On solutions of algebraic differential equations whose
coefficients are entire functions of finite order (*).

StEveN BANk (Urbana, U.8.A.) (*%)

Summary. - We deiermine bounds for the growth of entire solutions of first order equations
whose coefficients are entire functions of finite order.

1. - Introduection.

In this paper we investigate the rate of growth of entire functions which
are solutions of first order algebraic differential equations whose coefficients
are arbitrary entire functions of finite order (i.e. equations of the form

Qe y, dy/de) =0, where Q(z, y, dy/de) = Z [uewidy/dey
o

is a polynomial in y and dy/dz, whose coefficients fi(z) are enfire functions
of finite order).

In [4], VALIRON treated the special case where the coefficients f(2) are
polynomials, and in this case, it was shown that any entire solution must be
of finite order. (In fact, VALIRON showed, in the case of polynomial coeffi-
cients, that for an entire franscendental solution g(#), with maximum modulus
M(r; g), there are positive constants k and b, with b rational, such that
lim (log M(r; g)/kr? = 1).

b0

In the general case where the coefficients fi(#) are arbitrary entire fun-
ctions of finite order, clearly such equations can possess entire solutions of
infinite order (for example, exp (exp 2), sin (cos 2)), but our main result here
(§ 2 below) shows that the growth of an entire solution A(2) of such an equa-
tion in the general case, is restricted in the following natural way: There
exist positive constants r, and o such that M(r; k) << exp (exprc) for all
r > ro. In fact we show that for any real number A which is greater than
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the order of each coefficient f(2), the inequality M(r; h) << exp (exp #*) holds
for all » greater than some number r¢2). In § 4, we show the necessity of
A being greater than the order of each coefficient, by construeting a simple
example where if A is taken to be equal to the maximum order of the coef-
ficients, then for no constant K will the inequality M(r; h) << exp (exp (Kr?)
hold for all sufficiently large r.

The principal tools used in the proof of the main result consist of:

(i) the WIMAN-VALIRON theory of the maximum term ([6, 7, 8] or for
a complete discussion [3, Chapt. 9]);

(ii) Certain results ([6; pp. 239-240)) concerning the relation between
the maximum modulus and the maximum term of an entire function, and

(iii) Certain results from the theory of entire functions of finite order.

2. -~ We now state our main result:

THEOREM. - Let

Qe, y, dy/de) = z:2 fie)y*(dy/dezy
k, j=0

be a polynomial in y and dy/dez, where each coefficient fy(2) is an entire
function of finite order. Let kh(#) be any entire function which satisfies
Qz, hie), W) =0, and let M(r; h) = max |h(z)|. Then for any real number

[Z =r
) which is greater than the order of each coefficient fy(z), there exists a po-
sitive real number rqX) such that M(r; h)<<exp (exp r*) for all 7> 7).

8. - Proor or THE THEOREM. - If A(2) is a polynomial, clearly the re-
sult holds. Hence we may assume that
[ 0}
(1) & is an entire transcendental function. Let ¥ c¢.#" be the power

n=0

series expansion of h(z), and let M(r) = max |hz)|. For each r=0, let v(r)

be the central index [1; p. 183] of & (i.e., v(r) is the maximum j such that
l¢;' v/ = max |¢n| ™). Then in view of (1),
s

(2) v(r) is an unbounded increasing function of 7, and it is proved in
[3; pp. 198, 210] (and also in [b; pp. 95, 103]) that there exists «&(0, 1) such
that if we exclude from the interval (1, 4 oo) an infinite sequence of
exceptional finite open intervals (W,, W;) for which

(3) ozo (log W, —log W) converges,

smmsl
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and for which we may assume

@4) W,< W,y for all s, and lim W, = + oo, then in the remaining
set (I, +o0)— E, where E= U (W&:OOWL), the following are frue: There

s=1

exists a number R:=>1 such that for » > R, and » ¢ E, we have

(8) log M(r) > c(v(r))*, where ¢ is a positive constant independent of 7,
aud if # is any point on 2| =r at which |h(z)| = M(r), then

(6) W)= (v(r)/2X1 + e(2))h(z), where [e(2)| < (v(r),~% for some fixed > 0.

(The elements, of (1 4 oc) — F are called ordinary values of index « in
3, 4, 5]

Now each coefficient fif2) is an entire function of finite order (and of

course there are only finitely many non-zero f3). Let d be the maximum of

the orders of the coefficients f;, and let A be any number greater than d.
Define,

(7 b=+ d)/2 and 6 = (A — d)/b. Thus,
® 6>d=0,06>0and b4 20 <A
Since b > d, clearly there exists R, > 1 such that when » > R,,
9) {fue)| < exp () on |z| =7 for all %, j.
Now let,
(10) p=max {k+44:fy % 0}and m = max {j:f,—;,; % 0}, and consider
the coetficient f,_n, (?). Liet a1, @2, ... be the non-zero roots (if any) of f,—n, (%),
and let D be the domain obtained by removing from the plane all the disks

|§— a.| < |a,|~* Then since b is greater than the order of f,_. (2) (by (8),
it is proved in [2; p. 328] that

(11) 2 |@.|~" converges, and it is proved in {2; p. 336] (by using the
1epresentatlon for f,—n » given by the Hadamard Factorization Theorem)

that there exists &K; > 1 such that,

(12) |fp—m, n(#)| = exp (— r?) for ze D and [#| =7 > Rs. Thus if we lot
F be the union of all the open intervals, (|a.|— |a.|=% |@.| -+ |a.|"% for
n=1, 2, .., then in view of (12),

(13) |fr—m m(®)| = exp(—r?) on |z| = if r > B; and r ¢ F. In view of
(11), it is clear that the set F' can be written as the union of a sequence of
finite open intervals (7., T:) such that,

(14 T:< Ty for all s, and ¥ (T, — T, converges.

s=>1

Annali di Matematica 23



178 STEVEN BaANK: On solutions of algebraic differential, efc.

In view of (3), (4), and (14), clearly we may write £ U I as the union
of a sequence of finite open intervals,

(15) BEUF= U (U, U), where

s=1

(16) U;< Uy for all s and lim U=+ co
and e

[eo]
(17) ¥ (log U.—log U) converges.

sl

Now define
(18) A4 = {r|r>1 and v(@r) > exp (r’+°)} (where o is as in (7))
We now prove,

LEMMA A. - There exists a number v* > 1 such that AN(r*, 4+ o) CEUF.

ProoF. - Assume the contrary. Then there exists a sequence of distinct
values of r in (1, - oc tending fo - oc such that

(19) re 4 but »¢ EU F.

Let B be the set of values of r comprising this sequence. Now h{z)
satisfies the relation,

(20) ¥ file)(hiz) (@) = 0.

Let r&€ B and let #z be a point on [2] =~ at which |[A(z))| = M(r). Then
clearly h(z)#=0, and so by dividing equation (20) by (A(z))> (where p is as in
(10)), we can write equation (20) in the form,

@) E o /R = — T_foeW@/ Wy ().
= H<p

We will denote the left side of (21) by A(s), and the right side by P(2).
We now assert that there exists a real number + > R; such that if
re B and r >» ¢/, then

22) | O@)| < (M(r))~'exp(r’),

at each point of |#| = r at which |h(z)| = M(r).

To prove (22), we recall first from (19) that if e B then r¢E and r¢ F.
Since v() — + oo a8 r— 4- co (by (2)), we see that £(2) (in (6)) tends to zero
as #—> 4+ oo in B. Since M(r) also tends to - oo, there exists I, > 1 such
that for re B land r > B4, we have

(28) M@r)>1, v(r)>1 and |e(e)] < 1/2,
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at every point of |z| = r at which |A(2)| = M(r). Let B; = max E; and let r
be any element of B such that » > Rs. =i

Let z be any point on |2| =r at which |k(z)| = M(r). We refer to the right
side of 21). If 244 <p. then p— (k4 5)=1 so |h(e) [+ = (M@)t+i—? <
<< M(r))~ (since M(r) > 1). Since |e(s)] < 1/2 (by (23)), we have by (6) that
|R(2)/M2)] < 2v(r)/r < 2v(r) since r> 1. Thus, |WE)/M2)) <2 it k4§ <p
(since § < p and v(r) > 1). In view of the above estimates and (9), it is clear that

24) | @) < KG0) (M)~ exp (1))

where K is a positive constant independent of r. Now since r€ B and r>Es,
we have by (b) that v(r) < (¢! log M(r))'», and so from (24),

(20) | D)| << Y(r)(M(r)~F exp (r?),

where d(r) = K(c—* log M(r))el* (M({r))—*?. Since M(r) » + oo as r— J-oco, it is
clear that ¢(r) -0 as r — 4 co. Hence there exists ' > R; such that ¢(r) < 1
for r > #'. Thus (22) follows from (2b).

We now consider A(z) (i.e. the left. side of (21)).

CasE I: m = 0. Then A(®) = fo—n »(2). Since A() = ®(2) (by (21)), we
have by (13) and (22) that, exp (— r’) << (M)~ exp(r?) if r&B and r > r.
Thus,

(26) M(r)<<exp(4r®) if re B and r > r.

But if re B then r€ 4 and so v(r) > exp (r*+°) by (18). Hence by (5), log
M(r)> ¢ exp (ar*t%), and so by (26,

(27) exp(c exp(arts) — 4rY)<<1 it re B and r > »’. But since ¢ > 0,
a>0, b >0, and o> 0, it is clear that the left side of (27) tends to + oo
as r—» 4 oco. Thas (27) is impossible (since by our assumption (19), there
exist r-values in B tending to - oo). This contradiction proves Lemma A in
the case m = 0.

CasE II: m > 0. By (23), if re B and r > ¢’ then |e(#)] < 1/2, and so at
each point of |2| =7 at which |h(z)] = M(@r), we have by (6) that |h'(z)/h/z)| =
= (1 — [e(&) | W{(r)/r = (2r)y~"v(r). But if re B then re 4 and so v(r)> exp (r*+°).
Thus if re B and r > ¢/, then

(28) | W(e)/W(e)| = @r)~ exp (r*+9)

at each point of |2] =r at which |h(z)| = M(r).
We now assert that there exists ## > #' such that if r& B and r > r#,
then

(29) |A(2)| = exp ((m/2)r*+o),
at each point of |z| = r at which |h(z)| = M(r).
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To prove (29), we note first that Afs) may be written in the form,

-1

(30) A®) = fp—n. n(2)R(2)/R(2)"(L + _)=:0 Wi2)),
where

BY) Wi(a) = (Fo—s. &Y fo—m, (W' @)/ M(2))—

for j =0, 1,.., m — 1. We consider the quotients ¥;(z) at points on ]é[ =
at which |h(2)| = M(r), where r&B and r >r. Now for O0<<j<<m— 1, it
follows from (28) that, |A/(2)/h(® |~ = 2r)~" exp {r**+°), and so using (9) and
(12), we obtain

(32) |W;()| < (2r)m exp (2r® — rito),

Since b> 0 and ¢ >0, it is clear that the right side of (32) tends to
zero as 7 — 4+ oo, Hence there exists Rs >+ such that for re B and r > R,
we have

33) || <1/ m+1) for j=0,1, .., m—1.
Now by B0} [A@)|=|frn «@)] [KE/A@II — T [T,@)]), and s0 by
(13), (28) and (33), we obtain for r& B and r > R,
(34) Al = (1/(m + 1))2r) ™ exp (mr*+e — r?),

at every point of |z] =~ at which |A(s)| = M(r), Now clearly the function
o(r) = (1/(m + 1) @ry—mexp (m/2)r'+° — r?) tends to -+ oc as r — 4 oo, so there
exists r# > Rs such that o) > 1 for r > +*. In view of (84) and the defi-
nition of ¢(r), we obtain (29).

Since A(z) = ®(2) (by (21)), we have by (22) and (29) that if re B and
r > rH# | then exp ((m/2pt+o) << (M(r))~2exp (r?), and so M(r) << exp (2r® —
— mr*to). Hence,

(8d) M(ry< 1 it reB and > max{r*, 2/m)t°|.

But M(r) = + oo as r — + oo, 80 (3D) is impossible (since by our assumt.
pion (19) there exist r-values in B tending to - o). This contradiction proves
Lemma A in Case II and so the proof of Lemma A is complete.

‘We now prove,

LeMMA B - There exists a real number #; > 1 such that v(r) < exp (2r*to)
for all »r =71,

Proor. - By Lemma A, there exists #* > 1 such that

86) AN@* +oc)CEUPF.
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Now by (15), (16), and] (17), EU F is the union of a sequence of open
intervals (U,, U:;) where U, < U, ., 11m U,= -+ oo and E log (U,/U,) conver-

ges. Since the series converges, llm (U/U)=1 and so lim (T/Uy+e = 1.
Sw00 500
Since also lim U, = 4- oo, clearly there exists s, such thag

=230

(37) U:>r* and (U,/U)+° < 2 for all $ =8,.

We will show that if #, is taken to be U; then the conclusion of the
lemma holds. Let r =7r;.

It r¢ 4, then (by (18)), v(r) << exp (r*+°) < exp (2rtto).

If re 4, then by (36), re EU F. Hence for some ¢, re(U,, Uy. Since
U, <r < U, clearly (by (16)), ¢ > so, so (37) holds for ¢. Now the endpoint
U, is clearly not in EU F, so by (36), U,¢ A. Hence v(U') << exp (U')**7),
and so by (37) (for s = q), we have v(U’) << exp (2(U,)*t9). Since v is increasing,
we thus have v(r) < v(U,) < exp (2(U,)**). But U, < r and so we obtain v(r)<
< exp(2r*+°) which proves Lemma B completely.

Now for each r =0, let u(r) be the maximum term [3, p. 193] of & (i.e.
if E c.#" is the power series expansion of h, then p(r)= ma:glc,,lr"). It is

n=>

na=l)

proved in [3; p. 195] that for any 7, > 0, we have
88 log pir) = log wro) + [0(e/a)de

By Lemma B, we have v(x)<C exp (2a*t°) for all «=;. Applying (38)
with 7, equal to r;, and observing that for ri<<w <Cr, v(@)/2 << V(i) << ¥(r)
(since 7. > 1 and v is increasing), we obtain

(89) log pr) <<log pr1) 4 (r — r1) exp (2r*te) for r =7,
Hence clearly, there exists r» > r; such that
(40) log p(r) << exp (3r*+e) for all r > r,.

Now it is proved in [5; p. 106] that the following relation holds between
M(r) and p(r): For any ¢ > 0, there exists #; > r; such that if we remove
from (r;, 4 oc) an infinite sequence of exceptional finite open intervals

(V,, V3 for which
(41) 020:1 (log V5 — log V.) converges,

and for which we may assume that

(42) Vi< Viq1 for all s and lim V{= 4 oo,

=300
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then for all » in the set (r;, - oc) — G, where G = 8 (V,, V.), we have

=1

43) M(r) < pr)(log pr)+0m,

We apply the above with ¢ = 1/2, and using (40) we obtain for » > r;
and r ¢ G,

(44) M(r) < (exp (exp (3r*+7)) exp (3rt+o).
Hence clearly there exists r, > r; such that

45) M(r) < exp (exp(4r'to)) for r > r, and r ¢ G.
We now prove,

LemMa C. - There exists 5 > 1 such that M(r) < exp (exp (8r*1%) for all
r > rs.

Proo¥. - By the convergence of the series (41), clearly lim (V./V,) =1,
w300
lim (Vi/Vte = 1. Since also, lim V; = + oo (by (42)), there exists {, such that

$-300 Sy IO

(46) V,> r, (where 7, is as in (49) and (V/V)t° < 2, for t=4,.
We show that if »s is taken to be ¥;, then the conclusion of Lemma O
holds. Let r > rs.

If »¢ G, then by (45), M(r) < exp (exp (8rt+7)).

If re @, then there exists {; such that re(V,, V). Since V, <r <V,
clearly ;1 > #o (by (42)), so (46) holds for £{=1¢,. Now clearly the endpoint
V; is not in @ and so by (45), M(V,) < exp(exp (4V,)*?). By (46), we thus
obtain, M(V,) < exp (exp 8(V,)**t9). But V, < r so M(V,) < exp (exp (8rt9)),
and hence since M is increasing, we bave M(r) < exp (exp (8r*+7)). This pro-
ves Lemma C.

Since M(r)< exp (exp (8r'+9)) for r > r; by Lemma C, it clearly follows
that there exists 7, > 1 such thaf M(r) < exp (exp(r*+%)) for r >r,. But by
choice of o (i.e., (8), we have b+ 20 < A, so M(r) < exp(exp(r*) for r > ro,
This concludes the proof of the theorem stated in § 2.

4. - REMARK. - If d is the maximum of the orders of the coefficients
fi of Qz, ¥, ¢) =0, then by our theorem, we know that for any entire solu-
tion % and any A > d, the inequality M(r; k)<< exp(exp(r?) is valid for all
sufficiently large ». We give here an example where this inequality cannot
be replaced (for sufficiently large ) by an inequality of the form M(r; h)<
< exp(exp(Kr?) where K is a constant. To see this, let f be an entire fun-
ction of finite order d > 0 and maximal type [2; p. 324} (For example, we
can take f(z) = 1/I'z), where I'(z) is Buler’s Gamma function, and in this case
d =1). Then f'(z) will also be of order d and maximal type. Let h(z) = exp (f(2)).



STEVEN BANK: On solutions of algebraic differential, etc. 183

Then % is an entire solution of § — f'(?)y = 0, and by our theorem, we know
that for A >d, M(r; h)<<exp(exp r*) for all sufficiently large . We assert
that there is no constant K such that the inequality M(r; h) << exp(exp(Kr9)
holds for all sufficiently large r. If we assume the contrary and let A(r)=
= max Re(f(#)), then clearly we would have exp(A())= M (r; h)<<exp (exp(Kr?)

fort.imll sufficiently large ». But by a theorem of BoreL [5; p. 19}, for all
sufficiently large », we have M(r; f) << (R/(B— r)[44A(R) -+ 3|fO)l] if R >r.
Taking R = 2r, we clearly would obtain, M(r; f)<<exp (K294 1)r?) for all
sufficiently large r, which contradicts the fact that f is of maximal type.
Hence no such K can exist.
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