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Abstract—The success of modern face recognition systems is based on the advances of deeply-learned features. These embeddings

aim to encode the identity of an individual such that these can be used for recognition. However, recent works have shown that more

information beyond the user’s identity is stored in these embeddings, such as demographics, image characteristics, and social traits.

This raises privacy and bias concerns in face recognition. We investigate the predictability of 73 different soft-biometric attributes on

three popular face embeddings with different learning principles. The experiments were conducted on two publicly available databases.

For the evaluation, we trained a massive attribute classifier such that can accurately state the confidence of its predictions. This

enables us to derive more sophisticated statements about the attribute predictability. The results demonstrate that the majority of the

investigated attributes are encoded in face embeddings. For instance, a strong encoding was found for demographics, haircolors,

hairstyles, beards, and accessories. Although face recognition embeddings are trained to be robust against non-permanent factors, we

found that specifically these attributes are easily-predictable from face embeddings. We hope our findings will guide future works to

develop more privacy-preserving and bias-mitigating face recognition technologies.

Index Terms—Face Recognition, Bias, Fairness, Soft-Biometrics, Analysis, Privacy, Biometrics

✦

1 INTRODUCTION

CUrrent face recognition systems show strong recogni-
tion capabilities enabled by the advances in learning

deep neural feature embeddings [13]. This leads to a world-
wide spreading of these systems and also increasingly affect
everyone’s daily life [8]. Although face recognition models
are trained with the aim of extracting deeply-learned fea-
tures for recognition, recent works showed that the infor-
mation encoded in such embeddings goes beyond identity.
These works showed that different face embeddings con-
tain information about head pose [37], image characteristics
(such as quality [4], [18], viewpoint [19], and illumination
[35]), demographics [9], [36], [47], and social traits [38].
However, this raises ethical concerns regarding fairness and
privacy in face recognition. First, for many applications,
the users do only permit to have access to the information
related to recognition [32] and extracting additional infor-
mation without a person’s consent is considered a violation
of their privacy [24]. This is known as soft-biometric privacy
[32] and solutions are either build on image- [30], [31], [34]
or embedding-level [5], [42], [45], [51]. Second, the attributes
stored in biometric face embeddings can indicate biased
performances related to these attributes that might result in
unfair performance differences. This is known as face recog-
nition bias and solutions for this problem mainly focused
on demographic-bias [12], [28], [48], [52], [55]. To develop
more advanced bias-mitigating solutions, knowledge about
encoded attributes in face embeddings is required [43].

Extending the work of [43], we provide a predictabil-
ity analysis of 73 different soft-biometric attributes from
face embeddings. In [43], a predictability statement of an
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attribute is derived by taking into account the attribute
prediction performance of an attribute classifier at two
difficulty-levels. These difficulty-levels describe how well
this classifier can predict an attribute and thus, simulate e.g.
different capturing conditions. In contrast to [43], this work

1) analyses the predictability of an attribute in a continu-
ous range of difficulty-levels. This allows deriving more
fine-grained predictability statements about single at-
tributes,

2) jointly analyses the predictability of multiple attribute
(attribute categories) to extract exact, compact, and
easily-understandable findings,

3) visualizes the findings on the attribute predictability to
provide the reader with an intuitive understanding of
which attributes are stored in face embeddings and how
easily these can be predicted,

4) extends the experiments to three different face recog-
nition models. This allows to explore the effect of em-
bedding dimensionalities and the underlying training
losses on the attributes encoded in face embeddings.

5) and discusses the implications of our findings on future
works.

The investigation methodology is based on a massive
attribute classifier (MAC) that is simultaneously trained on
multiple attributes to take advantage of a shared feature
space. The MAC is constructed such that it can accurately
state its prediction confidence [47]. This allows us to de-
rive more detailed statements about the predictability of
attributes in face embeddings. The experiments were con-
ducted on two publicly available databases, CelebA [29]
and LFW [20], and on three popular face embeddings,
FaceNet [40], CosFace [53], and ArcFace [10]. To derive
understandable statements about the stored attribute in-
formation, we categorized each attribute into one of three
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predictability classes: easily-predictable, predictable, and
hardly-predictable.

The results demonstrate that many attributes are en-
coded in face embeddings. From the 113 analysed attributes,
39 attributes are assigned to the easily-predictable class and
74 are predictable. We found differences in the attribute
predictability regarding the underlying training principles
of the face recognition networks. However, information
about age, hairstyles, haircolors, beards, and accessories are
strongly encoded in all embedding types, FaceNet, CosFace,
and ArcFace. Despite that face embeddings are learned to
be robust to non-permanent factors, the results demonstrate
that especially these attributes are easily-predictable.

2 RELATED WORK

Face recognition benefits from the development of deep
neural network representations [13]. However, there is a
need to better understand which kind of information is
stored in these representations, since these representations
are derived from black-box models.

In 2017, Parde et al. [37] demonstrated that the inves-
tigated representations contain accurate information about
the head position (i.e. the yaw and pitch of a face) and
the source of the image (i.e. whether the input-face origins
from a still image or a video frame). They suggested that
information about the image-quality might also be available
in these face representations. This has been proofed to be
correct since the quality of a facial image was successfully
predicted based on face embeddings [4], [18], [49].

In [38], Parde et al. analysed how well information about
social-traits is retained in face representations. Human-
assigned social trait profiles have been predicted using
linear classifiers, in their experiments. They demonstrated
that 11 social traits such as talkative, assertive, shy, quiet,
warm, artistic, efficient, careless, impulsive, anxious, and
lazy can be inferred from face embeddings to a high degree.
The best-predicted traits included impulsive, warm, and
anxious.

Hill et al. [19] analysed the representations of carica-
ture faces. Their investigation included the categorization
of viewpoint (0, 20, 30, 45, 60), illumination (ambient vs
spotlight), gender (male vs female), and identity in embed-
ding space. Their results conclude that information about
face identity and imaging characteristics coexist, in a highly
organized and hierarchical structure that is created by the
utilized face recognition model. A summary of their results
and a review about known properties of the face space,
in the context of previous-generation face recognition algo-
rithms, is given by O’Toole et al. [35].

In [56], [57] Zhong et al. conducted facial attribute esti-
mation experiments using various mid-level representations
from face recognition networks. By using various mid-level
representations, they achieved highly accurate facial at-
tribute estimation results. This indicates that also high-level
representations, such as face recognition templates, might
contain a significant amount of facial attribute information.

In [6], [9], [36], [47], the possibility of deriving demo-
graphic attributes such as gender, age, and race from face
templates is demonstrated.

Previous works demonstrated that information about
demographic attributes (e.g. gender, age, race), and social
traits (e.g. impulsive, warm, and anxious), as well as head
pose and image characteristics (e.g. quality, source of the
image, viewpoint, illumination), can be derived from face
templates. These works focused on the analysis of some
specific attributes. The work of Terhörst et al. [43] provided
a broader investigation on the predictability of over 100
attributes in face templates. Based on the prediction per-
formance at two different reliability-levels, they categorized
each attribute into one of three predictability classes. Their
results demonstrate that up to 74 attributes can be accurately
predicted from face templates.

In this work, we extend the analysis of [43] by providing
a more in-depth investigation of attribute predictabilities.
While in [43], the analysis is based on two difficulty-
levels, we additionally provide experiments on a continu-
ous difficulty range and extend the experiments to three
different embedding types. This allows more fine-grained
predictability statements of each attribute. We extend the
analysis and discussion on the higher-level of attribute
categories to derive more exact but also more compact and
understandable findings. Moreover, we specifically discuss
the implications of our results on future works.

3 INVESTIGATION METHODOLOGY

The goal of this work is to analyse what attributes are stored
in biometric face embeddings. We conduct this analysis
by jointly training a classifier to accurately predict these
attributes. If the classifier can accurately predict an attribute
given the face embeddings, we can conclude that this at-
tribute is encoded within the embedding. However, this
investigation methodology only allows determining what
attributes are stored in embeddings. It does not allow us to
conclude what attributes are not encoded, since a reverse
conclusion is not necessarily logical. If an estimator is not
able to learn the pattern of an attribute, it does not imply
that the pattern does not exist. The estimator might just not
be able to deal with the complexity of the attribute pattern,
or the data variability and representation might be low.

The following three subsections explain the different
steps of our investigation methodology.

1) We explain the training procedure of our classifier.
Training the classifier in a multi-task fashion allows
making use of shared embedding space leading to
general performance increases.

2) We explain the used methodology that allows the
trained classifier to accurately state its predictions con-
fidence (reliability).

3) We make use of this concept of prediction reliability
to introduce predictability classes. These allow to more
easily analyse the observations.

3.1 Massive attribute classifier (MAC)

The core of our attribute predictability analysis of face
embeddings is a classification model. If this model is able to
correctly predict an attribute given face embeddings, we can
conclude that this attribute is encoded in the embeddings.

We trained a neural network model on face embeddings
to jointly predict multiple attributes that might be stored
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within. We refer to this model as a massive attribute clas-
sifier (MAC) due to the large number of attributes that are
simultaneously learned. We evaluated multiple random net-
work structures with 1-3 initial layers and 1-3 branch layers
that connect the last initial layer with the softmax layers of
each attribute. For each layer, a size of 128, 256, and 512 was
evaluated. During this evaluation, we observed variations
of the predicted performance per attribute by only 1-2%.
Consequently, we decided on the network structure of the
highest simplicity.

The chosen MAC-architecture builds on two initial lay-
ers, the input layer of size nin (referring to the size of the
used face embedding) and a second dense layer of size 512.
The architecture makes use of a shared layer to increase the
effectiveness of correlated attributes, such as age, gender,
and race [14], [17]. While the multi-task MAC approach
is highly-suitable for correlated attributes, for uncorrelated
attributes, training single classifiers to predict each of these
separately might, in some cases, lead to stronger attribute
prediction performances as shown in [29]. Starting from the
second layer, each attribute a has an own branch consisting

of two additional layers of size 512 and n
(a)
out, where n

(a)
out

refers to the number of classes per attribute. For each layer
a ReLU activation was used. The only exceptions are the
output-layers that use softmax activations. Moreover, Batch-
Normalization [21] and dropout [41] are applied to every
layer. Using a dropout-strategy enables a more generalized
performance and, more importantly, allows us to derive
reliability statements about the prediction’s confidence (de-
scribed in Section 3.2). The quality of a reliability statement
is robust to different magnitudes of dropout. Therefore, we
followed the default dropout-probability of pdrop = 0.5
[41]. The training MAC-training was done in a multi-task
learning fashion by applying a categorical cross-entropy
loss for each attribute branch and use an equal weighting
between each of these attribute-related losses. The training
itself was based on an Adam optimizer [25] over e = 200
epochs with an initial learning rate α = 10−3 and a learning-
rate decay of β = α/e. The choices for these parameters as
guided by the experiment setup of [47]. According to the
amount of data available for training, the batch size b was
chosen as b = 1024 for CelebA and b = 16 for LFW.

3.2 Prediction reliability

To formulate accurate predictions about the attribute-
predictability in face embeddings, we make use of pre-
diction reliabilities to simulate classifier circumstances of
various difficulties. Following the methodology in [46], [47],
we train the MAC with dropout. This allows us to state
the MAC’s prediction confidence (reliability). We perform
m = 100 stochastic forward passes, to derive a reliability
statement additionally to an attribute prediction. In each for-
ward pass, a different dropout-pattern is applied, resulting

in m different softmax outputs v
(a)
i for each attribute a.

Given the outputs of the m stochastic forward passes of

the predicted class ĉ denoted as x(a) = v
(a)
i,ĉ , the reliability

measure is given as

rel(x(a)) =
1− α

m

m∑

i=1

x
(a)
i −

α

m2

m∑

i=1

m∑

j=1

|x
(a)
i − x

(a)
j |,

with α = 0.5, following the recommendation in [47]. The
first part of the equation is a measure of centrality and
utilizes the probability interpretation of the softmax output.
A higher value can be interpreted as a high probability that
the prediction is correct. The second part of the equation is
the measure of dispersion and quantifies the agreement of
the stochastic outputs x. This was shown to be an accurate
reliability measure in [47].

We use this reliability measure to simulate the perfor-
mance in circumstances of various difficulty. For each at-
tribute, we calculate the prediction and corresponding relia-
bility of each sample. Then, we sort the prediction according
to their reliability, define a ratio of considered predictions
(RCP), and compute the recognition performance based on
this RCP-level. For instance, at 70% RCP the recognition
performance is calculated on the predictions with the 70%
of the highest reliabilities. Consequently, the performance at
100% RCP refers to the general performance of the whole
dataset. An RCP-level of 100% refers to the most realistic,
and thus challenging, circumstances. Lower RCP-levels will
reject more predictions of low confidence that might contain
factors of variances (such as blur and non-frontal head
poses) that lead to unstable, and thus inaccurate, attribute
estimates. Therefore, a low RCP-level refers to the MAC
prediction performance under more optimal classifier cir-
cumstances.

Please note that also other predictability measures can
be used for the proposed investigations. In [1], Alain et al.
used linear separability to measure the predictability of a
categorical attribute. However, if a binary attribute is per-
fectly encoded in the face space, the amount of information
about this attribute does not change if the decision boundary
in the embedding space is linear or curved. In [11], Dahr
et al. measured the predictability based on the estimation
of mutual information. While this approach does not rely
on linear separability, it requires the training of additional
networks to estimate the predictability. For these reasons,
we choose to measure the predictability based on accurate
prediction reliabilities [47] for our investigations.

3.3 Predictability classes

To derive more understandable statements about which
attribute information is stored in a face embedding, we
categorize each attribute into one of three predictability
classes. These are based on the prediction performance at
a RCP-level of 50% and 100%.

• Easily-predictable (++): an attribute is categorized as
easily-predictable if, and only if, the balanced accuracy
at 100% RCP is above 90%. This means that highly
accurate predictions are possible even under non-ideal cir-
cumstances such as bad illuminations and non-frontal
head poses.

• Predictable (+): an attribute is categorized as pre-
dictable if, and only if, the balanced accuracy at 100%
RCP is under 90%, but the balanced accuracy at 50%
RCP is above 90%. This indicates that highly accurate
predictions are possible under close-to-optimal conditions,
since it only takes into account 50% of the most con-
fident MAC predictions.

• Hardly-predictable (0): an attribute is categorized as
hardly-predictable if the balanced accuracy is below
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90% at both, 100% and 50% RCP. Even under close-to-
optimal circumstances, the MAC is not able to reach high
accuracies. Consequently, the attribute patterns might be
too complex for the MAC to handle or it does not exist
a meaningful pattern for this attribute.

The attribute categories easily-predictable and pre-
dictable allow making confident statements about the
amount of attribute information stored in face embeddings.
However, this does not apply for hardly-predictable. If an
attribute is categorized as hardly-predictable, the MAC is
not able to accurately learn the pattern. This might have
several reasons. First, the pattern does not exist. Second,
the pattern does exist, but it is too complex for the model
to learn. Or third, the pattern does exist but the amount
of data and its representation is not appropriate for the
classifier to learn. Consequently, for attributes categorized as
hardly-predictable, we can not determine if a corresponding
attribute pattern exists.

4 EXPERIMENTAL SETUP

4.1 Databases

The Labeled Faces in the Wild (LFW) [20] and the Celeb-
Faces Attributes (CelebA) [29] datasets provide a large
number of attribute annotations and thus, are well suited to
perform our predictability-analysis of the face space. Using
a variety of soft-biometric labels, an in-depth investigation
of which of these attributes are encoded in face embeddings
is performed. Figure 1 shows sample images from both
datasets. The CelebA dataset [29] covers more than 200k
images taken from over 10k distinct celebrities. Each image
is annotated with 40 binary attributes. Additionally, large
variations in pose and background are covered. The LFW
[20] dataset is comprised of 13k images taken from over
5k distinct individuals. Annotations for 73 binary attributes
are provided for each image. Additionally, the images ex-
hibit large variability in pose, lighting, focus, resolution,
facial expression, age, gender, race, accessories, make-up,
occlusions, background, and photographic quality. A wide
range of characteristics (e.g. a person’s demographics, skin,
hair, beard, face geometry, periocular area, mouth, nose,
accessories, and environment) are covered by the attribute
labels of both databases [20], [29].

4.2 Cleaning attribute annotations of LFW

The attribute annotations of CelebA are of binary nature
[29]. In contrast to CelebA, the attribute annotations con-
tained in the LFW dataset are continuous and measure the
degree of the attribute present in the image [20], [26], [27].
For instance, a high positive label score for the attribute
beard should indicate a remarkable beard, while a negative
annotation score indicates that no beard is shown. Conse-
quently, binary labels can be derived by assigning true labels
attributes with positive scores and false labels to attributes
with negative label scores. However, a value around zero
indicates that the attribute being present cannot be well
determined.

To ensure a good performance of the MAC when trained
on LFW, we manually converted the continuous attribute
labels to binary labels. Using an upper and lower score

TABLE 1: Train/test sample distribution on LFW for selected
attributes that are found insufficient for a meaningful at-
tribute analysis after label-cleaning. Pos and Neg refers to
the number of positively and negatively labelled samples
for the train and test set. The listed 15 attributes are found
to be insignificant for the analysis due to a low number of
samples in either the positive or negative class.

Train Test

Attribute Pos Neg Pos Neg
Color Photo 8806 29 3772 24
Mouth Slightly Open 674 109 315 57
Round Face 9 588 3 250
Goatee 20 3346 10 1557
Baby 23 9137 15 3913
Bangs 89 5238 44 2080
Bald 114 4413 47 1953
Big Lips 101 751 48 318
Sunglasses 74 8583 50 3631
Partially Visible F. 124 1501 55 601
Mouth Wide Open 107 6593 56 2925
Double Chin 154 172 57 136
Harsh Lighting 113 914 62 487
Outdoor 173 510 63 243
Teeth Not Visible 125 2209 66 1089

threshold for each attribute, we assigned true labels to
images with a score above the upper threshold, and false
labels to images with a score below the lower threshold.
Attributes with scores between the upper and lower score
threshold bounds are labelled as undefined. The upper and
lower thresholds for a particular attribute are manually
determined by moving potential thresholds away from zero.
At each candidate threshold, ten images with the closest
attribute scores are investigated. By doing so, the original
LFW annotations of the images are manually investigated
for correctness. In the case that only eight or fewer images
indicate that a particular attribute is present, the potential
threshold is further moved away from the starting point
until an adequate score threshold is found. If a potential
threshold results in 9 or more correctly labelled images
the threshold is chosen for that particular attribute. By
repeating this procedure, the lower and upper thresholds
for each of the attributes are identified. The scores are then
binarized using the upper and lower thresholds to ensure an
error-minimizing data basis of the MAC. This way, training
and testing can be performed on meaningful and correctly
labelled data.

Due to the generally poor quality of the LFW labels, our
label-cleaning process reduces the number of used labels by
51,7%. This might induce a bias in our evaluation. To avoid
biased conclusions that might result from this process, we
evaluate another binary labelled database. After our label-
cleaning process, we found 15 attribute labels of either a
low number of positively and negatively labelled samples
(<100). Table 1 provides a list of these attributes including
the number of annotation divided into training and testing
data. These attributes might have a low expressiveness in
our facial analysis and thus, we will mark these attributes
(in grey) in the following investigations.
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Fig. 1: Sample images from CelebA (top row) and LFW (bottom row)

4.3 Evaluation metrics

Our predictability analysis of the face space is based on
the prediction performance of the MAC. For calculating
the prediction performance of facial attributes, the accuracy
metric is usually used. However, this metric is defined
by the ratio of correct predictions to the total number of
predictions [33] and thus, is strongly affected in the case
of unbalanced label-distribution. Therefore, we report the
predictive performance in terms of balanced accuracy in
order to be robust to attribute-imbalances. The balanced
accuracy refers to the standard accuracy with class-balanced
sample weights [23].

The datasets are divided into train/test data in a
70%/30% subject-exclusive split1. We decided not to use
a cross-database evaluation protocol since both databases
have over 30 non-overlapping attributes. Training on one
database and evaluating on the other would result in the
loss of this valuable attribute information. The predictive
performance of a facial attribute estimator is analysed under
circumstances of various difficulty. As described in Section
3.2, this is achieved by evaluating the prediction perfor-
mance at various RCP-levels. While high RCP-levels sim-
ulate more realistic scenarios, low RCP-levels focus more on
the confident predictions and thus, simulate more idealistic
circumstances. This is used to determine more fine-grained
statements about the attribute-predictabilities.

4.4 Face template extraction

For the experiments, we use three widely-used face recog-
nition models based on FaceNet [40], CosFace [53], and
ArcFace [10] losses. In this work, we use pre-trained models
denoted as FaceNet2, CosFace3, and ArcFace4. The FaceNet
and ArcFace model consist of a ResNet100 model trained
on the MS1M database [16]. CosFace consists of a ResNet50
model trained on CASIA-WebFace [54]. Before providing the
images as input for the models, the facial images are prepro-
cessed (i.e. aligned, scaled, and cropped). The preprocessing
for FaceNet is described in [22], for CosFace is described in
[53], and for ArcFace is described in [15]. The embeddings

1. Please note that attributes affected by imbalanced data training
will be associated with a poorer prediction performance due to the
use of balanced accuracies. Consequently, the imbalanced data training
might lead to underestimating the amount of information stored in face
embeddings for some attributes.

2. https://github.com/davidsandberg/facenet
3. https://github.com/MuggleWang/CosFace pytorch
4. https://github.com/deepinsight/insightface

are extracted by passing the preprocessed facial images to
the face recognition models. The dimension of the obtained
embeddings is 128 for FaceNet, 1024 for CosFace, and 512
for ArcFace.

4.5 Investigations

This work targets to understand what information is stored
in biometric face embeddings. To achieve this, we provide
an in-depth investigation that is divided into the following
parts:

1) We analyse the correlations between the attribute-
annotations. The results of an attribute might show a
high predictability which does not originate from the
attribute information stored within an embedding but
from correlated annotations of the testing database.

2) In two steps, we investigate which attributes are stored
in face embeddings by analysing the attribute predic-
tion performances. First, we analyse the prediction per-
formance of each attribute on two specific confidence-
levels of the MAC to get an overview of the problem.
Second, we investigate the prediction performance of
each attribute over a wide and continuous range of
confidence-levels to achieve a more in-depth analysis
of the stored information.

3) We compromise the detailed investigations to obtain
an easily-understandable overview of which kind of
information is encoded in face embeddings. First, we
categorize each attribute into one of three predictability
classes based on two-level prediction performances.
Second, we visualize the predictability of each group
of attributes to provide the reader with an intuitive
understanding of which attributes are stored in face
embeddings and how easily these can be predicted.

5 RESULTS

Following the investigation plan from Section 4.5, this
section works on the defined investigation points. Section
5.1 analysis the attribute correlations of the utilized face
databases, Section 5.2 provides an in-depth investigation of
the attribute predictability, and Section 5.3 summarizes the
findings in a qualitatively and quantitatively manner. Fi-
nally, Section 5.4 discusses the implications for our findings
on future works.
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(a) CelebA (b) LFW

Fig. 2: Correlation of the attribute-annotations for CelebA and LFW. The attributes are chosen to show the 15 most positive
and negative pairwise correlations. The attribute-correlation for LFW is shown after the label-cleaning process. Green
indicate positive correlations, while red indicate a negative correlation. The correlation is based on the Pearson coefficient.

5.1 Attribute-correlation analysis

To avoid incorrect statements about which attributes are
encoded in face embeddings, we first analyse the correlation
of the attribute annotations. This aims at understanding
the general label quality and avoids potential biases in the
attribute annotations. Figure 2 shows a selection of attribute-
label correlations for CelebA and LFW. The attributes are
chosen to show the 15 most positive and negative pairwise
correlations.

Figure 2a shows the attribute correlations for the annota-
tions of CelebA. It can be seen that male faces do not corre-
late well with Wearing Lipstick, Wearing Earrings, and Heavy
Makeup. These attributes correlate almost exclusively with
female faces. Moreover, a large fraction of the male faces
have a Beard, while this is not the case for women. Faces
labelled as Attractive mostly belong to Young and Female
faces wearing accessories and Heavy Makeup. Additionally,
the figure approves the quality of some labels. For instance,
the attribute No Beard negatively correlations with all types
of beards such as Goatee, Mustache, and Sideburns.

The pairwise correlations of the attribute labels of LFW
are shown in Figure 2b. The attributes Heavy Makeup, Wear-
ing Lipsticks, Wearing Earrings, and Wearing Necklace belongs
together with Youth, Attractive Woman, Smiling, and High
Cheekbones. In contrast, these attributes do not correlate with
Receding Hairline and Male. Similar as in Figure 2a, the
correlation matrix in Figure 2b can be used to approve the
label quality of some antagonistic attributes. For instance,
No Eyewear negatively correlates with Eyeglasses, or Curly
Hair negatively correlates with Straight Hair.

Since these attribute correlations can have an impact on
the predictability investigation in Section 5.2, we addition-
ally analysed the annotation correlation and the correspond-
ing attribute prediction performance. The results analysing
the 10 highest-correlating attribute pairs for CelebA and
LFW are shown in Table 2. Given the attributes a and b,

ρ(a, b) represents the Pearson correlation coefficient. a 7→ b
refers to the balanced accuracy when using the label of
attribute a as the prediction for attribute b and vice versa.
Generally, the highest correlations are found for the acces-
sories Wearing Lipstick, Wearing Earrings, and Heavy Makeup.
These attributes also show the highest prediction accuracies.
If an attribute a is highly-predictable from face embeddings
and there is a accurate correlation to attribute b (a 7→ b >
90%), then it can not be well differentiated if both attributes
are encoded in the face embedding or just one of them.
Consequently, these correlations have to be considered in
the following evaluation.

5.2 Attribute-analysis of the face space

The investigation of which attributes are encoded in face
embeddings is done based on the attribute prediction per-
formance of the MAC. This is done in two degrees of detail.
First, to get an overview, the prediction performance of
the attributes is determined at two difficulty-levels. 100%
RCP (hard) refers to the use of all samples under the
given circumstances. 50% RCP (easy) refers to the 50%
the predictions of which the classifier is most sure about
its correctness. Second, the prediction performance of each
attribute is analysed over a wide and continuous range of
confidence-levels.

For CelebA, Table 3 shows the two-level prediction
performance including the assigned predictability classes.
Figures 3, 4 and 5 show the prediction performance at
the continuous RCP range of [0.5, 1] for all investigated
face embeddings, FaceNet (FN), CosFace (CF), and ArcFace
(AF). In general, two observations can be made. First, the
prediction performance of lower RCP-levels is generally
stronger than for higher RCP-levels. This demonstrates that
the MAC learned to make reliable predictions of the CelebA
dataset. Second, the prediction performance on FaceNet
and CosFace is always slightly higher than the prediction
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TABLE 2: Analysis of the annotation correlation and the
corresponding attribute prediction performance: a 7→ b
refers to the balanced accuracy when using the label of
attribute a as the prediction for attribute b and vice versa.
The correlation is given by the Pearson coefficient ρ. The
10 highest correlated attributes are investigated on both
databases, CelebA and LFW. Only a few attribute correla-
tions show strong influences on the prediction performance.

Accuracy

Attribute a Attribute b ρ(a, b) a 7→ b b 7→ a

C
el

eb
A

Wearing Lipstick Heavy Makeup 0.80 91.1% 89.1%

Smiling High Cheekbones 0.68 84.3% 84.0%

Smiling Mouth Open 0.54 76.8% 76.8%

Double Chin Chubby 0.53 74.2% 79.5%

Sideburns Goatee 0.51 74.4% 76.9%

Wearing Lipstick Attractive 0.48 74.0% 74.0%

Wearing Lipstick Arched Eyebrows 0.46 76.0% 70.4%

Goatee Mustache 0.45 77.4% 68.5%

Wearing Lipstick No Beard 0.42 78.2% 65.6%

5 o Clock Shadow Male 0.42 63.3% 82.8%

L
F

W

Heavy Makeup Wearing Lipstick 0.64 77.7% 87.5%

Wearing Lipstick Wearing Earrings 0.60 71.1% 92.0%

Wearing Earrings Wearing Necklace 0.57 74.8% 83.2%

5 o Clock Shadow Mustache 0.55 85.0% 71.3%

Smiling High Cheekbones 0.54 86.5% 69.6%

Heavy Makeup Wearing Earrings 0.51 65.4% 91.4%

Wearing Necklace No Beard 0.49 75.4% 73.6%

Strong No.-Mou. Lines Smiling 0.48 76.8% 71.9%

Heavy Makeup Attractive Woman 0.46 79.8% 68.1%

Wearing Lipstick Attractive Woman 0.45 83.6% 65.1%

performance on ArcFace. The reason for this might be the
large angular margin principle of ArcFace that distorts the
feature space more incoherently and thus, makes it harder
for estimators to learn existing patterns. In the other side, the
embedding size seem to have less effect on the predictability
since the smallest and largest embeddings (FaceNet-128,
CosFace-1024) both achieve higher predictabilities than Ar-
cFace (512). To summarize, many attributes from CelebA
achieve a high prediction accuracy on all three face recog-
nition models. This includes demographic characteristics,
hairstyles, haircolors, and beardtypes. Additionally, the
person’s accessories are encoded with high details in the
deeply-learned features.

For LFW, the two-level prediction performance includ-
ing the assigned predictability classes is shown in Table 4.
The grey highlights refer to results with limited validity
since the label-cleaning process eliminated many samples
with low-quality attribute annotations. The low number of
train- and testing-samples might explain the weak predic-
tion performance for some attributes, such as Baby, Sun-
glasses, and Mouth. Figures 3, 4 and 5 present the prediction
performance at the continuous RCP range of [0.5, 1] for all
three embedding types. A lower RCP-level states a higher
confidence of the classifier and thus, a higher balanced
accuracy of the predicted attribute. For a few attributes,
such as Sideburns, a counteracting behaviour is observed for
low RCP-level. These might be explained by low annotation
qualities of the ground truth [44]. Comparing the results
of LFW with the results of CelebA shows that similar

TABLE 3: Prediction performance on CelebA: the perfor-
mance is based on FaceNet (FN), CosFace (CN), and ArcFace
(AF) embeddings and is reported in terms of balanced accu-
racies at two difficulty scenarios: 100% RCP (hard) and 50%
RCP (easy). ++,+, and 0 state the assigned predictability
class.

100% RCP 50% RCP

Attribute FN CF AF FN CF AF

D
em

o Male++ 98.9% 97.1% 98.4% 99.9% 99.9% 99.9%

Young+ 85.5% 82.7% 83.6% 96.4% 94.3% 94.5%

S
k

in Pale Skin+ 76.0% 77.5% 71.9% 87.1% 90.0% 83.0%

Rosy Cheeks+ 83.4% 85.8% 78.2% 96.3% 94.9% 81.7%

H
ai

rs
ty

le

Bald++ 95.7% 95.4% 94.0% 100.0% 100.0% 100.0%

Bangs++ 91.7% 92.5% 89.3% 99.4% 99.6% 98.3%

Receding Hairline+ 85.4% 84.6% 82.5% 96.4% 96.3% 94.2%

Sideburns++ 92.8% 91.7% 92.1% 90.0% 96.2% 99.7%

Straight Hair0 68.6% 69.0% 70.7% 79.9% 80.0% 82.0%

Wavy Hair0 74.4% 74.5% 76.6% 86.4% 86.7% 89.4%

H
ai

rc
o

lo
r Black Hair+ 83.7% 84.5% 81.5% 96.6% 97.0% 94.3%

Blond Hair++ 91.9% 91.8% 90.1% 99.3% 99.4% 98.3%

Brown Hair+ 76.5% 78.2% 75.9% 90.1% 91.2% 88.3%

Gray Hair++ 93.0% 92.9% 91.1% 99.6% 99.4% 98.8%

B
ea

rd
5 o Clock Shadow+ 86.9% 85.6% 85.8% 99.6% 99.2% 99.0%

Goatee++ 93.4% 90.8% 91.8% 97.2% 100.0% 98.9%

Moustache++ 92.2% 87.9% 89.7% 100.0% 94.4% 98.8%

No Beard++ 92.1% 89.8% 90.8% 99.4% 99.4% 99.0%

F
ac

e
G

eo
. Chubby+ 86.5% 86.2% 83.1% 96.5% 97.4% 95.4%

Double Chin+ 86.6% 87.4% 82.9% 96.9% 98.7% 95.4%

High Cheekbones+ 78.5% 82.7% 72.2% 91.6% 95.0% 82.6%

Oval Face0 63.4% 64.6% 61.9% 70.8% 72.3% 68.1%

P
er

io
cu

la
r Arched Eyebrows+ 79.8% 80.1% 77.0% 93.3% 93.6% 89.5%

Bags Under Eyes0 72.1% 74.6% 70.7% 80.6% 84.3% 80.7%

Bushy Eyebrows+ 83.4% 83.1% 78.5% 95.9% 95.5% 91.9%

Narrow Eyes0 66.5% 70.2% 60.7% 75.4% 80.0% 66.7%

M
o

u
th Big Lips0 74.6% 71.5% 68.8% 86.4% 83.7% 78.7%

Mouth Slightly Open+ 74.5% 82.9% 67.5% 86.5% 95.5% 76.5%

Smiling+ 80.1% 86.7% 71.7% 92.9% 97.7% 82.1%

N
o

se Pointy Nose0 71.7% 70.8% 69.3% 83.1% 83.1% 78.9%

Big Nose0 77.4% 76.7% 75.8% 88.1% 86.7% 87.1%

A
cc

es
so

ri
es

Eyeglasses++ 97.3% 94.0% 90.6% 99.8% 99.7% 98.7%

Heavy Makeup++ 90.1% 90.5% 88.7% 99.2% 99.5% 98.5%

Wearing Earrings+ 79.2% 78.8% 77.0% 94.8% 93.6% 91.6%

Wearing Hat++ 95.4% 95.1% 92.8% 99.4% 99.3% 99.0%

Wearing Lipstick++ 92.8% 92.7% 91.4% 99.4% 99.7% 98.7%

Wearing Necklace0 71.8% 71.9% 71.4% 86.9% 86.5% 84.2%

Wearing Necktie+ 83.7% 82.9% 82.1% 98.5% 98.1% 98.0%

O
th

er Blurry0 74.3% 76.7% 68.2% 85.2% 89.4% 78.4%

Attractive+ 79.6% 79.6% 77.9% 92.4% 92.4% 89.6%

prediction performances are achieved on attributes occur-
ring in both datasets. Therefore, our label-cleaning process
removed low-quality attribute-labels but did not result in a
significant bias of the data. Due to the entangled patterns
encoded in the templates some attributes, such as Bold,
Bangs, and Goatee, are easy to learn and thus, achieve high
performances. For some attributes, such as High Cheekbones,
and Smiling, the MAC prediction performance is lower
than for the single classifier approach reported in [29]. This
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TABLE 4: Prediction performance on LFW: the performance is based on FaceNet (FN), CosFace (CF), and ArcFace (AF)
embeddings and is reported in terms of balanced accuracies at two difficulty scenarios: 100% RCP (hard) and 50% RCP
(easy). ++,+, and 0 state the assigned predictability class. Grey highlighting refers to reduced expressiveness due to limited
data after the label-cleaning process.

100% RCP 50% RCP

Attribute FN CN AF FN CN AF

D
em

o
g

ra
p

h
ic

s

Male++ 98.3% 96.9% 83.9% 99.5% 99.6% 94.2%

Baby0 55.1% 49.9% 49.9% 50.0% 50.0% 50.0%

Child0 68.8% 73.1% 57.5% 75.8% 85.5% 52.4%

Youth+ 79.9% 81.8% 70.5% 93.1% 94.4% 79.8%

Middle Aged+ 88.4% 88.6% 74.0% 95.2% 97.9% 82.9%

Senior++ 99.6% 97.8% 83.9% 100.0% 100.0% 88.4%

Asian++ 95.5% 90.4% 66.2% 100.0% 97.3% 69.6%

White++ 97.4% 94.4% 73.6% 99.4% 99.1% 81.4%

Black++ 95.3% 92.3% 63.2% 98.3% 100.0% 53.6%

Indian+ 85.2% 63.0% 50.2% 92.5% 50.0% 54.7%

S
k

in

Rosy Cheeks0 67.2% 71.0% 58.8% 73.0% 77.1% 64.3%

Shiny Skin+ 82.1% 89.4% 67.9% 89.7% 99.9% 75.6%

Pale Skin0 68.0% 73.1% 62.9% 79.9% 83.2% 67.2%

Flushed Face0 66.5% 73.9% 55.5% 77.5% 77.5% 52.3%

H
ai

rs
ty

le

Curly Hair0 69.0% 72.6% 61.7% 77.8% 83.5% 68.7%

Wavy Hair++ 95.0% 96.7% 80.5% 99.7% 99.7% 83.3%

Straight Hair 67.5% 69.5% 59.8% 76.8% 80.0% 65.5%

Receding Hairline+ 83.3% 83.9% 73.0% 93.5% 95.0% 84.9%

Bangs++ 97.0% 94.9% 64.1% 100.0% 100.0% 50.0%

Bald++ 93.6% 84.2% 75.8% 97.9% 96.4% 75.0%

Sideburns++ 98.9% 98.5% 84.1% 99.7% 99.7% 89.2%

H
ai

rc
o

lo
r Black Hair++ 90.4% 89.0% 65.6% 96.5% 96.4% 61.5%

Blond Hair++ 95.2% 94.6% 71.7% 98.8% 100.0% 55.6%

Brown Hair+ 81.5% 84.1% 71.9% 91.9% 95.3% 82.7%

Gray Hair++ 98.8% 96.5% 88.4% 100.0% 100.0% 93.9%

B
ea

rd

No Beard++ 98.1% 94.9% 83.9% 100.0% 100.0% 92.1%

Moustache++ 98.5% 93.7% 79.7% 99.3% 96.8% 78.1%

5 o Clock Shadow++ 96.5% 95.7% 83.8% 99.6% 99.7% 92.4%

Goatee++ 94.5% 84.8% 70.0% 100.0% 100.0% 100.0%

F
ac

e
G

eo
m

et
ry

Oval Face++ 82.7% 90.4% 71.6% 95.4% 96.8% 75.8%

Square Face++ 99.1% 96.3% 89.1% 100.0% 99.6% 96.3%

Round Face+ 84.2% 71.4% 49.6% 100.0% 100.0% 50.0%

Round Jaw+ 70.6% 84.7% 60.8% 81.1% 95.0% 58.4%

Double Chin++ 91.5% 96.0% 81.1% 100.0% 100.0% 88.7%

High Cheekbones++ 79.9% 96.9% 73.3% 90.4% 99.9% 81.8%

Chubby+ 85.5% 86.1% 74.3% 98.0% 97.5% 79.4%

Obstructed Forehead++ 85.9% 93.2% 65.0% 99.9% 98.3% 61.3%

Partially Visible F.+ 85.2% 85.0% 65.9% 94.0% 95.7% 50.0%

Fully Visible F.+ 85.9% 88.7% 71.8% 95.4% 98.2% 82.2%

100% RCP 50% RCP

Attribute FN CN AF FN CN AF

P
er

io
cu

la
r

Eyes Open0 60.4% 70.9% 54.4% 63.6% 71.7% 54.8%

Brown Eyes+ 82.1% 84.8% 64.0% 92.8% 93.9% 66.8%

Bags Under Eyes++ 87.2% 93.3% 73.7% 95.4% 98.3% 83.5%

Narrow Eyes+ 77.1% 83.2% 66.2% 86.3% 92.3% 74.1%

Bushy Eyebrows++ 96.3% 95.7% 83.8% 99.1% 98.8% 91.7%

Arched Eyebrows+ 85.3% 86.6% 71.6% 94.5% 96.1% 76.8%

M
o

u
th

Mouth Closed+ 73.2% 85.0% 64.0% 83.9% 95.9% 72.4%

Mouth Slightly Open+ 73.8% 89.1% 61.8% 83.0% 96.6% 65.1%

Mouth Wide Open+ 66.6% 85.5% 50.8% 59.9% 90.9% 50.0%

Teeth Not Visible+ 70.0% 84.8% 65.2% 75.3% 99.8% 58.3%

Smiling++ 72.0% 93.8% 67.9% 81.3% 99.7% 75.9%

Big Lips++ 87.6% 92.5% 57.3% 98.0% 92.3% 57.8%

N
o

se

Big Nose+ 84.5% 88.8% 71.6% 93.6% 97.3% 81.5%

Pointy Nose++ 96.5% 95.4% 71.5% 100.0% 100.0% 71.3%

Str. No.-Mou. Lines++ 70.0% 94.2% 61.7% 80.7% 99.3% 71.6%

A
cc

es
so

ri
es

Heavy Makeup++ 96.7% 96.3% 69.9% 99.0% 100.0% 57.1%

Wearing Hat++ 87.2% 91.7% 67.9% 96.9% 98.3% 53.8%

Wearing Earrings++ 91.7% 91.0% 73.3% 97.9% 97.8% 72.9%

Wearing Necktie+ 84.6% 81.5% 72.8% 93.5% 91.1% 75.2%

Wearing Necklace+ 83.7% 86.0% 74.1% 92.1% 95.1% 82.5%

Wearing Lipstick++ 98.5% 99.1% 75.9% 99.5% 100.0% 74.0%

No Eyewear++ 95.5% 90.4% 86.1% 98.2% 97.7% 90.3%

Eyeglasses++ 96.1% 87.6% 90.0% 98.4% 97.3% 95.6%

Sunglasses+ 71.6% 82.7% 50.8% 62.4% 100.0% 50.0%

E
n

v
ir

o
n

m
en

t

Blurry 61.4% 78.6% 57.2% 66.3% 89.5% 58.6%

Harsh Lighting+ 76.0% 87.3% 61.3% 89.1% 90.8% 57.9%

Flash++ 78.3% 92.6% 58.3% 88.3% 98.8% 51.5%

Soft Lighting 65.7% 73.8% 60.2% 72.3% 84.8% 66.1%

Outdoor+ 77.2% 88.8% 60.8% 81.9% 97.0% 65.9%

O
th

er

Frowning++ 78.3% 97.4% 72.4% 88.8% 99.9% 79.5%

Color Photo0 72.8% 70.6% 54.0% 75.0% 50.0% 60.0%

Posed Photo+ 76.0% 88.3% 60.7% 80.9% 98.4% 63.0%

Attractive Man0 74.4% 75.0% 65.0% 85.1% 85.9% 74.2%

Attractive Woman++ 95.3% 95.7% 75.1% 100.0% 98.6% 71.4%

shows that a single classifier with higher capacity trained on
these attributes might result in stronger prediction perfor-
mances than the MAC approach. In general, the prediction
performance on FaceNet and CosFace is stronger than on
ArcFace. Due to the large angular margin principle, ArcFace
embeddings contain more complex attribute patterns. For
the experiments on LFW, less data was available for training,
since we needed to filter low-quality labels to guarantee a
high validity of the results. Therefore, it can be expected that
the performance on ArcFace might be higher if with more
training data is available. Similarly to FaceNet, many soft-
biometric attributes are strongly encoded in CosFace em-
beddings. Moreover, attributes belonging to the categories

Mouth and Environment show a much higher predictabil-
ity for CosFace than for FaceNet. In contrast, only some
attribute categories, such as Haircolor, Hairstyle, Accessories,
and Beard, show a high predictability on ArcFace embed-
dings. CosFace and ArcFace are both margin-based losses.
However, only the additive angular margin loss ArcFace
showed reduced predictability results in comparison to
triplet-loss and CosFace. This demonstrates an effect of the
training loss on the attribute predictability. Moreover, the
effect of the training loss might be stronger than a potential
effect of the embedding size on the attribute predictabil-
ity since the lowest- and highest-dimensional embeddings
(FaceNet 128, CosFace 1024) both performed well in pre-
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dicting soft-biometric attributes while the prediction perfor-
mance on ArcFace embeddings of 512 dimensions is smaller.
Nevertheless, many attributes can be predicted from the
embeddings with a high degree of reliability. This can be ob-
served for demographics, hairstyles, haircolors, beard types,
accessories. However, as demonstrated in Section 5.1, there
is a high correlation between the accessories Wearing Lipstick
and Heavy Makeup that strongly affects the prediction per-
formance of the MAC. Consequently, for these attributes, it
can not be well differentiated if both are encoded in the face
embedding or just one of these. Additionally, characteristics
about the face geometry such as face shape, the presences
of a double chin, and forehead visibility can be determined.
Attributes that do not directly belong to the user, such as
lighting conditions or image blurriness, could not reliably
predicted with the MAC. It should be noted that the high
correlation to various accessories might lead to the high
predictability of Attractive Woman.

5.3 Category-wise analysis of the face space

In the previous section, we discussed the results on the level
of single attributes. We showed that from the 113 inves-
tigated attributes, 39 attributes belong to the class easily-
predictable, 35 belong to class predictable and 39 belong to
the class hardly-predictable. In this section, we discuss the
findings in a coarse to fine manner and on a more abstract
level, the level of attribute categories.

Table 5 summarizes the categories of the attributes in
these three predictability classes, to obtain a more general
overview of the encoded information in the face embed-
dings. To provide a more complete view of the problem,
this table also includes observations from related works,
such as findings about head pose [37] and image quality
[4]. Although, face recognition models are trained for recog-
nition, attributes that belong to the categories such as Face
Geometry, Periocular Area, Nose, and Mouth, are not easily-
predictable. In contrast, non-permanent factors that modern
face recognition systems aim to be robust at, turn out to
be easily-predictable. For instance, this includes Hairstyles,
Haircolors, Beards, Accessories, Head Poses, and Social Traits

TABLE 5: Categorized summary of the predictability classes
including findings of related works.

Easily-predictable Predictable Hardly-predictable

Demographics Face Geometry Skin

Hairstyle Periocular Mouth

Haircolor Nose Environment

Beard Image Quality [4]

Accessories

Head Pose [37]

Social Traits [38]

Figure 6 provides a more detailed predictability-
overview of the attribute categories. The analysis is divided
between both investigated face embeddings. On the axes,
the prediction performance of two RCP-levels are shown.
Each figure is divided into three areas representing the three
predictability classes. The grey area represents the hardly-
predictable class (0), the light green area represents the
predictable class (+), and the dark green area represents

the easily-predictable class (++). Moreover, each point in-
dicate the average performance of the attributes belonging
to the attribute-category. The elliptic shaded area around
each point indicates the (standard) deviation of individual
performance of the corresponding attributes. The x-axis of
the shaded area represents the standard deviation of the
performance at 100% RCP (more realistic circumstances),
while the y-axis of the shaded are represents the deviation of
the performance at 50% RCP (more idealistic circumstances).

In Figures 6a and 6b, the predictability of the attribute-
categories are shown for FaceNet. Figures 6c and 6d show
the predictability of the attribute-categories for CosFace and
for ArcFace, the predictability of the attribute-categories
are shown in Figures 6e and 6f. It can be seen that many
attribute-categories are richly encoded in the FaceNet and
CosFace embeddings. This includes different Haircolors,
Hairstyles, Beards, Accessories, and Demographics, as well
as attributes that belong to the Face Geometry, the Nose
and Periocular area. For ArcFace, it can be seen that more
attribute-categories belong to the grey (hardly-predictable)
area. Due to the large angular margin principle of ArcFace,
the face embeddings contain attribute patterns of higher
complexity. The reduced amount of training data combined
with the additive angular margin loss of ArcFace might be
one of the reasons that many attribute categories belong
to the hardly-predictable class. Both, the reduced amount
of training data due to the label cleaning process as well
as the more complex attribute pattern due to the ArcFace
loss might it more challenging for the MAC to accurate
predict attributes. However, the large elliptic shades in
the grey areas indicate that these categories possess some
highly predictable attributes as well. The high-level view on
the attribute-categories lead to some valuable information
loss in order to simplify the relations. Our investigation
methodology can only state what information is stored in
biometric face embeddings, but does not allow statements
about what attributes are not encoded. Consequently, we
can only surely conclude about four attribute-categories.
The attributes Haircolor, Hairstyle, Beard, and Accessories are
strongly encoded in ArcFace embeddings.

The reason that face recognition networks tend to retain
soft-biometric information might lie in their correlation to
their user’s identity. Recent works [2], [39], [44] showed
that soft-biometric attributes of a face provide enough in-
formation to be successful applied in verification and iden-
tification tasks. Consequently, there is a strong link between
these attributes, the appearance of a person and its identity.
This link might be the reason that deep networks trained for
identification retain these attributes.

5.4 Implications of our findings

The findings of this work might have important conse-
quences for future research in privacy-preserving and bias-
mitigating face recognition.

5.4.1 Privacy in face recognition

The experiments demonstrated major privacy-risks in face
recognition systems. For many applications, the user of a
face recognition system provides his/her biometric data
solely for recognition. The embeddings extracted from a face
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(a) Demographics and Beard (b) Hairstyle (c) Haircolor

(d) Periocular and Face Geometry (e) Mouth, Nose, and Skin (f) Accessories and Environment

Fig. 3: Accuracy-Reliability plots for the CelebA database on FaceNet embeddings. The balanced accuracy of the MAC
is shown for a continuous RCP range of [0.5, 1]. The MAC performance of the 40 attributes is divided into 6 categories
represented by subfigures (a)-(f) to allow a simple category-based analysis.

(a) Demographics and Beard (b) Hairstyle (c) Haircolor

(d) Periocular and Face Geometry (e) Mouth, Nose, and Skin (f) Accessories and Environment

Fig. 4: Accuracy-Reliability plots for the CelebA database on CosFace embeddings. The balanced accuracy of the MAC
is shown for a continuous RCP range of [0.5, 1]. The MAC performance of the 40 attributes is divided into 6 categories
represented by subfigures (a)-(f) to allow a simple category-based analysis.
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(a) Demographics and Beard (b) Hairstyle (c) Haircolor

(d) Periocular and Face Geometry (e) Mouth, Nose, and Skin (f) Accessories and Environment

Fig. 5: Accuracy-Reliability plots for the CelebA database on ArcFace embeddings. The balanced accuracy of the MAC
is shown for a continuous RCP range of [0.5, 1]. The MAC performance of the 40 attributes is divided into 6 categories
represented by subfigures (a)-(f) to allow a simple category-based analysis.

recognition systems should only contain identity-related
information in order to prevent a potential misuse (func-
tion creep) of this private data. However, our experiments
demonstrated that face embeddings also contain informa-
tion of privacy-sensitive attributes, raising major privacy-
risks. Consequently, future works have to deal with these
privacy-issues, for instance by providing solutions to sup-
press attribute information in face embeddings.

5.4.2 Bias in face recognition

Many attributes are encoded in face embeddings as our
experiments have shown. Although face recognition em-
beddings are trained to be robust against non-permanent
factors, the results demonstrate that especially these at-
tributes are accurately predictable from face templates. This
includes information about Hairstyles, Haircolors, Beards, and
Accessories for ArcFace and more attributes for FaceNet.
The existence of these attribute-traits in face embeddings
indicates that current face recognition systems are still not
robust to these non-demographic factors as it was shown in
recent works [3], [7], [50]. Consequently, future works have
to propose solutions to also mitigate non-demographic bias
in face recognition.

6 CONCLUSION

The current success of face recognition systems is driven by
the advances of deeply-learned face embeddings. However,
these embeddings contain more information then just the
person’s identity as recent works have shown. For instance,

demographics, image characteristics, and social traits are
additionally encoded in these embeddings. This might lead
to biased decisions in face recognition systems and raises
major privacy issues. To mitigate these privacy and bias
concerns, deep knowledge about the encoded information
in face embeddings is needed. Consequently, in this work,
we provide a more in-depth analysis of what information
is stored in biometric face embeddings. We analysed 73 dif-
ferent soft-biometric attributes towards their predictability
from three popular face embeddings over a wide range of
difficulty-levels. To enhance the understandability of the
results, we additionally investigated the predictability of
several categories of attributes. This was done assigning
each group into one of three predictability classes as well as
by analysing the predictability in a continuous range. The
results demonstrate the many attributes are encoded in bio-
metric face embeddings. About one-third of the analysed at-
tributes can be classified as easily-predictable, another third
as predictable, and one-third is only hardly-predictable from
face embeddings. We could show that especially attributes
related to haircolor, hairstyles, beards, and accessories are
strongly encoded in face embeddings. Although that face
recognition templates are trained to be robust against non-
permanent factors, we demonstrated that specifically these
attributes are easily-predictable from face embeddings. We
hope that future works build on the knowledge of this work
to develop accurate face recognition solutions that addi-
tionally focuses on mitigating bias and privacy concerns of
various origins.
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(a) FaceNet - Part 1/2 (b) FaceNet - Part 2/2

(c) CosFace - Part 1/2 (d) CosFace - Part 2/2

(e) ArcFace - Part 1/2 (f) ArcFace - Part 2/2

Fig. 6: Visual summary of the categorized attribute predictability. The axes represent the balanced prediction accuracy at
two RCP-levels. The figures are divided into three areas representing the three predictability-classes. The dark green are
indicates the class easily-predictable (++), the light green area indicates the class predictable (+), and the grey area indicates
the hardly-predictable (0). Each point represent the average performance of an attribute category. The shaded area around
each point represents the (standard) deviation of the individual attribute-performances belonging to the category. Many
attributes are highly-encoded in the face embeddings.
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(a) Accessories (b) Age, Gender, and Attractiveness (c) Ethnicty and Haircolor (d) Hair

(e) Beard and Forehead (f) Face Geometry (g) Periocular (h) Mouth

(i) Nose and Skin (j) Others

Fig. 7: Accuracy-Reliability plots for the LFW database on FaceNet embeddings. The balanced accuracy of the MAC is
shown for continuous RCP range of [0.5, 1]. The MAC performance of the 73 attributes is divided into 10 categories
represented by subfigures (a)-(j) to allow a simple category-based analysis.
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