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Abstract. Let R be a commutative ring, M an R-module and G a group of R-
automorphisms of M, usually with some sort of rank restriction on G. We study the
transfer of hypotheses between M/C);(G) and [M, G] such as Noetherian or having finite
composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of
Kurdachenko, Subbotin and Chupordia. For example, suppose [M, G] is R-Noetherian. If
G has finite rank, then M/Cj;(G) also is R-Noetherian. Further, if [M, G] is R-Noetherian
and if only certain abelian sections of G have finite rank, then G has finite rank and is
soluble-by-finite. If M/Cj;(G) is R-Noetherian and G has finite rank, then [M, G| need
not be R-Noetherian.
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Kurdachenko, Subbotin and Chupordia’s paper [3] is devoted to proving the fol-
lowing theorem. Let R be an integral domain, M an R-module and G a subgroup of
AutpM such that M/Ch(G) has a composition series as R-module of finite length,
[ say. If p is the characteristic of some R-composition factor of M/Cu(G) (so p
is a prime or zero), assume that there is a (finite) bound r, on the ranks of the
elementary abelian p-sections (free abelian sections if p = 0) of G. Then [M, G] also
has finite R-composition length. Moreover, this length can be bounded, for example
in terms of the I, p and r, above. (The case where R is a field had earlier been
discussed by Dixon, Kurdachenko and Otal in [2].) The authors regard this as at
least a superficial analogue of Schur’s theorem (e.g. [9], 1.18) that if the centre of
some group G has finite index in GG, then the derived subgroup of G is also finite.
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Here we give a much shorter proof of this theorem. Actually we lengthen our proof
a little in order to prove rather more, but we indicate below which lemmas can be
omitted just to obtain a proof of this theorem from [3].

Throughout this paper R denotes a commutative ring and M an R-module. Let
m(M) denote the set of primes p such that M contains an element of additive order
p together with 0 if M contains an element of infinite additive order. (If M has
finite R-composition length, then 7(M) is the same as the set of primes and possibly
zero considered in the theorem quoted above from [3], see below.) Note that if M is
Noetherian, then the Z-torsion submodule of M has finite exponent e(M) and hence
m(M) is finite. In order to cover all cases simultaneously, by an elementary abelian
0-group we mean a free abelian group.

Proposition 1. Suppose M is Noetherian as R-module. Let G be a subgroup of
AutgM such that for every p € (M) every elementary abelian p-section of G has
finite rank. Then G is soluble-by-finite and has finite rank. If 0 ¢ w(M), then G is
even abelian-by-finite.

Whenever G is a subgroup of AutgM, let g denote the augmentation ideal of G
in the group ring RG, so Cp(G) = Anny(g) and [M,G] = Mg. We need a couple
of small extensions to Proposition 1.

Proposition 2. Let G be a subgroup of Autg M. If either

(a) M/Cyn(G) has finite R-composition length and every elementary abelian p-
section of G has finite rank for every p in 7(M/Cy(QG)), or

(b) M/Cun(G) is R-Noetherian and every elementary abelian p-section of G has
finite rank for every p in m(Mg), or

(¢) Mg is R-Noetherian and every elementary abelian p-section of G has finite rank
for every p in 1(Mg),

then G is soluble-by-finite and has finite rank.

We will see from the proofs of Propositions 1 and 2 that the rank of G and the
index of its maximal soluble normal subgroup can be bounded in terms of the p-
ranks for each p in 7(M/Cup(G)) (or m(Mg)) and certain structural constants of
these R-modules.

Proposition 3. Let G be a subgroup of AutgM of finite rank r, and s a positive
integer.
(a) If M/Annp(g®) has finite R-composition length [, then Mg® has finite R-
composition length at most [r®.
(b) If Mg® has finite R-composition length [, then M/Anny(g®) has finite R-
composition length at most lr?.
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(c) If Mg® is R-Noetherian, then M /Ann;(g®) is R-Noetherian.

Note that the theorem from [3] quoted above follows at once from Proposition 2 (a)
and Proposition 3 (a) with s = 1 (and with R an integral domain). Further, The-
orem A of [2] also follows at once from Propositions 2 and 3 (with R a field), but
Proposition 2 is not strong enough to read off Theorems B and C of [2]. At the end
of this paper we give some simple examples limiting possible extensions of Propo-
sitions 2 and 3. However, [2] is devoted to the case where R = F is a field and in
this case a much stronger version of Proposition 2 holds. The reason for this is that
w(M) = {charF'} for all nonzero vector spaces M over F. Theorems B and C of [2]
are immediate from Proposition 3 and Proposition 4 below.

Proposition 4. Let R = F' be a field of characteristic p > 0, s a positive integer,
M a vector space over F' and G a subgroup of AutpM such that either M/Ann,(g®)
or Mg?® is finite dimensional. If every elementary abelian p-section of G has finite
rank, then G is soluble-by-finite and of finite rank.

For brevity, if in some situation involving integers a, b, ¢ etc. there is an integer-
valued function f only of the variables b, ¢ etc. and of none of the other information
in the situation such that a < f(b,c,...), we shall often just say that a is (b,c,...)-
bounded.

Lemma 1. Let G be a subgroup of GL(n, F'), where n is a positive integer and F’
is a field of characteristic 0. Suppose that every free abelian section of G has finite
rank. Then G has finite rank, r say, and G is soluble-by-finite and n-bounded. If 1 is
the upper bound of the ranks of the free abelian sections of G, thenry < r < fo(n,ro)
for fo being some integer-valued function of n and ro only.

Proof. Clearly G can contain no non-cyclic free subgroups. Hence by Tits’s the-
orem ([5], 10.17, but see also [5], 10.11) the group G has a soluble normal subgroup S
whose index (G : S) in G is finite and n-bounded. Now S contains a triangularizable
(over the algebraic closure F' of F) normal subgroup T of G with S/T finite and
n-bounded (see Proposition 1 of [7]), so (G : T) is n-bounded.

If U is the unipotent radical of 7', then U is nilpotent of class less than n and its
upper central factors are torsion-free. Hence U has finite rank (at most r9(n—1) once
we know that r is finite). Also A = T'/U embeds into the diagonal group D(n, F).
Thus, its torsion subgroup 7(A) has rank at most n while A/7(A) has finite rank (at
most 79). Hence, T has finite rank and consequently so does G. Moreover the above
then shows that

ro<r<(ro+1)n+(G:T)

and (G : T') is n-bounded. Hence, 7 is (n, ro)-bounded. O
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Lemma 2. Let G be a subgroup of GL(n, F), where n is a positive integer and
F is a field of characteristic p > 0. Suppose that every elementary abelian p-section
of G has finite rank. Then G has finite rank, r say. If r, is the upper bound of
the ranks of the elementary abelian p-sections of G, then G is abelian-by-finite and
(p,m,rp)-bounded and rp, < r < fp(n,rp) for f, being some integer-valued function
of n and r, only.

Proof. Here Tits’s theorem ([5], 10.17) only yields a soluble normal subgroup
S of G with G/S locally finite, but [7], Proposition 1, does at least yield a triangu-
larizable (over F') normal subgroup 7' < S of G with (S : T') n-bounded.

If U again denotes the unipotent radical of T', then U has a central series of length
less than n with its factors being elementary abelian p-groups. Thus, U is finite,
say of order g, where log,q < rp(n — 1). Now C' = Cr(U) is nilpotent of class at
most 2 (for T'/U is abelian). Hence C'? is abelian. Set A = C¢Cq(C?). Then A is an
abelian normal subgroup of G containing C? (it is the centre of C(C?)) and G/A
is isomorphic to a subgroup of GL(n?, F), see [5], 6.2.

Now (S : T) is finite and n-bounded, (T : C) divides ¢! and (C : C?) is a finite
power of p with log,(C : C?) < (1, +1)r,(n—1). Thus, (S : A) is finite and (p, n,7,)-
bounded. In particular, G/A is locally finite and embeddable into GL(n?, F). Fur-
ther, a Sylow p-subgroup of G//A is finite, say of order p®, where a < 7,(n? — 1).
By the Brauer-Feit theorem (see [1] or [5], 9.6 and 9.7 for summary) there is an
integer-valued function f(m,n,p) of the exhibited variables only such that G/A has
an abelian normal subgroup B/A of finite index with (G : B) < f(r,(n? — 1),n2,p).
In particular, B is soluble, so we may choose S = B. Consequently (B : A) is finite
and (p,n,rp)-bounded. Finally, the torsion subgroup 7(A) has finite rank at most
max{n,r,} and A/7(A) has finite rank at most r,. Thus, A has finite rank and
hence so does G. Also

rp <721y +n+ (B A)+ f(rp(n® —1),n%,p),

which is (p, n, rp)-bounded. |

Proof of Proposition 1. There exists a positive integer n (depending only on M)
and for each p in m(M) a field F,, of characteristic p such that G (indeed AutpM)
embeds into the direct product over p € w(M) of the GL(n, F,), see [8], 6.1 and 6.2,
or less explicitly [6]. By Lemmas 1 and 2 for each p in m(M) there exists a normal
subgroup N, of G such that G/N,, is soluble-by-finite (even abelian-by-finite if p < 0)
of finite rank and with I, N, = (1). Since w(M) is finite, the claims of Proposition 1
follow. Clearly the rank r of G can be bounded in terms of n, 7(M) and for each
p € (M) by the upper bound 7, of the ranks of the elementary abelian p-sections
of G. (]
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Consider a module X over the commutative ring R. If X is Noetherian, then the
Z-torsion submodule T" of X has finite exponent e say. If Y is an R-submodule of X
with X/Y irreducible of characteristic p > 0 and Y irreducible of characteristic 0,
then pX =Y. Thus, if P = {z € X: pr = 0}, then X/P =Y, PNnY = {0}
and P =~ X/Y. Suppose X has a composition series (as R-module) of finite length.
The above implies that the composition factors of X/T all have characteristic 0.
Necessarily those of T have characteristics dividing e. It follows that 7(X) is equal
to the set of characteristics of the composition factors of X. Also if ¢ is any R-
homomorphism of X, then Tp is the Z-torsion submodule of Xy, m(X¢) C 7(X)
and e(X ) divides e(X).

Lemma 3. Let X be a class of R-modules that is closed under taking homo-
morphic images and direct sums of finitely many modules. Let M be an R-module
and G a finitely generated subgroup of AutgM such that M/Cy(G) € X. Then
[M,G] € X.

Proof. Let G = (x1,29,...,25) and N = [M,G]. Now each M(x; — 1) =
M/Cn(x;) is an image of M/Cy(G) and hence each M(z; — 1) € X. Now N =
> M(xz; — 1) since
i

M(my—l)gM(x—l)—i—M(y—l), xayEG
and hence N is an image of €@ M (z; — 1). Therefore N € X. O
i

Proof of Proposition 2 (a) and 2 (b). Set N = Cy(G) and C = Cg(M/N).
By Proposition 1 the group G/C' is soluble-by-finite and of finite rank. If g € C,
then gag — 1 determines an embedding of C into the additive group of H =
Homp(M/N,[M,C]). In particular, G is soluble-by-finite.

If g € G, then M(g — 1) is an image of M/N. Suppose M/N has finite R-
composition length. If e = e(M/N) and if T is the Z-torsion submodule of [M, G,
then e(T'N[M, H]) = {0} for every finitely generated subgroup H of G' by Lemma 3
and hence eT' = {0}. If C contains an element of a prime order p, then so does H
and hence so does [M, C]. Therefore p divides e and the p-component of C' has, by
hypothesis, finite rank. If C' contains an element of infinite order, then so does H.
But T has finite exponent and hence M/N contains an element of infinite order.
Therefore 0 € w(M/N) and so the Z-torsion-free quotient of C' has finite rank.
Hence C has finite rank and consequently so does G. This settles Part (a).

For Part (b) if C' contains an element of prime order p, then so does H and hence
so does [M,C]. Consequently p € 7([M,G]) and hence the p-component of C' has
finite rank. If C' contains an element of infinite order, then so does H. But M/N is
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finitely R-generated. Thus, [M, C] contains an element of infinite order as Z-module
and consequently the full torsion-free quotient of C, C' and G itself have finite rank.
O

Lemma 4. Let e be a positive integer and 7 a set of primes and possibly zero.
Let X denote the class of all R-modules with finite composition length such that
e(M) divides e and 7(M) C w. If M is an R-module and G a subgroup of Autr(M)
of finite rank such that M /Cy(G) € X, then [M,G] € X.

Lemma 4 completes our proof of the theorem from [3]. Unlike in Propositions 1,
2 (b) and 2 (c), in Lemma 4 we cannot weaken having finite composition length to
being Noetherian (example later).

Proof. Let r denote the rank of G and ! the composition length M/Cy(G).
We prove that [M, G| has composition length at most Ir.
Consider a subgroup H = (z1,x2,...,2,) of G. Then [M,H] = > M(z; — 1) has

composition length [y < Ir. Choose such H < G so that [y is maxlimal. Let x € G
and set K = (H,x). Since rankG = r, K too can be generated by r elements and
trivially [M, K] > [M, H] and I > lgy. Therefore lx =y and [M, K| = [M, H] for
every x in G. Consequently [M,G| = [M, H] and lg = Iy < lr. Finally [M, H] and
hence [M, G] lie in X by Lemma 3. O

Lemma 5. Let G be a subgroup of AutrM of finite rank r and s a positive
integer. If M /Anny;(g®) has finite R-composition length [, then Mg® has finite R-
composition length at most lr®. Also e(Mg?®) divides e(M/Ann(g®)) and w(Mg?)
is contained in w(M/Anny (g*)).

Proposition 3 (a) follows at once from Lemma 5.

Proof. We induct on s. The case where s = 1 is covered by Lemma 4 (and the
bound obtained in its proof). Suppose s > 1 and set N = Anny,(g®). Apply the case
s =1 to M/Ng. This yields that Mg/Ng has composition length at most Ir, has
e(Mg/Ng) dividing e(M/N) and has 7(Mg/Ng) contained n(M/N). Now apply
induction to Mg, Ng, (Mg)g®~! and (Ng)g*~! = {0}. O

Proof of Proposition 2 (c). Set C = Cg(Mg). By Proposition 1 the group
G/C is soluble-by-finite and of finite rank. There is a standard embedding of C' into
H =Hompg(M/Mg, Mg). In particular, C' is abelian and G is soluble-by-finite.

If e = e(Mg), then the Z-torsion submodule of H has an exponent dividing e.
Hence, if C' contains an element of prime order p, then p divides e, p € 7(Mg) and
the maximal p-subgroup of C has finite rank. Therefore the torsion subgroup of C
has finite rank. If C is not a torsion, then neither is H or Mg. Then 0 € 7(Mg), so
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by hypothesis the Z-torsion-free quotient of C' has finite rank. Therefore C' and G
have finite rank. O

Lemma 6. Let Y be a class of R-modules that is closed under taking submodules
and direct sums of finitely many modules. Let M be an R-module and G a finitely
generated subgroup of AutgpM such that [M,G] € Y. Then M/Cy(G) €Y.

1

Proof. Let G = (r1,22,...,25). Then for each ¢ we have M/Cy(z;)
M(z; — 1) < Mg. Thus, we have embeddings M/Cy(G) — @PM/Cur(x;) —
(Mg)®) which lie in Y. Therefore M/Cp(G) € Y. ‘ O

Lemma 7. Let e and s be positive integers and 7 a set of primes and possibly
zero. Let Y denote the class of all R-modules with finite composition length such
that e(M) divides e and w(M) C «w. If M is an R-module and G a subgroup of
Autg(M) of finite rank such that Mg® € Y, then M/Anny(g®) €Y.

Proposition 3 (b) follows at once from Lemma 7 and the bound below.

Proof. Let r denote the rank of G and [ the composition length of Mg?® (as R-
module of course). We prove that M/Anny(g®) has composition length at most [r®.

Consider first the case where s = 1. Choose H = (z1,z9,...,z,) < G such
that the composition length I¥ of M/Cy(H) is maximal. By Lemma 6 we have
M/Cy(H) € Y and, cf. the proof of Lemma 6, clearly I¥ < Ir. If z € G and
K = (H,z), then Cy(K) < Cy(H), so IH < I¥. By the choice of H we have
1H =15 Cpy(K) = Cy(H) for all x in G. Hence, Cpr(G) = Car(H) and the case
where s = 1 follows.

Now assume that s > 1. Apply the case where s = 1 to Mg*~! > Mg*~lgec Y.
Hence, Mg*~1/A € Y and has composition length at most Ir, where A = Annj/(g)N
Mg*~1. Now apply induction on s to M/A > (M/A)g*~! = Mg*~'/A €Y. Thus,
M/B €Y and has composition length at most Irr*~!, where B/A = Annj;/4(g*1).
Then Bg*™! < A, so Bg® = {0}. But then M/Ann)/(g®) as an image of M/B lies
in Y. The proof is complete. O

To prove Proposition 3 (¢) we need to recall the part of the theory of Krull di-
mension. All we use can be found, for example, in Sections 6.1 and 6.2 of [4].

Suppose M is a nonzero Noetherian R-module. Then M has Krull dimension, an
ordinal k(M), and a critical composition series M = My > My > ... > M,, = {0} of
finite length, where if «; = k(M;_1/M;) for each i, then an > ao > ... > . We
denote this sequence of ordinals by sp(M ). It does depend only on M, see [4], 6.2.21.
Now any nonzero submodule of an a-critical is a-critical ([4], 6.2.11). Thus, if N is
a nonzero submodule of M, then {M;NN: 0 < i < n with the repetitions removed}
is a critical composition series of N and sp(V) is a subsequence of sp(M).
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Now suppose that M = My > M; > ... > M, =N =Ny > Ny >...> N, = {0},
where the M;_1/M; form a critical composition series of M/N and the N; form
a critical composition series of N with sp(M/N) = {1 > a2 > ... 2 a,} and
sp(N)={p1 =2 B2 > ... 2 Bs}. If a, = (1, then the above series of M is a critical
composition series of M and

spM)={a1 Z2a>2...20, 2 =2P2>... =2 Bs}

Suppose a;_1 = 1 > az. Let K > Nj be a submodule of M;_; maximal subject to
K NN = Nj. Then M;_;/K is f;-critical and x(K) < f1. Hence, if sp(K) = {y1 >
Y2 = ...2= 7y}, then

spM)={a1Z2>...20 12027 2... 2 Y}

Proof of Proposition 3 (c). Consider first the case where s = 1. Let H =
(x1,22,...,2,) # (1) be an r-generated subgroup of G. Then M/Cy;(H) embeds
into the Noetherian R-module (Mg)™ and in particular sp(M/Cy(H)) = {a; >
ay > ... > ) is a subsequence of the finite sequence sp((Mg)™)) = {§; >
d2 = ... = d,}. Consider those H with oy = 0; maximal. Of these H consider
those with the number of a; equal to §; maximal. Then of these H consider those
with the number of a; equal to §;4; maximal. Keep going like this right through to
and including the final d,,.

Let x € G and set K = (H,z). Then Cp(K) < Cy(H). Also K is r-generator
since G has finite rank r and therefore K is one of the subgroups of G considered
during the choice of H. Suppose Cp(K) < Cp(H) and set sp(Cp (H)/Cu(K) =
{Br=2P2>...2 08} If

sp(M/Cy(K))={an 2 >...2an 201 2022>...2 (s}

orif ay_1 > 1 > ay with

sp(M/Cy(K))={onZz>2...2q0q 1022 2>... 2 Y}

for some +;, then we have a contradiction to our choice of H. Therefore Cps(K) =
Chr(H) and this is for all x in G. Consequently, Cp(G) = Cpr(H). But M/Ch(H)
is R-Noetherian (apply Lemma 6 with Y being the class of Noetherian R-modules).
Hence, M/Cuy(G) is also R-Noetherian, which settles the ‘s = 1’ case of Propo-
sition 3 (c). The proof is now completed by an easy induction on s, cf. the final
paragraph of the proof of Lemma 7, again with Y being the class of Noetherian
R-modules. ]
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Remark. If we apply the above proof to the case where R = 7, we obtain the
following. If Mg® is additively finitely [-generated, then M/Ann),(g®) is additively
lr*-generated. A similar remark applies if R is any principal ideal domain. The main
step is that M/Cy(G) embeds into the R-module (Mg)(™).

Proof of Proposition 4. Set N = Anny(g”) and suppose dimpg(M/N) is finite.
If C = Ce(M/N), then G/C is soluble-by-finite and of finite rank by Proposition 1.
Also C stabilizes the series

M >N >Ng>Ng*>>...> Ng* > {0},

each factor of which is additively an elementary abelian p-group (torsion-free abelian
if p = 0). By standard stability theory, e.g. see [9], 1.21, the group C is nilpotent
of class at most s and has a series of lengths s whose factors are elementary abelian
p-groups (torsion-free abelian if p = 0). Therefore C' has finite rank (at most rps in
our earlier notation). Consequently, G is soluble-by-finite and of finite rank.

Now assume that dimp(Mg?®) is finite and set C = Cg(Mg?®). Our proof here is
similar to that above. We deduce that C' is nilpotent of finite rank (at most r,s),
that G/C is soluble-by-finite and of finite rank and that G is soluble-by-finite and of
finite rank.

The index in G of its maximal soluble normal subgroup is bounded in terms
of dimp(M/N) or dimp(Mg®) only and rank G is bounded in terms of r,, s and
dimp(M/N) or dimp(Mg?®), respectively, only. d

Examples. (1) Although in Propositions 1, 2 (b) and 2 (c) and in Lemma 3
we can work with Noetherian modules rather than modules with finite composition
length, this is not the case with Proposition 3 (a) or for that matter Lemmas 4 and 5,
even if R is the integers.

Let M = 7 ® C, where C is an additive Priifer p-group for some prime p (and
Z denotes the integers). If a € C, let (a) denote the automorphism of M given
by (n,c)(a) = (n,na +¢). Then G = {(a): a € C} is a subgroup of Autz(M)
isomorphic to C. Clearly G centralizes C, M/C is Z-Noetherian and [M,G] = C,
which is Z-Artinian, but not Z-Noetherian.

(2) In Proposition 2 (a) we cannot weaken the hypothesis on M/Cy(G) to just
being R-Noetherian. For, repeat the construction of Example (1), but now with C
being the direct sum of infinitely many Priifer p-groups. Defining G in the same way,
again G centralizes C' and M/C = 7 is Z-Noetherian with 7(M/C) = {0}. However
now G is abelian of infinite rank, being isomorphic to C'. Also G is periodic, so every
elementary p-section of G is trivial for every p in n(M/C).
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(3) Although Proposition 2 is the basis of the proof of Proposition 3, Proposition 2
is not the ‘s = 1’ case of a more general result along the lines of Proposition 3.
As a trivial example let R = 7 and M = F® where F is an infinite field of
characteristic p > 0. Let G = Trq1(2, F), the full (lower) unitriangular group of
degree 2 over F. If we set N = M, then Ng? = {0} and n(M/N) is empty and
yet G is an elementary abelian p-group of infinite rank. Trivially, M /N has finite
composition length. Further, Mg? is R-Noetherian being {0}. Thus, there is no
‘s = 2’ version for any of the three cases of Proposition 2. If you feel that having
these modules {0} is a bit of a cheat, set M; = FSIQ) @ M, where F, denotes the field
of g-elements, ¢ a prime other than p, and G; = GL(2,q) x G, acting on M; in the
obvious way. If g; is the augmentation ideal of G, then M; modulo the annihilator
of (g1)? and M;(g;)? are both isomorphic to FgQ), the set W(FSIQ)) = {q}, the group
(G1 has finite g-rank and yet GG has infinite rank.
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