
On solutions of algebraic differential equations whose 
coefficients are entire functions of finite order (*). 

STEVEN BANK 4Urbana, U.S.A.) (**) 

Summary. - l,Ve determine bounds for the grorvth of entire solutions of first order equations 
whose coefficients are entire functions of finite order. 

1 .  - In t roduct ion .  

In this paper  we investigate the rate of growth of entire functions which 
are solutions of first order algebraic differential  equations whose coefficients 
are arbi t rary  entire functions of finite order (i.e. equations of the form 

12(z, y, d y / d z ) =  O, where ~2(z, y, d y / d z ) -  Z fkj(z)yk(dy/dz) j 
k, j~o 

is a polynomial  in y and dy/dz,  whose coefficients fkj(z) are entire functions 
of finite order). 

In [41, VALII~ON treated the special case where the coefficients fk/z) are 
polynomials,  and in this case, it was shown that any entire solution must  be 
of finite order. (In fact, YALII~O~ showed, in the case of polynomial coeffi- 
cients, that for an entire t ranscendental  solution g(z), with maximum modulus 
M(r; g), there are positive constants k and b, with b rational, such that 
lira ( logM(r ;  g)/kr ~) = 1). 
r-->~-CO 

In the general  case where the coefficients f~j(z) are arbi t rary entire fun- 
ctions of finite order, clearly such equations can possess entire solutions of 
infinite order (for example, exp (exp z), sin (cos z)), but our main result  here 
(§ 2 below) shows that the growth of an entire solution h(z) of such an equa- 
tion in the genera] case, is restr ic ted in the following natural  way:  There 
exist positive constants ro and ~ such that M(r; h ) ~ e x p ( e x p r  :) for all 
r )  to.  In fact we show that for any real number  ). which is greater  than 
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the order  of each coefficient f~](z), the inequali ty M(r; h ) ~ e x p ( e x p  r ~-) holds 
for all r greater  than some number  ro(),). In § 4, we show the necessi ty of 
). being greater than the order of each coefficient, by construct ing a simple 
example where if ~ is taken to be equal to the maximum order of the coef- 
ficients, then for no constant K will the inequali ty M(r; h ) ~  exp (exp (KrX)) 
hold for all suff iciently large r. 

The principal  tools used in the proof of the main resul~ consist of: 

(i) the WI~A~-VAT,IRo~ theory of the maximum term ([6, 7, 8] or for 
a complete discussion [3, Chapt. 9]); 

(it) Certain results ([6; pp. 239-240]) concerning the relation between 
the max imum modulus and the maximum term of an entire function, and 

(iii) Certain results from the theory of entire functions of finite order. 

2 .  - W e  now state our main result :  

TI4EO~E~,I. - Let 

~(z, y, dy/dz)----- Z fkJ(z)Yk(dy/dz) j 
k, j~O 

be a polynomial in y and dy/dz, where each coefficient fki(z) is an entire 
funct ion of finite order. Let h(z) be any entire function which satisfies 
~(z, h(z), h'(z))~ O, and let M(r; h ) - -  max I h(z)]. Then for any real number  

), which is greater  than the order ~)f each coefficient fkj(z), there exists a po- 
sitive real number  ro().) such that M(r; h ) ~ e x p  (exp r z) for all r >  ro(~). 

3. - PROOF OF THE TI-[EOREM. - If h(z) is a polynomial, clearly the re- 
sult holds. Hence  we may assume that 

co 

(I) h is an entire t ranscendental  function. Let ~, cnz ~ be the power 
n ~ 0  

series expansion of h(z), and let M ( r ) -  max t h~z)l. For  each r ~ 0 ,  let v(r) 
N=r 

be the central  index [1; p. 183] of h (i.e., v(r) is the max imum j such that 
fc1] r 1 -  max [c,~[ r'~). Then in view of (1), 

m ~ 0  

(2) v(r) is an unbounded increasing function of r, and it is proved in 
[3; pp. 198, 210] (and also in [5; pp. 95, 103]) that there exists ~ ( 0 ,  1) such 
that if we exclude from the interval (1,-{-co)  an infinite sequence of 
exceptional f inite open intervals (We, W:) for which 

co 

(3) Z (log W i - - l o g  Ws)converges,  
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and for  wh ich  we m a y  a s s u m e  

(4) W: <: W~+t for  all  s, and  lim W: " - - } - c~ ,  then  in the r ema in ing  
s-->CO 

set (t, q - o ~ ) - - E ,  where  E - -  tO (Ws, W:), the fol lowing are  t rue :  The re  
,=1 

exis ts  a n u m b e r  R1 ~ 1 such that  for  r > R1 and r ~ E, we have 

(5) log M ( r ) >  c(v(r)) ~, where  c is a posi t ive  cons tan t  i ndependen t  of r, 
and if z is any point  on [z[ = r at which  [h(z)[---M(r),  then 

(6) h'(z) --- (v(r)/z)(t -1- s(z))h(z), where  I s(z) I < (v(r)) -~ for  some f ixed ~ > 0. 
(The e lements ,  of ( 1 - 1 - c x ~ ) -  E are  ca l led  ordinary  va lues  of index  a in 
[3, 4, 5]). 

5low each  coef f ic ien t  fki(z) is an en t i re  func t ion  of f ini te  o rder  (and of 
course  there  are  only f in i te ly  m a n y  non-ze ro  f~]). Let  d be  the m a x i m u m  of 
the orders  of the coef f ic ien ts  fk], and let ). be any n u m b e r  g rea te r  than d. 
Define,  

(7) b - -  (k q- d)/2 and ~ --  ( k - -  d)/5. Thus,  

(8) b > d ~ O ,  z > O  and b q - 2 ~ < k .  

S ince  b > d, c lear ly  there  ex is t s  R2 > 1 such  that  when  r > R2,  

(9) '[fk](z) l ~ exp (r b) on [z[ - -  r for  all k, j .  

Now let, 

(10) p --- max  {k q - j :  fki ~ 0} and m - -  max  lj:fp-].i • 0}, and cons ider  
the coef f ic ien t  fp . . . .  (z). Le t  a l ,  a2,  ... be  the non-ze ro  roots  (if any) of fp_~. ,~(z), 
and let  D be the domain  ob ta ined  by  r emov ing  f rom the p lane  all the d i sks  
t ~ - -  a .  l < t a~ ]--b. Then  s ince  b is g r ea t e r  than the order  of fp . . . .  (z) (by (8)), 
it is p roved  in [2; p. 328] that  

(11) E la~[ -b converges ,  and it is p roved  in [2; p. 336] (by us ing  the 
n ~ l  

r ep re sen ta t i on  for fp . . . .  g iven by the H a d a m a r d  Fac to r iza t ion  Theorem)  
that  there  exis ts  R~ > 1 such that,  

(12) tfp . . . .  (z)l __> exp (- -  r b) 
F be the un ion  of all  the open  
n = 1, 2, .. . ,  then in v iew of (12), 

(13) I fF . . . .  (z) l ~ exp  ( -  r b) 
(11), it is c lear  that  the set  F can  
f ini te  open  in tervals  (T,, T:) such  

for z e  D and izl = r ~> R3.  Thus  if we let  
in tervals ,  ( l a ~ [ -  la~L -b, las t  + ia~l -b) for  

on l zl --- r if r > R3 and r ~ F.  In v iew of 
be  wr i t ten  as the un ion  of a s equence  of 
that,  

(14) T', < T,+I for all s, and E ( T : - - T , )  converges .  
s ~ l  
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In  view of (3), (4), and (14), clearly we may write E U F as the union 
of a sequence of finite open intervals, 

CO 

(,15) E tJ F -- U (Us, U:), where 
s~---1 

(16) U'~< U~+~ for all s and lira U : - + c ' o  
s--~*O0 

and 
Gt3 

(17) Z (log U'~-  log U~) converges. 

Now define 

(18) A =  I r [ r > l  and v(r )>exp(rb+:)}  (where z is as in (7)). 

We now prove, 

LEMMA A. - There  exists a number  r * >  1 such that AN(r*, -{-co)C EUF.  

PROOF. - Assume the contrary. Then there exists a sequence of distinct 
values of r in (1, -~ ~ tending to + c~ such that 

(19) r 6 A  but r $ E U F .  

Let  B be the set of values of r comprising this sequence. Now h(z) 
satisfies the relation, 

(20) Z fkJ(z)(h(z))k(h'(z)) i =- O. 

Let f e B  and let z be a point on [ z l = r  at which [h(z))[--M(r). Then 
clearly h ( z ) ~  0, and so by dividing equation (20) by (h(z))p (where p is as in 
(10)), we can write equation (20) in the form, 

rrt 

(21) Z fp_j.j(z)(h'(z)/h(z))J--- Z fkj(z((h'(z)/h(z))~(h(z)) ~+j-p. 
j=o k+/<p 

We will denote the left side of (21) by A(z), and the right side by q)(z). 
We now assert that there exists a real number  r ' >  R3 such that if 

r e B  and r ;> r', then 

(22) I ¢(z) l ~ (~(r)) -1~ exp (rb), 

at each point of l z [ -  r at which [h(z)I----M(r). 
To prove (22), we recall  first  from (t9) that if r e B  then rq~E and r~F.  

Since v (r) ---> -[- oo as r--> ~ c~o (by (2)), we see that ~(z) (in (6)) tends to zero 
as r - - > ~  in B. Since M(r) also tends to ~-o% there exists R 4 > l  such 
that for r ~ B , : a n d  r > R4, we have 

(23) M(r)> 1, v ( r )>  1 and l~(z)t < 1/2, 
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at every point of ] z ] -  r at which l h(z)]--M(r) .  Let B 5 - -  max R i and let r 
be any element of B such that r > Bs .  ~<j_<4 
Let  z be any point on [zt-----r at which lh(z) I = M ( r ) .  We refer  to the r ight  
side of (21). I f  k + j  < p. then p - -  (k + 2  ~ i so lh(z)[ k+y-P : (M(r))k+] -p <:  
~ M ( r ) )  -1 (since M ( r ) >  1). Since ]~(z)I < 1/2 (by (23)), we have by (6) that 
i h'(z)/h(z)] < 2v(r)/r < 2v(r) since r > 1. Thus, lh~(z)/h(z)Ii < 2e(v(r))e if k -{-j < p 
(since j < p and v(r) :> 1). In  view of the above estimates and (9), it is c lear  that 

(24) I(I)(z)l ~ K(v(r))p(M(r)) -~ exp (r b) 

where K is a positive constant independent  of r. Now since r E B  and r > R 5 ,  
we have by (5) that v ( r )<  (c -1 log M(r))l/~, and so from (24), 

(25) [(I)(z)l ~ +(r)CM(r)) -~/2 exp (rb), 

where ~(r) --  K(c -1 log M(r))P/~ (M(r))-I/2 . Since M(r) .--> -{- co as r ---> + 0% it is 
clear that ~p(r) ---> 0 as r ---> -~- ~ .  Hence  there exists r '  > R~ such that ~(r) < 1 
for r > r'. Thus (22) follows from (25). 

We now consider A(z) (i.e. the l e f t  side of (21)). 

CASE I: m = 0. Then A(z) = fp . . . .  (z). Since A(z) = q)(z) (by (21)), we 
have by (13) and (22) that, exp (--  r b) ~ (M(r))-x] 2 exp (r ~) if r e B and r > r'. 
Thus, 

(26) M ( r ) ~ e x p ( 4 r  b) if r e B  and r > r ' .  

But if r e  B then r e  A and so v( r )>  exp( r  b+*) by (18). Hence  by (5), log 
M(r) > e exp (~rb+~), and so by (26), 

(27) exp(c exp(:crb+ ~ ) - 4 r  b ) ~ l  if r ~ B  and r > r ' .  But since c > 0, 
> 0 ,  b > 0 ,  and ~ > 0 ,  it is clear that the left side of (27) tends to + o o  

as r--->-{-c~. Thus (27) is impossible (since by our assumption (19), there 
exist r -va lues  in B tending to 4-c~). This contradict ion proves Lemma A in 
the case m --  0. 

CAs~, I I :  m > 0 .  By (23), if f e b  and r >  r '  then I¢(z)l < 1/2, and so at 
each point of !z I - - r  at which Ih(z)]--M(r) ,  we have b y ( 6 ) t h a t  lh ' (z) /h(z)I~ 

( i -  [~(z)])v(r)/r ~ (2r)-~(r). But if r e  B then r e A and so v( r )>  exp (rb+~). 
Thus if r e  B and r > r', then 

(28) t h'(z)/h(z)[ ~ (2r) -~ exp (rb+ ~) 

at each point of l z ] -  r at which [h(z)[--M(r) .  
We now assert that there exists r # >  r' Such that if r ~ B  and r~> r ~, 

then 

(29) I A(z)] ___> exp ((m/2)r~,),  

at each point of l z I - - r  at which [h(z)]--M(r).  
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To prove (29), we note first that h(z) may be wri t ten in the form, 

rn - -1  

(30) A(~) - -  fp . . . . .  (z)(h'(z)/h(z))~( 1 -{- Z g:i(z)), 
j=0 

where 

(31) Wj(z) --  (re_j. ](z)/fp . . . .  (z))(h'(z)/h(z))i-~ 

for j - - 0 ,  1, ..., m - - 1 .  We consider the quotients Wj(z) at points on ]z] = r  
at which [h(z)]----M(r), where r ~ B  and r > r ' .  Now for 0 ~ j ~ m - - 1 ,  it 
follows from (28) that, l h ' ( z ) /h ( z )p -J  ~ (2r) -'~ exp (rb+% and so using (9) and 
(12), we obtain 

(32) ] W/(z)l ~ (2r) ~ exp (2r ~ - -  rb+~). 

Since b > 0  and v > 0 ,  it is clear that the right side of (32)tends to 
zero as r-->-{- ~ .  Hence  there exists R6 > r '  such that for r ~ B  and r >  R6, 
we have 

(33) I ~ ' j ( z ) [ ~ l / ( m + l )  for j - - 0 ,  1, ..., m - - 1 .  
m - - 1  

5Tow by (30), /A(z ) t~ l fF  . . . . . .  (z)l th'(z)/h(z)l '~( 1 -  Z tWj(z)[) ,  and so by 
]~o 

(i3), (28) and (33), we obtain for f e b  and r > R6, 

(34) l A(z)[ ~ (1/(m + l))(2r) - ~  exp(mrb+ ~ - -  rb), 

at every point of [z 1 = r  at which l h ( z ) ] - - M ( r ) ,  Now clearly the funct ion 
~(r) -~ (1/(m -~ 1) ) (2r ) - '~exp( (m/2)r  b+~ - -  r b) tends to + oc as r --> + c~, so there 
exists r # > R 6  such that ¢~(r)>1 for r > r  #. In  view of (34) and the defi- 
nition of ¢~(r), we obtain (29). 

Since h(z)--(1)(z) (by (21)), we have by (22) and (29) tha t  if r ~ B  and 
r > r ~ ,  then exp ( (m/2)r  b+~) ~ (M(r)) -1/2 exp (rb), and so M(r) ~ exp (2r ~ - -  
- -  mrS+:). Hence,  

(35) M ( r ) ~ l  if r ~ B  and r >  m a x { r  +, (2/m)~/~/. 

But M(r) ---> + ~ as r--> ~- c~, so (35) is impossible (since by our assumt. 
pion (19) there exist r -va lues  in B tending to -{- co). This contradiction proves 
Lemma A in Case I I  and so the proof of Lemma A is complete. 

We now prove, 

LE~I~A B - There  exists a real number  r~ > 1 such that v(r) < exp (2rb+ ~) 
for all r ~ r ~ .  

PRooF. - By Lemma A, there exists r * >  1 such that 

(36) A (~ (r*, + ~ )  c E U F.  
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Now by (15), (16), and] (17), E U F is the union of a sequence of open 

intervals (U,, U:) where U'~ < U,+I, lim U~ = + co and Z log (U~/U,) conver. 
s--)O0 s ~ l  

ges. Since the series converges, lim (UJUs) ' -1  and so lim (U's/U~)b+ ~ - - 1 .  
s ~,,'*~ s--)0O 

Since also lira U'~ = + 0% clearly there exists so such that 
s--> 00 

(37) U~ > r* and (U~/U,)b+ ~ < 2 for all s ~ S o .  

We will show that if r l  is taken to be /7'o then the conclusion of the 
lemma holds. Let  r ~ r~. 

If r ~ A, then (by (18)), v(r) ~ exp (¢+~) < exp (2#+~). 
If r ~ A ,  then by (36), r e E U F .  Hence  for some q, re (Uq,  U~). Since 

Uio ~ r < U'q, clearly (by (16)), q > so, so (37) holds for q. Now the endpoint 
U~ is clearly not in E U F, so by (36), U'q ~ A. Hence  v(U'q)~ exp((U'q)b+~), 
and so by (37) (for s = q), we have v(U'q) ~ exp (2(Uq)b+9. Since v is increasing, 
we thus have v ( r ) ~  v(U'q)~ exp (2(Uqp+% But Uq < r and so we obtain v(r)< 
< exp(2#+~) which proves Lemma B completely. 

Now for each r >__0, let t~(r) be the max imum term [3, p. 193] of h (i.e. 
co  

if E c,, z~ is the power series expansion of h, then ~ ( r ) -  maxlc~lr ' ) .  It  is 
n = O  n : > 0  

proved in [3; p. 195] that for any r0 > 0, we have 
r 

(38) log t~(r) - -  log t~(ro) + I(v(x) /x)dx-  
re 

By Lemma B, we have v ( x ) ~  exp(2xb+ ~) for all a ~ r ~ .  Applying (38) 
with r0 equal to r l ,  and observing that for r~ ~ x, <_ r, v(x)/x ~ v ( x ) ~  v(r) 
(since r~ > 1 and v is increasing), we obtain 

(39) log l~(r) ~ log t~(r0 + (r - -  ri) exp (2¢+:) for r ~ r~. 

Hence clearly, there exists r2 > r i  such that 

(40) log ~(r) ~ exp (3¢+ :) for all r > r2. 

Now it is proved in [5; p. 106] that the following relation holds between 
M(r) and ~(r): For  any d > 0, there exists r~ > r2 such that if we remove 
from (rz, + oc) an infinite sequence of exceptional finite open intervals 
(V~, V:) for which 

c o  

(41) X (log V~-- log E) converges, 
,=~ 

and for which we may assume that 

(42) V~< E+~ for all s and lim V ~ = + o %  
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then for all r in the set (r3, -Fc~)- -G,  where G-" U(V, ,  Vi), we have 

(43) M(r) < ~(r)(log ~t(r))¢+(1/2). 

We apply the above with s ' - - 1 / 2 ,  and using (40) we obtain for r > r3 
and r ~ G, 

(44) M(r) < (exp (exp (3rb+~))) exp (3r~+~). 

Hence clearly there exisis r4 > r3 such that 

(45) M(r) < exp (exp (4rb+~)) for r > r4 and r ~ G. 

We now prove, 

L E M M A  C.  - There exists r5 > 1 such that M(r)< cxp (exp (8rb+:)) for all 
r > r s .  

PROOF. - By the convergence of the series (41), clearly lim (V~/V,)--1, 

lim (V~/V,) b+: -- 1. Since also, lim V's "- -[- c~ (by (42)), there exists to such that 
S--),OO S*~"JO 

(46) V',> r~ (where r~ is as in (45)) and (VI/V,) b+~ < 2, for t ~ t o .  
We show that if r5 is taken to be V~0, then the conclusion of Lemma C 
holds. Let r > r~. 

If r ~ G, then by (45), M(r) < exp (exp (Srb+°)). 
If r ~  (7, then there exists t~ such that r~(V,~, V~). Since V', o < r <  V',~, 

clearly tl > to (by (42)), so (46) holds for t - -  t~. Now clearly the endpoint 
Vi, is not in G and so by (45), M(V~)< exp(exp (4~V;~)b+~)). By (46), we thus 
obtain, M(V;,) < exp (exp (8(V~,)b+~)). But V~ < r so M(V;,) < exp (exp (8rb+~)), 
and hence since M is increasing, we have M(r) < exp (exp (8rb+:)). This pro. 
yes Lemma  C. 

Since M(r)< exp (exp (8rb+:)) for r > r5 by Lemma C, it clearly follows 
that there exists r0 > 1 such that M(r) < exp(exp(rb+2~)) for r > r e .  But by 
choice of ~ (i.e., (8)), we have b -[- 2~ < ~,, so M(r) < exp(exp(r~)) for r > re,  
This concludes the proof of the theorem stated in § 2. 

4. - R E M A R K .  - If d is the maximum of the orders of the coefficients 
f~i of ~2(z, y, y ' ) - - 0 ,  then by our theorem, we know that for any entire solu- 
tion h and any ), > d, the inequali ty ~/ ( r ;  h ) ~  exp(exp(rZ)) is valid for all 
sufficiently large r. We give here an example where this inequali ty cannot 
be replaced (for sufficiently large r) by an inequali ty of the form M(r; h ) ~  
~ exp(exp(Kr~)) where K is a constant. To see this, let f be an entire fun- 
ction of finite order  d > 0 and maximal  type [2; p. 324]. (For example,  we 
can take f(z) -- l/F(z), where r(z) is Euler 's  Gamma function, and in this case 
d --  1). Then f'(z) will also be Of order d and maximal  type. Let h(z)-- exp (f(zj). 
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Then h is an entire solution of y ' - - f ' ( z ) y - -0 ,  and by our theorem, we know 
that for ~ > d, M(r; h ) ~ e x p ( e x p  r ~) for all sufficiently large r. We assert 
that there is no constant K such that the inequality M(r; h).~_exp(exp(Kr~)) 
holds for all sufficiently large r. If we assume the contrary and let A(r)-- 
= max  Re(?(z)), then clearly we would have exp (A(r)) -- M (r; h) < exp (exp (Kr d) 

for all sufficiently large r. But by a theorem of BOREL [5; p. 19], for all 
sufficiently large r, we have M(r; f ) ~  (R/(R--r))[4A(R)d-3If(0)l]  if R > r. 
Taking R - "  2r, we clearly would obtain, M(r; f )~exp( (K2d-~  1)r ~) for all 
suff iciently large r, which contradicts the fact that f is of maximal  type. 
Hence no such K can exist.  
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