
Czechoslovak Mathematical Journal, 67 (142) (2017), 809–818

ON SOLUBLE GROUPS OF MODULE AUTOMORPHISMS

OF FINITE RANK

BertramA.F. Wehrfritz, London

Received April 18, 2016. First published August 9, 2017.

Abstract. Let R be a commutative ring, M an R-module and G a group of R-
automorphisms of M , usually with some sort of rank restriction on G. We study the
transfer of hypotheses between M/CM (G) and [M,G] such as Noetherian or having finite
composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of
Kurdachenko, Subbotin and Chupordia. For example, suppose [M,G] is R-Noetherian. If
G has finite rank, then M/CM (G) also is R-Noetherian. Further, if [M,G] is R-Noetherian
and if only certain abelian sections of G have finite rank, then G has finite rank and is
soluble-by-finite. If M/CM (G) is R-Noetherian and G has finite rank, then [M,G] need
not be R-Noetherian.
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Kurdachenko, Subbotin and Chupordia’s paper [3] is devoted to proving the fol-

lowing theorem. Let R be an integral domain, M an R-module and G a subgroup of

AutRM such that M/CM (G) has a composition series as R-module of finite length,

l say. If p is the characteristic of some R-composition factor of M/CM (G) (so p

is a prime or zero), assume that there is a (finite) bound rp on the ranks of the

elementary abelian p-sections (free abelian sections if p = 0) of G. Then [M,G] also

has finite R-composition length. Moreover, this length can be bounded, for example

in terms of the l, p and rp above. (The case where R is a field had earlier been

discussed by Dixon, Kurdachenko and Otal in [2].) The authors regard this as at

least a superficial analogue of Schur’s theorem (e.g. [9], 1.18) that if the centre of

some group G has finite index in G, then the derived subgroup of G is also finite.
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Here we give a much shorter proof of this theorem. Actually we lengthen our proof

a little in order to prove rather more, but we indicate below which lemmas can be

omitted just to obtain a proof of this theorem from [3].

Throughout this paper R denotes a commutative ring and M an R-module. Let

π(M) denote the set of primes p such that M contains an element of additive order

p together with 0 if M contains an element of infinite additive order. (If M has

finite R-composition length, then π(M) is the same as the set of primes and possibly

zero considered in the theorem quoted above from [3], see below.) Note that if M is

Noetherian, then the Z-torsion submodule ofM has finite exponent e(M) and hence

π(M) is finite. In order to cover all cases simultaneously, by an elementary abelian

0-group we mean a free abelian group.

Proposition 1. Suppose M is Noetherian as R-module. Let G be a subgroup of

AutRM such that for every p ∈ π(M) every elementary abelian p-section of G has

finite rank. Then G is soluble-by-finite and has finite rank. If 0 /∈ π(M), then G is

even abelian-by-finite.

Whenever G is a subgroup of AutRM , let g denote the augmentation ideal of G

in the group ring RG, so CM (G) = AnnM (g) and [M,G] = Mg. We need a couple

of small extensions to Proposition 1.

Proposition 2. Let G be a subgroup of AutRM . If either

(a) M/CM (G) has finite R-composition length and every elementary abelian p-

section of G has finite rank for every p in π(M/CM (G)), or

(b) M/CM (G) is R-Noetherian and every elementary abelian p-section of G has

finite rank for every p in π(Mg), or

(c) Mg is R-Noetherian and every elementary abelian p-section of G has finite rank

for every p in π(Mg),

then G is soluble-by-finite and has finite rank.

We will see from the proofs of Propositions 1 and 2 that the rank of G and the

index of its maximal soluble normal subgroup can be bounded in terms of the p-

ranks for each p in π(M/CM (G)) (or π(Mg)) and certain structural constants of

these R-modules.

Proposition 3. Let G be a subgroup of AutRM of finite rank r, and s a positive

integer.

(a) If M/AnnM (gs) has finite R-composition length l, then Mgs has finite R-

composition length at most lrs.

(b) If Mgs has finite R-composition length l, then M/AnnM (gs) has finite R-

composition length at most lrs.
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(c) If Mgs is R-Noetherian, then M/AnnM (gs) is R-Noetherian.

Note that the theorem from [3] quoted above follows at once from Proposition 2 (a)

and Proposition 3 (a) with s = 1 (and with R an integral domain). Further, The-

orem A of [2] also follows at once from Propositions 2 and 3 (with R a field), but

Proposition 2 is not strong enough to read off Theorems B and C of [2]. At the end

of this paper we give some simple examples limiting possible extensions of Propo-

sitions 2 and 3. However, [2] is devoted to the case where R = F is a field and in

this case a much stronger version of Proposition 2 holds. The reason for this is that

π(M) = {charF} for all nonzero vector spaces M over F . Theorems B and C of [2]

are immediate from Proposition 3 and Proposition 4 below.

Proposition 4. Let R = F be a field of characteristic p > 0, s a positive integer,

M a vector space over F and G a subgroup of AutFM such that eitherM/AnnM (gs)

or Mgs is finite dimensional. If every elementary abelian p-section of G has finite

rank, then G is soluble-by-finite and of finite rank.

For brevity, if in some situation involving integers a, b, c etc. there is an integer-

valued function f only of the variables b, c etc. and of none of the other information

in the situation such that a 6 f(b, c, . . .), we shall often just say that a is (b, c, . . .)-

bounded.

Lemma 1. Let G be a subgroup of GL(n, F ), where n is a positive integer and F

is a field of characteristic 0. Suppose that every free abelian section of G has finite

rank. Then G has finite rank, r say, and G is soluble-by-finite and n-bounded. If r0 is

the upper bound of the ranks of the free abelian sections of G, then r0 6 r 6 f0(n, r0)

for f0 being some integer-valued function of n and r0 only.

P r o o f. ClearlyG can contain no non-cyclic free subgroups. Hence by Tits’s the-

orem ([5], 10.17, but see also [5], 10.11) the group G has a soluble normal subgroup S

whose index (G : S) in G is finite and n-bounded. Now S contains a triangularizable

(over the algebraic closure F̂ of F ) normal subgroup T of G with S/T finite and

n-bounded (see Proposition 1 of [7]), so (G : T ) is n-bounded.

If U is the unipotent radical of T , then U is nilpotent of class less than n and its

upper central factors are torsion-free. Hence U has finite rank (at most r0(n−1) once

we know that r is finite). Also A = T/U embeds into the diagonal group D(n, F̂ ).

Thus, its torsion subgroup τ(A) has rank at most n while A/τ(A) has finite rank (at

most r0). Hence, T has finite rank and consequently so does G. Moreover the above

then shows that

r0 6 r 6 (r0 + 1)n+ (G : T )

and (G : T ) is n-bounded. Hence, r is (n, r0)-bounded. �
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Lemma 2. Let G be a subgroup of GL(n, F ), where n is a positive integer and

F is a field of characteristic p > 0. Suppose that every elementary abelian p-section

of G has finite rank. Then G has finite rank, r say. If rp is the upper bound of

the ranks of the elementary abelian p-sections of G, then G is abelian-by-finite and

(p, n, rp)-bounded and rp 6 r 6 fp(n, rp) for fp being some integer-valued function

of n and rp only.

P r o o f. Here Tits’s theorem ([5], 10.17) only yields a soluble normal subgroup

S of G with G/S locally finite, but [7], Proposition 1, does at least yield a triangu-

larizable (over F̂ ) normal subgroup T 6 S of G with (S : T ) n-bounded.

If U again denotes the unipotent radical of T , then U has a central series of length

less than n with its factors being elementary abelian p-groups. Thus, U is finite,

say of order q, where logp q 6 rp(n − 1). Now C = CT (U) is nilpotent of class at

most 2 (for T/U is abelian). Hence Cq is abelian. Set A = CGCG(C
q). Then A is an

abelian normal subgroup of G containing Cq (it is the centre of CG(C
q)) and G/A

is isomorphic to a subgroup of GL(n2, F ), see [5], 6.2.

Now (S : T ) is finite and n-bounded, (T : C) divides q! and (C : Cq) is a finite

power of p with logp(C : Cq) 6 (rp+1)rp(n−1). Thus, (S : A) is finite and (p, n, rp)-

bounded. In particular, G/A is locally finite and embeddable into GL(n2, F ). Fur-

ther, a Sylow p-subgroup of G/A is finite, say of order pα, where α 6 rp(n
2 − 1).

By the Brauer-Feit theorem (see [1] or [5], 9.6 and 9.7 for summary) there is an

integer-valued function f(m,n, p) of the exhibited variables only such that G/A has

an abelian normal subgroup B/A of finite index with (G : B) 6 f(rp(n
2 − 1), n2, p).

In particular, B is soluble, so we may choose S = B. Consequently (B : A) is finite

and (p, n, rp)-bounded. Finally, the torsion subgroup τ(A) has finite rank at most

max{n, rp} and A/τ(A) has finite rank at most rp. Thus, A has finite rank and

hence so does G. Also

rp 6 r 6 2rp + n+ (B : A) + f(rp(n
2 − 1), n2, p),

which is (p, n, rp)-bounded. �

P r o o f of Proposition 1. There exists a positive integer n (depending only onM)

and for each p in π(M) a field Fp of characteristic p such that G (indeed AutRM)

embeds into the direct product over p ∈ π(M) of the GL(n, Fp), see [8], 6.1 and 6.2,

or less explicitly [6]. By Lemmas 1 and 2 for each p in π(M) there exists a normal

subgroupNp of G such that G/Np is soluble-by-finite (even abelian-by-finite if p < 0)

of finite rank and with IpNp = 〈1〉. Since π(M) is finite, the claims of Proposition 1

follow. Clearly the rank r of G can be bounded in terms of n, π(M) and for each

p ∈ π(M) by the upper bound rp of the ranks of the elementary abelian p-sections

of G. �
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Consider a module X over the commutative ring R. If X is Noetherian, then the

Z-torsion submodule T of X has finite exponent e say. If Y is an R-submodule of X

with X/Y irreducible of characteristic p > 0 and Y irreducible of characteristic 0,

then pX = Y . Thus, if P = {x ∈ X : px = 0}, then X/P ∼= Y , P ∩ Y = {0}

and P ∼= X/Y . Suppose X has a composition series (as R-module) of finite length.

The above implies that the composition factors of X/T all have characteristic 0.

Necessarily those of T have characteristics dividing e. It follows that π(X) is equal

to the set of characteristics of the composition factors of X . Also if ϕ is any R-

homomorphism of X , then Tϕ is the Z-torsion submodule of Xϕ, π(Xϕ) ⊆ π(X)

and e(Xϕ) divides e(X).

Lemma 3. Let X be a class of R-modules that is closed under taking homo-

morphic images and direct sums of finitely many modules. Let M be an R-module

and G a finitely generated subgroup of AutRM such that M/CM (G) ∈ X. Then

[M,G] ∈ X.

P r o o f. Let G = 〈x1, x2, . . . , xs〉 and N = [M,G]. Now each M(xi − 1) ∼=

M/CM (xi) is an image of M/CM (G) and hence each M(xi − 1) ∈ X. Now N =
∑

i

M(xi − 1) since

M(xy − 1) 6 M(x− 1) +M(y − 1), x, y ∈ G

and hence N is an image of
⊕

i

M(xi − 1). Therefore N ∈ X. �

P r o o f of Proposition 2 (a) and 2 (b). Set N = CM (G) and C = CG(M/N).

By Proposition 1 the group G/C is soluble-by-finite and of finite rank. If g ∈ C,

then gαg − 1 determines an embedding of C into the additive group of H =

HomR(M/N, [M,C]). In particular, G is soluble-by-finite.

If g ∈ G, then M(g − 1) is an image of M/N . Suppose M/N has finite R-

composition length. If e = e(M/N) and if T is the Z-torsion submodule of [M,G],

then e(T ∩ [M,H ]) = {0} for every finitely generated subgroup H of G by Lemma 3

and hence eT = {0}. If C contains an element of a prime order p, then so does H

and hence so does [M,C]. Therefore p divides e and the p-component of C has, by

hypothesis, finite rank. If C contains an element of infinite order, then so does H .

But T has finite exponent and hence M/N contains an element of infinite order.

Therefore 0 ∈ π(M/N) and so the Z-torsion-free quotient of C has finite rank.

Hence C has finite rank and consequently so does G. This settles Part (a).

For Part (b) if C contains an element of prime order p, then so does H and hence

so does [M,C]. Consequently p ∈ π([M,G]) and hence the p-component of C has

finite rank. If C contains an element of infinite order, then so does H . But M/N is
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finitely R-generated. Thus, [M,C] contains an element of infinite order as Z-module

and consequently the full torsion-free quotient of C, C and G itself have finite rank.

�

Lemma 4. Let e be a positive integer and π a set of primes and possibly zero.

Let X denote the class of all R-modules with finite composition length such that

e(M) divides e and π(M) ⊆ π. If M is an R-module and G a subgroup of AutR(M)

of finite rank such that M/CM (G) ∈ X, then [M,G] ∈ X.

Lemma 4 completes our proof of the theorem from [3]. Unlike in Propositions 1,

2 (b) and 2 (c), in Lemma 4 we cannot weaken having finite composition length to

being Noetherian (example later).

P r o o f. Let r denote the rank of G and l the composition length M/CM (G).

We prove that [M,G] has composition length at most lr.

Consider a subgroup H = 〈x1, x2, . . . , xr〉 of G. Then [M,H ] =
∑

i

M(xi − 1) has

composition length lH 6 lr. Choose such H 6 G so that lH is maximal. Let x ∈ G

and set K = 〈H,x〉. Since rankG = r, K too can be generated by r elements and

trivially [M,K] > [M,H ] and lK > lH . Therefore lK = lH and [M,K] = [M,H ] for

every x in G. Consequently [M,G] = [M,H ] and lG = lH 6 lr. Finally [M,H ] and

hence [M,G] lie in X by Lemma 3. �

Lemma 5. Let G be a subgroup of AutRM of finite rank r and s a positive

integer. If M/AnnM (gs) has finite R-composition length l, then Mgs has finite R-

composition length at most lrs. Also e(Mgs) divides e(M/AnnM (gs)) and π(Mgs)

is contained in π(M/AnnM (gs)).

Proposition 3 (a) follows at once from Lemma 5.

P r o o f. We induct on s. The case where s = 1 is covered by Lemma 4 (and the

bound obtained in its proof). Suppose s > 1 and set N = AnnM (gs). Apply the case

s = 1 to M/Ng. This yields that Mg/Ng has composition length at most lr, has

e(Mg/Ng) dividing e(M/N) and has π(Mg/Ng) contained π(M/N). Now apply

induction to Mg, Ng, (Mg)gs−1 and (Ng)gs−1 = {0}. �

P r o o f of Proposition 2 (c). Set C = CG(Mg). By Proposition 1 the group

G/C is soluble-by-finite and of finite rank. There is a standard embedding of C into

H = HomR(M/Mg,Mg). In particular, C is abelian and G is soluble-by-finite.

If e = e(Mg), then the Z-torsion submodule of H has an exponent dividing e.

Hence, if C contains an element of prime order p, then p divides e, p ∈ π(Mg) and

the maximal p-subgroup of C has finite rank. Therefore the torsion subgroup of C

has finite rank. If C is not a torsion, then neither is H or Mg. Then 0 ∈ π(Mg), so
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by hypothesis the Z-torsion-free quotient of C has finite rank. Therefore C and G

have finite rank. �

Lemma 6. Let Y be a class of R-modules that is closed under taking submodules

and direct sums of finitely many modules. Let M be an R-module and G a finitely

generated subgroup of AutRM such that [M,G] ∈ Y. Then M/CM (G) ∈ Y .

P r o o f. Let G = 〈x1, x2, . . . , xs〉. Then for each i we have M/CM (xi) ∼=

M(xi − 1) 6 Mg. Thus, we have embeddings M/CM (G) →
⊕

i

M/CM (xi) →

(Mg)(s), which lie in Y. Therefore M/CM (G) ∈ Y. �

Lemma 7. Let e and s be positive integers and π a set of primes and possibly

zero. Let Y denote the class of all R-modules with finite composition length such

that e(M) divides e and π(M) ⊆ π. If M is an R-module and G a subgroup of

AutR(M) of finite rank such that Mgs ∈ Y, then M/AnnM (gs) ∈ Y.

Proposition 3 (b) follows at once from Lemma 7 and the bound below.

P r o o f. Let r denote the rank of G and l the composition length of Mgs (as R-

module of course). We prove thatM/AnnM (gs) has composition length at most lrs.

Consider first the case where s = 1. Choose H = 〈x1, x2, . . . , xr〉 6 G such

that the composition length lH of M/CM (H) is maximal. By Lemma 6 we have

M/CM (H) ∈ Y and, cf. the proof of Lemma 6, clearly lH 6 lr. If x ∈ G and

K = 〈H,x〉, then CM (K) 6 CM (H), so lH 6 lK . By the choice of H we have

lH = lK , CM (K) = CM (H) for all x in G. Hence, CM (G) = CM (H) and the case

where s = 1 follows.

Now assume that s > 1. Apply the case where s = 1 to Mgs−1 > Mgs−1g ∈ Y.

Hence,Mgs−1/A ∈ Y and has composition length at most lr, where A = AnnM (g)∩

Mgs−1. Now apply induction on s to M/A > (M/A)gs−1 = Mgs−1/A ∈ Y. Thus,

M/B ∈ Y and has composition length at most lrrs−1, where B/A = AnnM/A(g
s−1).

Then Bgs−1 6 A, so Bgs = {0}. But then M/AnnM (gs) as an image of M/B lies

in Y. The proof is complete. �

To prove Proposition 3 (c) we need to recall the part of the theory of Krull di-

mension. All we use can be found, for example, in Sections 6.1 and 6.2 of [4].

Suppose M is a nonzero Noetherian R-module. Then M has Krull dimension, an

ordinal κ(M), and a critical composition series M = M0 > M1 > . . . > Mn = {0} of

finite length, where if αi = κ(Mi−1/Mi) for each i, then α1 > α2 > . . . > αn. We

denote this sequence of ordinals by sp(M). It does depend only onM , see [4], 6.2.21.

Now any nonzero submodule of an α-critical is α-critical ([4], 6.2.11). Thus, if N is

a nonzero submodule of M , then {Mi∩N : 0 6 i 6 n with the repetitions removed}

is a critical composition series of N and sp(N) is a subsequence of sp(M).
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Now suppose that M = M0 > M1 > . . . > Mr = N = N0 > N1 > . . . > Ns = {0},

where the Mi−1/Mi form a critical composition series of M/N and the Nj form

a critical composition series of N with sp(M/N) = {α1 > α2 > . . . > αr} and

sp(N) = {β1 > β2 > . . . > βs}. If αr > β1, then the above series of M is a critical

composition series of M and

sp(M) = {α1 > α2 > . . . > αr > β1 > β2 > . . . > βs}.

Suppose αt−1 > β1 > αt. Let K > N1 be a submodule of Mt−1 maximal subject to

K ∩N = N1. Then Mt−1/K is β1-critical and κ(K) 6 β1. Hence, if sp(K) = {γ1 >

γ2 > . . . > γu}, then

sp(M) = {α1 > α2 > . . . > αt−1 > β1 > γ1 > . . . > γu}.

P r o o f of Proposition 3 (c). Consider first the case where s = 1. Let H =

〈x1, x2, . . . , xr〉 6= 〈1〉 be an r-generated subgroup of G. Then M/CM (H) embeds

into the Noetherian R-module (Mg)(r) and in particular sp(M/CM (H)) = {α1 >

α2 > . . . > αm} is a subsequence of the finite sequence sp((Mg)(r)) = {δ1 >

δ2 > . . . > δn}. Consider those H with α1 = δj maximal. Of these H consider

those with the number of αi equal to δj maximal. Then of these H consider those

with the number of αi equal to δj+1 maximal. Keep going like this right through to

and including the final δn.

Let x ∈ G and set K = 〈H,x〉. Then CM (K) 6 CM (H). Also K is r-generator

since G has finite rank r and therefore K is one of the subgroups of G considered

during the choice of H . Suppose CM (K) < CM (H) and set sp(CM (H)/CM (K) =

{β1 > β2 > . . . > βs}. If

sp(M/CM (K)) = {α1 > α2 > . . . > αm > β1 > β2 > . . . > βs}

or if αt−1 > β1 > αt with

sp(M/CM (K)) = {α1 > α2 > . . . > αt−1 > β1 > γ1 > . . . > γu}

for some γj , then we have a contradiction to our choice of H . Therefore CM (K) =

CM (H) and this is for all x in G. Consequently, CM (G) = CM (H). But M/CM (H)

is R-Noetherian (apply Lemma 6 with Y being the class of Noetherian R-modules).

Hence, M/CM (G) is also R-Noetherian, which settles the ‘s = 1’ case of Propo-

sition 3 (c). The proof is now completed by an easy induction on s, cf. the final

paragraph of the proof of Lemma 7, again with Y being the class of Noetherian

R-modules. �
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Remark. If we apply the above proof to the case where R = Z, we obtain the

following. If Mgs is additively finitely l-generated, then M/AnnM (gs) is additively

lrs-generated. A similar remark applies if R is any principal ideal domain. The main

step is that M/CM (G) embeds into the R-module (Mg)(r).

P r o o f of Proposition 4. Set N = AnnM (g
s
) and suppose dimF (M/N) is finite.

If C = CG(M/N), then G/C is soluble-by-finite and of finite rank by Proposition 1.

Also C stabilizes the series

M > N > Ng > Ng2 > . . . > Ngs > {0},

each factor of which is additively an elementary abelian p-group (torsion-free abelian

if p = 0). By standard stability theory, e.g. see [9], 1.21, the group C is nilpotent

of class at most s and has a series of lengths s whose factors are elementary abelian

p-groups (torsion-free abelian if p = 0). Therefore C has finite rank (at most rps in

our earlier notation). Consequently, G is soluble-by-finite and of finite rank.

Now assume that dimF (Mgs) is finite and set C = CG(Mgs). Our proof here is

similar to that above. We deduce that C is nilpotent of finite rank (at most rps),

that G/C is soluble-by-finite and of finite rank and that G is soluble-by-finite and of

finite rank.

The index in G of its maximal soluble normal subgroup is bounded in terms

of dimF (M/N) or dimF (Mgs) only and rankG is bounded in terms of rp, s and

dimF (M/N) or dimF (Mgs), respectively, only. �

Examples. (1) Although in Propositions 1, 2 (b) and 2 (c) and in Lemma 3

we can work with Noetherian modules rather than modules with finite composition

length, this is not the case with Proposition 3 (a) or for that matter Lemmas 4 and 5,

even if R is the integers.

Let M = Z ⊕ C, where C is an additive Prüfer p-group for some prime p (and

Z denotes the integers). If a ∈ C, let (a) denote the automorphism of M given

by (n, c)(a) = (n, na + c). Then G = {(a) : a ∈ C} is a subgroup of AutZ(M)

isomorphic to C. Clearly G centralizes C, M/C is Z-Noetherian and [M,G] = C,

which is Z-Artinian, but not Z-Noetherian.

(2) In Proposition 2 (a) we cannot weaken the hypothesis on M/CM (G) to just

being R-Noetherian. For, repeat the construction of Example (1), but now with C

being the direct sum of infinitely many Prüfer p-groups. Defining G in the same way,

again G centralizes C and M/C ∼= Z is Z-Noetherian with π(M/C) = {0}. However

now G is abelian of infinite rank, being isomorphic to C. Also G is periodic, so every

elementary p-section of G is trivial for every p in π(M/C).
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(3) Although Proposition 2 is the basis of the proof of Proposition 3, Proposition 2

is not the ‘s = 1’ case of a more general result along the lines of Proposition 3.

As a trivial example let R = Z and M = F (2), where F is an infinite field of

characteristic p > 0. Let G = Tr1(2, F ), the full (lower) unitriangular group of

degree 2 over F . If we set N = M , then Ng2 = {0} and π(M/N) is empty and

yet G is an elementary abelian p-group of infinite rank. Trivially, M/N has finite

composition length. Further, Mg2 is R-Noetherian being {0}. Thus, there is no

‘s = 2’ version for any of the three cases of Proposition 2. If you feel that having

these modules {0} is a bit of a cheat, set M1 = F
(2)
q ⊕M , where Fq denotes the field

of q-elements, q a prime other than p, and G1 = GL(2, q)×G, acting on M1 in the

obvious way. If g1 is the augmentation ideal of G1, then M1 modulo the annihilator

of (g1)
2 and M1(g1)

2 are both isomorphic to F
(2)
q , the set π(F

(2)
q ) = {q}, the group

G1 has finite q-rank and yet G1 has infinite rank.
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