ON SOLUBLE GROUPS OF MODULE AUTOMORPHISMS OF FINITE RANK

Bertram A. F. Wehrfritz, London

Received April 18, 2016. First published August 9, 2017.

Abstract

Let R be a commutative ring, M an R-module and G a group of R automorphisms of M, usually with some sort of rank restriction on G. We study the transfer of hypotheses between $M / C_{M}(G)$ and $[M, G]$ such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose $[M, G]$ is R-Noetherian. If G has finite rank, then $M / C_{M}(G)$ also is R-Noetherian. Further, if $[M, G]$ is R-Noetherian and if only certain abelian sections of G have finite rank, then G has finite rank and is soluble-by-finite. If $M / C_{M}(G)$ is R-Noetherian and G has finite rank, then $[M, G]$ need not be R-Noetherian.

Keywords: soluble group; finite rank; module automorphisms; Noetherian module over commutative ring

MSC 2010: 20F16, 20C07, 13E05, 20H99

Kurdachenko, Subbotin and Chupordia's paper [3] is devoted to proving the following theorem. Let R be an integral domain, M an R-module and G a subgroup of Aut ${ }_{R} M$ such that $M / C_{M}(G)$ has a composition series as R-module of finite length, l say. If p is the characteristic of some R-composition factor of $M / C_{M}(G)$ (so p is a prime or zero), assume that there is a (finite) bound r_{p} on the ranks of the elementary abelian p-sections (free abelian sections if $p=0$) of G. Then $[M, G]$ also has finite R-composition length. Moreover, this length can be bounded, for example in terms of the l, p and r_{p} above. (The case where R is a field had earlier been discussed by Dixon, Kurdachenko and Otal in [2].) The authors regard this as at least a superficial analogue of Schur's theorem (e.g. [9], 1.18) that if the centre of some group G has finite index in G, then the derived subgroup of G is also finite.

Here we give a much shorter proof of this theorem. Actually we lengthen our proof a little in order to prove rather more, but we indicate below which lemmas can be omitted just to obtain a proof of this theorem from [3].

Throughout this paper R denotes a commutative ring and M an R-module. Let $\pi(M)$ denote the set of primes p such that M contains an element of additive order p together with 0 if M contains an element of infinite additive order. (If M has finite R-composition length, then $\pi(M)$ is the same as the set of primes and possibly zero considered in the theorem quoted above from [3], see below.) Note that if M is Noetherian, then the \mathbb{Z}-torsion submodule of M has finite exponent $e(M)$ and hence $\pi(M)$ is finite. In order to cover all cases simultaneously, by an elementary abelian 0 -group we mean a free abelian group.

Proposition 1. Suppose M is Noetherian as R-module. Let G be a subgroup of Aut ${ }_{R} M$ such that for every $p \in \pi(M)$ every elementary abelian p-section of G has finite rank. Then G is soluble-by-finite and has finite rank. If $0 \notin \pi(M)$, then G is even abelian-by-finite.

Whenever G is a subgroup of $\operatorname{Aut}_{R} M$, let \mathbf{g} denote the augmentation ideal of G in the group ring $R G$, so $C_{M}(G)=\operatorname{Ann}_{M}(\mathbf{g})$ and $[M, G]=M \mathbf{g}$. We need a couple of small extensions to Proposition 1.

Proposition 2. Let G be a subgroup of $\mathrm{Aut}_{R} M$. If either
(a) $M / C_{M}(G)$ has finite R-composition length and every elementary abelian p section of G has finite rank for every p in $\pi\left(M / C_{M}(G)\right)$, or
(b) $M / C_{M}(G)$ is R-Noetherian and every elementary abelian p-section of G has finite rank for every p in $\pi(M \mathbf{g})$, or
(c) $M \mathbf{g}$ is R-Noetherian and every elementary abelian p-section of G has finite rank for every p in $\pi(M \mathbf{g})$,
then G is soluble-by-finite and has finite rank.
We will see from the proofs of Propositions 1 and 2 that the rank of G and the index of its maximal soluble normal subgroup can be bounded in terms of the p ranks for each p in $\pi\left(M / C_{M}(G)\right)$ (or $\pi(M \mathbf{g})$) and certain structural constants of these R-modules.

Proposition 3. Let G be a subgroup of $\operatorname{Aut}_{R} M$ of finite rank r, and s a positive integer.
(a) If $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ has finite R-composition length l, then $M \mathbf{g}^{s}$ has finite R composition length at most $l r^{s}$.
(b) If $M \mathbf{g}^{s}$ has finite R-composition length l, then $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ has finite R composition length at most $l r^{s}$.
(c) If $M \mathbf{g}^{s}$ is R-Noetherian, then $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ is R-Noetherian.

Note that the theorem from [3] quoted above follows at once from Proposition 2 (a) and Proposition 3 (a) with $s=1$ (and with R an integral domain). Further, Theorem A of [2] also follows at once from Propositions 2 and 3 (with R a field), but Proposition 2 is not strong enough to read off Theorems B and C of [2]. At the end of this paper we give some simple examples limiting possible extensions of Propositions 2 and 3 . However, [2] is devoted to the case where $R=F$ is a field and in this case a much stronger version of Proposition 2 holds. The reason for this is that $\pi(M)=\{\operatorname{char} F\}$ for all nonzero vector spaces M over F. Theorems B and C of [2] are immediate from Proposition 3 and Proposition 4 below.

Proposition 4. Let $R=F$ be a field of characteristic $p \geqslant 0$, s a positive integer, M a vector space over F and G a subgroup of $\operatorname{Aut}_{F} M$ such that either $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ or $M \mathrm{~g}^{s}$ is finite dimensional. If every elementary abelian p-section of G has finite rank, then G is soluble-by-finite and of finite rank.

For brevity, if in some situation involving integers a, b, c etc. there is an integervalued function f only of the variables b, c etc. and of none of the other information in the situation such that $a \leqslant f(b, c, \ldots)$, we shall often just say that a is (b, c, \ldots) bounded.

Lemma 1. Let G be a subgroup of $\mathrm{GL}(n, F)$, where n is a positive integer and F is a field of characteristic 0 . Suppose that every free abelian section of G has finite rank. Then G has finite rank, r say, and G is soluble-by-finite and n-bounded. If r_{0} is the upper bound of the ranks of the free abelian sections of G, then $r_{0} \leqslant r \leqslant f_{0}\left(n, r_{0}\right)$ for f_{0} being some integer-valued function of n and r_{0} only.

Proof. Clearly G can contain no non-cyclic free subgroups. Hence by Tits's theorem ([5], 10.17, but see also [5], 10.11) the group G has a soluble normal subgroup S whose index $(G: S)$ in G is finite and n-bounded. Now S contains a triangularizable (over the algebraic closure \hat{F} of F) normal subgroup T of G with S / T finite and n-bounded (see Proposition 1 of $[7]$), so $(G: T)$ is n-bounded.

If U is the unipotent radical of T, then U is nilpotent of class less than n and its upper central factors are torsion-free. Hence U has finite rank (at most $r_{0}(n-1)$ once we know that r is finite). Also $A=T / U$ embeds into the diagonal group $\mathrm{D}(n, \hat{F})$. Thus, its torsion subgroup $\tau(A)$ has rank at most n while $A / \tau(A)$ has finite rank (at most r_{0}). Hence, T has finite rank and consequently so does G. Moreover the above then shows that

$$
r_{0} \leqslant r \leqslant\left(r_{0}+1\right) n+(G: T)
$$

and $(G: T)$ is n-bounded. Hence, r is $\left(n, r_{0}\right)$-bounded.

Lemma 2. Let G be a subgroup of $\operatorname{GL}(n, F)$, where n is a positive integer and F is a field of characteristic $p>0$. Suppose that every elementary abelian p-section of G has finite rank. Then G has finite rank, r say. If r_{p} is the upper bound of the ranks of the elementary abelian p-sections of G, then G is abelian-by-finite and (p, n, r_{p})-bounded and $r_{p} \leqslant r \leqslant f_{p}\left(n, r_{p}\right)$ for f_{p} being some integer-valued function of n and r_{p} only.

Proof. Here Tits's theorem ([5], 10.17) only yields a soluble normal subgroup S of G with G / S locally finite, but [7], Proposition 1, does at least yield a triangularizable (over \hat{F}) normal subgroup $T \leqslant S$ of G with $(S: T) n$-bounded.

If U again denotes the unipotent radical of T, then U has a central series of length less than n with its factors being elementary abelian p-groups. Thus, U is finite, say of order q, where $\log _{p} q \leqslant r_{p}(n-1)$. Now $C=C_{T}(U)$ is nilpotent of class at most 2 (for T / U is abelian). Hence C^{q} is abelian. Set $A=C_{G} C_{G}\left(C^{q}\right)$. Then A is an abelian normal subgroup of G containing C^{q} (it is the centre of $C_{G}\left(C^{q}\right)$) and G / A is isomorphic to a subgroup of $\operatorname{GL}\left(n^{2}, F\right)$, see [5], 6.2.

Now $(S: T)$ is finite and n-bounded, $(T: C)$ divides $q!$ and $\left(C: C^{q}\right)$ is a finite power of p with $\log _{p}\left(C: C^{q}\right) \leqslant\left(r_{p}+1\right) r_{p}(n-1)$. Thus, $(S: A)$ is finite and $\left(p, n, r_{p}\right)$ bounded. In particular, G / A is locally finite and embeddable into $\operatorname{GL}\left(n^{2}, F\right)$. Further, a Sylow p-subgroup of G / A is finite, say of order p^{α}, where $\alpha \leqslant r_{p}\left(n^{2}-1\right)$. By the Brauer-Feit theorem (see [1] or [5], 9.6 and 9.7 for summary) there is an integer-valued function $f(m, n, p)$ of the exhibited variables only such that G / A has an abelian normal subgroup B / A of finite index with $(G: B) \leqslant f\left(r_{p}\left(n^{2}-1\right), n^{2}, p\right)$. In particular, B is soluble, so we may choose $S=B$. Consequently ($B: A$) is finite and $\left(p, n, r_{p}\right)$-bounded. Finally, the torsion subgroup $\tau(A)$ has finite rank at most $\max \left\{n, r_{p}\right\}$ and $A / \tau(A)$ has finite rank at most r_{p}. Thus, A has finite rank and hence so does G. Also

$$
r_{p} \leqslant r \leqslant 2 r_{p}+n+(B: A)+f\left(r_{p}\left(n^{2}-1\right), n^{2}, p\right)
$$

which is $\left(p, n, r_{p}\right)$-bounded.
Pro of of Proposition 1. There exists a positive integer n (depending only on M) and for each p in $\pi(M)$ a field F_{p} of characteristic p such that G (indeed $\operatorname{Aut}_{R} M$) embeds into the direct product over $p \in \pi(M)$ of the GL $\left(n, F_{p}\right)$, see [8], 6.1 and 6.2, or less explicitly [6]. By Lemmas 1 and 2 for each p in $\pi(M)$ there exists a normal subgroup N_{p} of G such that G / N_{p} is soluble-by-finite (even abelian-by-finite if $p<0$) of finite rank and with $I_{p} N_{p}=\langle 1\rangle$. Since $\pi(M)$ is finite, the claims of Proposition 1 follow. Clearly the rank r of G can be bounded in terms of $n, \pi(M)$ and for each $p \in \pi(M)$ by the upper bound r_{p} of the ranks of the elementary abelian p-sections of G.

Consider a module X over the commutative ring R. If X is Noetherian, then the \mathbb{Z}-torsion submodule T of X has finite exponent e say. If Y is an R-submodule of X with X / Y irreducible of characteristic $p>0$ and Y irreducible of characteristic 0 , then $p X=Y$. Thus, if $P=\{x \in X: p x=0\}$, then $X / P \cong Y, P \cap Y=\{0\}$ and $P \cong X / Y$. Suppose X has a composition series (as R-module) of finite length. The above implies that the composition factors of X / T all have characteristic 0 . Necessarily those of T have characteristics dividing e. It follows that $\pi(X)$ is equal to the set of characteristics of the composition factors of X. Also if φ is any R homomorphism of X, then $T \varphi$ is the \mathbb{Z}-torsion submodule of $X \varphi, \pi(X \varphi) \subseteq \pi(X)$ and $e(X \varphi)$ divides $e(X)$.

Lemma 3. Let \mathbf{X} be a class of R-modules that is closed under taking homomorphic images and direct sums of finitely many modules. Let M be an R-module and G a finitely generated subgroup of $\operatorname{Aut}_{R} M$ such that $M / C_{M}(G) \in \mathbf{X}$. Then $[M, G] \in \mathbf{X}$.

Proof. Let $G=\left\langle x_{1}, x_{2}, \ldots, x_{s}\right\rangle$ and $N=[M, G]$. Now each $M\left(x_{i}-1\right) \cong$ $M / C_{M}\left(x_{i}\right)$ is an image of $M / C_{M}(G)$ and hence each $M\left(x_{i}-1\right) \in \mathbf{X}$. Now $N=$ $\sum_{i} M\left(x_{i}-1\right)$ since

$$
M(x y-1) \leqslant M(x-1)+M(y-1), \quad x, y \in G
$$

and hence N is an image of $\bigoplus_{i} M\left(x_{i}-1\right)$. Therefore $N \in \mathbf{X}$.
Proof of Proposition 2 (a) and 2 (b). Set $N=C_{M}(G)$ and $C=C_{G}(M / N)$. By Proposition 1 the group G / C is soluble-by-finite and of finite rank. If $g \in C$, then $g \alpha g-1$ determines an embedding of C into the additive group of $H=$ $\operatorname{Hom}_{R}(M / N,[M, C])$. In particular, G is soluble-by-finite.

If $g \in G$, then $M(g-1)$ is an image of M / N. Suppose M / N has finite R composition length. If $e=e(M / N)$ and if T is the \mathbb{Z}-torsion submodule of $[M, G]$, then $e(T \cap[M, H])=\{0\}$ for every finitely generated subgroup H of G by Lemma 3 and hence $e T=\{0\}$. If C contains an element of a prime order p, then so does H and hence so does $[M, C]$. Therefore p divides e and the p-component of C has, by hypothesis, finite rank. If C contains an element of infinite order, then so does H. But T has finite exponent and hence M / N contains an element of infinite order. Therefore $0 \in \pi(M / N)$ and so the \mathbb{Z}-torsion-free quotient of C has finite rank. Hence C has finite rank and consequently so does G. This settles Part (a).

For Part (b) if C contains an element of prime order p, then so does H and hence so does $[M, C]$. Consequently $p \in \pi([M, G])$ and hence the p-component of C has finite rank. If C contains an element of infinite order, then so does H. But M / N is
finitely R-generated. Thus, $[M, C]$ contains an element of infinite order as \mathbb{Z}-module and consequently the full torsion-free quotient of C, C and G itself have finite rank.

Lemma 4. Let e be a positive integer and π a set of primes and possibly zero. Let \mathbf{X} denote the class of all R-modules with finite composition length such that $e(M)$ divides e and $\pi(M) \subseteq \pi$. If M is an R-module and G a subgroup of $\operatorname{Aut}_{R}(M)$ of finite rank such that $M / C_{M}(G) \in \mathbf{X}$, then $[M, G] \in \mathbf{X}$.

Lemma 4 completes our proof of the theorem from [3]. Unlike in Propositions 1, 2 (b) and 2 (c), in Lemma 4 we cannot weaken having finite composition length to being Noetherian (example later).

Proof. Let r denote the rank of G and l the composition length $M / C_{M}(G)$. We prove that $[M, G]$ has composition length at most $l r$.

Consider a subgroup $H=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle$ of G. Then $[M, H]=\sum_{i} M\left(x_{i}-1\right)$ has composition length $l_{H} \leqslant l r$. Choose such $H \leqslant G$ so that l_{H} is maximal. Let $x \in G$ and set $K=\langle H, x\rangle$. Since $\operatorname{rank} G=r, K$ too can be generated by r elements and trivially $[M, K] \geqslant[M, H]$ and $l_{K} \geqslant l_{H}$. Therefore $l_{K}=l_{H}$ and $[M, K]=[M, H]$ for every x in G. Consequently $[M, G]=[M, H]$ and $l_{G}=l_{H} \leqslant l r$. Finally $[M, H]$ and hence $[M, G]$ lie in \mathbf{X} by Lemma 3 .

Lemma 5. Let G be a subgroup of $\operatorname{Aut}_{R} M$ of finite rank r and s a positive integer. If $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ has finite R-composition length l, then $M \mathbf{g}^{s}$ has finite R composition length at most $l r^{s}$. Also $e\left(M \mathbf{g}^{s}\right)$ divides $e\left(M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)\right)$ and $\pi\left(M \mathbf{g}^{s}\right)$ is contained in $\pi\left(M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)\right)$.

Proposition 3 (a) follows at once from Lemma 5.
Proof. We induct on s. The case where $s=1$ is covered by Lemma 4 (and the bound obtained in its proof). Suppose $s>1$ and set $N=\operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$. Apply the case $s=1$ to $M / N \mathrm{~g}$. This yields that $M \mathrm{~g} / N \mathrm{~g}$ has composition length at most $l r$, has $e(M \mathbf{g} / N \mathbf{g})$ dividing $e(M / N)$ and has $\pi(M \mathbf{g} / N \mathbf{g})$ contained $\pi(M / N)$. Now apply induction to $M \mathbf{g}, N \mathbf{g},(M \mathbf{g}) \mathbf{g}^{s-1}$ and $(N \mathbf{g}) \mathbf{g}^{s-1}=\{0\}$.

Proof of Proposition 2 (c). Set $C=C_{G}(M \mathbf{g})$. By Proposition 1 the group G / C is soluble-by-finite and of finite rank. There is a standard embedding of C into $H=\operatorname{Hom}_{R}(M / M \mathbf{g}, M \mathbf{g})$. In particular, C is abelian and G is soluble-by-finite.

If $e=e(M \mathbf{g})$, then the \mathbb{Z}-torsion submodule of H has an exponent dividing e. Hence, if C contains an element of prime order p, then p divides $e, p \in \pi(M \mathbf{g})$ and the maximal p-subgroup of C has finite rank. Therefore the torsion subgroup of C has finite rank. If C is not a torsion, then neither is H or $M \mathbf{g}$. Then $0 \in \pi(M \mathbf{g})$, so
by hypothesis the \mathbb{Z}-torsion-free quotient of C has finite rank. Therefore C and G have finite rank.

Lemma 6. Let \mathbf{Y} be a class of R-modules that is closed under taking submodules and direct sums of finitely many modules. Let M be an R-module and G a finitely generated subgroup of $\operatorname{Aut}_{R} M$ such that $[M, G] \in \mathbf{Y}$. Then $M / C_{M}(G) \in Y$.

Proof. Let $G=\left\langle x_{1}, x_{2}, \ldots, x_{s}\right\rangle$. Then for each i we have $M / C_{M}\left(x_{i}\right) \cong$ $M\left(x_{i}-1\right) \leqslant M \mathbf{g}$. Thus, we have embeddings $M / C_{M}(G) \rightarrow \underset{i}{\bigoplus} M / C_{M}\left(x_{i}\right) \rightarrow$ $(M \mathbf{g})^{(s)}$, which lie in \mathbf{Y}. Therefore $M / C_{M}(G) \in \mathbf{Y}$.

Lemma 7. Let e and s be positive integers and π a set of primes and possibly zero. Let \mathbf{Y} denote the class of all R-modules with finite composition length such that $e(M)$ divides e and $\pi(M) \subseteq \pi$. If M is an R-module and G a subgroup of $\operatorname{Aut}_{R}(M)$ of finite rank such that $M \mathbf{g}^{s} \in \mathbf{Y}$, then $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right) \in \mathbf{Y}$.

Proposition 3 (b) follows at once from Lemma 7 and the bound below.
Proof. Let r denote the rank of G and l the composition length of $M \mathbf{g}^{s}$ (as R module of course). We prove that $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ has composition length at most $l r^{s}$.

Consider first the case where $s=1$. Choose $H=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle \leqslant G$ such that the composition length l^{H} of $M / C_{M}(H)$ is maximal. By Lemma 6 we have $M / C_{M}(H) \in \mathbf{Y}$ and, cf. the proof of Lemma 6, clearly $l^{H} \leqslant l r$. If $x \in G$ and $K=\langle H, x\rangle$, then $C_{M}(K) \leqslant C_{M}(H)$, so $l^{H} \leqslant l^{K}$. By the choice of H we have $l^{H}=l^{K}, C_{M}(K)=C_{M}(H)$ for all x in G. Hence, $C_{M}(G)=C_{M}(H)$ and the case where $s=1$ follows.

Now assume that $s>1$. Apply the case where $s=1$ to $M \mathbf{g}^{s-1} \geqslant M \mathbf{g}^{s-1} \mathbf{g} \in \mathbf{Y}$. Hence, $M \mathbf{g}^{s-1} / A \in \mathbf{Y}$ and has composition length at most $l r$, where $A=\operatorname{Ann}_{M}(\mathbf{g}) \cap$ $M \mathbf{g}^{s-1}$. Now apply induction on s to $M / A \geqslant(M / A) \mathbf{g}^{s-1}=M \mathbf{g}^{s-1} / A \in \mathbf{Y}$. Thus, $M / B \in \mathbf{Y}$ and has composition length at most $l r r^{s-1}$, where $B / A=\operatorname{Ann}_{M / A}\left(\mathbf{g}^{s-1}\right)$. Then $B \mathbf{g}^{s-1} \leqslant A$, so $B \mathbf{g}^{s}=\{0\}$. But then $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ as an image of M / B lies in \mathbf{Y}. The proof is complete.

To prove Proposition 3 (c) we need to recall the part of the theory of Krull dimension. All we use can be found, for example, in Sections 6.1 and 6.2 of [4].

Suppose M is a nonzero Noetherian R-module. Then M has Krull dimension, an ordinal $\kappa(M)$, and a critical composition series $M=M_{0}>M_{1}>\ldots>M_{n}=\{0\}$ of finite length, where if $\alpha_{i}=\kappa\left(M_{i-1} / M_{i}\right)$ for each i, then $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{n}$. We denote this sequence of ordinals by $\operatorname{sp}(M)$. It does depend only on M, see [4], 6.2.21. Now any nonzero submodule of an α-critical is α-critical ([4], 6.2.11). Thus, if N is a nonzero submodule of M, then $\left\{M_{i} \cap N: 0 \leqslant i \leqslant n\right.$ with the repetitions removed $\}$ is a critical composition series of N and $\operatorname{sp}(N)$ is a subsequence of $\operatorname{sp}(M)$.

Now suppose that $M=M_{0}>M_{1}>\ldots>M_{r}=N=N_{0}>N_{1}>\ldots>N_{s}=\{0\}$, where the M_{i-1} / M_{i} form a critical composition series of M / N and the N_{j} form a critical composition series of N with $\operatorname{sp}(M / N)=\left\{\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{r}\right\}$ and $\operatorname{sp}(N)=\left\{\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}\right\}$. If $\alpha_{r} \geqslant \beta_{1}$, then the above series of M is a critical composition series of M and

$$
\operatorname{sp}(M)=\left\{\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{r} \geqslant \beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}\right\} .
$$

Suppose $\alpha_{t-1} \geqslant \beta_{1}>\alpha_{t}$. Let $K \geqslant N_{1}$ be a submodule of M_{t-1} maximal subject to $K \cap N=N_{1}$. Then M_{t-1} / K is β_{1}-critical and $\kappa(K) \leqslant \beta_{1}$. Hence, if $\operatorname{sp}(K)=\left\{\gamma_{1} \geqslant\right.$ $\left.\gamma_{2} \geqslant \ldots \geqslant \gamma_{u}\right\}$, then

$$
\operatorname{sp}(M)=\left\{\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{t-1} \geqslant \beta_{1} \geqslant \gamma_{1} \geqslant \ldots \geqslant \gamma_{u}\right\} .
$$

Proof of Proposition 3 (c). Consider first the case where $s=1$. Let $H=$ $\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle \neq\langle 1\rangle$ be an r-generated subgroup of G. Then $M / C_{M}(H)$ embeds into the Noetherian R-module $(M \mathbf{g})^{(r)}$ and in particular $\operatorname{sp}\left(M / C_{M}(H)\right)=\left\{\alpha_{1} \geqslant\right.$ $\left.\alpha_{2} \geqslant \ldots \geqslant \alpha_{m}\right\}$ is a subsequence of the finite sequence $\operatorname{sp}\left((M \mathbf{g})^{(r)}\right)=\left\{\delta_{1} \geqslant\right.$ $\left.\delta_{2} \geqslant \ldots \geqslant \delta_{n}\right\}$. Consider those H with $\alpha_{1}=\delta_{j}$ maximal. Of these H consider those with the number of α_{i} equal to δ_{j} maximal. Then of these H consider those with the number of α_{i} equal to δ_{j+1} maximal. Keep going like this right through to and including the final δ_{n}.

Let $x \in G$ and set $K=\langle H, x\rangle$. Then $C_{M}(K) \leqslant C_{M}(H)$. Also K is r-generator since G has finite rank r and therefore K is one of the subgroups of G considered during the choice of H. Suppose $C_{M}(K)<C_{M}(H)$ and set $\operatorname{sp}\left(C_{M}(H) / C_{M}(K)=\right.$ $\left\{\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}\right\}$. If

$$
\operatorname{sp}\left(M / C_{M}(K)\right)=\left\{\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{m} \geqslant \beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}\right\}
$$

or if $\alpha_{t-1} \geqslant \beta_{1}>\alpha_{t}$ with

$$
\operatorname{sp}\left(M / C_{M}(K)\right)=\left\{\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{t-1} \geqslant \beta_{1} \geqslant \gamma_{1} \geqslant \ldots \geqslant \gamma_{u}\right\}
$$

for some γ_{j}, then we have a contradiction to our choice of H. Therefore $C_{M}(K)=$ $C_{M}(H)$ and this is for all x in G. Consequently, $C_{M}(G)=C_{M}(H)$. But $M / C_{M}(H)$ is R-Noetherian (apply Lemma 6 with \mathbf{Y} being the class of Noetherian R-modules). Hence, $M / C_{M}(G)$ is also R-Noetherian, which settles the ' $s=1$ ' case of Proposition 3 (c). The proof is now completed by an easy induction on s, cf. the final paragraph of the proof of Lemma 7, again with \mathbf{Y} being the class of Noetherian R-modules.

Remark. If we apply the above proof to the case where $R=\mathbb{Z}$, we obtain the following. If $M \mathbf{g}^{s}$ is additively finitely l-generated, then $M / \operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ is additively $l r^{s}$-generated. A similar remark applies if R is any principal ideal domain. The main step is that $M / C_{M}(G)$ embeds into the R-module $(M \mathbf{g})^{(r)}$.

Proof of Proposition 4. Set $N=\operatorname{Ann}_{M}\left(\mathbf{g}^{s}\right)$ and suppose $\operatorname{dim}_{F}(M / N)$ is finite. If $C=C_{G}(M / N)$, then G / C is soluble-by-finite and of finite rank by Proposition 1. Also C stabilizes the series

$$
M \geqslant N \geqslant N \mathbf{g} \geqslant N \mathbf{g}^{2} \geqslant \ldots \geqslant N \mathbf{g}^{s} \geqslant\{0\}
$$

each factor of which is additively an elementary abelian p-group (torsion-free abelian if $p=0$). By standard stability theory, e.g. see [9], 1.21 , the group C is nilpotent of class at most s and has a series of lengths s whose factors are elementary abelian p-groups (torsion-free abelian if $p=0$). Therefore C has finite rank (at most $r_{p} s$ in our earlier notation). Consequently, G is soluble-by-finite and of finite rank.

Now assume that $\operatorname{dim}_{F}\left(M \mathbf{g}^{s}\right)$ is finite and set $C=C_{G}\left(M \mathbf{g}^{s}\right)$. Our proof here is similar to that above. We deduce that C is nilpotent of finite rank (at most $r_{p} s$), that G / C is soluble-by-finite and of finite rank and that G is soluble-by-finite and of finite rank.

The index in G of its maximal soluble normal subgroup is bounded in terms of $\operatorname{dim}_{F}(M / N)$ or $\operatorname{dim}_{F}\left(M \mathbf{g}^{s}\right)$ only and $\operatorname{rank} G$ is bounded in terms of r_{p}, s and $\operatorname{dim}_{F}(M / N)$ or $\operatorname{dim}_{F}\left(M \mathbf{g}^{s}\right)$, respectively, only.

Examples. (1) Although in Propositions 1, 2 (b) and 2 (c) and in Lemma 3 we can work with Noetherian modules rather than modules with finite composition length, this is not the case with Proposition 3 (a) or for that matter Lemmas 4 and 5, even if R is the integers.

Let $M=\mathbb{Z} \oplus C$, where C is an additive Prüfer p-group for some prime p (and \mathbb{Z} denotes the integers). If $a \in C$, let (a) denote the automorphism of M given by $(n, c)(a)=(n, n a+c)$. Then $G=\{(a): a \in C\}$ is a subgroup of $\operatorname{Aut}_{\mathbb{Z}}(M)$ isomorphic to C. Clearly G centralizes $C, M / C$ is \mathbb{Z}-Noetherian and $[M, G]=C$, which is \mathbb{Z}-Artinian, but not \mathbb{Z}-Noetherian.
(2) In Proposition 2 (a) we cannot weaken the hypothesis on $M / C_{M}(G)$ to just being R-Noetherian. For, repeat the construction of Example (1), but now with C being the direct sum of infinitely many Prüfer p-groups. Defining G in the same way, again G centralizes C and $M / C \cong \mathbb{Z}$ is \mathbb{Z}-Noetherian with $\pi(M / C)=\{0\}$. However now G is abelian of infinite rank, being isomorphic to C. Also G is periodic, so every elementary p-section of G is trivial for every p in $\pi(M / C)$.
(3) Although Proposition 2 is the basis of the proof of Proposition 3, Proposition 2 is not the ' $s=1$ ' case of a more general result along the lines of Proposition 3. As a trivial example let $R=\mathbb{Z}$ and $M=F^{(2)}$, where F is an infinite field of characteristic $p>0$. Let $G=\operatorname{Tr}_{1}(2, F)$, the full (lower) unitriangular group of degree 2 over F. If we set $N=M$, then $N \mathbf{g}^{2}=\{0\}$ and $\pi(M / N)$ is empty and yet G is an elementary abelian p-group of infinite rank. Trivially, M / N has finite composition length. Further, $M \mathbf{g}^{2}$ is R-Noetherian being $\{0\}$. Thus, there is no ' $s=2$ ' version for any of the three cases of Proposition 2. If you feel that having these modules $\{0\}$ is a bit of a cheat, set $M_{1}=\mathbf{F}_{q}^{(2)} \oplus M$, where \mathbf{F}_{q} denotes the field of q-elements, q a prime other than p, and $G_{1}=\mathrm{GL}(2, q) \times G$, acting on M_{1} in the obvious way. If \mathbf{g}_{1} is the augmentation ideal of G_{1}, then M_{1} modulo the annihilator of $\left(\mathbf{g}_{1}\right)^{2}$ and $M_{1}\left(\mathbf{g}_{1}\right)^{2}$ are both isomorphic to $\mathbf{F}_{q}^{(2)}$, the set $\pi\left(\mathbf{F}_{q}^{(2)}\right)=\{q\}$, the group G_{1} has finite q-rank and yet G_{1} has infinite rank.

References

[1] R. Brauer, W. Feit: An analogue of Jordan's theorem in characteristic p. Ann. Math. (2) 84 (1966), 119-131.
zbl MR doi
[2] M.R.Dixon, L. A. Kurdachenko, J. Otal: Linear analogues of theorems of Schur, Baer and Hall. Int. J. Group Theory 2 (2013), 79-89.
zbl MR
[3] L. A. Kurdachenko, I. Ya. Subbotin, V. A. Chupordia: On the relations between the central factor-module and the derived submodule in modules over group rings. Commentat. Math. Univ. Carol. 56 (2015), 433-445.
zbl MR doi
[4] J. C. McConnell, J. C. Robson: Noncommutative Noetherian Rings. With the Cooperation of L. W. Small. Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley \& Sons, Chichester, 1987.

Zbl MR
[5] B. A.F. Wehrfritz: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Mathematik und ihrer Grenzgebiete 76, Springer, Berlin, 1973.
zbl MR doi
[6] B. A.F. Wehrfritz: Automorphism groups of Noetherian modules over commutative rings. Arch. Math. 27 (1976), 276-281.
zbl MR doi
[7] B. A. F. Wehrfritz: On the Lie-Kolchin-Mal'cev theorem. J. Aust. Math. Soc., Ser. A 26 (1978), 270-276.
zbl MR doi
[8] B. A. F. Wehrfritz: Lectures around Complete Local Rings. Queen Mary College Mathematics Notes, London, 1979.
[9] B. A. F. Wehrfritz: Group and Ring Theoretic Properties of Polycyclic Groups. Algebra and Applications 10, Springer, Dordrecht, 2009.
zbl MR doi
Author's address: Bertram A.F. Wehrfritz, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, e-mail: b.a.f.wehrfritz@qmul.ac.uk.

