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Abstract—In the last decade, a large number of software
repositories have been created for different purposes. In this
paper we present a survey of the publicly available repositories
and classify the most common ones as well as discussing the
problems faced by researchers when applying machine learning
or statistical techniques to them.
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I. INTRODUCTION

Many research studies in the field of Empirical Software

Engineering are based on a few case studies or small sam-

ples. For instance, Mockus et al. [1] found that free / open

source software contained fewer defects than proprietary

systems, basing their conclusions on two cases of open

source projects (Apache and Mozilla). Another example is

the distribution of bugs in software, which was recently

found to be a Weibull distribution [2] based on some releases

of a single case study (the Eclipse IDE). But this result was

refuted by a report with contradictory results, stating that

the distribution of bugs can also be described using other

statistical models [3].

Empirical research that is based on small datasets will

have to refute contradictory results because of lack of gener-

alisation. However, gathering a large amount of software and

data for empirical studies can be a cumbersome task, prone

to the introduction of unintentional errors, and potentially

causing more problems than they solve.

The popularization and rise of the free / open source

software development phenomenon has made available vast

amounts of data which are useful for research purposes.

Thus, we can find several opportunities in the research

community to obtain data for large samples of software

projects, and in an integrated and structured manner, so

these repositories can be easily queried to extract informa-

tion. Even some closed repositories with more specialized

information have appeared.

These repositories can be applied in any area of the

Empirical Software Engineering field. We highlight the case

of Search Based Software Engineering (SBSE), because it

is particularly suitable for large amounts of data 1 [4].

1http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

SBSE deals with research into search and metaheuris-

tic techniques in software engineering and has become

an important area of research. Many SBSE problems are

composed of one or more fitness functions that evaluate a

search space, which can be generated while searching for

the solution or from repositories forming a combinatorial

problem from dataset attributes.

Another source of data is simulation, for example, using

System Dynamics. Shepperd and Kaoda [5] use simulated

data to compare effort estimation methods and it can share

some of the problems highlighted later on. We however do

not review the technique and specific issues of this approach,

and focus on the case of reusable research datasets.

In this position paper we want to provide a preliminary

review and classification/characterization of currently avail-

able repositories as well as to highlight the most common

problems that users and researchers face when dealing with

such repositories.

II. SOFTWARE ENGINEERING REPOSITORIES

Software projects leave a trail in different kinds of repos-

itories, and this trail can be used to reconstruct the history

of the project, and to study the software development and

maintenance processes. We classify this trail in the following

categories:

• Source code

This is the most obvious product of the a software

project. Source code can be studied to measure its

properties, such as size or complexity.

• Source Code Management Systems (SCM)

SCM repositories make it possible to store all the

changes that the different source code files undergo

during the project. Also, SCM systems allow for work

to be done in parallel by different developers over the

same source code tree. Every change recorded in the

system is accompanied with meta-information (author,

date, reason for the change, etc) that can be used for

research purposes.

• Issue tracking systems

Bugs, defects and user requests are managed in issue

tracking systems, where users and developers can fill

tickets with a description of a defect found, or a desired

new functionality. All the changes to the ticket are



recorded in the system, and most of the systems also

record the comments and communications among all

the users and developers implied in the task.

• Messages between developers and users

In the case of free / open source software, the projects

are open to the world, and the messages are archived

in the form of mailing lists, which can also be mined

for research purposes. There are also some other open

message systems, such as IRC or forums. Other projects

which are developed in public can also store messages,

but it is unusual to have that information for research

purposes.

• Meta-data about the projects

As well as the low level information of the software

processes, we can also find meta-data about the soft-

ware projects which can be useful for research. This

meta-data may include intended-audience, program-

ming language, domain of application, license (in the

case of open source), etc.

• Usage data

In the case of the user side, the trail that projects

leave is virtually invisible. There are statistics about

software downloads on the Internet, but that is not

the only way users get their software. Some of the

research datasets we describe in this paper include

information about usage data, which is recorded thanks

to the collaboration of users.

III. RESEARCH DATASETS

As stated previously there is a large number of reposi-

tories that have been created in the last decade that allow

researchers to study different aspects within the software

engineering field with statistical or data mining techniques.

In this paper we analyze the following repositories:

• FLOSSMole [6]

http://flossmole.org/

• FLOSSMetrics [7]:

http://flossmetrics.org/

• PROMISE (PRedictOr Models In Software Engineer-

ing) [8]:

http://promisedata.org/

• Qualitas Corpus (QC) [9]:

http://qualitascorpus.com/

• Sourcerer Project [10]:

http://sourcerer.ics.uci.edu/

• Ultimate Debian Database (UDD) [11]

http://udd.debian.org/

• Bug Prediction Dataset (BPD) [12], [13]:

http://bug.inf.usi.ch/

• The International Software Benchmarking Standards

Group (ISBSG) [14]

http://www.isbsg.org/

• Eclipse Bug Data (EBD) [11], [15]:

http://www.st.cs.uni-saarland.de/

softevo/bug-data/eclipse/

• Software-artifact Infrastructure Repository (SIR) [16]

http://sir.unl.edu

• ohloh [17]

http://www.ohloh.net/

• SourceForge Research Data Archive (SRDA) [18]

http://zerlot.cse.nd.edu/

IV. CLASSIFICATION OF THE DATASETS

We can classify the repositories into several orthogonal

dimensions:

• Type of information stored in the repositories:

– Meta-information about the project itself and the

people that participated.

– Low-level information

∗ Mailing Lists (ML)

∗ Bugs Tracking Systems (BTS) or Project

Tracker System (PTS)

∗ Software Configuration Management Systems

(SCM)

– Processed information. For example Project man-

agement information about the effort estimation

and cost of the project.

• Whether the repository is public or not

• Single project vs. multiprojects. Whether the repository

contains information of a single project with multiples

versions or multiples projects and/or versions.

• Type of content, open source or industrial projects

• Format in which the information is stored. The repos-

itories analysed here provide the information using

different formats or technologies for accessing the

information:

– Text. It can be just plain text, CSV (Comma Sepa-

rated Values) files, Attribute-Relation File Format

(ARFF) [19] or its variants

– Through databases. Downloading dumps of the

database.

– Remote access such as APIs of Web services or

REST.

V. QUALITY ISSUES / OPEN PROBLEMS

We can also classify the problems related to the extrac-

tion of information or from the actual data stored in the

repositories.

A. Problems generated from extracting the information

Robles et al. [20] describe the processes and tools to

extract information needed to analyse software repositories.

Although the process is quite similar to the general process

of data mining described by Fayyad et al. [21], it has it own

characteristics and difficulties. There is large variability in



Table I
SUMMARY OF THE REPOSITORIES

Meta-info Low-level

Info

Public? Single vs. Multi OSS Format/Access

FLOSSMole Yes No Yes Multi Yes DB dumps, text, DB access
FLOSSMetrics No Yes Yes Multi Yes DB dumps, web service, web
PROMISE Some

datasets
Some
datasets

Yes Multi Most datasets not
from OSS

Mostly ARFF

QC Yes Yes Yes Multi Yes CSV, source code, JAR
Sourcerer No Yes Yes Multi Yes DB dumps?
UDD Yes Yes Yes Single (Debian) Yes DB dump
BPD No Yes Yes Yes (5 Java Sys-

tems)
Yes CSV

ISBSG Project
manage-
ment data

No No Multi No Spreadsheet

EBD No yes Yes Single (Eclipse) Yes ARFF, CSV
SIR No Actual code

for testing
Needs registration
(commercial licence)

Multi Yes C/Java /C#

ohloh Yes Yes Yes Multi Yes Web service (limited)
SRDA Yes (from

SF.net)
Yes Needs registration,

only research
Multi Yes BD dumps

the formats and tools needed, standards, etc. that make the

data gathering process a very labour intensive one. Another

example is the mining of textual data to deal with bugs

for classification, clustering, etc. This is a difficult task

even with human intervention because change requests and

incident reports are often mixed together in the BTS or PTS.

B. Replicability

Replicability is one of the main reasons to adopt open

repositories [22]. Kitchenham [23] also discusses the risk of

replicating experiments without using the original sources. It

is a well known fact that in the data mining process, one of

the hardest tasks is to preprocess the data. However, trusting

the preprocessed data from others is a poisened chalice.

For example, Shepperd has reported differences between

using an original dataset or a preprocessed one downloaded

from the PROMISE repository [8]. Among the repositories

discussed, EBD not only contains the data but also the

necessary scripts to replicate the study.

C. Data quality problems related to machine learning

From the statistical and data mining point of view, we face

many of the generic problems we discuss in this section.

Therefore, in addition to specific tool issues (e.g., [24])

we need to be aware of many of the statistical and data

mining problems we may face when dealing with software

engineering repositories.

• Outliers.

Although this statistical problem is well known in the

literature, it is not always properly reported for example

in many estimation studies as stated by Turhan [25].

• Missing values and inconsistencies.

Some of the repositories such as the ISBSG, are

composed of a large number of attributes, however,

many of those attributes are missing values that need

to be discarded in order to apply machine learning

algorithms. There are also inconsistencies in the way

information is stored [26]. In this particular dataset,

cleaning inconsistencies (e.g., languages classified as

3GL or 4GL, Cobol 2 or Cobol II) can be risky.

• Redundant and irrelevant attributes and instances.

It is also well known that the existence of irrelevant

and redundant features in the datasets has a negative

impact in most data mining algorithms, which assume

a certain level of balance between the class attributes.

Feature Selection has been applied and studied by the

software engineering community, not so much instance

selection which needs further research (a few excep-

tions for effort estimation include [27], [28]). It is

known, however, that feature selection algorithms do

not perform well with imbalanced datasets, resulting

in a selection of metrics that are not adequate for

the learning algorithms. This problem can happen in

most effort estimation or defect prediction datasets.

For example, the ISBSG that has over 60 attributes

most of them are irrelevant or the 8000 repeated rows

in JM1 from NASA’s defect prediction datasets in

PROMISE. Also the defect prediction datasets such the

EB data are highly unbalanced. Some further research

into robust algorithms such as Subgroup Discovery

techniques is also needed [29] or weighting of attributes

and instances.

• Overlapping or class separability.

When dealing with classification, we may also face

the problem of overlapping between classes in which a

region of the data space contains samples from different

values for the class. We have found that many samples

from the NASA dataset contained in the PROMISE

repository are contradictory or inconsistent, many in-



stances have the same values for all attributes with the

exception of the class, making the induction of good

predictive models difficult.

• Data shifting.

The data shift problem happens when the test data

distribution differs from the training distribution.

Turhan [25] discusses the dataset shift problem in

software engineering (effort estimation and defect pre-

diction). It is customary in data mining, to preform

the evaluation using cross-validation, i.e., divide the

dataset into k-folds for training and testing and report

the averages of the k folds. This problem can easy

happen when we are dealing with small datasets [30].

Also when we are dealing with small datasets, it can

happen that the number of instances that remain in

the training dataset is skewed. Many software effort

estimation datasets are very small (around 20 effort

estimation datasets contained in PROMISE repository

contain just over a dozen samples, e.g., the Kemerer or

Telecom datasets)

• Imbalance.

This happens when samples of some classes vastly

outnumber the cases of other classes. Under this sit-

uation, when the imbalanced data is not considered,

many learning algorithms generate distorted models for

which (i) the impact of some factors can be hidden

and (ii) the prediction accuracy can be misleading. Al-

though this is a well-known problem in the data mining

community, this problem has not been addressed in

detail by the software engineering community. This

is typically addressed by preprocessing the datasets

with sampling techniques or considering cost in the

data mining algorithms (making the algorithms more

robust). This problem happens in many of the defect

prediction datasets (e.g. the PROMISE repository has

around 60 defect prediction datasets). The previous

problems, redundant and irrelevant attributes, overlap-

ping, data shifting and small datasets are made worse

when datasets are imbalanced [31].

• Metrics.

In relation to the measurements, either from the social

network data, mailing lists or code, there can be differ-

ences depending on the tool used in those repositories

that contain source code such FLOSMetrics, EBD,

or BPD. For example, Lincke et al. [32] report on

large differences in metrics collected from the code

depending on the tool used.

• Evaluation metrics and the evaluation of models.

For example, Shepperd and MacDonell [33] report on

the the use and abuse of using MMRE (Mean Magni-

tude of Relative Error) when dealing with effort estima-

tion. Despite the fact that MMRE has been known to be

biased and favours underestimation, perhaps because it

is easy to apply, it has been used to wrongly validate

and compare different estimation methods or models.

Furthermore, as such metrics can be used as fitness

functions in metaheuristic algorithms [34], the solutions

obtained may be suboptimal.

VI. CONCLUSIONS

In this position paper we have discussed the current

data repositories that are available for Software Engineering

research. We classified them and discussed some common

problems faced when extracting information from them.

We have also discussed data related problems when ap-

plying machine learning techniques. Although some of the

problems such as outliers or noise have been extensively

studied in software engineering, others need futher research,

in particular, imbalance and data shifting from the machine

learning point of view and replicability in general, providing

not only the data but also the tools to replicate the empirical

work.
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