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Summary. Accurate calculations of solar models and their oscillation periods
are needed if the observed oscillation periods of the Sun are to be used to
infer properties of the solar interior. The paper describes a new programme
for calculation of solar evolution sequences; an analysis of the numerical
accuracy of the computed models is given, and the effects of changing the
opacity interpolation or opacity tables are investigated. In addition selected
periods of adiabatic oscillations for the models are calculated and the errors
in these periods estimated. For the modes corresponding to the observed
whole disc 5 min oscillations the relative error in the computed periods, given
the physics in the model calculation, is around 1.7 x 1073, This value is signifi-
cantly smaller than the difference in periods between models computed with
the Cox & Tabor (1976) and the Carson (1976) opacities.

1 Introduction

There is mounting observational evidence for the existence of large-scale solar oscillations
(e.g. Brown, Stebbins & Hill 1978; Kotov, Severny & Tsap 1978; Claverie et al. 1979, 1980;
Scherrer et al. 1979, 1980; Caudell et al. 1980; Grec, Fossat & Pomerantz 1980). Such
observations may enable helio-seismological investigations, where a comparison between
observed periods of oscillation and periods calculated from solar models are used to get
information about the interior of the Sun (Scuflaire et al. 1975; Christensen-Dalsgaard &
Gough 1976). There is evident need for such information. Apart from the periods of
oscillation the only genuine test of theoretical solar models is provided by the observed
capture rate of neutrinos originating from the nuclear reactions near the centre of the Sun
(e.g. Bahcall & Davis 1976). Despite persistent efforts (e.g. Bahcall ez al. 1973; Bahcall 1977)
the computed capture rate has remained significantly higher than the observed value; and
although the recent possible detection of neutrino oscillations (Reines, Sobel & Pasierb
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1980; Barger, Whisnant & Phillips 1980) would reduce the computed capture rate, this is
partly compensated for by modifications in opacity tables and nuclear reaction rates
(Bahcall er al. 1980), so that the problem may remain. An independent test of the models
is therefore badly needed. Such a test clearly affects the whole theory of low-mass stellar
evolution and thus has ramifications for a wide area of astrophysics.

Some inferences about solar structure, based on observations of solar oscillations, have
already been made. The detailed observations of 5 min oscillations of high degree (Deubner
1975; Rhodes, Ulrich & Simon 1977; Deubner, Ulrich & Rhodes 1979) agree reasonably
well with calculated frequencies of solar envelope models, provided these have a sufficiently
deep convection zone (Berthomieu er al. 1980; Lubow, Rhodes & Ulrich 1980); these
modes, however, give no direct information about the layers beneath the convection zone. A
somewhat deeper probe is provided by the S min oscillations of low degree observed by
Claverie et al. and Grec et al. ; these include radial modes which penetrate to the centre of
the model, although their periods are largely determined by the structure of the convection
zone. The mean frequency separation observed for these modes is in good agreement with
the values calculated for traditional solar models (Christensen-Dalsgaard & Gough 1980b).
Due to their very high frequency resolution the observations by Grec et al. give detailed
information about these modes; in particular it is possible to determine their degree / and
thus to make an identification between the observed modes and modes computed for solar
models. It remains to be seen whether the accuracy of the observed periods is sufficient to
get detailed information about the deep solar interior; as discussed in Section 6.5 it may at
least be possible to put constraints on the degree of mixing in the core of the Sun.

Modes with longer periods are generally more sensitive to conditions in the solar interior.
Such modes have apparently been observed (Brown et al. 1978; Caudell et al. 1980; Scherrer
et al. 1979, 1980), but so far no compelling observational determination of their horizontal
structure has been made, and so their usefulness for helio-seismology is as yet limited. On
the other hand modes of longer period generally preserve phase over much longer time
intervals than the 5 min modes discussed above, and so their periods can be determined with
greater accuracy. The results of Scherrer ez al. (1980) indicate that one such mode, with a
period close to 160 min, has preserved its phase over six years, so that its period should now
be determined to within a relative error of about 5 x 107°; identification of this mode with a
specific mode of oscillation in a solar model would thus give information of very high
accuracy related to the interior structure of the Sun.

To fully utilize such observations the accuracy of the computed periods, given the
physical assumptions entering the calculation of the model, should be comparable with the
observational accuracy. Indeed such accuracy is probably needed if the 5 min oscillations of
low degree are to be used to distinguish between different traditional solar models (cf.
Christensen-Dalsgaard & Gough 1980b). It is not clear that present solar models meet this
standard of accuracy. Although the neutrino problem has led to careful computation of a
large number of solar models (see e.g. Bahcall et al. 1969, 1973; Abraham & Iben 1971),
these calculations have placed the greatest emphasis on the structure of the energy
generating region of the model, which on the whole determines the neutrino flux for models
having the correct surface luminosity. On the other hand periods of oscillation of a solar
model are sensitive to the structure of the model as a whole. Thus when constructing a
model in order to analyse its modes of oscillation, care must be taken to ensure that all parts
of the model are adequately dealt with; in particular the mesh used for the numerical
solution of the equations of stellar evolution must have a reasonable distribution of points.

The present paper describes a solar evolution programme which attempts to meet the
standard of accuracy promised by the observations of solar oscillations. The programme
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drew some inspiration from the calculations by Eggleton (1971, 1972), but is otherwise
completely independent of existing programmes. Thus it seems reasonable to describe the
calculation in some detail, even where it does not depart significantly from previous work.
Section 2 presents the physical basis for the calculation, and Section 3 discusses the
numerical techniques, whereas Appendix A, B and C describe the central boundary
conditions, the difference equations used to discretize the equations of stellar evolution, and
the scheme used to set the distribution of mesh points. Results of the evolution calculations
are presented in Section 4.

Most of the observed oscillation periods correspond to modes of fairly high radial order,
and so the period calculation requires some care. In addition it is clearly of great interest to
determine the effect on the periods of errors in the model calculation. Section 5 addresses
these questions, with Appendix D giving further details about the computational methods
and their inherent errors. Finally, Section 6 discusses the results, with particular emphasis
on the prospects for helio-seismology, and Section 7 contains a brief conclusion.

2 Equations and boundary conditions

We assume that the effect on the solar models of rotation and large-scale magnetic fields can
be neglected; thus in particular the models are spherically symmetric. This assumption is
supported, for the present Sun at least, by the observations of Hill & Stebbins (1975),
showing an oblateness of the solar surface consistent with what is caused by the effect on
the solar surface of the centrifugal force due to the observed surface rotation rate.

We neglect the effect of mass loss and accretion. None of the models have a convective
core or an outer convection zone extending to the region where the chemical composition
has been modified by nuclear burning. As we ignore all other sources of mixing the composi-
tion is only affected locally by the nuclear reactions; in particular the surface composition
is unchanged during the evolution.

The CN cycle is assumed to be always in nuclear equilibrium. On the other hand the
departure of 3He from nuclear equilibrium has a significant effect on the stability towards
non-radial oscillations of the models during the first few hundred million years (cf.

Christensen-Dalsgaard, Dilke & Gough 1974), and for this reason we have computed the

evolution with time of X3, the 3He abundance by mass.

The effect on the thermodynamic state and on the opacity of the variation throughout
the model in the abundances of all other elements than 'H and *He is neglected. Hence for
the purpose of calculating the thermodynamic functions and the opacity the composition
is specified by X and Y, the abundances by mass of 'H and *He respectively, with X + ¥ =
1—Z being the same throughout the model; here Z is the total abundance by mass of all
other elements. Thus the composition is described by the variables X and Xj, as well as
Z which is a parameter of the calculation.

We choose as independent variable x =log q, where log is the logarithm to base 10 and
q =m/M, m being the mass in the model interior to the point considered and M the total
mass of the model. The equations of stellar evolution (e.g. Clayton 1968), given the assump-
tions made above, are then formulated in terms of the dependent variables y, =logr, y; =
logp, y3=1logT, ys=logL, ys =X and yq = X3; here 7 is the distance to thé centre of the -
model, p and T are pressure and temperature, and L is the flow of energy: per umt time .
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through a sphere of radius r. These quantities clearly satisfy a set of part1a1 differential -

equations in x and time ¢.
To complete the equations we need auxiliary expressions for the thermodynamlc state,

energy generation and opacity. The thermodynamic functions are calculated using the - o

24
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formulation described by Eggleton, Faulkner & Flannery (1973), giving fairly accurate and
thermodynamically consistent expressions for density, electron pressure and electron
enthalpy for a partially ionized, partially degenerate gas, as explicit functions of T,
composition and a quantity f related to the electron degeneracy parameter. We include the
crude approximation to ‘pressure ionization’ proposed by Eggleton et al ; this has the
merit of being thermodynamically consistent and ensuring complete ionization in the
interior of the model, while still allowing explicit calculation of the thermodynamic state
in terms of f, T and composition.

All atoms and ions were assumed to be in their ground states. Thus the partition
functions were approximated by the statistical weights of the ground states, and the contri-
bution to the internal energy of the gas from the excitation energy was neglected. To find
the number of electrons and the ionization energy contributed by the heavy elements the
state of ionization of C and O was calculated in detail, and the metals were approximated by
Fe, including only the outermost electron. This approximation has been compared with a
detailed ionization calculation involving the 10 most abundant elements, with the relative
composition given by Ross & Aller (1976). To calibrate the approximation the abundances
of C, O and Fe were adjusted to obtain the best possible agreement in electron number
throughout a typical solar model; the error in the number of electrons contributed by the
heavy elements was at most 3 per cent, and less than 1 per cent above the hydrogen
ionization zone, where the heavy elements provide all the free electrons. In view of the small
total abundance of heavy elements this is entirely adequate.

We use the diffusion approximation to describe the flow of energy in regions stable
towards convection; in convective regions (defined using Schwarzschild’s criterion) the
temperature gradient is calculated from the local mixing-length theory of Béhm-Vitense
(1958) in the form used by Baker & Temesvary (1966), with a mixing length of & pressure
scale heights.

Spectroscopic observations show that in the surface layers of the present Sun
Z/X = 0.023 (Ross & Aller 1976); as X is typically 0.73 this implies that Z is about 0.017.
To avoid interpolation in Z we have nevertheless used Z = 0.02 for which tables of the
opacity k were available. Two different sets of tables have been used. One (referred to in the
following as CT76) consisted of the tables for compositions King IIIA, King IVA and King
VA (with X =0.6, 0.7 and 0.8, respectively) from Cox & Tabor (1976), combined with the
tables for X = 0.5, 0.2 and 0 from Cox & Stewart (1970); this combination was necessitated
by the fact that Cox & Tabor have no tables with Z = 0.02 and X < 0.5. The second set (in
the following Crs76) is based on unpublished calculations by Carson (cf. Carson 1976).

Interpolation of logk in logp (o being the density) and log T was performed using splines
under tension (Cline 1974). This method is characterized by a tension parameter 7, such that
n =0 corresponds to ordinary cubic spline interpolation, whereas for very large n one gets
approximately linear interpolation. By choosing a suitable intermediate value of n one can
obtain a smoothly varying interpolating function without introducing the exaggerated
fluctuations sometimes caused by high order polynomial interpolation. In most of the
calculations reported here n =5 was used. Due to the small number of values of X for which
opacity tables were available simple quadratic interpolation in X was used.

Nuclear reaction rates were taken from Fowler, Caughlan & Zimmerman (1975) and
corrected for electron screening in the weak screening approximation (Salpeter 1954). The
rate of electron capture by "Be was found using the expressions in Iben, Kalata & Schwartz
(1967). We used Bahcall’s (1977) cross-sections to calculate the neutrino capture rates
expected for the models.

It should be noticed that all physical quantities needed in the calculation can be
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computed explicitly from a new set of dependent variables {z;} defined by
z;i=y;, 1i=1,3,4,5,6; z, =logf; (2.1)
these are related to the y; by a non-singular transformation y; = y;(z;) which can also be
computed explicitly.
The equations must be supplemented by four boundary conditions. The surface of the

model, where x =0, is taken as corresponding to T = T¢, the effective temperature; at this
point one condition is thus clearly

4nr20T*=L atx=0 (2.2)
where o is the Stefan—Boltzman constant. A second condition is obtained by equating the
pressure at x =0 to the pressure obtained by integrating the equation of hydrostatic
support in the atmosphere, assuming gravity to be constant. The dependence of T/T¢s on
optical depth 7, defined using the Rosseland mean opacity, is taken from an analytical fit
(Gough, private communication) to the HSRA (Gingerich et al 1971) out to 7=10"%;
further out T is assumed to be constant.

Boundary conditions at the innermost point, x =X, say, are obtained from expansions at
the centre. By expanding p, T, X and X3 in powers of », around r = 0, we get a set of non-
linear algebraic equations relating the central values p., T, X, and X 5. of these variables to
their values at x =x;. The expansions of m and L can be expressed in terms of p., T, X,
and X3, and by equating these expansions to the values of m and L at x =x, two conditions
are obtained at this point. The expansion coefficients are presented in Appendix A. As a
result of this procedure we get consistent values of the second derivatives of p, T, X and X3
at the centre; these are needed in the central boundary conditions for pulsation calculations
(e.g. Christensen-Dalsgaard ez al. 1974).

Ideally the calculation should be started during the contraction phase before nuclear
reactions set in, where the composition can still be assumed to be uniform. However, this
appears unnecessary for an investigation whose main aim is to produce models of the present
Sun. Instead we assume the initial model to be static and in thermal equilibrium, with a
homogeneous hydrogen abundance X = X,. To mimic the production of *He during the
contraction phase the *He abundance in the initial model is taken to be the abundance
resulting from 3He production during a time fsy, at constant temperature and density,
assuming zero initial abundance (see e.g. Christensen-Dalsgaard et al. 1974). For tsy, =
(2—5) x 107 yr this gave an abundance which was at least qualitatively in agreement with the
3He abundance found by Iben (1965) in his 1 M, model on its arrival on the main sequence.
Furthermore the structure of models older than 5 x 10® yr was hardly affected by varying
t3ye from 2.5 x 10% to 5 x 107 yr. In the present calculations we used £3e =S x 107 yr.

The models were calibrated in X, and « to obtain a surface radius 7o =6.9599 x 10'° cm
and surface luminosity Lo = 3.826 x 10*® ergs™ (Allen 1973) at the age o = 4.75 x 10° yr.
This calibration requires knowledge of the derivatives of & and X, with respect to the radius
¥s, pres and luminosity Lg p.e of the model of the present Sun. We have used the values

" 0lna dlna
(______) =1.24, (—-——) =—491
a ln LS, pres rS, pres a ln rS,pl'eS LS, pres (23)
(_alL)_(."_) =_—0.148 (M) =—0.010
0 In L pres ¥s. pres ’ 9 107 pres Lg, pres ,
> P 5P

which were derived from three evolution sequences computed with Eggleton’s (1971)

programme; these values gave convergence to within 5 x 107 in ¥s,pres aNd Lg pres in only
three or four iterations.
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3 Numerical techniques

The numerical problem can be formulated as follows: compute the solution z;(x, t5*!) to
the equations and boundary conditions at a time level #5*1 given the solution at the earlier
time level ¢#°. This is solved using the technique of finite differences, applied to studies of
stellar evolution by Henyey et al. (1959). Derivatives with respect to x are replaced by
centred differences on a discrete mesh {x"},n =1,..., NV, and time derivatives by centred or
backward differences between the time levels #* and ¢*'. When combined with the
boundary conditions the result is a set of non-linear algebraic equations for z;(x", £5*!),
which is solved by Newton—Raphson iteration. The difference equations are presented, and
the method of their solution briefly discussed, in Appendix B.

It was found that stability required the use of backward differences to represent the time
derivatives in the energy equation and the equation for the change in X5. In the latter case
this is due to the fact that the time step is generally much longer than the nuclear time-scale
for *He in regions where 3He is in nuclear equilibrium; at the centre of the model
representing the present Sun this time-scale is about 105 yr. In the energy equation the
problem is the general smallness of the rate of release of gravitational energy compared with
the nuclear energy generation rate; this causes a near lack of coupling between the
luminosity and the change in pressure and temperature with time, permitting an oscillation
in these quantities between consecutive time levels. Calculations where thermal equilibrium
was artificially destroyed indicated that this problem does not occur when the rates of
gravitational and nuclear energy generation are comparable. Main sequence evolution is of
course very largely controlled by the change in the hydrogen abundance, and so it is not
surprising that use of centred differences caused no problems in the equation for X.

The programme used to set up and solve the difference equations and boundary condi-
tions is written in a sufficiently flexible way to allow it to solve any set of partial differen-
tial equations of the same general form as the equations of stellar evolution (see equations
(B1)—(B3) in Appendix B). Thus it was possible to test it on problems with known
solutions, like the one-dimensional diffusion equation and the wave equation.

The distribution of the mesh points in x is determined using a method very similar to the
first derivative stretching introduced by Gough, Spiegel & Toomre (1975). In particular the
varjation of the supeéradiabatic témperature ‘gradient V- V,4 is taken into account, thus
ensuring a reasonable resolution of the region of large superadiabaticity near the top of the
convection zone. Typically about half the mesh points are in the convection zone and about
10 per cent in the region betweeen the surface and the maximum in V — V,4. The position
of the innermost mesh point is determined from the ratios between central values and
second derivatives at the centre of p, T, X, m/r® and L/r3. The parameters are chosen such
that the separation r, —r; in r between the innermost two mesh points is about 0.09r,.
Finally the time step ArS*! =¢5*2 —¢5*! js found from the maximum change in the solution
from time level £° to time level r5*1,

The expressions used to determine the mesh and the time step are set out in Appendix C.

4 Results of the modél calculations

“-Four cahbr’ated évotution sequences of solar models (models 1—4) were computed. The time
step for these ‘was deter,mmed with Aymax = 0.1 in equation (C4), resulting in a total of 14
time steps from the initial model to the model of the present Sun. To estimate the effect of

~ truncation in time an additional uncalibrated sequence (model 1a), with A yp,y = 0.05, was
calculated usmg the same o and XO as model 1. Some characteristics of the sequences are
presented inT able L.
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Table 1. Properties of the evolution sequences, /V is the number of mesh points, and Ay, determines
the time step (cf. equation C4); n is the tension in the opacity interpolation, X, the initial hydrogen
abundance, o the ratio of mixing length to pressure scale height, and rg zamg and Lg 7 Ams are the
surface radius and luminosity of the initial model. The remaining quantities refer to the model of age
4.75 X10® yr; rg and Lg are surface radius and luminosity, X, T, and p are central hydrogen abundance,

Solar models and their periods of oscillation
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temperature and density, D is the depth of, and 1—gqp the mass fraction contained in, the convection
zone, and T'g is the temperature at the base of the convection zone.

Model 1 Model 1a Model 2 Model 3 Model 4
N 201 201 401 201 201
AYmax 0.1 0.05 0.1 0.1 0.1
Opacity table CT76 CT76 CT76 CT76 Crs76
n 5 5 5 40 5
X, 0.7335 0.7335 0.7330 0.7270 0.7306
« 1.6364 1.6364 1.6334 1.5931 1.9279
rs, ZAMS (cm) 6.1350 x 10 6.1350X10'° 6.1365 X 10'° 6.1415 X 10'° . 6.1852 X 10'°

L zawms (ergs™)

Present Sun

27250 x 10°3

2.7250 x 10

2.7239 x10%

2.7399 X 10*

2.7062 X103

rg (cm) 6.9599 x 10> 6.9588 X 10" 6.9598 x 10'°® 6.9598 X 101> 6.9599 X 10'°
Lg (ergs™) 3.8262 x10** 3.8248 x10°® 3.8259 x10** 3.8262 X 103* 3.8261 X10%*
X 0.3776 0.3778 0.3775 0.3678 0.3680

T, (X) 14.835 x10° 14.834 x 10° 14.834 X 10° 14.966 X10¢  15.137 X 10°
pc (gcm™3) 150.62 150.53 150.64 149.49 147.32

D/rg 0.2828 0.2828 0.2826 0.2741 0.2517
l1-gp 0.0219 0.0219 0.0217 0.0194 0.0149

Tp 2.145 X 10¢ 2.145 x 10¢ 2.141 X 10¢ 2.065 X 10¢ 1.834 X 10°¢
Neutrino capture rates

*B 4.14 4.12 4.14 4.88 5.39

"Be 0.85 0.85 0.85 0.91 091

pep 0.22 0.22 0.22 0.22 0.22

CNO 0.18 0.18 0.18 0.21 0.22

Total 5.39 5.38 5.40 6.22 6.74

4.1 NUMERICAL ACCURACY

To investigate the effects of the truncation error® in x on the properties of the ZAMS
models we computed four models with the same parameters as model 2 of Table 1, on
meshes having the same distribution; but varying number ¥, of points (the distribution of
points being slightly different from that used for model 2). The results are shown in Table 2.
As the difference scheme is of second order in x, the values of g and L for an infinitely fine
mesh can be estimated from the corresponding values at V=201 and 401 by Richardson
extrapolation as, for example

rs(0) = Y53 [4ry(401) —rg(201)], 4.1)

where 7¢(V) is the value of ry found with a mesh having NV points. The values of 7 (cc) and
L(>) are shown in the row marked R. Estimates E(rg; N) and E(Lg; N) of the relative
errors in rg and Ly, normalized to a mesh with 201 points, can be defined by, for example,

E(rg; N) = [ry(V)/rs(>2) — 1] [(V —1)/200]?; (4.2)

these are also shown in the table. For a second-order scheme E(rg;N) and E(Lg; V) are
expected to be independent of NV; this is roughly confirmed by Table 2, which also shows

*Here and in the following the term ‘truncation error’ refers, as usual, to the error in the solution caused
by the replacements of derivatives by finite differences.
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Table 2. Surface radius (rg) and luminosity (Lg) of chemically homogeneous, static models
computed with different numbers N of mesh points. E(rg; N) and E(Lg; N) are estimates of the
relative errors in rg and Lg, and Ep,,4(p; V) is an estimate of the maximum relative error in p, all
for a model with N = 201.

N rg (cm) Lg (ergs™) E@rg; N) E(Lg; N) Emax(p; N)
151 6.1420 x 10 2.7407 x 103 6.3x10°* 4.0x10°3 1.9 x107?
201 6.1379 x 10*° 2.7322 x 103 4.6 x10 4.1x10°3 2.2%X107?
301 6.1365 x 10'° 2.7261 x 103 3.9 x10™* 3.2x1073 1.8 x107?
401 6.1358 x 101° 2.7239 x 1033 4.6 X104 4.1x10°3 —_

R 6.1351 x 10*° 2.7212 x103% — J— —_

that the relative errors in r, and Lg for a mesh with 201 points is about 5 x 10™* and
4 x 1073, respectively.

An indication of the errors in the interior of the models is given by the maximum relative
difference Ap,x(p;V) in p between the model with NV, and the model with 401, points; the
corresponding estimate

Ens(93 V)= By 03 V) | [(;i_ol)z -] @3)

of the maximum relative error in p in a model with 201 points is shown in Table 2. The
maximum relative errors in p and T are considerably smaller, about 1072 and 7 x 1073
respectively.

6 aj
0.015+
0.010 1
0.005+
0 - —
T [ I I
4.0 5.0 6.0 7.0

LogT

Figure 1. Differences between models 1 and 2, at fixed mass fraction ¢, ina, =lnp ( ),a,=Inp
(———-)and g, =InT (—+—-— ), In being the natural logarithm. The abscissa is the logarithm, to base 10,
of the temperature.
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A comparison between models 1 and 2 shows that the truncation error in x has minor
effect on the ‘global’ properties of a calibrated model of the present Sun. The behaviour
in the interior of the model of the relative differences between models 1 and 2 in p, p and
T are shown on Fig. 1. The maximum relative difference in p, about 1.7 x 1072, corresponds
to a maximum relative error in p of about 2.3 x 1072 in model 1, similar to the values in
Table 2. The relative errors in p, p and T are less than 1072 in the inner 95 per cent by radius
of the model. This distribution of error of course reflects the choice of parameters w; in
equation (C2) defining the mesh; thus by increasing w, or w,, and hence the effect of p or
T on the mesh, one might presumably reduce the maximum error in p. On the other hand
the fact that the errors are large only rather close to the surface reduces their effect on the
computed eigenfrequencies of the model; this is confirmed by the results of Section 5.

A comparison of models 1 and 1a shows that a doubling of the number of time steps
results in a relative change in the surface radius and luminosity of 1.6 x 10™* and 3.8 x 1074,
respectively. The maximum relative change in pressure and density is 8 x 107 %, the change
in temperature being even smaller. Thus in the present calculation the effects of truncation
in time are far smaller than the effects of spatial truncation.

It is of some interest to investigate the behaviour of the solution very close to the centre.
The coefficients in the expansion of p around r = 0, truncated after the term in r*, can be
expressed in terms of the central values p. and p, of the density and its second derivative
(cf. equation A4). Using this expansion one may estimate p. and p, from the values of p
at the three points closest to, but excluding, the centre. When applied to model 1 of the
present Sun this procedure yields values of p. and p,within 0.1 and 10 per cent,
respectively, of the values obtained directly from the expansion of p around the centre. A
similar calculation for a model computed with Eggleton’s (1971) programme yielded a value
of p. which was 13 per cent smaller than the value obtained by extrapolating p to the centre,
whereas p, was found to have the wrong sign. This indicates an inconsistency in the
behaviour of p close to the centre of the model; it is probably entirely harmless for general
calculations of stellar evolution, but it may have some effect on calculations of the
oscillations of the model. Thus the careful treatment, in the present calculation, of the
central boundary condition appears to be warranted.

42 THE TREATMENT OF THE OPACITY

Some effects of using linear rather than spline interpolation in the opacity tables can be seen
by comparing models 1 and 3. As was also found by Abraham & Iben (1971) linear inter-
polation increases the central temperature, and hence the neutrino flux, of the model. In the
regions corresponding to the central parts of the model log k is concave as a function both of
logp and logT and is therefore overestimated by linear interpolation; this causes an increase
in temperature. Relative differences in p, p and T between models 3 and 1 are shown in Fig.
2. The effect of linear opacity interpolation is largest in the deep interior of the model where
the mesh used in the opacity tabulation is relatively widely spaced; here differences of up
to about 3 per cent in p, p and T are found. In the adiabatic part of the convection zone the
structure is not directly affected by the opacity, and close to the surface the differences
are small, due to the dense mesh in the corresponding region of the opacity tables.

Finally a comparison of models 1 and 4 shows how the model is affected if the Cox &
Tabor (1976) opacity tables are replaced by those of Carson (1976); Fig. 3 presents
differences in Inp, In p and In T between these two models. The dominant feature is that the
surface pressure and density in model 4 is lower by a factor of about 1.5 than the
corresponding quantities in model 1. This is caused by the fact that the Carson opacities at
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low temperatures are significantly larger than those of Cox & Tabor (cf. Christensen-
Dalsgaard 1977), due probably to the partial neglect of absorption by molecules in the latter
tables. In the interior of the model the differences are much smaller; the difference in
surface values is compensated, in the calibration to the correct radius, by a considerable
change in o, and the large differences in p and p are confined to the atmosphere and the very
thin region near the top of the convection zone having an appreciable superadiabatic
gradient (c¢f. Gough & Weiss 1976). Nevertheless there are significant differences in the
interior of the model. Around the bottom of the convection zone the Carson opacity is
smaller than that of Cox & Tabor, leading to a somewhat shallower convection zone in
model 4. Close to the centre the Carson opacity is the larger, and consequently the central
temperature and neutrino capture rate are higher in model 4 than in model 1; a similar effect
was found by Carson, Ezer & Stothers (1974).

5 Oscillation periods

We have calculated a selection of linear, adiabatic modes of oscillation for each of the five
models of the present Sun described in Table 1. The outer mechanical boundary condition
on the oscillations was based on the solution to the adiabatic wave equation in an isothermal
atmosphere (in the manner of, for example, Unno ez al. 1979), and was applied at 7 =107*
in the model atmosphere used to determine the outer boundary condition in the model
calculation (cf. Section 2). Otherwise the calculation was as in Christensen-Dalsgaard
(1980a), using a second-order centred difference scheme to integrate the equations of
oscillation. Improved estimates of the frequencies of oscillation were obtained by substituting
the eigenfrequencies into a variational expression, using the procedure of Christensen-
Dalsgaard, Gough & Morgan (1979) for acoustic modes and a slight modification of it for
gravity modes; these procedures are discussed in Appendix D.

The resulting periods of oscillation are presented in Table 3. Beside the fundamental
radial mode (p(!=0)) and g;(I =1) the modes computed correspond to periods of oscilla-
tion determined observationally with high accuracy. These comprise the 5 min oscillations
of low degree (Claverie et al. 1979, 1980; Grec et al. 1980) and the 160 min oscillation (e.g.
Severny, Kotov & Tsap 1976, 1978; Kotov et al. 1978; Scherrer et al. 1979, 1980). In the
latter case the modes chosen are those with periods closest to 160 min in models 1—3; in
model 4 go(I =2) and g;5(! = 3) (with periods of 154.43 and 155.32 min, respectively) are
closer.

The low-order modes (i.e. p; (I = 0) and g,(I = 1)) were computed on the mesh used in the
model calculation. This was insufficient to resolve adequately the rapid spatial oscillations
of the high-order p and g modes. For these modes we used meshes with 600 points,

Table 3. Periods, in minutes, of selected modes of oscillation in the models presented in Table
1. The labelling of modes with / > 0 uses the Eckart classification (e.g. Scuflaire 1974), whereas
the labeling of radial modes follows Christensen-Dalsgaard er al. (1979).

Mode Model 1 Model 1a Model 2 Model 3 Model 4
P, =0) 4.0366 4.0357 4.0407 4.0404 4.0540
p,,(=0) 6.6922 6.6906 6.6996 6.6995 6.7148
Psl=1) 4.1087 4,1078 4.1125 4.1125 4.1265
PA=1) 6.8948 6.8935 6.8998 6.9023 6.9175
p,I=0) 64.092 64.080 64.068 63.735 63.257
g, 0=1 63.531 63.556 63.493 63.695 64.990
g.(1=1) 154.99 155.05 154.93 155.31 157.66
g.,U=2) 165.20 165.28 165.14 165.41 168.26
£,,U0=3) 162.57 162.64 162.50 162.66 165.31
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distributed largely on the basis of the asymptotic behaviour of p or g modes of high order
(cf. Christensen-Dalsgaard 1977). The equilibrium model was transferred to the new meshes
using four point Lagrangian interpolation.

A comparison of the results for models 1 and 2 shows that the contribution to the
relative error in the periods of high order p modes in model 1 coming from the spatial
truncation error in the model calculation is probably smaller than 1.5 x 1072; for low-order
modes and the high-order g modes this contribution is about 6 x 10™* or less. As this part
of the error is expected to vary as (NV—1)"2, N being the number of points in the model
calculation, the corresponding errors for model 2 can be estimated as about 4 x 10™* and
1.5 x 1074, respectively.

Similarly, comparison of models 1 and la shows that truncation error in time in the
calculation of the model changes the high-order p mode periods by about 2 x 107%; this
however can be attributed almost entirely to the change in radius and so would largely be
eliminated in a calibrated model with higher time resolution. On the other hand the
contribution to the error in the g mode periods, when corrected for the radius change, is
about 9 x 107*. This difference in sensitivity between p and g modes reflects the fact that
the truncation error in time affects the structure of the model through the composition. In
a calibrated model the resulting readjustment of the envelope structure, and hence the
change in p mode periods, would largely be eliminated, whereas the change in the behaviour
in the interior of the model of the buoyancy frequency, which strongly affects the g mode
periods, would remain.

An upper bound on the total error in the periods, given the physics used in the model
calculation and the assumption of adiabatic oscillations, can be estimated by adding to the
sum of the two contributions discussed above the error in the oscillation calculation for a
given model; this is estimated in Appendix D to be about 2 x 10™* for the high-order p
modes and 5 x 107 for the high-order g modes. Thus the total relative errors for the p
and g modes computed in model 1 are probably less than 1.7 x10™® and 1.5 x 1073,
respectively; for the modes in model 2 the corresponding values are 6 x 10™* and 1.1 x 1073,

The effect on the periods of the opacity interpolation can be seen by comparing models 1
and 3. For the high-order p modes the effect is small, due probably to the relatively small
differences between the models near the surface (c¢f. Fig. 2). Less easy to understand is the
fact that the largest difference, about 6 x 1073, is found for the p,(/ = 0) mode, which 4
priori might be expected to be rather insensitive to conditions near the bottom of the
convection zone where the differences between the models are greatest. The differences
for the g modes are significantly smaller, around or less than 2 x 1073,

In contrast substantial differences are found between models 1 and 4, indicating that the
periods are sensitive to the choice of opacity tables. Thus the differences between the
periods of the high-order p modes, around 0.4 per cent, are considerably larger than their
expected errors; the differences of 1—2 per cent in the periods of the fundamental radial and
the g modes presumably reflect the rather large differences in the interior of the models,
shown on Fig. 3.

Some quantities related to the overall properties of the 5 min oscillations of low degree
are presented in Table 4. These are the mean frequency separations over the range
considered

Bo(1) = Wn,,1—Vn,)l(n; — 1), (.1

and the mean splitting between the almost degenerate frequencies of modes whose degrees
differ by 2 (e.g. Christensen-Dalsgaard & Gough 1980a, b):

sv(l) = Y@, 1=Vn,-1,142 * Vn, 1 —Vn-1,1+42)5 (5.2)
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Table 4. Mean frequency separation Av and mean frequency splitting §v,
defined by equations (5.1) and (5.2) respectively, in uHz.

Model 1 Model 1a Model 2 Model 3 Model 4

Av(0) 136.53 136.56 136.41 136.43 135.76
Av(1) 136.61 136.64 136.43 136.50 135.79
51(0) 10.3 10.2 9.6 10.3 10.6
sv(1) 15.6 15.6 15.6 15.7 15.9

here v,, i denotes the cyclic frequency of the mode p,(I =1 "), and the range (n,, n,) in order
is the same as for the modes presented in Table 3. The variation in Ap between the models
follows closely the behaviour of the frequencies discussed above. Thus the contribution to
the relative error in Av coming from the truncation error in the equilibrium model is
estimated to be around 1.5 x 1073 in model 1; the opacity interpolation has little effect on
Av, whereas there is a significant relative difference, about 6 x 1073, between the values for
models 1 and 4. On the other hand §»(0) is apparently rather sensitive to errors in the
model; this is probably caused by the fact that the perturbation in the gravitational
potential, for radial oscillations, is eliminated analytically using the equations of stellar
structure. The error in §» (1), which is not as directly affected by errors in the model, and
the changes in §v caused by changing the opacity interpolation or opacity tables, are all
relatively small.

6 Discussion

The main purpose of the present study has been to investigate and reduce the extent to
which numerical error affects models of the present Sun and the periods of oscillation
computed for such models. Thus no attempt has been made to create a programme that is
applicable to any type of star; in particular the programme does not provide for mixing in a
convective core, and so it cannot be used to compute the evolution of stars more massive
than the Sun.

This is no serious limitation, however. There already exists a number of general stellar
evolution programmes, and these have been used for comprehensive calculations of stellar
evolution over a wide range of parameters and model ages. Rather than competing with such
comprehensive calculations the present work is aimed at complementing them by providing
accurate models of the Sun. These are needed in helio-seismological investigations, where
observed periods of solar oscillations are used to get information about the structure of the
solar interior. This clearly requires that the errors in the calculation of the oscillations
periods, given the physical assumptions made in the model calculation, be much smaller than
the effects on the periods of changes in the model caused by reasonable modifications of
these assumptions. A thorough investigation of the sensitivity of the periods to variations in
the equilibrium model is outside the scope of the present work; however, as an example, we
consider the effect of the treatment of the opacity.

6.1 ERRORS IN THE EQUILIBRIUM MODEL

These were estimated in Section 4 by comparing models computed on different spatial
meshes or with different time steps. It was found that in a model (model 1) having 201
points and with 14 time steps covering the evolution until the present age of the Sun, the
maximum contribution from spatial truncation to the relative error in pressure was about
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2.3 x 1072, with smaller errors in temperature and density; the relative errors in the depth
of the convection zone and the neutrino capture rate were about 1073 and 2.5 x 1073,
respectively. The corresponding contributions from truncation in time were all less than
1073, Thus the model is determined with reasonable accuracy with this choice of spatial
mesh and time step.

6.2 ERRORS IN THE PERIODS

The errors in the computed periods arise partly from errors in the equilibrium model, partly
from errors in the calculation of periods for a given model. In Appendix D it was shown that
by using the variational principle for the frequency of adiabatic oscillation the latter errors
could be reduced to below 2 x 107 for acoustic modes with periods in the vicinity of
S min, and to less than 5 x 1076 for gravity modes close to 160 min. The contributions from
the errors in the equilibrium model were estimated in Section 5. It was found that for the
acoustic modes the truncation error in space dominated, giving rise in model 1 to a relative
error of about 1.5 x1073; for gravity modes the spatial and temporal truncation caused
comparable errors, the total relative error being again about 1.5 x 10~ in model 1.

These values should clearly be compared with the errors in the observed periods, as well
as with the sensitivity of the periods to changes in the model. Claverie et al. (1979, 1980)
found that the relative error in the mean frequency separation for the 5 min modes was
about 2 x 1073, A comparable error in the position of individual peaks can be inferred from
the peak positions tabulated by Claverie et al. (1980) for four years of observation.
Christensen-Dalsgaard & Gough (1982) analysed artificial data, assumed to be noise-free,
that simulated the observations of Claverie et al. They found relative errors in the mean
frequency separation, in averages of fairly large numbers of spectra, of about 1073; these
errors were caused partly by interference between modes whose frequencies were too close
to be resolved, partly by the departure from linearity in the relation between mode order
and frequency. Thus it seems unlikely that this uncertainty can be considerably reduced in
observations limited by the length of a day. In observations, made from the South Pole, that
did not suffer from this limitation, Grec et al. (1980) found that the 5 min modes appeared
to decay with an e-folding time of about two days. This would limit the relative accuracy in
the determination of peak positions, in power spectra for continuous observations lasting
considerably more than two days, to about 3 x 10”*. The accuracy achieved by Grec et al.
was in fact close to this limit: Finally the fact that the 160 min oscillation has apparently
preserved its phase for at least six years (Scherrer et al. 1980) indicates that its period
is now known with an accuracy of about 5 x 1075

As to the sensitivity of the periods to changes in the physics of the model, the results
of Section 5 showed that changing the opacity tables from those of Cox & Tabor (1976) to
those of Carson (1976) changed the acoustic mode periods by 0.3—0.4 per cent, and the
mean frequency separations by about 0.6 per cent. These changes are significantly larger
than the theoretical and observational errors discussed above; with the present accuracy
it is therefore possible, on the basis of observations of the S min oscillations, to distinguish
between those two sets of tables, provided no other changes in the model are considered.
The changes in the gravity mode periods are very much larger than the errors, and so these
modes are potentially more sensitive to changes in the opacity tables. Before this sensitivity
can be utilized, however, an observational determination of the degree of the mode
responsible for the 160 min oscillation must be made.

Further improvements in the accuracy of the computed periods, most urgently for the
acoustic modes, are warranted by the precision of the observed periods. As discussed above
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this mainly requires that the errors in the model computation be reduced. One immediate
and significant reduction in the errors would result from using a model with 401 rather than
201 spatial mesh points. As the numerical integration scheme is of second order in space this
would reduce the errors in the model by roughly a factor of 4; thus the errors in the
acoustic mode periods for model 2, given in Table 3, are probably less than 6 x 107%. To
reduce the errors even further one might use a higher order integration scheme, such as the
fourth order scheme presented by Cash & Moore (1980) or the very similar scheme of
Scuflaire (1980). Preliminary calculations, using the method of Cash & Moore, of static,
chemically homogeneous models showed that these could be computed with a maximum
relative error in p, p and T of about 10™, on a mesh with 201 points and a distribution that
was inferior to that used in the present calculation. A fourth order scheme could also be
used in the calculation of the oscillations and might eliminate the need for using the
variational method to calculate improved periods.

6.3 COMPARISON WITH OTHER MODELS

The depths of the convection zones in the present solar models, described in Table 1, are
somewhat greater than the depths quoted for other recent published solar models. Thus
Gough & Weiss (1976) found D/ry =0.22 in a model with Z =0.02; and the ‘standard’
model of Christensen-Dalsgaard ez al. (1979), which differed from the model of Gough
& Weiss in the use of improved nuclear reaction rates, had D/r, = 0.24. Both calculations
used Eggleton’s (1971) programme and Cox & Stewart (1970) opacities with linear
interpolation. In contrast the models computed here with Cox & Tabor (1976) opacities
have Dfry =0.27—0.28; use of Cox & Stewart opacities gives very similar results (cf.
Christensen-Dalsgaard 1977). A possible explanation for this discrepancy is the rather
poor numerical resolution in the Eggleton programme near the base of the convection
zone (Christensen-Dalsgaard et al. 1974).

The properties of the convection zone affects two observable characteristics of the
Sun, viz. the depletion of the surface Li abundance relative to the cosmological value (e.g.
Weymann & Sears 1965) and the frequencies of the S min modes of high degree (Gough
1977a; Rhodes et al. 1977). The rate of Li depletion is controlled by the temperature
T'g at the bottom of the convection zone; in all models computed here this is significantly
smaller than the value of about 2.6 x 106 K where the e-folding time of 7Li is comparable
with the age of the Sun (Straus, Blake & Schramm 1976), although slightly larger in model 1
than the value of 2.0 x 106K quoted by Straus et al.

The frequencies of the 5 min modes of high degree are largely determined by the relation
between p and p in the adiabatic part of the convection zone (Gough 1977a; Ulrich &
Rhodes 1977). This can conveniently be expressed in terms of the value of K =p/p", where
I'; =(0 Inp/a In p), (s being specific entropy), as this quantity is approximately constant in
the adiabatic part of the convection zone, beneath the ionization zones of H and He. For
given chemical composition K is closely related to the depth of the convection zone.
Berthomieu et al. (1980) obtained almost perfect agreement between observed and
calculated frequencies with an envelope model having K = 5.5 x 10'* (in cgs units) at a depth
of 1.5 x 10° km, and with D/rg = 0.33. For comparison the value of K at the same depth in
model 1 is 94 x10™. To increase: K to the value of Berthomieu et al. would require
- increasing the efficacy of convection in the superadiabatic boundary layer near the top of
the convection zone, to reduce the temperature gradient in this region (within the frame-
work of mixing length theory this corresponds to increasing the mixing length), but the
convection zone would then no longer fit the intetior of the model. Whether this
discrepancy represents a serious difficulty remains to be seen.
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The neutrino capture rates found here are in reasonable agreement with previous results
(e.g. Bahcall 1977). It should be noticed, however, that improvements in the opacity
calculation since the computation of the Cox & Tabor (1976) tables lead to an increase in
the capture rate (Bahcall ez al. 1980).

6.4 SHORTCOMINGS OF THE CALCULATION

To allow fairly extensive analysis of the numerical accuracy a number of simplifying
assumptions has been made in the present model calculation. The assumption of a static,
chemically homogeneous initial model, as well as the assumed nuclear equilibrium of the
CN cycle, may have some effect on the early evolution of the model. To investigate the
importance of the latter assumption we have integrated the equations for the full CNO
tri-cycle (Rolfs & Rodney 1974) in time at selected mass points in models belonging to
an evolution sequence similar to sequence 1 of Table 1. The initial burning of !2C releases
energy at a rate that at the centre reaches a maximum value of about 30 per cent of the
energy generation rate epp of the PP chains. In this stage the model would almost certainly
have a convective core. On the other hand this phase is relatively shortlived; after about
108 yr of evolution the energy generation rate from non-equilibrium CN reactions is less
than 10 per cent of epp everywhere in the model, and at an age of 10° yr the CN cycle is in
equilibrium in all parts of the model where CN energy generation is significant. The reactions
involving 190 proceed so slowly that only about 3 per cent of the initial 0 abundance has
been consumed at the centre of the model by the time it reaches the present age of the Sun.
Thus the %0 branch of the cycle can justifiably be neglected in calculations of solar models.
The reactions in the CN cycle should clearly be included in calculations of early evolutionary
stages. But here the pre-main sequence history of the model also has an important effect on
the chemical composition (Iben 1965), and the contraction to the main sequence should be
properly calculated. During the time taken for the CN cycle to reach equilibrium X is only
reduced by roughly 1 per cent, however; thus models of the present Sun are probably only
slightly affected by the assumption of CN equilibrium. Nevertheless the resulting modifica-
tion in the behaviour of the hydrogen abundance may have a small effect on the g mode
periods.

Somewhat more important, for the acoustic mode periods at least, is the use of an
approximate treatment of the equation of state. The calculations of Berthomieu et al.
(1980) and Lubow et al. (1980) showed that the inclusion of non-ideal effects in the
equation of state had a noticeable effect on the periods of the 5 min modes with high I;
similar effects, of the order of 0.1 per cent, may also be expected for 5 min modes of low
degree. The opacity should also be improved. The results found in Sections 4 and 5 showed
that the use of linear interpolation in opacity, while unimportant for the acoustic modes,
causes significant changes in the depth of the convection zone and the neutrino flux of the
model as well as in the gravity mode periods. This strongly suggests a need for opacity tables
with a finer grid at the temperatures and densities found in the interior of the model. In
addition the tables should have the observed (e.g. Ross & Aller 1976) ratios between the
heavy element and the hydrogen abundances. Finally the assumed solar luminosity may be
slightly too low; thus very recent results from the Solar Maximum Mission (Willson ez al.
1981) give a mean luminosity of 3.8481 x 10% ergs™.

The pulsation calculation also needs improvements, in particular for the high-order
acoustic modes. The frequencies of these modes are relatively sensitive to the behaviour of
the eigenfunction close to the outer boundary of the model (Christensen-Dalsgaard & Gough
1980b), where the oscillations are not adiabatic; thus non-adiabatic effects may be expected
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to have a significant influence on the periods, and the calculation should be based on the full
non-adiabatic equations. For these modes the perturbations of the turbulent Reynolds
stresses in the convection zone may possibly also affect the periods; thus turbulent pressure
should be taken into account in the calculation of the equilibrium model (this has yet to be
done in a consistent fashion), and the computation of the oscillations should include a
model for the Reynold’s stress perturbation (e.g. Gough 1977b). The low-order acoustic
modes and the gravity modes are much less sensitive to conditions in the outer part of the
model, and so for these modes the present adiabatic treatment is probably adequate.

6.5 COMPARISON OF OBSERVED AND CALCULATED PERIODS

Because of the deficiencies, discussed above, in the present calculation a detailed comparison
between calculated and observed periods for the 5 min oscillations of low degree is some-
what premature. Average properties of the spectrum are probably less sensitive to these
problems, however, and may be used for an initial comparison. As pointed out by
Christensen-Dalsgaard & Gough (1980b) the discrepancies between theory and observation
for the mean frequency separation Ay appear to be within the variation possible among
traditional solar models, whereas the observed values of Av are inconsistent with the non-
standard models B and C, with low initial abundances of heavy elements, of Christensen-
Dalsgaard et al. (1979). The mean splittings §v(/) between v, ; and v, _; ;.,, for/=0and 1,
were measured by Grec et al. (1980) as 10 and 16 uHz, respectively. The theoretical results
in Table 4 are in excellent agreement with these values; these results furthermore show that
v is insensitive to changes in the opacity tables. On the other hand v is sensitive to more
drastic modifications of the model. Thus Christensen-Dalsgaard & Gough (1980b) showed
that a decrease in the interior heavy element abundances led to a significant increase in 6.
Furthermore, a chemically homogeneous, static model with the same physics as model 1 of
Table 1, calibrated to have solar radius and luminosity, was found to have §»(0) =15 uHz
and &v(1) =22uHz, which is clearly inconsistent with the observations; this result is
particularly interesting because the chemically homogeneous model cannot be distinguished
from model 1 on the basis of Av (cf. Christensen-Dalsgaard & Gough 1980b).

The periods computed for the modes close to 160 min are probably less affected by the
deficiencies in the calculation, but here a definite comparison between observed and
theoretical periods has to await a determination of the degree of the mode responsible for
the 160 min oscillation. The ratio between the amplitudes observed at Stanford and Crimea
(Scherrer et al. 1980) is consistent with a degree of 3 (Christensen-Dalsgaard 1980b); Table
3 shows that the correct period for this value of / could be obtained by an opacity change of
the same magnitude as the change from the Cox & Tabor (1976) to the Carson (1976)
tables, but of opposite sign. However, these modes are also sensitive to the variations in
chemical composition in the interior of the model; thus in the chemically homogeneous
model mentioned above the mode of degree 3 closest to 160 min is g4, with a period of
152.8 min. Thus even a modest degree of mixing of the solar interior (e.g. Dilke & Gough
1972; Schatzman & Maeder 1980, 1981) would change the gravity mode periods
significantly. Clearly a definite identification of other modes in this period range, together
with a determination of their degree, would be of great value in helping to discriminate
between these possibilities.

7 Conclusions

A more systematic investigation than has been attempted here of the sensitivity of
oscillation periods to changes in the equilibrium model is needed before the potentials for
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helio-seismology can be fully assessed. Nevertheless our results show that the observational
and computational accuracy is such that the observed periods put fairly stringent constraints
on the interior structure of solar models. The problems encountered in attempts to meet the
so far only other constraint, the neutrino capture rate, suggest that the construction of
models satisfying these new constraints may prove difficult.
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Appendix A: The central boundary condition

It may be shown (e.g. Christensen-Dalsgaard et al. 1974) that the first derivatives with
respect to ¥ of p, T, X and X3 vanish at the centre. Thus any thermodynamic function, for
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instance the density p, may be expanded as
PI)=pctthpr*+..., (A1)

where p, is the central value of p and

0p op op
P2 = (—) Pyt (‘*) T, + (—*) X3, (A2)
ar T,X oT D, X oX p, T

here p,, T, and X, are central values of the second derivatives of p, Tand X.
From equation (A1) and the mass equation follows that

m(r) =% ari(pe + Yo pr? + .. D, (A3)

and hence, using the equation of hydrostatic support

P()=pra—hapir’ —Ysmpepr* + ... . (A4)
The expansion of the luminosity requires a little more care, Introducing the variables

v® u=1,....4, by v® =p, v@ =T, v =X and v@ =X, we may write the energy
equation as

L , 3. (0v®
5—=47rpr [e— Y S, ) ], (A5)
r m

#:1 at

where e is the nuclear energy generation rate per unit mass, and

oH 1 oH oH
S ={— -, Sz=(_) ) Sa=(~) > (A6)
wirx p 0T /p,x 0X/p,r

H being the enthalpy per unit mass. Taking into account the change from time derivatives at
constant 7 to time derivatives at constant 7 equation (AS) implies that

L(r)=%r3 + %1%,

(A7)
where
4mp, [ 3 dvg“)]
Lo = €c— S A8
- c ;4)::1 Be (A8)
and
27 dvg")
$2=—5'p2 (ec TR dr
27 3 [ dvi¥ (dugf‘) 2 dlnpc)]}
+ —p. les— S +8y | —— — = vf — )1} A9
SPC{2 M; “20ar TRy 3§ dt (49)

here v{* and v are the central values of v® and d 20W/dr?, e, and S,, . are central values

of € and Sy and the second derivatives €, and Sy, 2 of these quantities are determined by
expressions similar to equation (A2).

The treatment of the time derivatives in equations (A8) and (A9), and in the discretiza-
tion of the energy equation, must be consistent. Thus if #5 and #5*! are two consecutive time
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levels, the value #§*! of %, at £*! is found from

s+1 _ S =f1__71 S+1 s+1 _ S .S
9430 +(1 94)30 3 64pc €c +(1 04)pcec

3
— Y [0a08" S5+ (1-04)08 S5, ]
u=1

G e S (G N (A10)

here superscripts s and s+1 refer to values at #* and ¢5*!, respectively, and 6, is the
centralization coefficient introduced in the discretization of the energy equation (cf.
equation B7). %, is treated similarly.

If the model has a radiative core (as in all cases considered here), the expansion of T
follows from the expansion of L, using the equation for the radiative flux, as

3KePe

T(r) =T, — ———
=T 32macT?

ZLor*+..., (Alla)
where %, is found from equation (A10); here k. is the central value of the opacity,  is the
radiation density constant and ¢ the speed of light. In a convective core the temperature
gradient is very nearly adiabatic, and so from equation (A4)

T
T(r)=Te—hT—p2Vag or* +..., (A11b)

Dc

where V,4 = (9 In 7/8 In p),, s being the specific entropy.

Finally we must consider the expansions of X and X;. In a convective core the chemical
composition is homogeneous, and the second derivatives of X and X; vanish. If the core is
radiative we must use the rate equations which for X may be written

(%)-f)m =Ry, (A12)

where Ry is a function of p, T, X and X;. Changing again to time derivative at constant r

and introducing R® =R x and R®) = Ry, (the rate of change of X3) equation (A12) and the

corresponding equation for X give

dv§) 2dlnp,
dt 3 dt

WD +RY. p=3.4, (A13)

where R is the second derivative of R® at the centre, and may be expressed in terms of
i, u=1,...,4,asin equation (A2). The two equations (A13) are then discretized in time,
using the same centralization coefficients as in the corresponding stellar evolution equations
(¢f. equation B8), to give two linear equations for v$®) and v at the time level #°*!, in
terms of quantities at 7* as well as v§')5*! and v§?)$*! These in turn are given by equations
(A4) and (A11) in terms of the central values of p, T, X and X;. By equating the expansions
of these quantities, truncated after the term in 72, to their values at the innermost mesh
point x; we therefore get a set of non-linear equations for p,, T,, X, and X. 3¢, as functions
of quantities at x;. Once these equations have been solved (this must be done numerically)
the expansion of m and L (equations A3 and A7) provide the requisite boundary conditions.
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Appendix B: The difference equations

The equations of stellar evolution are of the general form

8y,

_zﬁ(Zi,x), l=1,...,[1, (Bl)
ox

ay 7 02z;

p =foCixX)+ Y AuGx) —, p=I1+1,... J1+12, (B2)
ox i=1 ot

0Yy

— =fuCix), u=I1 +12+1,...,1, (B3)
ot

where =11 +12 +13; in the present case /1=3,12=1 and I3 =2, with the y; as defined in
Section 2. Following the discussion in that section we have introduced in the right hand
sides of equations (B1)—(B3) a new set of dependent variables z;, related to the Yi by anon-
singular transformation. The independent variable x lies in the interval (x1,x,), and the
solution satisfies boundary conditions at x 1 and x, of the form

8alzi(x1)] =0, a=1,... KA, (B4)
glzi(x2)1 =0, B=KA+1,..., KA +KB (B5)

(with KA =KB =2 in the present case).

We introduce the mesh x, =x'<...<x"<.. . <xN= X, in x and consider two time
levels #* and #5*!. Equations (B1)—(B3) are replaced by the following difference equations:

YETDST S = h AR (SIS sy o N s 1,....1, (B6)
Op(yp™ 15 =y 5 ) + (1 - p) (yE* 15— yIos)

=RAXTRG(fFHS P 4 (1-0,) (F2H5 +£19)

I
t X AR+ (1= 0,) AR @15 P sy A
=1

i=

I
t X Bp AR+ (1—0,) ARl G5+~ 2%)/Ar),
i=1

n=1,... N-1; p=I11+1,... ,11+12, (B7)
and
Yt yit = A [0, £+ (1-0,) £,
n=1

sees Ny u=I1+02+1, .. (B8)
Here 2% = z;(x", t%) and is related to yPS by

yii=yiEs,x"), n=1,...,N; i=1,...,1; (B9)

a similar notation is used for ™% and Ap;S. Finally Ax™=x"*1_x" and AsS = 5+1_ s,
Equations (B6) and (B7) are evidently centred in x; the coefficients f; have been introduced
to permit the use of different degrees of centralization in t, 0; =% corresponding to time
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centred differences. As discussed in Section 3 stability required 64 (in the energy equation)
and ¢ (in the equation for X3) to be 1, whereas 85 (in the equation for X)) could be 1.

If the z}»* are known equations (B6)—(B9), together with the boundary conditions which
now become

g(Z**H)=0, a=1,... KA (B10)
gzt =0, B=KA+1,...,KA+KB, (B11)
constitute 2 x N x I—I1—12 +KA + KB non-linear algebraic equations for the 2 x N x [/
unknowns y»**!' and z%»**', i=1,...,I; n=1,...,N. Thus we get the consistency
condition

I+12=KA +KB. (B12)

The equations are solved by Newton—Raphson iteration. Given trial values 7'p%*1 equations

(B6)—(B8) can be linearized in the corrections §z =z/»S*! —z»5*1 to give

I
Y (AL ez +BEST 82y + DS =0, n=1,...,N—1; a=1,... 11+I2,
i=1 (B13)

I
S ez v 2% =0, n=1,...,N, u=I1+I2+1,...,1I (B14)
i=1
the coefficients in these equations are rather complicated and will not be presented here (see
Christensen-Dalsgaard 1977). The linearization of (B10) and (B11) is obvious.
From (B14) 6z}, u =I1+I2+1,...,1I, can be expressed in terms of 8zn,a=1,... 11+12,
provided the matrix

{ Zi)s+1}u,v=11+12+1,...,1

is non-singular. Equation (B13) and the linearized boundary conditions can then be solved
for the 6z as usual (see, e.g. Baker, Moore and Spiegel, 1971) by forwards elimination and
back substitution. It was found that to ensure convergence the elimination had to start at
the surface. To improve the rate of convergence the derivatives with respect to z; of the
right-hand sides of the equations and the boundary conditions were evaluated analytically;
the trial model was found by linear extrapolation from the previous two time levels, and
only two to three iterations were in general needed for convergence to a mean correction
smaller than 1076,

Appendix C: The mesh and the time step
In the spirit of the first derivative stretching introduced by Gough et al. (1975) the mesh is

determined as being uniform in , satisfying the differential equation
dg

~TAF (C1)

here F is a functional of the solution y;(x, #), and X is a parameter relating the ranges of &
and x. In the present case the following choice of F was found to be suitable:
-12

6 an; |2 3m\ 3nq 2
F={ w-2S-'2(—l +w2S"2[(——) + a3 2( j|+w2 Xy —%x1)? ) C2
i; i9f 8x) 797 ax M7 ax2) 8/(x2 1) (C2)
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Here my=r, my=logp, n3=logT, ns=logL, ns=Ry, ne=1og(107° +X;) and n,=
V — Va4, where V=d log T/d log p; (x;, ) is the interval in x, s; is the range of n; and the
w;’s are adjustable weight factors. In the calculation we use w; =w, =w3 =3, wy =ws =
wy =wg =1 and wg = 0.3; furthermore a, is 107!}, i.e. comparable with the distance in x
from the surface to the maximum in V- V,4. The sensitivity of the model to changes in
w; and wy is analysed in Christensen-Dalsgaard (1977).

It is possible to regard equation (C1) as a differential equation for x which is solved
together with the equations of stellar structure, using § as the independent variable.
However we use the simpler approach of evaluating F' with a solution y;(x, ¢*) found on a
trial mesh; solving equation (C1) then clearly reduces to quadrature. The solution is trans-
ferred to the new mesh using four point Lagrangian interpolation. For the initial model the
equations are solved again on the new mesh and the determination of the mesh repeated.
Subsequent models are computed on the mesh based on the model at the previous time
level; repeating the mesh determination and solution had little effect.

The distance r; from the centre of the innermost mesh point is calculated as

5 2 -1/2
r1=0.15(z a ;, ) , (C3)
i=1 25—1

evaluated at the centre. Here ¢; =p, ¢, =T, {3 =X, §4=m/r® and {5 = L/r3. This ensures
that the ratio between the first and second term in the expansions of p, T, X, m and L is of
order (0.15)2.

The time step A¢**! =¢5*2 _ ¢5*! is determined from the change in the model from time
level £ to time level 5*!, Specifically we use

1 1 s
Ats+ "Aymax {max I:(ly{’15+ _‘yln s I)i=1,2’394’

n
IXn,s+1_Xn,sl -1
005 200|X;,s+1_xgt,s,]} , (c4)

thus Aymax is, roughly speaking, the maximum permitted change in the model between
successive time levels. The time step following the initial model is taken to be very small,
usually around 6 x 108 yr, in order to find the initial rate of change in the model, and the
last two time steps are the same and are chosen to get a final model with the age of the
present Sun.

Appendix D: The computation of oscillation periods

From the equations of linear adiabatic oscillations one may show that

o [ ol +10+ Vg1 ar

0
rg ) dp ldpdp
- [*|rient 22 60+~ T | a0
0 p dr d
4G r ’
¢ 27 {—2fsr'(’”1)D2(r)f r"2D,@r'y ar' dr
21 +1 0 0

+ 200 () re @D f b

0

Dy()r'*? dr—[p (rs)sros)]%:}; ®1)
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here
1 d I+1)
DI=_2—"2£r)— ‘Eh,
redr r
(D2)
1d | I+1)
D2='_2“(r P‘ér)— pgh
redr r

are the amplitudes of div(67) and div(pdr) respectively, and the notation is otherwise as
in Christensen-Dalsgaard (1981). For radial oscillations equation (D1) may be considerably
simplified, to give

rg rg A2
o [ gortar- (e[ S (%)) v Siari-aw)] o
0 0 dr

ar\r

+rs[3F1p(rs)Sr(rs)+rs‘5p(rs)]§r(rs)- (D3)

Equations (D1) and (D3) are well known in the case where the surface density of the
equilibrium model is zero and the surface terms consequently vanish (cf. Ledoux & Walraven
1958).

It was shown by Chandrasekhar (1964) that if p = 0 on the surface equation (D1) is a
variational expression for the squared frequency w?; in the radial case this result was
obtained by Ledoux & Pekeris (1941). The variational property remains valid for general
models, however, provided the oscillations satisfy the condition that the Lagrangian pressure
perturbation vanish on the surface, i.e.

Sp=0 atr=r,. (D4)

Mathematically this follows from the symmetry of the operator defined by the equations of
motion (Christensen-Dalsgaard 1981). From a physical point of view it reflects Hamilton’s
principle for the system consisting of the oscillating star; this system is conservative as the
oscillations are adiabatic and isolated because of the condition (D4). Thus the change §w in
w, evaluated from equations (D1) or (D3), corresponding to small changes 8¢, and 8§, and
&, and &, is quadratic in &, and 6&;,.

As was first pointed out by Christensen-Dalsgaard et al. (1979) this suggests that a more
accurate estimate of the frequency may be obtained by substituting computed eigen-
functions &,(r) and &,(r) into equations (D1) and (D2) for non-radial, or the computed
£,(r) into equation (D3) for radial, oscillations. Let Iy be the value of the period found
from this estimate of w, and IIg the period found from the value of w obtained as an eigen-
value of the system of oscillation equations. If a second-order scheme is used to integrate
these equations we may then expect that the errors §Ily and 8§11 in Ily and Iy satisfy

Sy aN ™% §Ig N2 (DS)

where N is the number of mesh points. To attain the N~* accuracy of Iy the numerical
differentiation in equations (D2) and (D3) and the numerical integration in equations (D1)
and (D3) must be performed using schemes of sufficiently high order.

As was found numerically by Christensen-Dalsgaard et al. (1979) this procedure cannot
be directly applied to high-order g modes. This may be understood by noting that the first
integral on the right-hand side of equation (D1) can be rewritten as

rq 2
fo [r% (%) +tp N 223] r? dr, (D6)
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760 J. Christensen-Dalsgaard
where
) ( 1 dlnp diln p)
= g _— -
r 1 ar dr /

is the squared buoyancy frequency. For modes of low frequency p'/p is small compared with
£, /r(eg. Cox 1980, p. 269), and so direct evaluation of the right-hand side of equation
(D1), with D, found from &, and &, using equation (D2), leads to severe loss of accuracy
due to cancellation. To avoid this problem we may instead calculate D; from the
eigenfunction as

1 dp ,
Dy = (pwrtn+ Lt +02); ®7)
Flp y dr

equation (D2) is then used to determine

1d

~ 1 )
& = A+ [; o (r Er)—rDl], (D8)

which is substituted for &, on the left-hand side of equation (D1). This procedure preserves
the variational property while avoiding the problems encountered earlier, and was used for
all calculations of g mode periods. Note, however, that for high-order p modes &, is much
smaller than either term on the right-hand side of equation (D8), and so the use of this
equation is numerically ill-conditioned. Thus the two procedures are complementary.

To test these methods one may consider oscillations of polytropic models, whose
structure can easily be calculated to any desired accuracy. We have verified that the
dependence given in equation (D5) of the error on the number of mesh points is satisified
for p and g modes in a polytropic of index 3 (¢f. Christensen-Dalsgaard 1977). A particularly
instructive case is the polytrope of index O whose eigenfrequencies are known analytically
(Pekeris 1938). Fig. 4 shows relative errors in Ily and Ilg of p modes of degree O and 2,

|811/111
o
®

0™°

Figure 4. Relative errors in the periods of the modes pp(! = 0) (0-0-0) and py(! = 2) (X—X—X) in the
polytrope of index 0, as functions of n. ITg is the period determined from the eigenfrequency and Ily; the
period found from the variational expression. The oscillation calculation used 600 mesh points.
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Solar models and their periods of oscillation 761

Table 5. Estimated relative errors 8 I1g/IlE and
8Iy/Ily in the periods determined from the
eigenfrequency and the variational expression,
respectively, using 600 points in the oscillation
calculation. The equilibrium model is model 1

of Table 1.

Mode SNE/Tg My /My
P, (=0) —298 X107? 1.85 X104
p;,(=0) ~9.65 X107 6.55 X103
Ppl=1) —-2.85 X107 1.54 X107
Psl=1) - 8.85X 107 642 X107°
gs(1=1) —-193X10™* —4,28 X107
£,,(0=2) 3.04 x10°¢ —1.46 X107¢
£.,0=3) 6.53 X107+ —3.88 X107

computed for this model on a mesh with 600 points. It is evident that the error in Ily is
generally much smaller than the error in IlIg; for modes of order 30 (corresponding in a
realistic solar model to the high-frequency end of the observed spectrum) Iy is computed
with a relative error of at most 107%. The differences between the errors for /=0 and 2
probably arise because both the differential equations and the variational expression differ;
the errors for modes with / =1 and 3 are close to those for ! = 2.

In a realistic model the variational property of w? as computed from equations (D1) or
(D3) no longer holds exactly, partly because of errors in the model and partly because the
boundary condition (D4) is no longer used. In this case equation (D5) is replaced by

6 HE = GEN—z,
§Ty ~ePN 2 + PN,

(DY)

If the departures from the exact variational principle are small eg) is much smaller than
eg so that Ily is still the more accurate. From computed values of Ilg for two different
values of &V, and computed values of Iy, for three different values of NV, one may clearly
estimate e, e{?) and e&‘,‘) . We have applied this to model 1 of Table 1, with N =600, 300
and 200 and in this way obtained the estimates presented in Table 5 of the errors §IIg and
6Ily in periods computed with NV = 600. Although these estimates are somewhat uncertain,
it is gratifying that they are, for given order n, of the same order of magnitude as the errors
shown on Fig. 4. Thus the error in the computed Iy, for given model, is probably less than
2 x107* for modes in the S min range, and less than 5 x 107 for gravity modes of degree 1,
2 and 3 with periods close to 160 min.
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