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Abstract—Simulation is still the most widely adopted perfor-
mance evaluation technique in mobile ad hoc network research,
in spite of a growing number of questions about the fidelity
of this technique. Implementation-based testing and evaluation
of wireless networks tends to produce believable results, but
the technique sometimes suffers from poor repeatability, high
implementation cost, and complex experimental logistics. The
topic of this paper is software tools to enable implementation-
based experimental research on wireless networks. We review
some of the existing tools and propose the Flexible Internetwork
Stack (FINS) framework, our open-source solution for network
protocol implementation, integration, and testing. FINS aims to
provide researchers with monitoring, logging, and reconfiguring
utilities similar to the ones provided by simulation environments
or emulation testbeds. 1

I. INTRODUCTION

Various software tools are required to enable

implementation-based testing and evaluation of wireless

network protocols. Such tools have been developed by

individual researchers over the years, although their impact

on research community is still relatively small. This is in

contrast to simulation tools, like ns-2 or OPNET Modeler,

which tend to be used broadly across research institutions.

Some researchers have gone as far as proposing new

architectures for the network protocol stack, flexible enough

to support implementation-based experiments and fast

prototyping of network protocols.

In this paper, we introduce an architectural taxonomy and

functional classification of software tools and new network

architectures that support implementation-based experiments

across the network stack. We focus on tools and architectures

that provide dynamic and re-configurable features to conduct

network experiments, in particular in mobile ad hoc networks

(MANETs). We also discuss some of the principal design

challenges, concepts, and requirements of future software tools

to enable wireless network experimental work. Finally, we

propose the Flexible Internetwork Stack (FINS) Framework

to address these challenges, and we discuss its design require-

ments and architecture.

A number of research studies have employed

implementation-based experiments on MANETs, as surveyed

in [1]. However, the vast majority of MANET research still

relies primarily on simulation. Simulation-based studies face

1This material is based upon work supported by the National Science
Foundation under Grant Nos. 0916300 (Virginia Tech) and 0916283 (Bucknell
University).

questions about their fidelity [2]. An alternative is emulation,

a technique which combines simulation and implementation.

In [1], an emulator is defined as a set of tools which allow

the user to imitate a layer or more from the network stack

in a simulation environment while running the remaining

layers as real implemented systems. Emulation testbeds have

many advantages but they inherit some of the disadvantages

of simulation environments [3].

Implementation-based experiments run a fully functioning

network stack on top of a real world platform such as a

laptop or a handheld device. The MANIAC competition [4]

and the study in [5] are examples of implementation-based

experiments. Implementation-based experiments on wireless

networks face a set of logistical, evaluation, and imple-

mentation challenges. Logistical challenges include the need

for a significant number of people, equipments and spaces.

Evaluation challenges include the lack of repeatability and

the lack of standard benchmarking scenarios. Implementation

challenges include the lack of experimental software tools,

the different ways the protocol stack is implemented across

different platforms, as well as the high cost of implementation.

This paper discusses software tools that enable experimental

research in emerging wireless networks. In particular, we

describe the development of a framework, FINS, that provides

the researchers with monitoring, logging, and reconfiguring

utilities similar to the ones provided by simulation environ-

ments or emulation testbeds.

II. SOFTWARE TOOLS AND HARDWARE DEVICES FOR

WIRELESS NETWORK EXPERIMENTATION

We begin by providing two different taxonomies for soft-

ware tools and architectures which enable wireless network

experiments. Our classification covers software frameworks,

application programming interfaces (APIs) and libraries, as

well as new architectures for the network protocol stack. The

term experimental wireless network tools will be used for the

rest of this paper to refer to all of these. Then, we discuss the

use of mobile devices for wireless network experiments.

A. Software Tools
Our first classification scheme is based on the architectural

concepts adopted. Experimental wireless network tools can be

divided into clean slate tools and hybrid tools. In clean slate

tools, researchers propose an innovative architecture for the
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network protocol stack. These architectural ideas aim to avoid

the disadvantages of the layered architectures of the TCP/IP

stack while retaining some degree of modularity. Projects such

as Autonomic Network Architecture (ANA) [6], and CellNet

framework [7] are examples of clean slate tools.

In contrast, hybrid tools modify or combine features of

the layered stack with some clean slate features. Such mod-

ifications allow the implementation of cross-layer solutions

and inter-communication between any number of non-adjacent

layers. X-kernel [8], Iris [9], X-layer [10], OpenOnload [11],

and XL-interface [12] are examples of hybrid tools.

Our second classification scheme classifies the experimental

wireless network tools into four classes with respect to their

functional purposes. The first class contains tools which aim

to facilitate the testing and development of new protocols. For

example, tools such as CLICK [13], ProtoLib [14], and Profab

[15] provide researchers with a library of basic and intermedi-

ate level functions. These functions can be used to implement

larger modules such as a protocol or even an entire layer. Some

tools accelerate the development cycle by providing an API

which is used to implement a virtual platform-independent

layer. This virtual layer can be used to run experimental

protocols on top of a real stack, sacrificing some performance

for the sake of a unified implementation of the experimental

protocols regardless of the platform. Examples of platform-

independent APIs include VIPE [16] and GEA [17].

The second class contains the tools which provide generic

interfaces to interact with the existing layers and protocols.

These APIs provide a standard interface for the flow of data

between layers, as well as reading or tuning parameters within

a protocol or layer during run time. They work as a kind of

standard wrapper to access pre-implemented existing protocols

or layers during an experiment. Examples of such tools include

ULLA [18], DEC [19], Universal Convergence Layer (UCL)

[20], and XIAN [21].

The third class contains tools which provide managerial

features over a set of nodes. These tools give the user the

ability to batch experimental scenarios, broadcast the scenarios

among nodes, redirect the movement of nodes during the

experiments, and reconfigure network topologies. The goal of

these tools is to give researchers the same flexibility and us-

ability during implementation-based experiments as provided

by a typical network simulation tool. APE [22] and MTM [23]

are examples of this class.

The last class covers the tools which provide monitoring

and logging whether they adopt a centralized or distributed ap-

proach. Monitoring and logging tasks include trace collection,

trace aggregation, topology visualization, and data filtering.

Examples of this class include MMAN [24], APE View [25],

and Promox [26].

B. Mobile Devices

Mobile devices, including smartphones, PDAs, and tablets

are a natural fit for experimental networking research. Major

reasons that mobile devices are well suited for networking

research, especially when mobility is required, include:

• Small Size: Mobile devices are easier to transport and

store than even the smallest laptops. Additionally, it is

simple for a person to carry around a device.

• Low Power: Mobile devices are designed to have a battery

life that is measured in days rather than hours. This means

that experimenters can run longer experiments.

• Simple Interface: Most mobile devices include touch

screen interfaces which can be used while moving (unlike

laptop keyboards which are difficult to use while moving).

• Low Cost: Most mobile devices cost $500 or less, mean-

ing more devices can be purchased for the same amount

of money.

• Communication Capabilities: Most mobile devices in-

clude cellular connectivity, GPS receivers, IEEE 802.11,

and Bluetooth. Hence they offer more communication

capabilities than are found on most current laptops.

The major drawback of mobile devices is limited re-

sources. Mobile processors are less computationally-capable

than desktop and laptop processors. This is acceptable for

many networking experiments which are not computationally

demanding. Additionally, mobile devices have limited storage

space. The current storage medium of choice is the microSD

card, offering up to 16 and 32 GB of space. Depending on the

experiment, this may not be enough storage space.

III. DESIGN CHALLENGES, CONCEPTS, AND

REQUIREMENTS

In this section we discuss some design considerations,

implementation concerns, and functional requirements for fu-

ture experimental wireless network tools. Then, we compare

a selected set of previous and existing tools that represent

different taxonomies, according to which tools fulfill these

design concepts and requirements.

Cost of Implementation: Although clean slate tools are

attractive from the flexibility point of view, they face a

high cost of implementation. Due to the major differences

in the structure of the conventional network stack compared

to the clean slate architectures, major modifications to (or

a completely new implementation of) legacy protocols and

applications might be required.

Continuity of Support: The lack of continuity in research

projects causes many tools to become obsolete due to the

absence of a development and support team to update the

tool. As long as the proposed tool has not been made into

a commercial product, the only way to maintain continuity

is to build a strong open source development community of

researchers, developers, and other interested persons around

the tool.

Generality: One of the reasons why most of the previous

tools have not been deployed more widely is that they are

specialized for certain experiments. This reduces the ability

of interested researchers to extend the tool to reuse it in other

experiments. For example, when a tool provides a customized

environment to evaluate the performance of routing protocols

in a MANET, it may be difficult to reuse it for a comparison

study on transport protocols.
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Ease of Use: The availability of comprehensive docu-

mentation, ease of installation, ability to self-boot, and the

availability of managerial functions within the tool are major

criteria to make the tools widely adopted among the research

community. Support for various hardware platforms or even

different network hardware is also a major criterion that affects

the widespread deployment of a tool.

Reusability: The high reusability of a software tool’s com-

ponents, contributes to its success. CLICK [13] is a good ex-

ample for high reusability. To achieve similar high reusability,

future tools should adopt a modular architecture. Also, increas-

ing the granularity of modules increases their reusability. The

way the basic elements in CLICK have been used to implement

middle level modules, which in turn integrated to implement

high level modules such as IPv4 and IPv6, is an example of

an highly modular and granular architecture.

Portability: The ability to run the same tool on different

platforms makes the tool superior as compared to tools that run

on single platform. As mentioned section II-B, mobile devices

are currently platforms of great interest for wireless mobile

network experiments. Proposing a tool that runs on multiple

platforms including mobile devices will help researchers tackle

experimental scenarios that are currently challenging given the

limited mobility and power constraints of conventional laptops.

Meters and Knobs: Having a generic interface which allows

the user to control the behavior of the network protocols

during run time, regardless of their internal implementation

details, is an important functional requirement for such tools.

This control may be imposed directly from the command

line, through a GUI window, or even autonomically through

a cognitive engine module. This feature, which we refer to

as a meters and knobs interface, enables the researchers to

implement solutions which depend on bottom up event driven

notifications as well as top down dynamic responses. These

are sufficient to realize many cross-layer solutions. A meters

and knobs interface also provides an initial step for collecting

data traces for the logging process discussed below.

Monitoring and Logging: This requirement is related to the

previous one. A process should be responsible for collecting

traces and metrics, recording these traces with time-stamps,

and providing the ability to retrieve this information later. This

process may be centralized or distributed among nodes. Out

of band communication should be implemented if possible

to guarantee minimum influence on the performance of the

experimental network. The ability to access time-stamped

records during run time is another feature which supports the

implementation of cognitive protocols.

Re-configurability of the Network Stack: Dynamic linking

and de-linking of modules is important to support experi-

ments within dynamic or cognitive networks. The ability to

add modules at run time and to link or de-link previously

loaded modules facilitates the implementation of testing and

benchmarking scenarios. The clonable network stack project

[27] is an example of support for re-configurability. In the

clonable network stack, FreeBSD’s kernel is modified to

enable running multiple independent instances of the network

TABLE I: Comparison of various experimental network tools with
respect to desirable criteria

Criterion C
L

IC
K

A
N

A

X
-k

er
n

el

Ir
is

U
C

L

A
P

E

M
M

A
N

Cost of implementation M H M M L L L
Continuity H M N N N N N
Generality M H M H N L N

Ease of use H M L M N L L
Reusability H H M H L L L
Portability L N N H N N N

Meters and knobs L H L M N N N
Monitoring and Logging L H N M N H H

Re-configurability N H L M N N N
(H) High (M) Medium (L) Low (N) Not Available

stack concurrently.

As shown in Table I, hybrid tools which work only as

development tools, such as CLICK [13] and X-kernel [8],

have limited support for meters and knobs or monitoring and

logging. This is in contrast to hybrid development tools which

are equipped with cross-layer interfacing capabilities, such as

Iris [9]. The reason is that the cross-layer interfaces permit

the user to implement meter reading and knob tuning. Also,

the latter type of tool provides the user with a higher level

of flexibility and accessibility across the network stack. This

combination of functions makes such tools more powerful for

development and testing of cross-layer solutions as well as

experiments related to cognitive or reconfigurable nodes.

Clean slate architectures represented by ANA in Table I

excel in re-configurability, generality, and reusability. But they

have the highest implementation cost due to the need to re-

implement the whole network stack. They are also not easy

to use because of the difficulty in adapting to implement the

new non-layered architecture. Due to this burden of adapting

to clean slate architectures and the high implementation cost,

we suggest that future proposals should focus on hybrid ar-

chitectures to balance the trade-off between cost and usability.

This allows researchers to focus on adding new features

to implementation environments rather than reinventing the

wheel.

IV. FLEXIBLE INTERNETWORK STACK FRAMEWORK

In this section we propose a new tool called the Flexible

Internetwork Stack Framework (FINS Framework). The main

objectives, motivations, as well as the system architecture of

the FINS Framework are described. We also suggest some

use cases and candidate experiments, showing how the FINS

Framework facilitates implementing them.

A. Objectives and Motivations
The FINS Framework is a modular software framework

which aims to lower the barrier for implementation-based

wireless network experiments across the network stack by

providing access to functionality that is usually implemented

as part of the operating system kernel. The goal of the FINS

Framework is to provide researchers with generic modules and

interfaces which can be used to:

• build conventional and innovative network stacks using

existing or new layers, protocols, and algorithms;

• monitor and log the behavior of the stack components;
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• dynamically control the behavior of the network stack

during run-time by modifying certain control parameters

bound to each module; and

• dynamically load, link and de-link stack components

to support a wide range of experimental benchmarking

scenarios.

The main motivation for the FINS Framework is to encour-

age the research community to adopt implementation-based

experiments as a trusted technique to evaluate the performance

of new network protocols or algorithms. The FINS project is

inspired by the MANIAC Challenge experimental competition

[28], which gave us better insight into the real performance of

the TCP/IP stack in wireless ad hoc networks. For example,

we noted significant differences in how ad hoc routing pro-

tocols perform in real environments compared to simulation

scenarios, pointing to the necessity of implementation-based

experiments. Also, the technical challenges faced to implement

the MANIAC Challenge API and the logistical challenges of

the MANIAC experiments motivate us to present the FINS

Framework to the research community.

B. System Architecture, Design, and Implementation

In order to preserve the advantages of previously discussed

tools and avoid their pitfalls, the FINS Framework follows

the guidelines and requirements discussed in the previous

section. the FINS Framework adopts a hybrid architecture.

Currently, the FINS Framework maintains the layered structure

between the physical and data link layers, while enabling

clean slate design of the network, transport and application

layers. The FINS Framework takes into consideration two

major constraints: lowering implementation cost and forcing

no changes to legacy applications. Backward compatibility

with legacy applications is not available in most of previous

tools. Researchers will be able to run experiments using real

data traffic generated by real network applications, instead

of modeling the traffic patterns and using artificial traffic

generators.

The central component of the FINS framework, as shown in

Figure 1, is the FINS Switch. It is responsible for forwarding

control and data traffic between the various modules above

the data link layer. Instead of moving the data between

adjacent layers as in the conventional stack, the data traffic

coming in from (or out to) the data link layer will be

directed to the switch module, which forwards the data to

the appropriate protocol module as specified into the linking

table, discussed later. The FINS Framework uses its own

frame format which differs based on whether the FINS frame

contains conventional protocol data units, control instructions

or notifications. In order to maintain backward compatibility

with legacy applications, the FINS Framework retains the

conventional applications socket interface. A stub module, the

socket stub, is used to redirect the traffic coming down from

(or up to) the application to the switch and vice versa. A data

link stub is responsible for capturing the incoming traffic and

injecting the outgoing traffic from/to the data link layer. Both

stubs make sure that the FINS Framework is transparent to

Fig. 1: FINS System Architecture Vs. Conventional Stack

the applications and the layers below the network layer.

FINS modules (excluding the switch) are classified into

two categories: data and non-data modules. Data modules

are modules which implement the functional behavior of a

network protocol or algorithm, such as IPv4, TCP, ICMP,

and ARP. Protocol modules can be also programmed to send

statistics periodically to another interested module through the

switch. A non-data module is a module which contributes

toward the control or managerial tasks of the FINS Framework.

For example, a logging module is programmed to collect

various metrics about the network stack. This is done through

the control API provided as part of FINS. The supervisory

module, another non-data module, behaves as a master mod-

ule. It has the capability to control the FINS framework

including the switch module itself. The supervisory module

can send control instructions to any of the modules linked

to the switch. It can also change the path the data travels

among the modules by reconfiguring the linking table which

the switch module maintains for forwarding FINS frames. The

switch module broadcasts a copy of the linking table to other

modules whenever an update takes place. Other modules use

their local cached copies to determine the appropriate ID(s)

of the destination module(s)to fill into FINS frames, while the

switch only forwards the frames to the destination(s).

The initial version of the FINS Framework will include

modules for IPv4, UDP, TCP, socket stub and Ethernet stub.

These basic modules are provided to significantly reduce the

overhead and development cost of using the FINS Framework

as compared to other tools. The FINS Framework provides

a control interface which implements the meters and knobs

feature for this set of modules and stubs. Table II shows a

list of example meters and knobs. This set of meters and

knobs enables FINS users to implement and evaluate cross-

layer solutions.

The FINS Framework uses C to implement all its compo-

nents and to integrate them with the 2.6 Linux kernel. The

2.6 kernel running on regular laptops equipped with standard
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TABLE II: FINS Meters and Knobs

Meters Knobs
End-to-end metrics (loss, latency, jitter) Application behavior

Packet loss notifications TCP window size
Retransmission information Retransmission strategy

Acknowledgement observation
Available routes and neighbors Per-packet next-hop selection

ICMP information Routing-table modification
IP fragmentation options

Reachable neighbors Transmit power
Frame error rate Physical data rate

Available access points Retransmit behavior
Beacon information RTS/CTS

802.11 wireless interfaces has been chosen as the initial target

platform. FINS modules are implemented in user space, which

provides many advantages over the traditional network stack

such as the high level of flexibility, ease of use, reusability, and

reduction of the implementation cost. It also allows future use

of high level programming languages (such as C++ and Java)

to implement protocol modules and integrate them with FINS,

as long as these programming languages support C APIs.

Due to the importance of portability for a network ex-

perimental tool as discussed in Section IV, as well as the

promising advantages of using mobile devices as discussed in

Section II-B, we plan on releasing the FINS Framework for

both traditional laptops and mobile computing devices. We are

currently examining the Google Android platform as it is open

source and is available on a growing number of devices.

C. Use Cases and Candidate Experiments

Several cross-layer proposals have been presented to im-

prove transport and routing protocols in wireless networks

[29], [30]. The challenges associated with implementing these

solutions within the conventional stack are the reasons that

most of these proposals lived and died in simulation. The

authors of [31] provided a classification scheme for cross-

layer solutions based on the way the layers exchange in-

formation with each other. Figure 2 illustrates how FINS

supports implementing these schemes with its flexible archi-

tecture and efficient control interface. In Figure 2, the FINS

Framework allows the exchange of control information bi-

directionally between two adjacent or non-adjacent layers. The

FINS Framework supports ”vertical calibration” by allowing

to implement a calibration manager module, which reads the

appropriate meters and turns the appropriate knobs across the

stack. Layers can be merged by implementing a module which

combines the functionality of two or more layers together.

For example, to experiment with merging TCP and IP to seek

better performance, the FINS Framework allows to code a

module which behaves as a combined TCP-IP module.

In the context of disruption-tolerant networking, as shown

in Figure 3, the bundle protocol is implemented as a single

module, instead of two layers as suggested in its RFC [32].

The conventional stack requires a convergence layer adapter

between the bundle protocol agent and the traditional TCP

layer. The agent takes care of the main protocol functions,

while the adapter interfaces the agent to TCP. With the FINS

Framework, the overhead of implementing an adapting layer

does not exist.

Fig. 2: Cross-layer designs using FINS

Fig. 3: Bundle protocol implementation using FINS vs traditional
stack

The FINS Framework user can also utilize the supported

cross-layer schemes to implement new context-aware appli-

cations that collect information from lower layers and adapt

their behavior to match current conditions. The application can

be implemented as a module that talks directly to the switch,

rather than through the socket stub, collects meters from other

layers and sets its own knobs.

The FINS Framework can also be used for the implemen-

tation of a cognitive protocol stack, where a cognitive engine

uses the meters and knobs feature to learn from the current

and previous conditions of the network node as well as the

local network neighborhood [33]. The engine learns, then

makes decisions to adapt and sends control instructions to
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Fig. 4: A cognitive node implementation using FINS

the modules. Features for run-time structural reconfigurations,

such as linking and de-linking modules, are supported in

the FINS Framework architecture as previously mentioned.

Figure 4 illustrates how the FINS Framework can be used

to implement a cognitive engine running on an SDR platform.

What is needed is to replace the data link stub with a new

stub to interface the FINS Framework switch with the SDR

modules.

V. CONCLUSION

The implementation and testing of new protocols and net-

work resource management solutions may be costly (in time

and effort) and present logistical challenges, especially in

medium- and large-scale network experiments. In this paper,

we proposed a new tool, the flexible internetwork stack (FINS)

framework, which addresses some of these challenges by

making available a full protocol implementation, from a socket

stub to a MAC/PHY stub (using IEEE 802.11), to be used by

researchers engaged in wireless network prototyping and ex-

perimental evaluation. Development on the FINS Framework

is ongoing, and the current status of this open-source tool is

discussed and regularly updated at www.finsframework.org.
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