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Consider the family

dy

dz
=

( n∑
i=1

Bi(a)
z − ai

)
y (1)

of Fuchs systems of p linear differential equations on the Riemann sphere C, where the family holomor-
phically depends on the parameter

a = (a1, . . . , an) ∈ C
n \

⋃
i�=j

{ai = aj}.

The property of being a holomorphic family at infinity is equivalent to the condition
n∑

i=1

Bi(a) = 0.

Denote by D(a0) a ball of a small radius centered at the point a0 = (a0
1, . . . , a

0
n) of the space

C
n \

⋃
i�=j

{ai = aj}.

We say that the family (1) is isomonodromic if, for all a ∈ D(a0), the monodromies

χa : π1(C \ {a1, . . . , an}) → G = GL(p, C)

of the corresponding system are equal to each other. (Under small variations of the parameter a, there
exists a canonical isomorphism of the fundamental groups

π1(C \ {a1, . . . , an}) and π1(C \ {a0
1, . . . , a

0
n})

generating the canonical isomorphism

Hom(π1(C \ {a1, . . . , an}), G)/G ∼= Hom(π1(C \ {a0
1, . . . , a

0
n}), G)/G

of the spaces of classes of the duality representations for these fundamental groups; this allows one to
compare χa for various a ∈ D(a0).)

For example, if the matrix Bi(a) satisfies the Schlesinger equation

dBi(a) = −
n∑

j=1, j �=i

[Bi(a), Bj(a)]
ai − aj

d(ai − aj),
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then family (1) is isomonodromic (in this case, it is called the Schlesinger isomonodromic family ). It
is well known that, for arbitrary initial conditions Bi(a0) = B0

i , the Schlesinger equation has a unique
solution {B1(a), . . . , Bn(a)} in the ball D(a0), and the matrices Bi(a) can be extended to the entire
universal covering Z of the space

C
n \

⋃
i�=j

{ai = aj}

as meromorphic functions (see [1]).
The set Θ ⊂ Z of singularities of the extended matrix-valued functions B1(a), . . . , Bn(a) is called

the Malgrange Θ-divisor (Θ depends on the initial conditions B0
i ). This set is a codimension-one

analytical subset of the set Z (otherwise, this set can be empty), i.e., locally in the neighborhood of
the point a∗ ∈ Θ, it is defined by the equation τ∗(a) = 0, where τ∗(a) is a holomorphic function in the
neighborhood of the point a∗ called a local τ function of the Schlesinger equation.1 According to Miwa’s
theorem [2] (see also [3]), there exists a function τ(a) holomorphic on the entire space Z whose set of
zeros coincides with Θ. In the neighborhood of the point a∗ ∈ Θ, the global τ function differs from the
local one by a holomorphic nonzero multiplier and

d ln τ(a) =
1
2

n∑
i=1

n∑
j=1, j �=i

tr(Bi(a)Bj(a))
ai − aj

d(ai − aj).

The differential form
n∑

i=1

B0
i

z − a0
i

dz

of the coefficients of system (1) for a = a0 can be regarded as the connection form ∇0 in the trivial
holomorphic vector bundle F 0 over C. According to Malgrange [1], the pair (F 0,∇0) can be continued
to a bundle F over C × Z with connection ∇ such that

(F,∇)|
C×{a0} = (F 0,∇0).

In accordance with this interpretation, the set Θ consists of those points a∗ ∈ Z for which the bundle
F |

C×{a∗} is holomorphically nontrivial.

Below we describe the general solution of the Schlesinger equation in the neighborhood of the
Θ-divisor, but, first, we briefly describe the method proposed by Bolibrukh for calculating the local τ
function (for details, see [3]).

Note that the restriction of the bundle F to C × {a0} is holomorphically trivial; hence its degree is
equal to zero. Since the eigenvalues of the matrix-residues of the connection form are invariant under
isomonodromic deformations (see [4]), it follows that the bundle F restricted to C × {a} has zero degree
at any point a ∈ Z (the degree of such a bundle is equal to the sum of all eigenvalues of the matrix
residues of the connection form over all singular points).

Consider a point a∗ ∈ Θ and the auxiliary system

dy

dz
=

( n∑
i=1

∗Bi

z − a∗i

)
y,

which possesses a Fuchs singularity and the unit monodromy matrix at infinity such that the sum∑n
i=1

∗Bi is equal to

K = diag(k1, . . . , kp), where k1 ≤ · · · ≤ kp.

1Formally, a and a∗ are points of the universal covering Z, but since we are studying the local properties of the solution
of the Schlesinger equation in the neighborhood of the Θ-divisor, which is biholomorphically equivalent to the ball in
C

n \ ∪i�=j{ai = aj}, then, further, we can regard a and a∗ as the coordinates (a1, . . . , an) and (a∗
1, . . . , a

∗
n) of these

points, respectively.
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ON SOLUTIONS OF THE SCHLESINGER EQUATION 709

The matrix K defines the splitting type of the bundle F |
C×{a∗} and tr K = 0 (because the degree of this

bundle is equal to zero).
By using the existence and uniqueness theorem for the solution of the Schlesinger equation, let us

include the previously constructed Fuchs system in the isomonodromic Schlesinger family

dy

dz
=

( n∑
i=1

∗Bi(a)
z − ai

)
y, ∗Bi(a∗) = ∗Bi,

n∑
i=1

∗Bi(a) = K. (2)

It turns out that if K �= 0, then, for a certain pair of indices kl and km of diagonal elements of the
matrix K such that km − kl > 1, the corresponding expression

b1(a) :=
n∑

i=1

∗Blm
i (a)ai

differs from zero (where ∗Blm
i (a) is an element of the matrix ∗Bi(a) with indices (l,m)). In this case,

there exists a gauge transformation of the form

y′ = Γ1(z, a)y, Γ1(z, a) = C(a)(I + Eml),

such that

i) C(a) is a holomorphic matrix invertible in D(a∗) and Eml is a matrix whose elements are equal to
zero with the exception of the one with indices m, l which is equal to (kl − km + 1)z/b1(a);

ii) it maps family (2) to the Fuchs family with residue matrices B′
i(a) satisfying the relation

n∑
i=1

B′
i(a) = K ′,

where

K ′ = diag(k′
1, . . . , k

′
p), k′

j = kj for j �= l,m, k′
l = kl + 1, k′

m = km − 1.

(This transformation acts only in the exterior of a certain analytical subset Θ1 of codimension one which
is the set of zeros of the function b1(a).)

By |K|, we denote the number |K| =
∑p

i=1(ki)2. Then, according to the above construction, we have
|K ′| ≤ |K| − 2. Indeed,

|K ′| − |K| = (kl + 1)2 + (km − 1)2 − (kl)2 − (km)2 = 2(1 + kl − km) ≤ −2.

If K ′ �= 0 (note that tr K ′ = 0), then the previously defined procedure can be applied once more.
After a finite number of iterations s, we obtain the Fuchs family, with residue matrices Bs

i (a), which is
holomorphic at infinity. This final family is gauge equivalent to the input family (1) under a constant
gauge transformation, i.e., Bs

i (a) = S−1Bi(a)S, i = 1, . . . , n, where S is a constant nondegenerate
matrix.

Thus, in the neighborhood of the point a∗, the singular set Θ coincides with the set of zeros of the
function

b1(a) · · · bs(a), (3)

where bj(a) appears at the jth step of the Bolibrukh procedure as in the above construction of the
function b1(a).

For definiteness, suppose that b1(a), . . . , br(a) are different functions from the product (3), and
m1, . . . ,mr are their multiplicities, so that m1 + · · · + mr = s. Then

τ∗(a) = b1(a) · · · br(a).

MATHEMATICAL NOTES Vol. 83 No. 5 2008



710 GONTSOV

Consider one step of the Bolibrukh procedure. Since
n∑

i=1

B′
i(a)

z − ai
=

∂Γ1

∂z
Γ−1

1 + Γ1

( n∑
i=1

∗Bi(a)
z − ai

)
Γ−1

1 ,

the structure of the matrix Γ1(z, a) implies that the matrix b2
1(a)B′

i(a) is holomorphic in the neighbor-
hood of the point a∗. Hence, by performing all s steps of the procedure, we see that the matrices

b2m1
1 (a) · · · b2mr

r (a)Bs
i (a)

are holomorphic in the neighborhood of the point a∗ and, therefore, so are the matrices

b2m1
1 (a) · · · b2mr

r (a)Bi(a).

How can one describe the relationship between the numbers m1, . . . ,mr and the coefficients
k1, . . . , kp defining the splitting type of the bundle F |

C×{a∗}? It is obvious that, in order to transform
the matrix K to zero matrix by using the Bolibrukh procedure, it is necessary to decrease sequentially to
zero all its positive elements (then all negative elements vanish automatically). Hence the number s of
steps of this procedure is equal to the sum of positive elements of the matrix K:

2m1 + · · · + 2mr = 2s =
p∑

j=1

|kj |.

Denoting by Δ the maximal value of the differences kj+1 − kj , let us estimate the last sum. Suppose
that all kl+1, . . . , kp are positive elements of the matrix K, 1 ≤ l ≤ p − 1. Then

p∑
j=1

|kj | ≤
l∑

j=1

(kl+1 − kj) +
p∑

j=l+2

(kj − kl)

≤ l(l + 1)
2

Δ +
(p − l − 1)(p − l + 2)

2
Δ ≤ p(p − 1)

2
Δ.

If the monodromy representation of the isomonodromic Schlesinger family (1) is irreducible, then

kj+1 − kj ≤ n − 2, j = 1, . . . , p − 1;

see [5]. In the general case, these difference can be estimated as follows.
Suppose that the eigenvalues βj

i of the matrix Bi(a0) satisfy the condition

μi ≤ Re βj
i ≤ Mi, μi,Mi ∈ Z, μi < Mi.

The proof of the following proposition is analogous to that of Proposition 1 from [6].

Proposition 1. For the splitting type (k1, . . . , kp) of the bundle F |
C×{a}, a ∈ Θ, the following

inequality holds:

kj+1 − kj ≤
n∑

i=1

(Mi − μi), j = 1, . . . , p − 1.

Thus, we obtain a specification of the structure of the solution for the Schlesinger equation in the
neighborhood of the Θ-divisor.

Theorem 1. In the neighborhood D(a∗) of the point a∗ ∈ Θ, the matrices Bi(a) satisfying the
Schlesinger equation have the following form:

Bi(a) =
Hi(a)

b2m1
1 (a) · · · b2mr

r (a)
,

where Θ ∩ D(a∗) = {b1(a) · · · br(a) = 0}, Hi(a) are holomorphic matrices in D(a∗), and

2m1 + · · · + 2mr ≤ p(p − 1)
2

n∑
i=1

(Mi − μi).
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If the monodromy of the isomonodromic Schlesinger family is irreducible, then

2m1 + · · · + 2mr ≤ p(p − 1)(n − 2)
2

.
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