces the number of iterations required to find the optimal
solution with a new strategy, named Joint Insertion, which
selects multiple vertices jointly at each iteration for SI to
grow faster.

5.1 Social R-Tree
In section 4.1, the feature of hierarchical MBRs in R-

Tree enables SSGQ to efficiently extract the vertex with the
smallest spatial distance to q. It is expected that the vertices
in the same MBR are spatially closer to each other. Never-
theless, each vertex may not be familiar with all the others
in the same MBR. For example, Figure 3(a) illustrates that
only the vertices with the same color are acquainted with
each other, and inserting all the vertices in M1 to SI is po-
tential to be too aggressive to generate a solution satisfying
the familiarity constraint. On the other hand, choosing a
group of mutually acquainted vertices is not efficient, espe-
cially for a large k, since more vertices in the same MBR
can be selected jointly. Thus, it is desirable to identify so-
cial clusters with different connectivity in order to consider
various SSGQ with different k possibly specified by users.

In the following, we propose SR-Tree by finding a set of so-
cial clusters Ci for each MBR Mi of R-Tree, as shown in Fig-
ure 3(b). Ci for each MBR Mi is constructed in a bottom-
up manner. We iteratively combine small social clusters in
a lower level to large social cluster in the higher level in Fig-
ure 5. At the bottom level (level 0), each cluster is a single
vertex. Multiple clusters in level i are combined to generate
a new cluster in level i + 1, while each cluster in level i is
allowed to participate in multiple clusters in level i+1. For
example, cluster {a} at level 0 in Figure 5 appears in {a, b}
and {a, d} in level 1. We tailor the social clusters for SSGQ
according to the following three requirements.
(1) Cross MBR Requirement. To avoid generating du-
plicated clusters in multiple MBRs, each cluster c must span
at least two child MBRs of the current MBR Mi, since a clus-
ter spanning only one child MBR can be generated when we
consider the child MBR. Figure 5 shows an example, where
clusters {a, c}, {a, e}, {b, d}, {b, f}, {c, e} and {d, f} are
not generated since the vertices in each of them are located
within the same MBR.
(2) Social Connectivity Requirement. This require-
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(a)

q

(b)

Figure 4: Example of a social network and the cor-
responding MBRs.

Figure 5: Hierarchically constructing the set of so-
cial cluster Ci for MBR Mi.

ment specifies the minimum social connectivity allowed for
each generated cluster c. By lowering this requirement, more
social clusters can be generated at the cost of more memory
consumption. To strike a good balance between efficiency
and memory requirement, a good way is referring to param-
eters k and p appearing in the past SSGQ history. Let PS

denote the average k
p
specified in SSGQ of the history. For

each vertex v in c, PS represents the percentage of vertices in
c with no edge connecting to v. Therefore, Social Connectiv-
ity Requirement specifies that on average each vertex in a so-
cial cluster is allowed to share no edge with at most ⌈|c|PS⌉
other vertices in c. Here the ceiling function is adopted such
that small social clusters are easier to be generated and then
combined to large clusters. Consider an example with the
social graph in Figure 4(a) and the corresponding MBRs in
Figure 4(b), where vertices g and h are not located in these
MBRs. When PS = 0.3, cluster {a, b, c} cannot be created
in level 1 of Figure 5, because each vertex on average shares
no edge with 4

3
other vertices and exceeds ⌈|c|PS⌉ = 1. Sim-

ilarly, clusters {a, c, d}, {a, c, d, f} and {c, d, f} do not have
sufficient social connectivity to be created.
(3) Spatial Distance Requirement. To avoid the case
that the vertices of a social cluster is distributed diversely
in a large MBR, it is necessary to limit the spatial distribu-
tion of a cluster, and Spatial Distance Requirement ensures
that the average distance from a vertex to the geometric me-
dian of c must not exceed a threshold Td. Given the coordi-
nates (xj, yj) of each vertex vj in c, the coordinates (xm, ym)
of the geometric median m is (xm, ym) = argmin(x′

m,y′

m)∑
vj∈c

√
(x′

m − xj)2 + (y′
m − yj)2. The geometric median is

regarded as a spatial index in SR-Tree and plays an impor-
tant role in Join Insertion to prioritize the selection of a
social cluster. In Figure 5, cluster {e, f} cannot appear in
level 1 if Td is identical to the distance from a to b.

5.2 Joint Insertion
To improve the efficiency of SSGSelect, Joint Insertion

selects a social cluster with multiple vertices and moves them
from SR to SI . A Joint Insertion operation can be regarded
as a shortcut in the branch-and-bound tree, such that a
good feasible solution D can be acquired earlier for Distance
Pruning to remove unnecessary vertices that are not able to
generate a better solution. Therefore, equipped with SR-

Table 1: dm,q and corresponding actual average spa-
tial distance to q.

{a, b} {a, b, d, e} {a, b, c, d, e} {a, d}

dm,q 9.6 10 11.2 11.3∑
v∈c

dv,q

|c|
9.8 10.8 11.7 11.8

Tree and Joint Insertion, SSGSelect can find the optimal
solution with smaller time.

Similar to Socio-Spatial Ordering, since it is desirable to
choose a dense social cluster with a small average spatial
distance to q, both the social and spatial domains are exam-
ined during the selection of a social cluster. Nevertheless,
with only the spatial location of each vertex in c, it is ex-
pensive for a large cluster to find the average distance to q,
because the spatial distance from each vertex to q specified
at this query needs to be first calculated and then summed
up on-line, while q is allowed to be different in each SSGQ.
Therefore, Joint Insertion leverages the geometric median
m in Section 5.1, which can be computed off-line and uti-
lized for each query, and regards dm,q as the estimation of
the average spatial distance from c to q. Note that Joint
Insertion does not consider any cluster with |SI |+ |c| > p or
SI ∩c 	= ∅ . The reason is that the geometric median of c in
the case with SI ∩ c 	= ∅ cannot correctly estimate the av-
erage spatial distance for the vertices to be jointly inserted,
since some of them is already in SI .

The social clusters are sorted according to the spatial dis-
tance from the geometric median of each cluster to q. Sim-
ilar to Socio-Spatial Ordering, the first social cluster that
satisfies Intra-Familiarity Condition (IFC) in Section 4.2 is
selected and inserted to SI , while IFC here examines SI ∪ c,
instead of SI ∪ {v}.

Consider an example with the social graph and the cor-
responding MBRs in Figure 4, where SI = {g, h}, p = 6,
k = 3 and the rally point q is shown in Figure 4(b). Assume
the total spatial distance from SI to q is 13, and Table 1
lists the clusters with dm,q , together with their correspond-
ing actual average spatial distance to q. Joint Insertion first
finds out that {a, b} cannot be moved to SI because it does

not satisfy IFC with k̂ = 3, i.e., F (SI ∪ {a, b}) = 1
4
· 2 =

0.5 < 4− 1− 3·4
5
. We then consider the intra-familiarity of

{a, b, d, e}, F (SI∪{a, b, d, e}) =
1
6
·16 ≥ 6−1− 3·6

5
, which sat-

isfies IFC. Therefore, Joint Insertion simultaneously moves
a, b, d, and e from SR to SI at one iteration, which pro-
duces a feasible solution with the total spatial distance as
13 + 10.8 · 4 = 56.2.

Join Insertion of c to SI represents a shortcut in the
branch-and-bound tree to efficiently find a feasible solution
for Distance Pruning. After finding the feasible solution,
SSGSelect backtracks along the original shortcut back to SI

and explores the search space in the same way described in
Section 4 afterward. It is worth noting that some vertices in
c needs to be considered again in order to construct another
feasible solution with those vertices, SI , and other vertices
not appearing in SI ∪ c, to ensure that SSGSelect is able to
find the optimal solution eventually.

6. EXPERIMENTAL RESULTS

6.1 Experiment Setup
We implement SSGSelect in Facebook. Figure 6(a) shows

the input page of SSGQ to specify p, k, and the coordinate
of q, which is captured by clicking a location in the map.
The result of SSGSelect is displayed in Figure 6(b) with
the names of the selected attendees and their locations. We
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(a)
 

(b)

Figure 6: Implementation of SSGQ in Facebook.

invite 206 people from various communities, e.g., schools,
government, and business to join our user study, which com-
pares the solution quality and the time to answer SSGQ by
manual coordination and SSGSelect. Each of them answers
24 SSGQ problems with the social graphs extracted from
their social networks in Facebook, together with their spa-
tial locations sampling from their Facebook Checkin records
shared to the user study. The 24 problems span various p
and network sizes. Different k are assigned in the first 12
problems, while k is not specified in the other 12 problems,
to let each user freely select p people for finding out the
familiarity preferred by each person in activities with differ-
ent p. In addition to the real dataset DataSet FB from the
206 people, we evaluate the performance and the solution
quality of SSGSelect on a large real dataset, DataSet Large,
which is obtained by crawling Foursquare [11], one of the
most representative LBSNs, for a month. DataSet Large
contains both the social and spatial information of 153577
individuals. The rally point q is assigned randomly, and we
measure 50 samples in each scenario. Our algorithm is im-
plemented in an IBM 3650 server with Linux Ubuntu 4.2.4,
two Quadcore Intel X5450 3.0 GHz CPUs, and 8 GB RAM.

To evaluate the effectiveness of the proposed strategies
in SSGSelect, three additional algorithms, Baseline, SSGSe-
lectNoJI, and SSGHeuri(i) are evaluated here. Baseline is a
brute-force algorithm that enumerates every possible solu-
tion. SSGSelectNoJI is identical to SSGSelect with SR-Tree
and Joint Insertion removed. SSGHeuri(i) is a heuristic al-
gorithm used for DataSet Large and outputs the i-th feasible
solution obtained by SSGSelect.

6.2 User Study
Figures 7(a)-(f) compare manual coordination and SSGS-

elect to answer SSGQ in the user study. Figure 7(a) com-
pares the time to find the solutions in different scenarios.
The result indicates that SSGQ is challenging for manual
coordination, especially for a large network size. In contrast,
SSGSelect obtains the optimal solution with less than 1 sec-
ond. Figure 7(b) with p = 5 and k = 3 demonstrates that
the solutions from manual coordination lead to larger spatial
distance and thereby are not optimal. With a larger network
size, i.e., more friends nearby, it is easier to find a group of
attendees with a smaller total spatial distance to q. In ad-
dition, the solution quality in Figure 7(c) shows that even
in p = 5, each solution obtained by manual coordination is
not guaranteed to follow the familiarity constraint, accord-
ing to the correctness rate shown in Figure 7(c), because it
is very challenging for each person to jointly minimize the
total spatial distance and ensure the familiarity constraint,
and the correctness rate drops dramatically as the network
size increases.

In Figures 7(d) and (e), we let each user freely select p
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Figure 7: Results of user study.

people to find out the familiarity preferred by each person
in activities with different p. The minimum k here repre-
sents the smallest k for each solution to follow the familiarity
constraint. With this parameter extracted from the manual
solution, we regard it as an input parameter for a SSGQ in
the same social network, and the results demonstrate that
SSGSelect can find a better solution following the same k
with smaller time. In other words, even when an user does
not specify k, it is possible to analyze the previous manual
coordination results and find out a suitable k for the user,
such that SSGSelect is able to find the optimal solutions in
each query afterward.

Figure 7(f) with network size as 15 and p as 9 compares
the results of different k. As k decreases, the correctness
rate of manual coordination drops because it becomes more
difficult for an user to find a tighter social group with the
same number of attendees. Moreover, the solution obtained
by manual coordination is still worse than the solution of
SSGSelect even with a loose requirement on social connec-
tivity, i.e., a large k.

6.3 Performance Evaluation
Figures 8(a)-(b) evaluate the efficiency of different algo-

rithms on DataSet FB. Figure 8(a) compares the execution
time of the four algorithms with different network sizes.
Since the search space of Baseline is enormous, Baseline is
unable to return a solution within 12 hours when the net-
work size is larger than 50. Therefore, there is only a sin-
gle node for Baseline in Figure 8(a). On the other hand,
with Socio-Spatial Ordering, Distance Pruning, and Famil-
iarity Pruning, SSGSelect and SSGSelectNoJI both return
the optimal solution in much smaller time. Furthermore,
SSGSelect enhanced by SR-Tree and Joint Insertion outper-
forms SSGSelectNoJI because it can find feasible solutions
in a shorter time for Distance Pruning to remove unneces-
sary search space earlier. Figure 8(b) compares the number
of explored states in the branching-and-bound tree required
to find a feasible solution of SSGSelect and SSGSelectNoJI.
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Figure 8: Experimental results on DataSet FB.
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Figure 9: Experimental results on DataSet Large.

It demonstrates that SSGSelect only needs 2% of the states
in SSGSelectNoJI to find a feasible solution.

In addition to the network size, we compare SSGSelect
with different p and k in Figures 8(c) and (d). Figure 8(c)
indicates that the execution time increases as p grows, be-
cause SSGSelect in this case needs to explore a larger search
space to find the optimal solution. On the other hand, Fig-
ure 8(d) shows that a larger k leads to a smaller execution
time because it becomes easier to obtain feasible solutions
for Distance Pruning to trim the search space. Figures 8(e)
and (f) analyze the proposed strategies in Section 4. The re-
sult indicates that Socio-Spatial Ordering (SO) plays a cru-
cial role to reduce the execution time for at least 40 times.
This is because Socio-Spatial Ordering considers both spa-
tial and social domains and thereby is able to guide the
efficient search of the feasible solutions and optimal solution
with fewer states explored in the branch-and-bound tree, as
shown in Figure 8(f).

Figure 9 shows the solution quality of SSGHeuri(i) on
the real dataset, DataSet Large. Figure 9(a) demonstrates
that the solution converges quickly as i increases, and SS-
GHeuri(i) can obtain good solutions within the first few
feasible solutions. In Figure 9(b), we compare the i-th fea-
sible solutions with different network sizes. The distances
decrease when the network size grows since it is expected
that a larger network includes more candidate nodes with
smaller spatial distances.

7. CONCLUSION AND FUTURE WORK
To the best of our knowledge, there is no real system

and existing work in the literature that addresses the is-
sues of automatic activity planning based on social and spa-
tial relationship of activity attendees. In this paper, we de-
fine a useful query, namely, SSGQ, to obtain the optimal
set of attendees. We show that the problem is NP-hard
and devise an efficient algorithm, namely, SSGSelect to pro-
cess SSGQ. Various strategies, including Distance Ordering,
Socio-Spatial Ordering, Distance Pruning, and Familiarity
Pruning are explored to prune unnecessary search space and
obtain the optimal solution efficiently. Moreover, with SR-
Tree and Joint Insert, SSGSelect is improved and requires a
smaller time to find the optimal solution. The algorithm is
implemented in Facebook, and our user study demonstrates
that the proposed algorithm significantly outperforms man-
ual coordination in both solution quality and efficiency.

User study also brings useful suggestions to further enrich
SSGQ as our future work. For example, since each candidate
attendee is associated with multiple attributes in Facebook,
such as age, gender, interest, company name, etc, those at-
tributes can be specified as the input parameters for SSGQ
to first filter unsuitable candidate attendees. A more inter-
esting extension is to allow each user to specify the minimum
number of attendees with each attribute value required to be
selected, such as ensuring an activity with the same number
of male and female attendees when considering the gender
attribute. Some users also suggest us to integrate the pro-
posed query processing system with automatically delivery
of invitation messages and navigation instructions.
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