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On solvability and unsolvability of equations in explicit form

A. G. Khovanskii

Abstract. In this survey the classical results of Abel, Liouville, Galois, Picard,
Vessiot, Kolchin, and others on the solvability and unsolvability of equations in
explicit form are discussed. The one-dimensional topological version of Galois the-
ory is presented in detail (this version describes topological obstructions to the
representability of functions by quadratures).
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Numerous unsuccessful attempts to solve a series of algebraic and differential
equations ‘in explicit form’ led mathematicians to the belief that explicit solutions
for these equations simply do not exist. The present survey is devoted to the
problem of unsolvability of equations in explicit form. This problem has a rich
history.

The first proofs of unsolvability of algebraic equations by radicals were found
by Abel and Galois. While considering the problem of explicitly finding an indefi-
nite integral of an algebraic differential form, Abel founded the theory of algebraic
curves. Liouville continued Abel’s research and proved that indefinite integrals of
many algebraic and elementary differential forms are non-elementary. The unsolv-
ability by quadratures of some linear differential equations was also first proved by
Liouville.

Galois connected the problem of solvability by radicals with the properties of a
certain finite group (the so-called Galois group of the algebraic equation). As a mat-
ter of fact, the notion of finite group itself was introduced by Galois in connection
with this very problem. Sophus Lie introduced the notion of continuous transfor-
mation group while trying to solve explicitly differential equations and reduce them
to a simpler form. Picard assigned to each linear differential equation its Galois
group, which is a Lie group (and, moreover, an algebraic matrix group). Picard
and Vessiot showed that it is this group that is responsible for the solvability of
the equation by quadratures. Kolchin developed the theory of algebraic groups and
gave the Picard–Vessiot theory a definitive form.

Arnol’d discovered that many classical problems in mathematics are unsolvable
for topological reasons. In particular, he showed that it is for topological reasons
that the general algebraic equation of degree � 5 cannot be solved by radicals. I
am immensely indebted to him for arousing my interest in this topic. Developing
Arnol’d’s approach, I constructed a peculiar one-dimensional topological version
of Galois theory in the early 1970s. According to this theory, the topology of the
arrangement of the Riemann surface of an analytic function over the complex plane
of the variable can form an obstruction to the representability of this function by
means of explicit formulae. In this way one obtains the strongest known results on
the non-representability of functions by explicit formulae. Recently I succeeded in
generalizing these topological results to the case of several variables.
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In this survey a complete exposition of the one-dimensional topological version
of Galois theory is given. This version is closely related both to the usual Galois
theory and to the Picard–Vessiot theory. Of course, it is impossible to present in
full these classical theories in this paper. The main theorems of the theories are
formulated without proof, but at the same time it is explained in detail why these
theories in principle answer questions about the solvability of algebraic equations
by radicals and the solvability of linear differential equations by quadratures. In the
survey we also discuss Liouville’s beautiful construction of the class of elementary
functions, the class of functions representable by quadratures, and so on, together
with his theory, which influenced greatly all the subsequent work in this area.
Thus, in the paper we speak of three versions of Galois theory, namely, the

usual, the differential, and the topological versions. These versions are unified
by a general approach to problems concerning the solvability and unsolvability of
equations, based on group theory. However, one cannot say that all solvability and
unsolvability results are related to group theory. A series of brilliant results based
on another approach is contained in the Liouville theory.
In this survey we sometimes violate the historical order. For instance, the Picard–

Vessiot theorem on the solvability of linear differential equations by quadratures was
proved earlier than the main theorem of the differential Galois theory. However,
the Picard–Vessiot theorem is an immediate consequence of this main theorem, and
this is the way it is presented below.
Some words about the references. The exposition of the Liouville approach and

closely related work of Chebyshev, Mordukhai-Boltovskii, and others can be found
in the remarkable book [33]. The usual Galois theory is well presented in many
sources. A brief and clear exposition of the differential Galois theory can be found
in [17]. For an interesting survey of research on the solvability and unsolvability of
equations, together with a vast bibliography, see [36].
I did not publish a complete presentation of the one-dimensional topological ver-

sion of Galois theory at the time. In the beginning I did not have the opportunity
to delve into the complicated history of the subject, and then I began to do quite
different mathematics. Many years later, Andrei Bolibrukh asked me to return to
this topic and to prepare a paper for publication in his new journal. A part of
the paper was prepared immediately [22]. Here the work is presented in entirety,
its relations to the classical versions of Galois theory are discussed, and a new
setting of the problem is given, which is necessary for constructing a multidimen-
sional version of the theory. Without Bolibrukh’s intervention the one-dimensional
version would most likely not have been prepared for publication, and the multi-
dimensional version would not have been discovered. I am indebted to my wife
T. V. Belokrinitskaya for her help in the preparation of this paper.
This survey is dedicated to the memory of Andrei Andreevich Bolibrukh, a

remarkable person and a first-class mathematician.

§ 1. Setting of the problem of solvability of equations in finite terms
Some algebraic and differential equations can be ‘solved explicitly’. What does

that mean? If a solution is presented, then it answers the question by itself. How-
ever, as a rule, all attempts to solve a given equation explicitly turn out to be unsuc-
cessful. One wishes to prove that there are no explicit solutions for some equations.
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To this end, we simply must define exactly what we are talking about (otherwise it
is unclear just what we want to prove). From the contemporary point of view, the
definitions and formulations of theorems in the classical works are lacking in pre-
ciseness. Liouville undoubtedly understood exactly what he was proving. He not
only formulated problems on the solvability of equations by elementary functions
and quadratures but also algebraized these problems. After his work it was possi-
ble to define all these notions over any differential field. However, at the time of
Liouville the requirements regarding mathematical rigour differed from the present
requirements. According to Kolchin (see [26]), even Picard’s basic definitions were
not precise enough. Kolchin’s papers are quite modern, but his definitions are given
for abstract differential fields from the very beginning.

Nevertheless, solutions of differential equations are functions rather than ele-
ments of an abstract differential field. Along with differentiation and arithmetic
operations in function spaces one has, for example, the absolutely non-algebraic
operation of composition. Generally, in function spaces one has more means for
writing out ‘explicit formulae’ than in abstract differential fields. Along with this
fact, one must take into account that functions can be multivalued, they can have
singularities, and so on.

One can readily formalize the problem of the unsolvability of equations in explicit
form in function spaces (in the survey this is the problem we are interested in).
This can be done as follows: one can choose some class of functions and say that
an equation can be solved explicitly if the solution belongs to this class. Different
classes of functions correspond to different notions of solvability.

1.1. Definition of a class of functions by the lists of the basic functions
and the admissible operations. A class of functions can be defined if one knows
the list of the basic functions and the list of admissible operations. After this the
corresponding class of functions is defined as the set of all functions that can be
obtained from the basic functions by using the admissible operations. In 1.2 this is
the way we define the classical classes of functions.

The classical classes of functions involved in problems of solvability in finite
terms contain multivalued functions. In this connection the basic definitions have
to be refined. In this subsection we present two versions of such a refinement. This
subsection can be omitted at a first reading.

Let a class of basic functions and a family of admissible operations be fixed.
Is it possible to express a given function (say, a solution of a given algebraic or
differential equation or a function arising from some other considerations) in terms
of basic functions with the help of admissible operations? We are interested in
different single-valued branches of multivalued functions over different domains. We
shall regard every function, even a multivalued one, as the family of all its single-
valued branches. We shall apply admissible operations (like arithmetic operations
or the operation of taking compositions) only to single-valued branches of functions
over different domains. Since we deal with analytic functions, it suffices to consider
only small neighbourhoods of points as domains.

The question is now modified as follows: is it possible to express a given germ
of a function at a given point in terms of the germs of basic functions by using the
admissible operations? Of course, the answer depends on the choice of a point and
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on the choice of a single-valued germ of the given multivalued function at the given
point. However, it turns out that (for the function classes we are interested in)
either there is no desired expression for any germ of a given multivalued function
at any point or, on the contrary, ‘the same’ representation fits all the germs of a
given multivalued function at almost every point of the space. In the first case we
shall say that no branch of a given multivalued function can be expressed in terms
of branches of the basic functions by means of admissible operations. Otherwise we
shall say that such an expression exists.
There is another way to work with multivalued functions, the so-called ‘global

version’, which leads to a different (somewhat broader) understanding of the def-
inition of the class of functions given by lists of basic functions and admissible
operations. In this global version a multivalued function is regarded as a single
object. Operations on multivalued functions are defined. The result of application
of these operations is also multivalued: the result is a set of multivalued functions,
and each of them is referred to as a function obtained by applying the given oper-
ation to the given functions. The class of functions is defined as the set of all
(multivalued) functions that can be obtained from the basic functions by using the
admissible operations.
For instance, let us define the sum of two multivalued functions of one variable

in the sense of the global version.

Definition. Take an arbitrary point a in the complex line, one of the germs fa of
an analytic function f at a, and one of the germs ga of an analytic function g at
the same point a. We say that the multivalued function ϕ generated by the germ
ϕa = fa + ga is representable as the sum of the functions f and g.

For example, one can readily see that exactly two functions can be represented
in the form

√
x +
√
x, namely, f1 = 2

√
x and f2 ≡ 0. The other operations on

multivalued functions are defined in an absolutely similar way. Saying that some
class of multivalued functions is closed under addition means that, together with
any two functions in it, this class also contains all functions representable as their
sum. One can say the same about any other operation over multivalued functions
that is understood in the above sense.
In the above definition an important role is played not only by the operation of

addition itself but also by the operation of analytic continuation, which is hidden
in the notion of multivalued function. Indeed, consider the following example. Let
f1 be an analytic function defined on a domain U in the complex line C

1 and
admitting no analytic continuation beyond the boundary of U , and let f2 be the
analytic function on U defined by f2 = −f1. According to the above definition,
the function identically equal to zero is representable in the form f1+f2 on the whole
complex line. According to the conventional point of view, the equality f1+ f2 = 0
holds only on U and not outside it.
In the global version of dealing with multivalued functions we do not insist on the

existence of a common domain in which all necessary operations are performed on
single-valued branches of multivalued functions. One operation can be performed
in one domain and another operation in another domain on analytic continuations
of the functions obtained. In essence, this broader understanding of operations is
equivalent to the inclusion of the operation of analytic continuation in the list of



666 A. G. Khovanskii

admissible operations on analytic germs. For a function of a single variable one can
obtain topological conditions even under the above broader understanding of opera-
tions on multivalued analytic functions. It is a bit shorter to speak about functions
than about germs (because one need not fix a point at which the germ is consid-
ered and one need not specify the germ under consideration for a given multivalued
function). Therefore, when considering topological obstructions for single-variable
functions to belong to some class, we mean the global variant of defining classes
of functions by lists of basic functions and admissible operations. One could not
use this understanding in such an extended formulation for functions of several
variables, and one must admit a more restrictive formulation connected with germs
of functions; however, the latter formulation is not less natural (and possibly even
more natural).

1.2. Classical classes of functions of a single variable. We list the classical
classes of functions of a single variable, and we define these classes with the help of
the lists of basic functions and admissible operations.

Functions of one variable that are representable by radicals.
The list of basic functions: all complex constants and an independent variable x.
The list of admissible operations: the arithmetic operations and the operation

of extracting the nth root n
√
f , n = 2, 3, . . . , of a given function f .

The function g(x) = 3
√
5x+ 2 2

√
x+ 7
√
x3 + 3 is an example of a function repre-

sentable by radicals.
This class is involved in the famous problem of the solvability of equations by

radicals. Let us consider an algebraic equation

yn + r1y
n−1 + · · ·+ rn = 0,

in which the ri are rational functions of a single variable. The complete answer
to the question of the solvability of such equations by radicals is given by Galois
theory (see § 3).
To define the other classes, we need a list of the basic elementary functions. In

essence, this list contains the functions that we encountered in high-school and that
are often included on the keyboards of pocket calculators.

List of the basic elementary functions.
1) All complex constants and the independent variable x.
2) The exponential and logarithmic functions and the power-law functions of the

form xα, where α is an arbitrary complex constant.
3) The trigonometric functions: sine, cosine, tangent, and cotangent.
4) The inverse trigonometric functions: arcsine, arccosine, arctangent, and arc-

cotangent.
Let us now pass to the list of classical operations on functions. We present here

the beginning of the list. It will be continued in 2.1.

List of classical operations.
1) The composition operation, which assigns to functions f and g the function

f ◦ g.
2) The arithmetic operations, which assign to functions f and g the functions

f + g, f − g, fg, and f/g.
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3) The operation of differentiation, which assigns to a function f the function f ′.
4) The operation of integration, which assigns to a function f an indefinite inte-

gral y of f (that is, an arbitrary function y such that y′ = f ; the function y is
determined by the function f up to an additive constant).
5) The operation of solving an algebraic equation, which assigns to functions

f1, . . . , fn a function y such that y
n + f1y

n−1 + · · · + fn = 0 (the function y is
determined by the functions f1, . . . , fn not quite uniquely, because an algebraic
equation of degree n can have n solutions).
We now return to the definition of the classical classes of functions of a single

variable.

Elementary functions of a single variable.
List of the basic functions: the basic elementary functions.
List of admissible operations: compositions, the arithmetic operations, and dif-

ferentiation.
An elementary function can be represented by a formula, for instance, by the

formula
f(x) = arctan(exp(sinx) + cos x).

Functions of one variable that are representable by quadratures.
List of the basic functions: the basic elementary functions.
List of admissible operations: compositions, the arithmetic operations, differen-

tiation, and integration.
For instance, the elliptic integral

f(x) =

∫ x
x0

dt√
P (t)

,

where P is a cubic polynomial, is representable by quadratures. However, as was
proved by Liouville, if the polynomial P has no multiple roots, then the function f
is not elementary.

Generalized elementary functions of a single variable. This class of func-
tions is defined in exactly the same way as the class of elementary functions, except
that the operation of solving algebraic equations is added to the list of admissible
operations.

Functions of one variable representable by generalized quadratures. This
class of functions is defined in exactly the same way as the class of functions rep-
resentable by quadratures, except that the operation of solving algebraic equations
is added to the list of admissible operations.
We also introduce two classes of functions close to classical ones.

Functions of one variable representable by kkk-radicals. This class of functions
is defined in exactly the same way as the class of functions representable by radicals,
except that the operation of solving algebraic equations of degree � k is added to
the list of admissible operations.

Functions of one variable representable by kkk-quadratures. This class of
functions is defined in exactly the same way as the class of functions representable
by quadratures, except that the operation of solving algebraic equations of degree
� k is added to the list of admissible operations.
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§2. Liouville theory
The first rigorous proofs of the unsolvability of some equations by quadratures

and by elementary functions were obtained by Liouville in the middle of the nine-
teenth century (see [30]–[36)]). According to his theory, ‘rather simple’ equations
either have ‘rather simple’ solutions or cannot be solved at all in an explicit form.
For instance, the Liouville theory answers the following questions:

1) Under what conditions is an indefinite integral of an elementary function an
elementary function?

2) Under what conditions can the solutions of a linear differential equation all
be represented by generalized quadratures?

A more complete answer to the second question is given by the differential Galois
theory (see § 4). In the present section we discuss how Liouville algebraized the
solvability problem, and we formulate some results of his theory.

2.1. New definitions of classical classes of functions. Liouville algebraized
the problem of solvability by elementary functions and by quadratures. The main
obstruction on this path is the quite non-algebraic operation of composition. Liou-
ville got around the obstruction as follows: to any function g in the list of basic
functions he assigned the operation of composition with this function, which takes
each function f to the function g ◦ f . He noted that the basic elementary functions
can be reduced to the logarithmic and the exponential functions (see Lemma 2.1
below). The compositions y = exp f and z = log f can be regarded as solutions of
the equations y′ = f ′y and z′ = f ′/f . Thus, within the classical classes of func-
tions it suffices to consider the operation of solving simple differential equations
instead of the quite non-algebraic operation of composition. After this, the solv-
ability problem in the classical classes of functions becomes differential-algebraic
and can be extended to abstract differential fields. We proceed to the realization
of this programme.

Let us continue the list of classical operations.

List of classical operations (for the beginning of the list, see. 1.2).

6) The operation of taking the exponential function, which assigns to a function
f the function exp f .

7) The operation of taking the logarithm, which assigns to a function f the
function logf .

We now present the new definitions of the transcendental classical classes of
functions.

Elementary functions of a single variable.

List of the basic functions: all complex constants and the independent variable x.

List of admissible operations: taking the exponential, taking the logarithm, the
arithmetic operations, and differentiation.

Functions of one variable representable by quadratures.

List of the basic functions: all complex constants.

List of admissible operations: taking the exponential, the arithmetic operations,
differentiation, and integration.
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Generalized elementary functions and the functions of a single variable
representable by generalized quadratures and kkk-quadratures of a single
variable are defined in exactly the same way as the corresponding non-generalized
classes of functions, except that the operation of solving algebraic equations or the
operation of solving the algebraic equations of degree at most k is added to the list
of admissible operations, respectively.

Lemma 2.1. The basic elementary functions can be expressed by means of com-
plex constants, arithmetic operations, and compositions in terms of the exponential
function and the logarithm.

Proof. For the power-law function xα the desired expression is given by the equal-
ity xα = exp(α logx). For the trigonometric functions the desired expressions
follow from Euler’s formula ea+bi = ea(cos b + i sin b). For real values of x one

has sinx =
1

2i
(eix − e−ix) and cos x = 1

2
(eix + e−ix). Since the functions are

analytic, these formulae remain valid for complex values of x as well. The tan-
gent and cotangent functions can be expressed in terms of sine and cosine. We

show that if x is real, then arctanx =
1

2i
log z, where z =

1 + ix

1− ix . It is clear that
|z| = 1, arg z = 2 arg(1 + ix), and tan(arg(1 + ix)) = x, which proves the desired
equality. Since the functions are analytic, the equality remains valid for complex
values of x as well. The other inverse trigonometric functions can be expressed in

terms of arctan. Namely, arccot x =
π

2
− arctanx, arcsin x = arctan x√

1− x2
, and

arccos x =
π

2
− arcsin x. The square root entering the expression for the function

arcsin can be represented in terms of the exponential function and the logarithm,
x1/2 = exp(1/2) logx. This completes the proof of the lemma.

Theorem 2.2. For each transcendental classical class of functions the old and new
definitions (see the present section and 1.2) are equivalent.

Proof. The theorem is obvious in one direction. It is clear that every function
belonging to some classical class of functions in the sense of the new definition
belongs to the same class in the sense of the old definition.
We now prove the theorem in the other direction. By Lemma 2.1, the basic

elementary functions belong to the class of elementary and generalized elementary
functions in the sense of the new definition. The same lemma implies that the
classes of functions representable by quadratures, generalized quadratures, and k-
quadratures in the sense of the new definition also contain the basic elementary
functions. Indeed, the independent variable x belongs to these classes, being the
result of integrating the constant 1, because x′ = 1. Instead of the operation of
taking the logarithm, which does not belong to the admissible operations of these
classes, one can use the operation of integration, because (log f)′ = f ′/f .
It remains to show that the classical classes of functions in the sense of the new

definition are closed under compositions. The point here is that the operation of
composition commutes with all the operations in the new definitions of classes
of functions except for the operations of differentiation and integration.For instance,
the result of applying the operation exp to the composition g ◦ f coincides
with the result of applying the operation of composition to the functions
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exp g and f , that is, exp(g ◦ f) = (exp g) ◦ f . Similarly, log(g ◦ f) = (log g) ◦ f ,
(g1 ± g2) ◦ f = (g1 ◦ f) ± (g2 ◦ f), (g1g2) ◦ f = (g1 ◦ f)(g2 ◦ f), and (g1/g2) ◦ f =
(g1 ◦ f)/(g2 ◦ f). If a function y satisfies an equation yn + g1yn−1 + · · ·+ gn = 0,
then the function (y ◦ f) satisfies the equation

(y ◦ f)n + (g1 ◦ f)(y ◦ f)n−1 + · · ·+ (gn ◦ f) = 0.

For the operations of differentiation and integration we have the following simple
commutation relations with the operation of composition: (g)′ ◦ f = (g ◦ f)′(f ′)−1
(if the function f is constant, then the function (g)′ ◦ f is also constant) and if y
is an indefinite integral of a function g, then y ◦ f is an indefinite integral of the
function (g ◦ f)f ′ (in other words, the composition of the integral of a function g
with a function f corresponds to the integration of the function g ◦ f multiplied by
the function f ′).
This implies that the classical classes in the sense of the new definition are closed

under compositions. Indeed, if a function g is obtained from constants (or from
constants and the independent variable) by means of the above operations, then
the function g ◦ f is obtained from the function f by applying the same operations
(or almost the same operations, as in the case of integration and differentiation).
This completes the proof of the theorem.

Remark. One can readily see that the operation of differentiation can also be
excluded from the list of admissible operations for classical classes of functions.
For the proof, it suffices to use the explicit computation of the derivatives of the
exponential function and of the logarithm together with the rules for differenti-
ating formulae including compositions and arithmetic operations. However, the
elimination of the operation of differentiation does not help to solve the problem of
solvability of equations in finite terms.

2.2. Liouville extensions of abstract and differential function fields. A
field K is said to be a differential field if an additive map a → a′ satisfying the
Leibniz relation (ab)′ = a′b+ ab′ is given. An element y of a differential field K is
said to be constant if y′ = 0. The constants of a differential field form a subfield
that is called the field of constants. In all cases we are interested in, the field of
constants is the field of complex numbers. In what follows we always assume that
the differential field is of characteristic zero and has an algebraically closed field of
constants. An element y of a differential field is said to be an exponential of an
element a if y′ = a′y, an exponential of an integral of an element a if y′ = ay, a
logarithm of an element a if y′ = a′/a, and an integral of an element a if y′ = a.
Let a differential field K and a set M belong to some differential field F . By

adjoining the set M to the differential field K we mean taking the minimal differ-
ential field K〈M〉 containing the field K and the set M .
A differential field F containing a differential field K and having the same field

of constants is called an elementary extension of the field K if there is a chain of
differential fields K = F1 ⊆ · · · ⊆ Fn = F such that for any i = 1, . . . , n − 1 the
field Fi+1 = Fi〈xi〉 is obtained by adjoining an element xi to the field Fi, where xi
is an exponential or a logarithm of some element ai of Fi. An element a ∈ F is said
to be elementary over K, K ⊂ F , if a is contained in some elementary extension of
the field K.
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A generalized elementary extension, a Liouville extension, a generalized Liouville
extension, and a Liouville k-extension of a field K are defined similarly. When we
construct generalized elementary extensions, we can adjoin exponentials and loga-
rithms and pass to algebraic extensions. When we construct Liouville extensions we
can adjoin integrals and exponentials of integrals. In generalized Liouville exten-
sions and Liouville k-extensions one also admits algebraic extensions and adjoining
solutions of algebraic equations of degree � k, respectively. An element a ∈ F is
said to be a generalized elementary element over K for a field K ⊂ F (representable
by quadratures, by generalized quadratures, by k-quadratures over K) if a is con-
tained in some generalized elementary extension (Liouville extension, generalized
Liouville extension, Liouville k-extension, respectively) of the field K.

Remark. The equation for the exponential of an integral is simpler than that for
an exponential. For this reason, one uses the adjoining of exponentials of integrals
in the definition of Liouville extensions, and so on. Instead, one could adjoin
exponentials and integrals separately.

Let us proceed to differential function fields. It is these fields we deal with in
this survey (though some results can readily be extended to abstract differential
fields).

Every subfield K of the field of all meromorphic functions on a connected domain
U on the Riemann sphere such that K contains all complex constants and is closed
under differentiation (that is, if f ∈ K, then f ′ ∈ K) gives an example of a
differential function field. We now give the general definition. Let V, v be a pair
formed by a connected Riemann surface V and a meromorphic vector field v on V .
The Lie derivative Lv along the vector field v acts on the field F of all meromorphic
functions on the surface V and defines a differentiation f ′ = Lvf of the field. A
differential function field is an arbitrary differential subfield of F that contains all
complex constants.

It is sometimes more convenient to use another definition of differentiation of a
function field in which a meromorphic vector field is replaced by a meromorphic
1-form α. The derivative f ′ of a function f can be defined by the formula f ′ = df/α
(a quotient of two meromorphic 1-forms is a well-defined meromorphic function).
The differentiation thus introduced is the Lie derivative Lv along the vector field v
connected with the form α by the following relation: the value of the 1-form α on
the field v is identically equal to 1.

The following construction is used to extend function fields. Let K be a subfield
of the field of meromorphic functions on a connected Riemann surface V equipped
with a meromorphic form α and let K be invariant under the differentiation f ′ =
df/α (that is, if f ∈ K, then f ′ ∈ K). We consider an arbitrary connected Riemann
surface W together with an analytic map π : W → V . Let us fix the form β =
π∗α on W . The differential field F of all meromorphic functions on W with the
differentiation ϕ′ = dϕ/β contains the differential subfield π∗K consisting of the
functions of the form π∗f , where f ∈ K. The differential field π∗K is isomorphic
to the differential field K and is a subfield of F . If one chooses a suitable surface
W , then the extension procedure for the field π∗K isomorphic to K can be carried
out in the field F .
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Suppose that K is to be extended by, say, an integral y of some function f ∈ K.
This can be done as follows. Over the Riemann surface V one can consider the Rie-
mann surface W of an indefinite integral y of the 1-form fα. By the very definition
of the Riemann surface W , there is a natural projection π : W → V , and the func-
tion y is a single-valued meromorphic function on the surface W . The differential
field F of meromorphic functions on W with the operation of differentiation given
by f ′ = df/π∗α contains both the element y and the field π∗K isomorphic to the
field K. Therefore, the extension π∗K〈y〉 is defined and is a subfield of F . When
speaking of extensions of differential function fields, it is this construction we mean.
The same construction enables us to adjoin to a differential function field K a loga-
rithm, an exponential, an integral, or the exponential of an integral of any function
f in the field K. In the same way for any functions f1, . . . , fn ∈ K one can adjoin
to K a solution y of an algebraic equation yn+f1y

n−1+ · · ·+fn = 0 or all solutions
y1, . . . , yn of this equation (one can adjoin all solutions y1, . . . , yn over the Riemann
surface of the vector function y = (y1, . . . , yn)). For any functions f1, . . . , fn+1 ∈ K
one can adjoin to K the n-dimensional affine space over C formed by all solutions
of the linear differential equation y(n)+f1y

(n−1)+ · · ·+fny+fn+1 = 0 in the same
way. (We recall that the germ of any solution of a linear differential equation can
be analytically continued along a curve on V that does not pass through poles of
the functions f1, . . . , fn+1.)

Thus, the above extensions of differential function fields can be carried out within
the class of differential function fields. When speaking of extensions of differential
function fields, we always mean this procedure.

The differential field consisting of all complex constants and the differential field
consisting of all rational functions of a single variable can be regarded as differential
fields of functions defined on the Riemann sphere.
Let us reformulate Theorem 2.2 using the definitions from abstract differential

algebra and the construction of extensions of differential function fields.

Theorem 2.2′. A function of a single complex variable (possibly multivalued)
belongs:

1) to the class of elementary functions if and only if it belongs to some elementary
extension of the field of all rational functions of a single variable;
2) to the class of generalized elementary functions if and only if it belongs to

some generalized elementary extension of the field of rational functions;

3) to the class of functions representable by quadratures if and only if it belongs
to some Liouville extension of the field of all complex constants;
4) to the class of functions representable by k-quadratures if and only if it belongs

to some Liouville k-extension of the field of all complex constants;

5) to the class of functions representable by generalized quadratures if and only
if it belongs to some generalized Liouville extension of the field of all complex con-
stants.

2.3. Some results of the Liouville theory. In this subsection we present
(without proofs) formulations of some results in the Liouville theory.

2.3.1. Non-elementary indefinite integrals. When we start learning analysis, we
study integration of elementary functions, and this turns out to be far from simple.
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As was proved by Liouville, an indefinite integral of an elementary function is not
an elementary function as a rule.

Theorem 2.3 (on integrals). An indefinite integral y of a function f belonging to
a differential function field K belongs to some generalized elementary extension of
this field if and only if the integral can be represented in the form

y(x) =

∫ x
x0

f(t) dt = A0(x) +
n∑
i=1

λi logAi(x), (1)

where the Ai, i = 0, 1, . . . , n, are some functions in the field K.

In differential terms the condition (1) in Liouville’s theorem means that the
element f ∈ K can be represented as

f = A′0 +
n∑
i=1

λi
A′i
Ai
, (2)

where the Ai, i = 0, 1, . . ., n, are some elements of the field K. In abstract differen-
tial algebra one has an analogue of Liouville’s theorem [34]. In the formulation of
the abstract theorem one must replace K by an abstract differential field and
use the condition (1) in the differential form (2).

Corollary 2.4. An indefinite integral y of a generalized elementary function f is
a generalized elementary function if and only if it can be represented as

y(x) = A0(x) +
n∑
i=1

λi logAi(x),

where the Ai, i = 0, 1, . . . , n, are rational functions of the function f and its deriva-
tives with complex coefficients.

A priori, an integral of an elementary function f could be a very complicated
elementary function. Liouville’s theorem shows that this is impossible. Either
an integral of an elementary function is non-elementary or it has the simple form
described in the corollary.
Is it possible to find an explicit form of an integral of an algebraic function? The

pioneering papers of Abel, who founded the theory of algebraic curves and Abelian
integrals and inspired Liouville to create his theory, were devoted to this problem.
Roughly speaking, the answer to this question is as follows. If the Riemann surface
of an algebraic function is of genus zero, then its integral can always be found in
generalized elementary functions. However, if the genus of the Riemann surface is
positive, then the integral is non-elementary as a rule and can be found in gener-
alized elementary functions only in exceptional cases. A more detailed answer is
given by Liouville’s theorem on Abelian integrals which we formulate below.

Theorem 2.5 (on Abelian integrals). An indefinite integral y of an algebraic func-
tion A of a complex variable x can be found in generalized elementary functions if
and only if it is representable in the form

y(x) =

∫ x
x0

A(t) dt = A0(x) +
k∑
i=1

λi logAi(x),
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where the Ai, i = 0, 1, . . . , k, are algebraic functions that are single-valued on the
Riemann surface W of the integrand A.

Proof. The theorem follows from Liouville’s theorem on integrals of elementary
functions, applied to the field F of all meromorphic functions onW , equipped with
the differentiation f ′ = df/α, where α = π∗ dx and π : W → C is the natural
projection of the Riemann surface of the function A onto the Riemann sphere C of
the complex variable x.

Remark. Liouville’s theorem on the Abelian integrals goes back to Abel. Abel
considered the more special problem of the representability of Abelian integrals in
the form of rational functions of algebraic functions and their logarithms and made
similar conclusions.
We state Liouville’s criterion for integrability in explicit form of functions of

exponential type and present examples of integrals not representable by elementary
functions.

Liouville’s criterion. Consider an indefinite integral of the form

I(x) =

∫ x
x0

f(t)eg(t) dt,

where f and g are rational functions, the function g is non-constant, and f is not
identically zero. If there is a rational function a such that a′ + ag′ = f , then
I = aeg + c, where c is a complex constant. If the equation a′ + ag′ = f is not
solvable by rational functions, then the integral I is not a generalized elementary
function.

Examples of non-elementary integrals. The indefinite integrals

∫
et
2

dt,∫
et

t
dt,

∫
dt

log t
, and

∫
sin t

t
dt are not generalized elementary functions.

2.3.2. Criterion of Liouville and Mordukhai-Boltovskii. The first result on the
unsolvability of a linear differential equation in explicit form is due to Liouville
(see [32] and [33]).

Theorem 2.6 (Liouville). An equation y′′ + py′ + qy = 0 with coefficients in a
differential function field K all of whose elements are representable by generalized
quadratures can be solved by generalized quadratures if and only if it has a solution

of the form y1(x) = exp

∫ x
x0

f(t) dt, where f is a function satisfying an algebraic

equation with coefficients in the field K.

The theorem is obvious in one direction. If one solution y1 of the second-order
linear differential equation is known, then the equation can be solved by reducing
the order of the equation. It is rather difficult to prove the theorem in the other
direction.
More than half a century was needed to generalize Liouville’s theorem to equa-

tions of order n. Mordukhai-Boltovskii (1910) used Liouville’s method to prove
the following criterion, which enables one to reduce the solvability problem for an
equation to the solvability problem for another equation of smaller order.
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Criterion of Liouville and Mordukhai-Boltovskii. An equation

y(n) + p1y
(n−1) + · · ·+ pny = 0

of order n with coefficients in a differential function field K all of whose elements
are representable by generalized quadratures is solvable by generalized quadratures

if and only if, first, it has a solution of the form y1(x) = exp

∫ x
x0

f(t) dt, where f is

a function belonging to some algebraic extension K1 of the field K and, second, the
differential equation of order (n − 1) obtained from the original equation by the
procedure of reducing the order (see 4.1.2), which is a differential equation for

the function z = y′− y
′
1

y1
y with coefficients in K1, is solvable by generalized quadra-

tures over the field K1.

The Picard–Vessiot theorem in which the solvability problem for linear differen-
tial equations is solved in quite another way, from the point of view of the differential
Galois theory, appeared also in 1910.
Below we discuss the main facts of this theory. In essence, the criterion of

Liouville and Mordukhai-Boltovskii is equivalent to the Picard–Vessiot theorem.
The Picard–Vessiot theory not only explains this criterion but also makes it
possible to develop it to an explicit algorithm that enables one to decide for an
equation with coefficients in the field of rational functions (having the rational
coefficients) whether or not this equation is solvable by generalized quadratures
(see [37] and 4.7).

§ 3. Solvability of algebraic equations by radicals and Galois theory
Is a given algebraic equation solvable by radicals? Is it possible to solve a given

algebraic equation of degree n by using radicals and the solutions of auxiliary alge-
braic equations of smaller degree? In this section we discuss how Galois theory
solves these problems. We focus our attention mainly on solvability and unsolvabil-
ity problems and present the main theorem of Galois theory without proof. The
well-known properties of solvable groups and of the group S(k) are also used with-
out proof. In 3.4.1 we prove a much less known characteristic property of subgroups
of the group S(k). These facts of group theory are applied both in the usual Galois
theory and in its differential and topological versions.
The ‘solving’ part of Galois theory (see 3.3.2) that enables one to solve an equa-

tion by radicals is very simple. It uses neither the main theorem of Galois theory
nor the theory of fields at all and relates in fact to linear algebra. Only these
linear algebra considerations are used in the topological version of Galois theory
when discussing the problem of representability of algebraic functions by radicals.
(However, the sufficient condition for the solvability of equations by means of solv-
ing auxiliary equations of smaller degree and radicals is based not only on linear
algebra but also on the main theorem of Galois theory.)
The above problems on the solvability or algebraic equations are purely algebraic

in nature and can be posed over an arbitrary field K. In this section we assume
that the field K is of characteristic zero and contains all roots of unity. This case
is somewhat simpler than the general case, and for our purposes the differential
function fields that contain all complex constants are of principal interest.
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3.1. Galois group of an algebraic equation. Let us consider an algebraic
equation

anx
n + · · ·+ a1x+ a0 = 0 (3)

with coefficients in the field K. We assume that K is embedded into a larger field
that contains all roots of the equation. By a relation among the roots of (3) that is
defined over the field K we mean an arbitrary polynomial Q belonging to the ring
K[x1, . . . , xn] and vanishing at the point (x

0
1, . . . , x

0
n), where x

0
1, . . . , x

0
n is the set

of roots of (3), ordered in some way.

Definition. By the Galois group of an algebraic equation (3) over the field K we
mean the subgroup G of the group S(n) of all permutations of the roots of the
equation that preserve all the relations defined over K among the roots (that is, if
a permutation σ ∈ S(n) belongs to the Galois group G, then the polynomial σQ
obtained from a relation Q by the permutation σ of the variables x1, . . . , xn also
vanishes at the point (x01, . . . , x

0
n)).

Definition. A field P is called aGalois extension of a fieldK if there is an algebraic
equation (3) with coefficients in K such that the field P is obtained by adjoining
all the roots of this equation to K. By the Galois group of a Galois extension P
over a field K we mean the group of all automorphisms of the field P that leave
fixed every element of K.

Every element σ of the Galois group of the field P over the field K permutes the
roots of the equation (3) and preserves the relations among them defined over K.
Thus, the Galois group of the field P over K has a representation in the Galois
groupG of the equation (3) defining the extension P . Obviously, this representation
is a group isomorphism, that is, the Galois group of the equation and the Galois
group of the extension defined by the equation are isomorphic.
To prove the unsolvability of equations, we need the following simple ‘upper

bounds’ for the Galois group.

Lemma 3.1. The Galois group of the equation xn − a = 0 over a field K, where
a ∈ K, is a subgroup of the cyclic group with n elements.
Proof. Let x0 be some root of the equation x

n − a = 0 and let ξ be a primitive
nth root of unity. We index the roots of the equation xn − a = 0 by the residues i
modulo n, setting xi equal to ξ

ix0. Suppose that a transformation g in the Galois
group takes the root x0 to the root xi. Then g(xk) = g(ξ

kx0) = ξ
k+ix0 = xk+i.

That is, each transformation in the Galois group defines a cyclic permutation of
the roots.

The following lemma is an immediate consequence of the definition of the Galois
group of an algebraic equation.

Lemma 3.2. The Galois group of an equation of degree m � k is isomorphic to a
subgroup of the group S(k).

3.2. Main theorem of Galois theory. Let P be a Galois extension of a field K
and let G be the Galois group of the extension P .
The following maps between the set of fields lying between K and P and the set

of subgroups of the Galois group G are defined.
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1) The map Fd assigning to each subgroup Γ of the group G the field Fd(Γ)
consisting of the elements of the field P that remain fixed under the action of Γ (it
is clear that K ⊆ Fd(Γ)).
2) The map Gp assigning to each intermediate field F ,K ⊆ F ⊆ P , the subgroup

Gp(F ) ⊆ G that is the Galois group of the Galois extension P of F (P is a Galois
extension of the field K, and therefore it is automatically a Galois extension of the
intermediate field F , K ⊆ F ⊆ P ).
The maps Fd andGp establish the Galois correspondence between the subgroups

of the Galois group and the intermediate fields of the Galois extension.
We present the following theorem without proof.

Theorem 3.3 (the main theorem of Galois theory). If P is a Galois extension of
the field K with Galois group G, then:

1) the composition of the maps Fd and Gp is the identity map of the set of
intermediate fields onto itself, that is, if F is a field and K ⊆ F ⊆ P , then
Fd(Gp(F )) = F ;

2) the composition of the maps Gp and Fd is the identity map of the set of
subgroups of the Galois group onto itself, that is, if Γ is a subgroup of the
Galois group, Γ ⊂ G, then Gp(Fd(Γ)) = Γ;

3) an intermediate field F , K ⊆ F ⊆ P , is a Galois extension of K if and only
if the group Gp(F ) is a normal subgroup of G, and moreover, the Galois
group of a Galois extension F of K is the quotient group of G by the normal
subgroup Gp(F ).

A field P is a Galois extension of a field K if and only if there is a finite
group Γ of automorphisms of P that leaves fixed all the elements of K and only
these elements.

What happens with the Galois group of an equation if one extends the field K
of coefficients, replacing it by a larger field K1? This problem is of special interest
if the field K1 is a Galois extension of K. We denote by G1 the Galois group of
the extension K1 of K. The results on the unsolvability of algebraic equations are
based on the following theorem.

Theorem 3.4 (on the change of the Galois group of an equation under a Galois
extension of the field of coefficients). When the coefficient field K is replaced by a
Galois extension K1 of K, the Galois group G of the equation is replaced by some
normal subgroup H of G. The quotient group G/H of G by this normal subgroup
is isomorphic to some quotient group of the Galois group G1 of the new coefficient
field K1 over the old coefficient field K.

Proof. Let Q be the smallest Galois extension of K that contains the extensions P
and K1 of K. (The extension Q can be obtained by adjoining to K all the roots of
the product of the polynomial equations defining the Galois extensions P and K1
ofK.) The fieldK is elementwise fixed under the action of the Galois group ΓQ ofQ,
and the fields K1 and P are invariant under this action. Hence, the field K1 ∩P is
invariant under the action of ΓQ and is therefore a Galois extension of K.
The Galois group H of the Galois extension P of the field K1 ∩ P is a normal

subgroup of the Galois group of the Galois extension P of K, because K1 ∩ P is
a Galois extension of K and K1 ∩ P ⊂ P . On the other hand, G/H is a quotient
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group of the Galois group of the Galois extension K1 of K, because K1 ∩ P is a
Galois extension of K and K1 ∩ P ⊂ K1.
It remains to show that the Galois group H of P over K1 ∩ P coincides with

the Galois group Γ of Q over K1. Indeed, Γ is a subgroup of H, because each
relation over the field K1∩P is in particular a relation among the roots of the same
equation over the field K1. Assume that Γ �= H. By the main theorem applied to
the extension P of K, the field F of invariants with respect to the action of Γ on
P is strictly larger than K1 ∩ P . On the other hand, all the elements of F belong
both to P and to K1, a contradiction. This shows that Γ = H.

3.3. Solvability by radicals. Is a given algebraic equation solvable by radicals?
Galois theory was created to answer this question. Let us begin with a formal
definition.

An algebraic equation over a field K is said to be solvable by radicals if there is a
chain of extensions K = K0 ⊂ · · · ⊂ KN such that the field Ki+1 is obtained from
the field Ki, i = 0, 1, . . . , N − 1, by adjoining a radical, and the field KN contains
all roots of the original algebraic equation.

Theorem 3.5. An algebraic equation is solvable by radicals if and only if its Galois
group is solvable.

Proof. We shall prove below in 3.3.1 (see Corollary 3.10) that the solvability of
the Galois group is sufficient for the solvability of the equation by radicals. Let us
show that if an algebraic equation is solvable by radicals, then its Galois group is
solvable. To this end, we trace what happens with the Galois group of an equation
under the passage from a coefficient field Ki to the coefficient fieldKi+1. We denote
by Gi the Galois group of our equation over the field Ki. In this case, according to
Theorem 3.4, the group Gi+1 is a normal subgroup of Gi, and the quotient group
Gi/Gi+1 is a quotient group of the Galois group of the field Ki+1 over the field
Ki. Since the field Ki+1 is obtained from Ki by adjoining a radical, it follows from
Lemma 3.1 that the Galois group of Ki+1 over Ki is commutative. Since all the
roots of the algebraic equation belong to the field KN by assumption, it follows that
the Galois group GN of the algebraic equation over the field KN is trivial. Thus,
for the Galois group G there is a chain of subgroups G = G0 ⊃ · · · ⊃ GN such that
Gi+1 is a normal subgroup of Gi with a commutative quotient group Gi/Gi+1, and
the group GN is trivial. This means that the Galois group G is solvable.

3.3.1. Sufficient condition for solvability by radicals. Let K be a subfield of the
field P , and let the field P be equipped with the action of a finite automorphism
group G that leaves fixed all the elements of K and only these elements. If P is
obtained from K by adjoining all the roots of an algebraic equation over K, then
such an automorphism group G exists (and is isomorphic to the Galois group of the
equation). The existence of the group G is not self-evident and is one of the central
facts of Galois theory (see 3.2). However, G is given a priori in some important
cases. For instance, this is the case if K is the field of rational functions of a single
variable, P is the field obtained by adjoining all branches of an algebraic function
to K, and G is the monodromy group of this algebraic function (see 5.1.2). Another
example is provided by the general algebraic equation of degree n (see 3.3.3).
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Suppose that the group G in the above situation is solvable. Then each element
of the field P can be represented by radicals in terms of elements of the field K.
The construction of a representation of an element by radicals relates mainly to
linear algebra. The fact that we are working with fields is used only marginally in
this construction. To stress this fact, we shall describe this construction in which
a field is replaced by an algebra V , which can even be non-commutative. In what
follows we need not even multiply distinct elements of this algebra. We shall use
only the operation of taking a non-negative integer power k and the homogeneity
of this operation with respect to multiplication by an element of the ground field,
that is, the property (λa)k = λkak for a ∈ V and λ ∈ K. Thus, let V be an algebra
over a field K of characteristic zero and let K contain all roots of unity.

Proposition 3.6. Let A be an automorphism of a finite order n of the algebra V ,
that is, An = I, and let V0 be the subalgebra of invariants. Let the field K be
of characteristic zero and let K contain all nth roots of unity. In this case each
element x of V can be represented as a sum x = x1 + · · ·+ xn of elements xi ∈ V
such that xni ∈ V0.

Proof. Consider the finite-dimensional vector space in V spanned by the orbit
x, A(x), . . . , An−1(x) of the element x with respect to the action of the automor-
phism A and its powers. Since by assumption the power An is the identity trans-
formation of the space V , and the field K contains all eigenvalues of the linear
transformation A : V → V , it follows that V can be decomposed into the direct
sum V = V1 ⊕ · · · ⊕ Vn of the eigenspaces of A with the eigenvalues ξk, 1 � k � n,
which are nth roots of unity (some of the spaces Vi can be zero). Therefore, the
vector x can be represented in the form x = x1 + · · ·+ xn, where A(xk) = ξkxk.
Hence, A(xnk ) = (A(xk))

n = ξnk x
n
k = x

n
k . That is, the element x

n
k belongs to the

algebra of invariants of the automorphism A.

We introduce the following definition.

Definition. We say that an element x of the algebra V is obtained by means of
the operation of extracting the nth root of an element a if xn = a.

Using this definition, one can interpret Proposition 3.6 as follows: every element
x in the algebra V can be represented as a sum of nth roots of elements of the
algebra of invariants. Proposition 3.6 can readily be generalized to the case of
the action of a finite commutative group of automorphisms.

Proposition 3.7. Let G be a finite commutative group of order n of automor-
phisms of the algebra V and let V0 be the subalgebra of invariants. In this case
every element x of V can be represented as a sum x = x1 + · · ·+ xn of elements
xi ∈ V such that xmi ∈ V0, where m is the least common multiple of the orders of
the elements of G.

The proof of Proposition 3.7 repeats almost literally that of Proposition 3.6. One
only needs the fact that a finite commutative group of linear transformations can
be reduced to diagonal form in some basis.

Theorem 3.8. Let G be a finite solvable group of automorphisms of the algebra V ,
and let V0 be the subalgebra of invariants. In this case every element x of V can be
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obtained from elements of the algebra V0 of invariants by using extraction of roots
and summation.

Let us first prove the following simple assertion about an action of a group on a
set.
Suppose that a group G acts on a set X, let H be a normal subgroup of G, and

let X0 be the subset of X consisting of the fixed points with respect to the action
of G.

Proposition 3.9. The subset XH of X consisting of the fixed points with respect
to the action of the normal subgroup H is invariant under the action of G. The
set XH is equipped with the natural action of the quotient group G/H with the
fixed-point set X0.

Proof. Let g ∈ G and h ∈ H. Then the element g−1hg belongs to the nor-
mal subgroup H. Let x ∈ XH . Then g−1hg(x) = x, or h(gx) = g(x), that
is, the element g(x) ∈ X is fixed under the action of the normal subgroup H.
Thus, the set XH is invariant under the action of the group G. Under this action
all elements of H act trivially. Therefore, the action of G on XH reduces to the
action of the quotient group G/H.

Let us now pass to the proof of Theorem 3.8.

Proof. Since the group G is solvable, it admits a chain of nested subgroups G =
G0 ⊃ · · · ⊃ Gm = e such that the group Gm coincides with the identity element e,
for i = 1, . . . , m the group Gi is a normal subgroup of the group Gi−1, and the
quotient group Gi−1/Gi is commutative.
Such a chain of subgroups exists because the group G is solvable.
We denote by V0 ⊂ · · · ⊂ Vm = V the chain of subalgebras of invariants of

the algebra V with respect to the actions of the groups G0, . . . , Gm. By Proposi-
tion 3.9, the commutative quotient group Gi−1/Gi acts naturally on the algebra Vi
of invariants, leaving fixed every element of the subalgebra Vi−1 of invariants. By
Proposition 3.7, every element of the algebra Vi can be expressed by summation
and extraction of roots in terms of elements of Vi−1. Repeating this argument in
succession, we express every element of V in terms of elements of V0 by a chain of
extractions of roots and summations.

Remark. One can choose a chain of normal subgroups of a finite solvable group G
in such a way that all the quotient groups Gi/Gi−1 are not only commutative but
also cyclic. Therefore, to prove the theorem, it suffices to use Proposition 3.6.
We complete the proof of Theorem 3.5 on the solvability of equations by radicals.

Corollary 3.10. If the Galois group of an algebraic equation over the field K is
solvable, then the equation can be solved by radicals over this field.

Proof. By the main theorem of Galois theory, the field of invariants with respect to
the action of the Galois group coincides with the field K. Therefore, the corollary
follows from Theorem 3.8.

3.3.2. Solutions of the equations of second, third, and fourth degree. Theorem 3.8
explains why the equations of small degree are solvable by radicals.
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LetK[x1, . . . , xn] be the polynomial ring in the variables x1, . . . , xn over a fieldK
of characteristic zero and let K contain all roots of unity. The group S(n) of all
permutations of n elements acts on this ring by permuting the variables x1, . . . , xn in
the polynomials in this ring. The algebra KS [x1, . . . , xn] of invariants with respect
to this action consists of the symmetric polynomials. Every polynomial in this
algebra can be represented explicitly in the form of a polynomial in the variables
σ1, . . . , σn, where σ1 = x1 + · · · + xn, σ2 =

∑
i<j xixj, . . . , σn = x1 · · ·xn. For

n = 2, 3, 4 the group S(n) is solvable. Applying Theorem 3.8, we see that every
polynomial in x1, . . . , xn, where n � 4, can be expressed in terms of the elementary
symmetric polynomials σ1, . . . , σn by using extraction of roots, summation, and
multiplication by rationals. Let us consider an algebraic equation

xn + a1x
n−1 + · · ·+ an = 0. (4)

By the Viète formulae, the coefficients of this equation coincide (up to sign) with the
elementary symmetric functions of the roots x1, . . . , xn, and therefore Theorem 3.8
for n = 2, 3, 4 gives an explicit expression of the roots of the equation (4) in terms
of the coefficients of this equation by means of extraction of roots, summation, and
multiplication by rationals.

3.3.3. General algebraic equation and Abel’s theorem. By the general algebraic
equation of degree n we mean the algebraic equation

xn + a1x
n−1 + · · ·+ an = 0, (5)

whose coefficients a1, . . . , an are independent complex variables. The general alge-
braic equation is defined over the field K of rational functions in the variables
a1, . . . , an. Let a

0 be some point of the space Cn with coordinates a1, . . . , an at
which the discriminant of the equation (5) is non-zero. In a small neighbourhood U
of the point a0 there are n algebraic functions x1, . . . , xn satisfying the equation (5).
Let us consider the field PU of meromorphic functions on U that is generated by
the functions x1, . . . , xn over the field KU isomorphic to K that consists of the
restrictions of the rational functions to the domain U . By definition, the field PU
is the Galois extension of the field KU corresponding to the equation (5) over KU .
Let V : Cn → Cn be the Viète map taking every point x = (x1, . . . , xn) to

the point a(x) with coordinates a1 = −(x1 + · · ·+ xn), . . . , an = (−1)nx1 · · ·xn.
The group S(n) acts on the source space. The action of S(n) can be extended to
the field R[x1, . . . , xn] of rational functions in the variables x1, . . . , xn. The field
RS [x1, . . . , xn] of invariants with respect to this action consists of the symmetric
rational functions in x1, . . . , xn.

Proposition 3.11.
1) The pair of fields KU ⊂ PU is isomorphic to the pair of fields RS [x1, . . . , xn] ⊂

R[x1, . . . , xn].
2) The Galois group of the general algebraic equation (5) is isomorphic to the

symmetric group S(n).

Proof. 1) The functions x1, . . . , xn satisfying the equation (5) in a small neighbour-
hood U define a local inversion of the Viète map, that is, V (x(a)) = a, where
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x(a) = (x1(a), . . . , xn(a)). We denote by U0 the image of the domain U under
this local inversion. Let us consider a pair of function fields V ∗KU ⊂ V ∗PU on
the domain U0 induced under the map V by the function fields KU ⊂ PU on the
domain U . The field V ∗PU is isomorphic to the field R[x1, . . . , xn] of all rational
functions in x1, . . . , xn. The field V

∗KU is isomorphic to the field RS[x1, . . . , xn] of
all symmetric rational functions in x1, . . . , xn. Indeed, by the theorem on the sym-
metric rational functions, every such function is a rational function in x1+ · · ·+xn,
. . . , x1 · · ·xn.
2) The group S(n) of permutations of the coordinates acts with trivial kernel on

the field of rational functions, and the corresponding field of invariants is the field of
symmetric rational functions. By the main theorem of Galois theory (see 3.2), the
Galois group of the Galois extension RS [x1, . . . , xn] ⊂ R[x1, . . . , xn] is isomorphic
to the group S(n).

Theorem 3.12 (Abel). The general algebraic equation of degree � 5 is not solvable
by radicals.

Proof. The group S(n) is not solvable for n � 5.
Remark. This theorem was proved by Abel before the appearance of Galois theory
and group theory. Abel’s original proof is closer to Liouville’s method than to
Galois theory.

3.4. Reduction of the degree of an equation. Is it possible to express the
roots of a given algebraic equation of degree n in terms of its coefficients by using
arithmetic operations, adjoining radicals, and adjoining solutions of algebraic equa-
tions of degree k < n? In 3.4.2 we give an answer to this question in terms of the
Galois group of the equation. To this end, we need some properties of subgroups
of the symmetric group.

3.4.1. Subgroups of the symmetric group on k elements. We need the following
lemma.

Lemma 3.13 [21]. A group Γ is isomorphic to a subgroup of S(k) if and only if
the group Γ has a set of subgroups Γi, i = 1, . . . , m, such that :

1) the group
⋂m
i=1 Γi contains no non-trivial normal subgroups of Γ;

2)
∑m
i=1 ind(Γ,Γi) � k.

Proof. Let Γ be a subgroup of S(k). Consider a representation of the group Γ as a
subgroup of permutations of a set M having k elements. Suppose that the set M
decomposes into m orbits under the action of the group Γ. In each orbit we choose
a point xi. The set of the stationary subgroups (stabilizers) Γi of the points xi
satisfies the conditions in the lemma.
Conversely, let a group Γ have a set of subgroups satisfying the conditions

of the lemma. We denote by P the disjoint union of the sets Pi = {P ji }, that is, of
the sets of right cosets P ji of the subgroup Γi in the group Γ. The group Γ acts
naturally on the set P . The representation of Γ in the group S(P ) thus obtained
is faithful, because the kernel of this representation belongs to the group

⋂m
i=1 Γi.

The group S(P ) can be embedded in the group S(k), because the set P contains∑m
i=1 ind(Γ,Γi) � k elements.
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Corollary 3.14. Every quotient group of a subgroup of the symmetric group S(k)
is isomorphic to a subgroup of S(k).

Proof. Let a group G be isomorphic to a subgroup of the group S(k) and let Γi be
a family of subgroups of G satisfying the conditions of Lemma 3.13. Let π be an
arbitrary homomorphism of G. Then the family of subgroups π(Γi) of the group
π(G) also satisfies the conditions of the lemma.

Definition. We say that a normal subgroup H of a group G is of profundity at
most k if G has a subgroup G0 with index at most k and such that H is equal to
the intersection of all the subgroups conjugate to G0. We say that a group G is of
profundity at most k if the identity element of this group is a normal subgroup of
profundity at most k.

Definition. By a normal tower of a group G we mean a chain of nested subgroups
G = G0 ⊃ · · · ⊃ Gn = e such that G0 coincides with the original group G, Gn is
trivial, and for any i = 0, 1, . . . , n− 1 the group Gi+1 is a normal subgroup of the
group Gi.

Corollary 3.15. If a group G is a subgroup of the group S(k), then G admits a
normal tower G = G0 ⊃ · · · ⊃ Gn = e such that the group Gi has profundity at
most k in the group Gi−1 for any i = 1, . . . , n.

Proof. Let Γi be the family of subgroups of the group G that satisfy the condi-
tions of Lemma 3.13. We denote by Fi the normal subgroup of G equal to the
intersection of all the subgroups conjugate to the group Γi. The chain of subgroups
G0 = F0, G1 = F0 ∩ F1, . . . , Gm = F0 ∩ · · · ∩ Fm satisfies the conditions of the
corollary.

3.4.2. Condition for the reducibility of the degree of an equation with the help of
radicals. Let us begin with formal definitions.

Definition. An algebraic equation over a field K is said to be solvable by radicals
and roots of equations of degree at most k (or, briefly, solvable by k-radicals) if there
is a chain of extensions K = K0 ⊂ · · · ⊂ KN such that the field Ki is obtained
from the field Ki−1, i = 1, . . . , N , by adjoining either a radical or all the roots of
an algebraic equation of degree at most k with coefficients in the field Ki−1, and
the field KN contains all the roots of the original algebraic equation.

Definition. A group G is said to be k-solvable if there is a normal tower

G = H0 ⊃ · · · ⊃ HN = e

such that for any i = 1, . . . , N either the profundity of the normal subgroup Hi of
the group Hi−1 is at most k or the quotient group Hi−1/Hi is commutative.

Theorem 3.16. An algebraic equation is solvable by k-radicals if and only if its
Galois group G is k-solvable.

The following lemma holds.
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Lemma 3.17. Let a finite group of automorphisms act on a field P , with field of
invariants P0. Let the orbit of a point x ∈ P contain exactly m elements. Then x
satisfies some algebraic equation of degree m with coefficients in the field P0.

Proof. Let x1, . . . , xm be the points of the orbit. The elementary symmetric func-
tions σ1, . . . , σm of these points remain fixed under the action of the group, and
hence belong to the field of invariants. The points of the orbit are roots of an
algebraic equation of degree m, namely,

xm − σ1xm−1 + · · ·+ (−1)mσm = 0,

with coefficients in the field P0 of invariants.

Lemma 3.18. Let a finite group of automorphisms G act on a field P , with field
of invariants P0. Let the profundity of the group G be at most k. Then the field P
can be obtained from the field P0 by adjoining all roots of some algebraic equation
of degree at most k with coefficients in P0.

Proof. Let G0 be a subgroup of G of indexm at most k such that the intersection of
all the subgroups conjugate to G0 contains only the identity element of G. By the
main theorem of Galois theory, corresponding to the subgroupG0 is an intermediate
field P1, that is, P0 ⊆ P1 ⊆ P . The field P1, as well as any other finite algebraic
extension of P0, is generated over P0 by some element x. The point x has the
following property: an element g of G leaves x fixed if and only if g ∈ G0. The
orbit of x with respect to the action of G contains exactly m points, because the
index of the stabilizer of x is equal to m. A non-identity element of G determines
a non-identity permutation of the points of the orbit, because the intersection of
the subgroups conjugate to G0 coincides with the identity element of G. The field
generated over P0 by the elements of the orbit coincides with P . Indeed, this
field corresponds to the trivial subgroup of the Galois group. Lemma 3.18 follows
now from Lemma 3.17.

We return to the proof of Theorem 3.16.

Proof of Theorem 3.16. 1) The necessity of the condition on the Galois group
is proved just as we proved that solvability of the Galois group is necessary for
solvability of the equation by radicals. One need only consider what happens with
the Galois group Gi of our equation over the field Ki upon passage to the field Ki+1
if Ki+1 is obtained from Ki by adjoining all the roots of an equation of degree � k.
In this case the Galois group of Ki+1 over Ki is a subgroup of the group S(k)
(see Lemma 3.2). By Theorem 3.4 on the behaviour of the Galois group under
a change of the ground field, the quotient group Gi/Gi+1 is a quotient group of
some subgroup of S(k). According to Corollaries 3.14 and 3.15, the group Gi/Gi+1
admits a normal tower Gi/Gi+1 = Γ0 ⊃ · · · ⊃ Γm = e such that the group Γi+1 is
of profundity � k in the group Γi. It suffices to insert a chain of subgroups

Gi = Γ0i ⊃ · · · ⊃ Γmi = Gi+1

between the groups Gi ⊃ Gi+1, where Γpi is the pre-image of Γp under the natural
homomorphism Gi → Gi/Gi+1. It is clear that Γp+1,i is a normal subgroup of
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profundity � k in Γpi. This fills the gap in the proof of the necessity of the
condition on the Galois group.
2) The sufficiency of the condition on the Galois group is proved by induction on

the lengthN of a normal tower inG. The groupG has a k-solvable normal subgroup
H1 with a normal tower of length N − 1. We denote by P1 the field of invariants
of H1. By the induction assumption, the field P is obtained from the field P1 by
adjoining radicals and roots of equations of degree at most k. The quotient group
G/H1 acts on the field P1, with field of invariants P0. If G/H1 is commutative,
then P1 is obtained from P0 by adjoining radicals (see Proposition 3.7). If G/H1
is of profundity at most k, then P1 is obtained from P by adjoining all roots of an
algebraic equation of degree at most k (see Lemma 3.18).

Theorem 3.19. The general algebraic equation (see 3.3.3) of degree n � 5 is not
solvable by radicals and roots of algebraic equations of degree less than n.

Proof. The Galois group of the general algebraic equation of degree n is isomorphic
to the group S(n) (see 3.3.3).
For n � 5 the group S(n) has only two distinct towers of normal subgroups:

the trivial tower e ⊂ S(n) and the tower e ⊂ A(n) ⊂ S(n), where e is the identity
subgroup and A(n) is the alternating subgroup. Therefore, S(n) is not k-solvable
for k < n and n � 5.

§ 4. Solvability of linear differential equations
by quadratures and the Picard–Vessiot theory

Picard noted an analogy between linear differential equations and algebraic equa-
tions and started the construction of a differential analogue of Galois theory. This
theory was crowned by the Picard–Vessiot theorem, in which the problem of solv-
ability or unsolvability of a linear differential equation is related to the problem of
solvability or unsolvability of a certain algebraic Lie group.

4.1. Analogy between linear differential equations and algebraic equa-
tions. Let us recall the simplest properties of linear differential equations and their
analogues for algebraic equations.

4.1.1.Division with remainder and the greatest common divisor of differential oper-
ators. By a linear differential operator of order n over a differential fieldK we mean
an operator L = anD

n + · · ·+a0, where ai ∈ K and an �= 0, acting on any element
y of the field K by the formula

L(y) = any
(n) + · · ·+ a0y.

For operators L1 and L2 over K their product L = L1 ◦ L2 = L1(L2) is also an
operator over K. Generally, the product of operators is non-commutative, but this
fact is not apparent at the leading term. Namely, the leading term anD

n of the
operator L = L1 ◦L2 is equal to bmckDm+k , where bmDm and ckDk are the leading
terms of the operators L1 and L2, respectively.
For operators L and L2 of orders n and k over K there exist operators L1

and R over K such that L = L1 ◦ L2 + R and the order of R is strictly less
than k, and these operators L1 and R are unique. The operator R is called the
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remainder upon right division of the operator L by the operator L2. The operators
L1 and R can be constructed explicitly from the operators L and L2; the algorithm
for division with remainder for operators is based on the above formula for the
leading term of the product of operators and is quite analogous to the algorithm
for division with remainder for polynomials in one variable.

For any two operators L1 and L2 over K one can explicitly find the right greatest
common divisor N , that is, an operator N over K of the greatest possible order
such that N divides the operators L1 and L2 from the right, that is, L1 =M1 ◦N
and L2 = M2 ◦ N , where M1 and M2 are some operators over K. The process
of finding the operators M1, M2, and N for given operators L1 and L2 is quite
analogous to the Euclidean algorithm for finding the greatest common divisor of
two polynomials in one variable and is based on the algorithm for division with
remainder for operators. As in the commutative case, the greatest common divisor
N is representable in the form N = AL1+BL2, where A and B are some operators
over K.

It is clear that y is a solution of the equation N(y) = 0 if and only if L1(y) = 0
and L2(y) = 0.

4.1.2. Passage to a linear differential equation of lower order as an analogue of the
Bézout theorem. Let L be a linear differential operator over K, let y1 be a non-

zero element of the field K, let p =
y′1
y1
be the logarithmic derivative of y1, and let

L2 = D − p be a first-order operator annihilating y1. The remainder R upon right
division of L by L2 is the operator of multiplication by c0, where c0 =

1

y1
L(y1).

Indeed, the desired equality is obtained by substituting y = y1 in the identity
L(y) ≡ L1 ◦L2(y)+ c0y. The operator L is right divisible by the operator L2 if and
only if the element y1 satisfies the identity L(y1) ≡ 0.
Using a non-zero solution y1 of an equation L(y) = 0 of order n, one can reduce

the order of this equation. To this end, one must represent the operator L in the
form L = L1 ◦ L2, where L1 is an operator of order (n − 1). The coefficients of
the operator L1 belong to the extension of the differential field K by the logarithmic
derivative p of the element y1. If some solution u of the equation L1(u) = 0
is known, then from this solution one can construct a solution y of the original
equation L(y) = 0. To this end, it suffices to solve the equation L2(y) = y

′−py = u.
The procedure described above is called reduction of the order of a differential
equation.

Remark. An operator annihilating y1 is defined up to multiplication by an arbi-
trary function, and the procedure of reducing the order depends on this function.

It is simpler to divide by the operator L̃2 = D ◦ y−11 that is the composition of
multiplication by the element y−11 and differentiation. To this end, it suffices to
compute the operator L3 = L ◦ y1 that is the composition of multiplication by
the element y1 and the operator L. The operator L3 is right divisible by D, that

is, L3 = L̃1 ◦ D (because L3(1) ≡ L ◦ y1(1) ≡ 0). It is clear that L = L̃1 ◦ L̃2.
The original equation L(y) = 0 is reduced to the equation L̃1(u) = 0 of smaller
order. This procedure for lowering the order is usually presented in handbooks and
manuals on differential equations. We note that the coefficients of the operator L̃1
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belong to the extension of the differential field K by the element y1 itself rather
than by its logarithmic derivative p, and this sometimes makes L̃1 less conve-
nient than L1.
The following analogues of the above facts are known in algebra: 1) the remain-

der upon division by (x−a) of a polynomial P in a variable x is equal to the value of
P at the point a (the Bézout theorem); 2) if a solution x1 of an equation P (x)=0
is known, then one can reduce the degree of the equation, namely, the other
roots of the polynomial P satisfy an equation Q(x) = 0 of smaller degree, where
Q = P/(x− x1). Along with the analogues, there is a difference: a solution of a
differential equation obtained by using the procedure of reduction of the order is
not a solution of the original equation in general.

Remark. Exponentials are eigenfunctions of differential operators P (D) with con-
stant coefficients. This fact is equivalent to the Bézout theorem. Indeed, if P =
Q(x − a) + P (a), then P (D) = Q(D) ◦ (D − a) + P (a). Therefore, a solution y1
of the differential equation (D − a)y = 0 is an eigenvector of the operator P (D)
with the eigenvalue P (a).

4.1.3. Analogue of the Viète formulae for differential operators. If all the roots
x1, . . . , xn of a polynomial P of degree n with leading coefficient 1 are known,
then P can be recovered; namely, by the Viète formulae one has P (x) = xn +
p1x

n−1+ · · ·+ pn, where p1 = −σ1, . . . , pn = (−1)nσn and σ1 = x1+ · · ·+xn, . . . ,
σn = x1 · · ·xn. The functions σ1, . . . , σn remain the same under any permutation
of the roots and are called the elementary symmetric functions.
Similarly, if n linearly independent solutions y1, . . . , yn of a linear differential

equation L = 0 of order n are known, where L is an operator whose coefficient
with the highest derivative is equal to 1, then the operator L can be recovered.
Indeed, we note first that there is at most one operator of this kind, because the
difference L1 − L2 between two operators having these properties is an operator
of order < n having n linearly independent solutions, which is possible only if L1
coincides with L2.
The Wronskian W of n independent solutions y1, . . . , yn of a linear differential

equation cannot vanish. Let us consider the equation W (y, y1, . . . , yn) = 0, where
W (y, y1, . . . , yn) is the Wronskian of an unknown function y and the functions
y1, . . . , yn. Expanding the Wronskian

W (y, y1, . . . , yn) =

∣∣∣∣∣∣∣
y y1 . . . yn
...

...
...

y(n) y
(n)
1 . . . y

(n)
n

∣∣∣∣∣∣∣
with respect to the first column and dividing it by W , we obtain the equation

y(n) + p1y
(n−1) + · · ·+ pny = 0 (6)

in which p1 = −ϕ1, . . . , pn = (−1)nϕn, where

ϕ1 =

∣∣∣∣∣∣∣∣∣

y1 . . . yn
...

...
y
(n−2)
1 . . . y

(n−2)
n

y
(n)
1 . . . y

(n)
n

∣∣∣∣∣∣∣∣∣
W

, . . . , ϕn =

∣∣∣∣∣∣∣∣∣

y′1 . . . y′n
...

...
y
(n−1)
1 . . . y

(n−1)
n

y
(n)
1 . . . y

(n)
n

∣∣∣∣∣∣∣∣∣
W

. (7)
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The functions y1, . . . , yn and their linear combinations are solutions of the equa-
tion (6). The formulae (6) and (7) are quite similar to the Viète formulae.
The functions ϕ1, . . . , ϕn are rational functions in the functions y1, . . . , yn and

their derivatives up to order n. These functions depend only on the linear space V
spanned by the functions y1, . . . , yn and do not depend on the choice of a specific
basis y1, . . . , yn in the space V . In other words, the functions ϕ1, . . . , ϕn of y1, . . . , yn
and their derivatives are GL(V )-invariant. We refer to the functions ϕ1, . . . , ϕn as
the elementary differential invariants of y1, . . . , yn.

4.1.4. Analogue of the theorem on the symmetric functions for differential opera-
tors. As is known in algebra, every rational function in the variables x1, . . . , xn
that is invariant under permutations of the variables is in fact a rational function
in the elementary symmetric functions σ1, . . . , σn of the variables x1, . . . , xn. In
other words, every rational expression depending symmetrically on the roots of a
polynomial of degree n can be expressed rationally in terms of the coefficients of
this polynomial.
A similar theorem for linear differential equations was discovered by Picard.

Theorem 4.1. Every rational function R in linearly independent functions y1,
. . . , yn and their derivatives that is GL(V )-invariant (that is, that remains the
same when the functions y1, . . . , yn are replaced by their linear combinations z1 =
a11y1 + · · ·+ a1nyn, . . . , zn = an1y1 + · · ·+ annyn under the assumption that the
matrix A = {aij} is non-singular) is in fact a rational function in the elementary
differential invariants ϕ1, . . . , ϕn of the functions y1, . . . , yn and the derivatives of
these invariants.

Proof. Each function y in the space V spanned by the functions y1, . . . , yn satisfies
the identity y(n) − ϕ1y(n−1) + · · · + (−1)nϕny = 0. Differentiating this identity,
one can express every derivative of the function y of order � n in terms of the
function y, its derivatives of orders < n, the elementary differential invariants, and
their derivatives. Substituting these expressions for the higher derivatives of the
functions y1, . . . , yn into the rational function R, we obtain a rational function R̃
in the functions ϕ1, . . . , ϕn, their derivatives, and the elements of the fundamental
matrix Y , where

Y =



y1 . . . yn
...

...
y
(n−1)
1 . . . y

(n−1)
n


 .

The function R̃ is preserved under any linear transformation of the space V spanned
by y1, . . . , yn. Every non-singular n × n matrix can be obtained as the image
of the fundamental matrix Y under some linear transformation of the space V .

The rational function R̃ must be constant on the set of non-singular matrices,
and therefore it is constant on the set of all matrices, does not depend on the
matrix Y , and depends only on the differential invariants and their derivatives.

Corollary 4.2. Every rational function in independent solutions y1, . . . , yn of a
linear differential equation and their derivatives that remains invariant under the
choice of another basis z1, . . . , zn in the space of solutions is a rational function in
the coefficients of the differential equation and their derivatives.
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4.2. Galois group of a linear differential equation. Let us consider a linear
differential equation

y(n) + p1y
(n−1) + · · ·+ pny = 0 (8)

with coefficients in some differential function field K. (As usual, we always assume
that the field K contains all complex constants.)
By a differential polynomial over K in functions u1, . . . , un we mean a poly-

nomial in the functions u1, . . . , un and their derivatives with coefficients in K. By
a differential relation over K among the solutions y1, . . . , yn of the equation (8)
we mean a differential polynomial over K in the functions u1, . . . , un that vanishes
under the substitution u1 = y1, . . . , un = yn.

Definition. By the Galois group of a differential equation (8) over a differential
field K we mean the subgroup G of the group GL(V ) of all linear transformations
of the solution space V of the equation (8) that preserve all differential relations
overK among the solutions of the equation (that is, ifA ∈ G and ifQ is an arbitrary
relation over K among some solutions y1, . . . , yn, then the solutions Ay1, . . . , Ayn
must satisfy the same relation Q).

Proposition 4.3. The Galois group of a linear differential equation is an algebraic
subgroup of GL(V ).

Proof. It is clear that the set of linear transformations A for which the relation Q
holds for Ay1, . . . , Ayn is an algebraic set for any differential relation Q among the
solutions y1, . . . , yn. The intersection of arbitrarily many algebraic varieties is an
algebraic variety.

Definition. A differential function field P is called a Picard–Vessiot extension
of a differential function field K if there is a linear differential equation (8) with
coefficients in K such that P is obtained by adjoining all the solutions of (8) to K.
By the Galois group of a Picard–Vessiot extension P over a field K we mean the
group of all automorphisms of the differential field P that leave fixed every element
of K.

Every element τ of the Galois group of a differential field P over a differential
field K defines a linear transformation of the solution space and preserves all differ-
ential relations defined over K among the solutions. Thus, the Galois group of P
over K has a representation into the Galois group G of the corresponding equa-
tion (8) defining the Picard–Vessiot extension P . Obviously, this representation
is a group isomorphism, that is, the Galois group of the equation and the Galois
group of the Picard–Vessiot extension given by the equation are isomorphic. Using
this isomorphism, one can define a structure of an algebraic group on the Galois
group of the Picard–Vessiot extension. If two distinct linear differential equations
over the field K define the same Picard–Vessiot extension, then the Galois groups
of the equations are isomorphic not only as abstract groups but also as algebraic
groups. Therefore, the structure of an algebraic group is well defined on the Galois
group of a Picard–Vessiot extension.

4.3. Main theorem of the Picard–Vessiot theory. Let P be a Picard–Vessiot
extension of a differential field K and let G be the Galois group of P .



690 A. G. Khovanskii

The following maps between the set of intermediate differential fields F , K ⊆
F ⊆ P , and the set of subgroups of the Galois group G are defined.
1) The map Fd that assigns to every subgroup Γ of G the differential field Fd(Γ)

consisting of the elements of P that are fixed under the action of Γ (it is clear that
K ⊆ Fd(Γ)).
2) The map Gp that assigns to every intermediate differential field F , K ⊆

F ⊆ P , the subgroup Gp(F ) ⊆ G that is the Galois group of the Picard–Vessiot
extension P of the field F (P is a Picard–Vessiot extension of K, and therefore it is
automatically a Picard–Vessiot extension of any intermediate field F , K ⊂ F ⊂ P ).
The maps Fd andGp establish the Galois correspondence between the subgroups

of the Galois group and the intermediate differential fields of the Picard–Vessiot
extension. We present the following theorem without proof.

Theorem 4.4 (main theorem of the Picard–Vessiot theory). For any Picard–
Vessiot extension P of a differential field K with Galois group G:
1) the composition of the maps Fd and Gp is the identity map of the set of

intermediate fields onto itself , namely, if F is a differential field and K ⊆ F ⊆ P ,
then Fd(Gp(F )) = F ;
2) the composition of the maps Gp and Fd assigns to every subgroup Γ of the

Galois group G the algebraic closure Γ of Γ in G, namely, if Γ is a subgroup of
the Galois group, Γ ⊂ G, then Gp(Fd(Γ)) = Γ;
3) an intermediate differential field F , K ⊆ F ⊆ P , is a Picard–Vessiot extension

of the field K if and only if the group Gp(F ) is a normal subgroup of G, and
moreover, the Galois group of a Picard–Vessiot extension F of the field K is the
quotient group of G by the normal subgroup Gp(F ).

Let us prove a useful characteristic property of the Picard–Vessiot extensions
that follows immediately from the main theorem.

Corollary 4.5. A differential field P is a Picard–Vessiot extension of a differential
field K, K ⊆ P , if and only if there is a group Γ of automorphisms of the differential
field P such that 1) this group leaves fixed all elements of K and only these elements;
2) there is a finite-dimensional linear space V over the field of constants such that V
belongs to P , V is Γ-invariant, and P is the smallest differential field containing
V and K.

Proof. The properties indicated in the corollary are satisfied for any Picard–Vessiot
extension. This follows from the assertion 1) of the main theorem applied to the
field F = K. Conversely, let y1, . . . , yn be a basis of the linear space V in the
assertion 2) of the corollary. The coefficients of a linear differential equation of
order n on the functions y1, . . . , yn are invariant under all linear transformations
of the space V . Therefore, they are invariant under the group Γ, and thus all these
coefficients belong to K. Hence, the field P is obtained from K by adjoining all
solutions of the above equation, and thus P is a Picard–Vessiot extension of the
field K.

What happens with the Galois group of a linear differential equation if one
extends the differential field K of coefficients by replacing it by a larger differential
field K1? This question is of special interest if K1 is a Picard–Vessiot extension
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of K. We denote by G1 the Galois group of the extension K1 of K. The results on
unsolvability of linear differential equations are based on the following theorem of
the Picard–Vessiot theory (we present this theorem without proof; its formulation
is quite similar to that of Theorem 3.4).

Theorem 4.6 (on the change of the Galois group of an equation under a Picard–
Vessiot extension of the field of coefficients). If the differential field K of the coeffi-
cients is replaced by a Picard–Vessiot extension K1 of K, then the Galois group G
of the equation is replaced by some algebraic normal subgroup H of G. The quotient
group G/H of G by H is isomorphic to some algebraic quotient group of the
Galois group G1 of the new differential field K1 over the old differential field K.

4.4. Simplest Picard–Vessiot extensions. In this subsection we treat the
following simplest Picard–Vessiot extensions: an algebraic extension, adjoining an
integral, and adjoining the exponential of an integral.

4.4.1. Algebraic extension. Let us consider an algebraic equation

Q(x) = xn + an−1x
n−1 + · · ·+ a0 = 0 (9)

over a differential function fieldK and the Galois extension P obtained by adjoining
all the solutions of the equation (9) to K.

Lemma 4.7. The field P is a differential field. Every automorphism of P over
K that preserves only the arithmetic operations in P preserves automatically the
operation of differentiation as well.

Proof. Modifying the algebraic equation (9) if necessary, one can assume that it is
irreducible over K and that every root xi of (9) generates the field P over K. Differ-

entiating the identity Q(xi) = 0, we obtain
∂Q

∂x
(xi)x

′
i +
∂Q

∂t
(xi) = 0, where

∂Q

∂t
=∑n−1

i=1 a
′
ix
i. The polynomial

∂Q

∂t
cannot vanish at the point xi, because the equation

Q = 0 is irreducible. We obtain the algebraic expression x′i = −
∂Q

∂x
(xi)

/
∂Q

∂t
(xi)

for the derivative of the root xi, which is the same for all roots xi of the poly-
nomial Q. This implies both the assertions of the lemma.

The Galois group Γ of a Galois extension P over the field K leaves fixed only the
elements of the field K. The linear space V (over the field of constants) spanned by
the roots x1, . . . , xn of the equation (9) is invariant under the action of the group Γ.
By Corollary 4.5, the differential field P is a Picard–Vessiot extension. The Galois
group of the Picard–Vessiot extension P of K coincides with the Galois group of
the algebraic equation (9). The main theorem of the Picard–Vessiot theory for
the Picard–Vessiot extension P of the differential field K coincides with the main
theorem of Galois theory for the Galois extension P of the field K.

4.4.2. Adjoining an integral. Let y1 be an integral over a differential function field
K and let y′1 = a, a ∈ K, and a �= 0.
A homogeneous differential equation ay′′ − a′y′ = 0 has independent solutions

given by the function y1 and the function identically equal to 1. Therefore, the
extension of the differential field K obtained from K by adjoining the element y1 is
a Picard–Vessiot extension (because we always assume that K contains all complex
constants).
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Lemma 4.8. The integral y1 either belongs to the field K or is transcendental over
it.

Proof. Suppose that the integral y1 is algebraic over the field K. Let Q(y) =
any

n + · · ·+ a0 = 0 be an equation irreducible over K such that Q(y1) = 0. One
can assume that n > 1 and an = 1. Differentiating the identity Q(y) = 0, we
get that y1 satisfies the equation nany

n−1 + · · ·+ a′0 = 0 of smaller degree. This
contradicts the condition that the polynomial Q is irreducible.

Let the element y1 be transcendental overK. We show that the only independent
differential relation for y1 over K is of the form y

′
1 = a. Indeed, using this relation,

one can rewrite every differential polynomial in y1 over K as a polynomial in y1
with coefficients in K. However, no non-trivial polynomial of this kind can vanish,
because y1 is transcendental over K. Therefore, the Galois group of the equation
ay′′ − a′y′ = 0 consists of the linear transformations of the form Ay1 = y1 + C,
A(1) = 1, where C is an arbitrary complex number. Thus, the Galois group of a
non-trivial extension by an integral is isomorphic to the additive group of complex
numbers.
In Kolchin’s terminology [26] an algebraic group is said to be anticompact if it

contains no non-identity finite-order elements. Obviously, the Galois group of a
non-trivial extension by an integral is anticompact.

Proposition 4.9. There are no differential fields between the fields K and K〈y〉,
where y is an integral over K not belonging to K.

Proof. Indeed, let F be a differential field such that K ⊂ F ⊆K〈y〉. Let b ∈ F and
b /∈ K. Then the element b is representable in the form of a non-trivial rational
function in y with coefficients in K. The existence of such a function means that
y is algebraic over F . However, y is an integral over F , because y′ = a ∈ K. An
integral is algebraic over a differential field if and only if it belongs to this field
(see Lemma 4.8), that is, F = K〈y〉.

This proposition proves the main theorem of the Picard–Vessiot theory for any
adjoining of an integral. Indeed, the Galois group G of the field K〈y〉 over the field
K has no algebraic subgroups, and the pair of differential fields K ⊂ K〈y〉 contains
no intermediate differential fields.

4.4.3. Adjoining the exponential of an integral. Let y1 be the exponential of an
integral over a differential function field K, that is, y′1 = ay1, where a ∈ K. By
definition, the extension of the field K by the element y1 is a Picard–Vessiot exten-
sion.

Lemma 4.10. Let the exponential y1 of an integral be algebraic over the field K.
Then y1 is a radical over K.

Proof. Let Q(y) = any
n + · · · + a0 = 0 be an irreducible equation over K such

that Q(y1) = 0. One can assume that n > 1, an �= 0, and a0 = 1. Differentiating
the identity Q(y1) = 0, we obtain the equation

∑
(a′k + kaka)y

k = 0 on y1. This
equation is of degree � n and contains no constant term. All the coefficients of
this equation must be identically zero, because otherwise we obtain a contradiction
to the irreducibility of the polynomial Q. The equality a′n + nana = 0 means that
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the quotient an/y
n
1 = c is constant. Indeed, it follows from the relation y

′
1 = ay1

that (y−n1 )
′+na(y−n1 ) = 0, or, in other words, the functions y

−n
1 and an satisfy the

same equation. Therefore, yn1 = an/c. This proves the lemma.

We assume that the element y1 is transcendental overK. Let us show that in this
case the only independent differential relation on y1 over K is of the form y

′
1 = ay1.

Indeed, using this relation, one can rewrite every differential polynomial in y1 over
K as an algebraic polynomial in y1 with coefficients in K. However, no non-trivial
polynomial of this kind can vanish, because y1 is transcendental over K. Therefore,
the Galois group of the equation y′ = ay consists of the linear transformations
of the form Ay1=Cy1, where C �=0 is an arbitrary non-zero complex number. Thus,
the Galois group of a non-algebraic extension given by adjoining the exponential
of an integral coincides with the multiplicative group C∗ of the non-zero complex
numbers.

The exponential of an integral over K is an algebraic element y over K if and
only if y is a radical over K. Therefore, if the adjoining of the exponential of an
integral is an algebraic extension, then the Galois group of this extension is a finite
multiplicative subgroup of C∗.

In Kolchin’s terminology [26] an algebraic group is said to be quasi-compact if
each non-identity subgroup of G contains non-identity finite-order elements. Obvi-
ously, the Galois group of a non-algebraic extension obtained by adjoining the
exponential of an integral is quasi-compact.

Proposition 4.11. Let y be the exponential of an integral over K and let y be
transcendental over K. In this case to every non-negative integer n one can assign
a differential field between the fields K and K〈y〉, namely, the differential field Kn
consisting of the rational functions in the element yn with coefficients in K. The
fields Kn are different for different non-negative integers n. Every intermediate
differential field coincides with some field Kn.

Proof. Let F be a differential field that contains strictly the field K and is contained
in the field K〈y〉. Repeating the arguments in Proposition 4.9, we see that y is
algebraic over F . The element y is the exponential of an integral over F . Therefore,
the irreducible algebraic equation on y over the field F is of the form yn − a = 0,
where a ∈ F (see Lemma 4.10), and hence Kn ⊆ F . The field Kn must coincide
with F . Indeed, otherwise there is an element b ∈ F such that b /∈ Kn. The element
b is a rational function R of y, and the relation R(y) is not a consequence of the
equation yn = a. This contradicts the fact that the equation yn = a is irreducible.
The contradiction shows that Kn = F . The fields Kn differ for different n because
y is transcendental over K.

The proposition proves the main theorem of the Picard–Vessiot theory for any
adjoining of the exponential of an integral. Indeed, every proper algebraic sub-
group of the group C∗ is the group of nth roots of unity for some n. A differential
field that is intermediate between K and K〈y〉 consists of the elements of
the field K〈y〉 that are left fixed under the action of the group of nth roots
of unity on K〈y〉.
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4.5. Solvability of differential equations. An algebraic group G is said to be
solvable, k-solvable, or almost solvable in the category of algebraic groups, respec-
tively, if it admits a normal tower of algebraic subgroups G = G0 ⊃ · · · ⊃ Gm = e
with the following properties:

a) (for solvable groups) the quotient group Gi−1/Gi is commutative for any
i = 1, . . . , m;

b) (for k-solvable groups) either the profundity of Gi in Gi−1 is at most k or
Gi−1/Gi is commutative for any i = 1, . . . , m;

c) (for almost solvable groups) either the index of Gi in Gi−1 is finite or
Gi−1/Gi is commutative for any i = 1, . . . , m.

Theorem 4.12 (Picard–Vessiot). A linear differential equation over a differential
field K is solvable by quadratures, by k-quadratures, or by generalized quadratures,
respectively, if and only if the Galois group of the equation over the field K is
solvable, k-solvable, and almost solvable, respectively, in the category of algebraic
groups.

Remark. The question of the solvability of equations by k-quadratures is not dis-
cussed in the classical Picard–Vessiot theorem. We have included this in the the-
orem because, first, it has an answer analogous to the answers to the classical
questions and, second, it can be extended to the topological version of Galois the-
ory.
In this subsection we prove only the necessity of the conditions on the Galois

group for the solvability of the equation. We postpone the proof of the sufficiency
until 4.7. Thus, the following theorem holds.

Theorem 4.13. If a linear differential equation is solvable by quadratures, by k-
quadratures, or by generalized quadratures, then the Galois group G of this equation
is solvable, k-solvable, or almost solvable in the category of algebraic groups, respec-
tively.

Proof. The solvability of an equation by generalized quadratures over the field
K means the existence of a chain of differential fields K = K0 ⊂ · · · ⊂ KN in
which the first field coincides with the original field K, the last field KN contains
all the solutions of the differential equation, and for any i = 1, . . . , N the field
Ki is obtained from the field Ki−1 by adjoining an integral, the exponential of an
integral, or all the solutions of an algebraic equation. (In the case of solvability
by quadratures the last type of extension is forbidden; in the case of solvability by
k-quadratures only adjoining the roots of algebraic equations of degree at most k
is allowed.)
Let G = G0 ⊃ · · · ⊃ Gm = e be a descending chain of groups in which Gi is

the Galois group of the original equation over the field Ki. By the main theorem
(Theorem 4.4), Gi−1/Gi is the quotient group of the Galois group of the Picard–
Vessiot extension Ki of the field Ki−1. If this extension is obtained by adjoining an
integral or the exponential of an integral, then the group Gi−1/Gi is commutative
as a quotient group of a commutative group (see 4.4.2 and 4.4.3). If the extension
Ki of the field Ki−1 is obtained by adjoining all the roots of an algebraic equation,
then the quotient group Gi−1/Gi is finite. If this algebraic equation is of degree
� k, then one can insert a chain of normal subgroups Gi = Gi1 ⊃ · · · ⊃ Gip = Gi−1
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between the groups Gi and Gi−1, Gi ⊃ Gi−1, such that the profundity of the group
Gij in the group Gi,j−1 is at most k (see 3.4.2). This completes the proof of the
theorem.

The previous theorem can be formulated as follows.

If a Picard–Vessiot extension is a Liouville extension, a Liouville k-extension, or
a generalized Liouville extension, then the Galois group of this extension is solvable,
k-solvable, or almost solvable, respectively, in the category of algebraic groups.
In this reformulation the theorem becomes applicable to algebraic equations

over differential fields. It gives stronger results about the unsolvability of algebraic
equations.

Theorem 4.14. If the Galois group of an algebraic equation over a differential field
K is not solvable, then this algebraic equation is unsolvable not only by radicals but
also by quadratures. If the Galois group is not k-solvable, then the algebraic equation
is unsolvable by k-quadratures over K.

4.6. Algebraic matrix groups and necessary solvability conditions. The
Galois group of a linear differential equation is an algebraic matrix group. These
groups have general properties that help to reformulate the solvability, k-solvability,
and almost solvability conditions for a Galois group and to prove that these condi-
tions are sufficient (see 4.7) for the solvability of the equation.

We note first that every algebraic matrix group is a Lie group. Indeed, the set of
singular points of every algebraic variety is of codimension � 1. However, any point
of a group can be taken to any other point by a group transformation. Therefore,
the group looks the same near each point of the group, and hence the set of singular
points of every algebraic group is empty. The connected component of the identity
of an algebraic group is a normal subgroup of finite index in this group. Indeed, the
connected component (of the identity) is a normal subgroup in any Lie group, and
every algebraic variety has only finitely many connected components.
In what follows, the crucial role is played by the following famous theorem of

Lie, which we present without proof.

Theorem 4.15 (Lie’s theorem). Any connected solvable matrix Lie group can be
reduced in some basis to triangular form.

Proposition 4.16. An algebraic matrix group is an almost solvable group in the
category of algebraic groups if and only if all the matrices in its connected component
can be simultaneously reduced in some basis to triangular form.

Proof. Every group consisting of triangular matrices is solvable. This proves the
proposition in one direction. Let G = G0 ⊃ · · · ⊃ Gn = e be a normal tower of
algebraic subgroups of G such that every quotient group Gi/Gi−1 is either commu-
tative or finite. Consider the connected components of these groups. They form
a normal tower G0 = G00 ⊃ · · · ⊃ G0n = e of algebraic subgroups of the connected
component G0 of the identity ofG. Moreover, if the quotient groupGi−1/Gi is com-
mutative, then so is the quotient group G0i−1/G

0
i . If the quotient group Gi−1/Gi is

finite, then the groups G0i−1 and G
0
i coincide. This proves the proposition.
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Proposition 4.17. An algebraic matrix group G is solvable or k-solvable in the
category of algebraic groups if and only if all the matrices in the connected compo-
nent G0 of the identity in G can be reduced to triangular form in some basis and
the finite quotient group G/G0 is solvable or k-solvable, respectively.

Proof. According to Proposition 4.16, the group G0 is triangular. Moreover, G0 is
a normal subgroup of finite index in G. The finite quotient group G/G0 is solvable
or k-solvable, respectively. In the converse direction the proposition is obvious.

Matrix groups admit the remarkable Zariski topology that assigns to every group
Γ ⊂ GL(V ) the algebraic closure Γ of Γ. This operation enables one to generalize
Propositions 4.16 and 4.17 to arbitrary matrix groups.

Proposition 4.18. 1) A matrix group G is an almost solvable group if and only
if it admits a triangular normal subgroup H of finite index. A matrix group is
k-solvable or solvable if and only if the finite quotient group G/H of G by some
triangular normal subgroup H of finite index is k-solvable or solvable, respectively.
2) An algebraic matrix group G is an almost solvable group, a k-solvable group,

or a solvable group in the category of algebraic groups if and only if it is an almost
solvable group, a k-solvable group, or a solvable group, respectively.

Proof. Let G = G0 ⊃ · · · ⊃ Gn = e be a normal tower of the group G. In this
case the closures of the groups in this tower in the Zariski topology form a normal
tower for the algebraic group G = G0 ⊃ · · · ⊃ Gn = e. Moreover, if Gi−1/Gi
is commutative or finite or if Gi is of profundity � k in Gi−1, then Gi−1/Gi is
commutative or finite or Gi is of profundity � k in Gi−1, respectively. This proves
all the assertions of the proposition in one direction. In the other direction, all the
assertions are obvious.

4.7. Sufficient condition for the solvability of differential equations. An
automorphism group Γ of a differential field F with the differential field K of
fixed elements is said to be an admissible automorphism group if there is a finite-
dimensional space V over the field of constants such that G is Γ-invariant and
K〈V 〉 = F . According to the Picard–Vessiot theory (see Corollary 4.5), the differ-
ential field F is a Picard–Vessiot extension of the differential field K if and only
if there is an admissible automorphism group of F with the differential field K of
fixed elements. In the general case the existence of an admissible transformation
group for a Picard–Vessiot extension is by no means evident and is a part of the
main theorem of this theory. However, for a large class of cases the existence of
an admissible automorphism group is known a priori. For example, such a group
exists for any extension of the field of rational functions by all the solutions of some
Fuchsian linear differential equation (see 6.1.1). In these cases the monodromy
group of the equation plays the role of the group Γ.
If the group Γ is solvable, then the elements of the field F can be represented by

quadratures in terms of elements of the field K. In essence, the construction of such
a representation relates to linear algebra and makes no use of the main theorems
of the Picard–Vessiot theory. The admissible automorphism group Γ is isomorphic
to the induced group of linear transformations of the space V , and thus Γ can be
regarded as a matrix group.
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Lemma 4.19 (Liouville). If all the transformations in an admissible group Γ can be
reduced to triangular form in some basis, then the differential field F is a Liouville
extension of the differential field K.

Proof. Let e1, . . . , en be a basis of V in which every transformation µ ∈ Γ is of
the form µ(ei) =

∑
j�i aijej . Consider the vector space Ṽ spanned by the vectors

ẽi =
( ei
e1

)′
, i = 2, . . . , n. The space Ṽ is Γ-invariant, and every transformation µ

in the group Γ has a triangular form in the basis ẽi. Indeed,

µ(ẽi) = µ

([
ei
e1

]′)
=

(
ai1
a11
+
∑
2�j�i

aij
a11

ej
e1

)′
=
∑
2�j�i

aij
a11
ẽj .

The dimension of Ṽ is less than that of V , and therefore one can assume that the

differential field K〈Ṽ 〉 is a Liouville extension of the differential field K. For any
µ ∈ Γ one has µ

(
e′1
e1

)
=
a11e

′
1

a11e1
=
e′1
e1
, and hence the element

e′1
e1
= a belongs to

the differential field of invariants, that is, to K. The differential field F is obtained
from K by adjoining the element e1 (which is the exponential of an integral of a)

and the elements
ei

e1
(which are integrals of the elements ẽi) for i = 2, . . . , n.

Proposition 4.20. If a group Γ of admissible automorphisms of the field F with
the field K of fixed elements is almost solvable, then there is a Γ-invariant field K0
such that 1) F is a Liouville extension of K0, 2) the induced automorphism group
of the field K0 is finite, and every element of K0 is algebraic over K, 3) if the
group Γ is solvable, then every element of K0 is representable by radicals over
the field K.

Proof. Let V be a Γ-invariant subspace such that K〈V 〉 = F .
It follows from Proposition 4.16 that the group Γ has a finite-index normal

subgroup Γ0 that can be reduced to a triangular form in some basis of the space V .
Let K0 be the differential field of invariants of Γ. By Lemma 4.19, the differential
field F is a Liouville extension of K0.
Obviously (see Proposition 3.9), the field K0 is invariant under the action of Γ,

and the induced group Γ̃0 of automorphisms of this field is a finite quotient group
of Γ. Therefore, every element of K0 is algebraic over K (see Lemma 3.17). If the

original group Γ is solvable, then so is the finite quotient group Γ̃0 of Γ. In this
case every element of K0 can be expressed by radicals in terms of elements of K
(see 3.3.1).

The proof of the following proposition uses Galois theory.

Proposition 4.21. Under the assumptions of Proposition 4.20 if the group Γ is
k-solvable, then every element of the field K0 can be expressed in terms of elements
of the field K by means of radicals and solutions of algebraic equations of degree at
most k.

Proof. Since the group Γ̃0 is finite, it follows that the extension K0 of K is a Galois
extension of K. If the group Γ0 is k-solvable, then every finite quotient group of Γ0
is also k-solvable. Proposition 4.21 follows now from Theorem 3.16.
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We now complete the proof of the Picard–Vessiot theorem (see 4.5).
By the main Theorem 4.4, for any linear differential equation over a differential

field K the Galois group of this equation leaves fixed only the elements of K.
Therefore, Propositions 4.20 and 4.21 proved above can be applied here, and this
proves the sufficiency of the conditions on the Galois group in the Picard–Vessiot
theorem.
The Picard–Vessiot theorem not only proves the criterion of Liouville and

Mordukhai-Boltovskii (see 2.3.2) but also enables one to generalize it to the case of
solvability by quadratures and by k-quadratures. Namely, the following assertions
hold.
A linear differential equation of order n is solvable by generalized quadratures

over a differential field K if and only if, first, it admits a solution y1 satisfying
an equation of the form y′1 = ay1, where a is an element belonging to some alge-
braic extension K1 of K and, second, the differential equation of order (n− 1) for
z = y′−ay with coefficients inK1 that is obtained from the original equation by the
procedure of reducing the order (see 4.1.2) is solvable by generalized quadratures.
Similar assertions hold for the solvability of a linear differential equation by quadra-
tures and by k-quadratures. For solvability by quadratures (by k-quadratures) one
must assume in addition that the algebraic extension K1 can be obtained fromK by
adjoining radicals (by adjoining radicals and roots of algebraic equations of degrees
� k, respectively). To prove these assertions, it suffices to look at the construction
of solutions of differential equations.
Differential algebra enables one to refine substantially this criterion. For linear

differential equations whose coefficients are rational functions with rational coeffi-
cients there is a finite algorithm that enables us to determine whether a given equa-
tion is solvable by generalized quadratures, and to find a solution if one exists [37].
The algorithm uses: 1) a bound for the degree of the extension K1 of the field K,
depending only on the order of the equation and following from general considera-
tions of group theory (see 6.2.2); 2) the theory of normal forms of linear differential
equations in a neighbourhood of a singular point; 3) the elimination theory for
differential equations and inequalities with several functions (found by Seidenberg
and generalizing the Tarski–Seidenberg theorem to the case of differential fields).

4.8. Other forms of solvability. Kolchin completed the Picard–Vessiot theo-
rem [26]. He considered problems concerning the solvability of linear equations by
integrals and by exponentials of integrals separately, and he studied versions of
these problems in which algebraic extensions are admitted.
When defining the Liouville extensions, we used three forms of extensions: alge-

braic extensions, adjoining an integral, and adjoining the exponential of an integral.
One can define more specific forms of solvability using as ‘building blocks’ only some
of these extensions (and using only special algebraic extensions). We list the main
versions.

1) Solvability by integrals.
2) Solvability by integrals and radicals.
3) Solvability by integrals and algebraic functions.
4) Solvability by exponentials of integrals.
5) Solvability by exponentials of integrals and algebraic functions.
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We decipher the third of these definitions.
Let us consider an arbitrary chain of differential fields K = K0 ⊆ · · · ⊆ Kn in

which every field Ki, i = 1, . . . , n, either is obtained from the previous field Ki−1 by
adjoining an integral over Ki−1 or is an algebraic extension of Ki−1. By definition,
every element of Kn is said to be representable by integrals and algebraic functions
over the fieldK. An equation is solvable overK by integrals and algebraic functions if
each of its solutions can be represented by integrals and algebraic functions.
The other forms of solvability in 1)–5) can be deciphered in a similar way.

Remarks. 1) There is no need to consider solvability by radicals and exponentials
of integrals separately, because every radical is the exponential of an integral.
2) We have treated the above special algebraic extensions obtained by adjoin-

ing the roots of algebraic equations of degree at most k. One could define, say,
k-solvability by integrals by combining algebraic extensions of this kind with exten-
sions by adjoining integrals. We do not deal with this case so as not to overload
the text and also because there are no interesting examples.

Definition 1. We say that a matrix group G is a special triangular group if there
is a basis in which all the matrices of G are simultaneously reduced to triangular
form and all the eigenvalues of each of the matrices in G are equal to 1.

Definition 2. We say that a matrix group is diagonal if there is a basis in which
all the matrices of the group are diagonal.

Theorem 4.22 (Kolchin’s theorem on the solvability by integrals). A linear differ-
ential equation over a differential field K is solvable by integrals (by integrals and
radicals, by integrals and algebraic functions, respectively) if and only if the Galois
group of the equation over K is a special triangular group (is solvable and contains
a special triangular normal subgroup of finite index, contains a special triangular
normal subgroup of finite index, respectively).

Theorem 4.23 (Kolchin’s theorem on the solvability by exponentials of inte-
grals). A linear differential equation over a differential field K is solvable by expo-
nentials of integrals (by exponentials of integrals and algebraic functions, respec-
tively) if and only if the Galois group over K of this equation is solvable and contains
a diagonal normal subgroup of finite index (contains a diagonal normal subgroup of
finite index, respectively).

A few words about the proofs of these theorems. The Galois group of an exten-
sion by adjoining an integral is anticompact (see 4.4.2). The Galois group of an
extension by adjoining the exponential of an integral is quasi-compact (see 4.4.3).
Kolchin developed a theory of anticompact and quasi-compact algebraic matrix
groups. We present a rather simple proposition of this theory.

Proposition 4.24 [26]. 1) An algebraic matrix group is quasi-compact if and only
if every matrix of the group can be reduced to diagonal form. 2) An algebraic matrix
group is anticompact if and only if all the eigenvalues of any matrix in the group
are equal to 1.

The theory of quasi-compact and anticompact groups together with the main
theorem of the Picard–Vessiot theory enabled Kolchin to prove his theorems on
solvability by integrals and solvability by exponentials of integrals.
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Of course, Kolchin’s theorems, as well as the Picard–Vessiot theorem, hold not
only for linear differential equations but also for Picard–Vessiot extensions (each
of these extensions is generated by the solutions of a linear differential equation).
Let us formulate a criterion for diverse forms of representability of all elements of
a Picard–Vessiot extension having a triangular Galois group. The criterion readily
follows from Kolchin’s theorems and the Picard–Vessiot theorem. We shall apply
this criterion below in 6.2.3 when discussing diverse forms of solvability for systems
of Fuchsian equations with small coefficients.

Extension with a triangular Galois group (cf. [26]). Let a Picard–Vessiot
extension F of a differential field K have a triangular Galois group. Then every
element of the field F is:

1) representable by quadratures over the field K;
2) representable by integrals and algebraic functions or by integrals and radi-
cals1 over K if and only if the eigenvalues of all the matrices in the Galois
group are roots of unity ;

3) representable by integrals over K if and only if all the eigenvalues of all the
matrices in the Galois group are equal to 1;

4) representable by exponentials of integrals and algebraic functions or by expo-
nentials of integrals1 over K if and only if the Galois group is diagonal ;

5) representable by algebraic functions or by radicals1 over K if and only if the
Galois group is diagonal and all the eigenvalues of all the matrices in it are
roots of unity ;

6) an element of K if and only if the Galois group is trivial.

§5. One-dimensional topological version of Galois theory
5.1. Preliminary remarks. In 5.1.1 we present the Galois theory for fields
of meromorphic functions on algebraic curves, which has a transparent geometric
interpretation and is closely related to the one-dimensional topological version of
Galois theory. In 5.1.2 we discuss the topological non-representability of func-
tions by radicals and the topological non-elementarity of elliptic functions, both
proved by V. I. Arnol’d. In 5.1.3 we discuss the idea of the topological version of
Galois theory and complications in the realization of this idea.

5.1.1.Galois theory of fields of meromorphic functions on algebraic curves. From the
algebraic point of view, we speak in this subsection of fields that are extensions of
transcendence degree 1 of the field C of complex numbers and are finitely generated
over C. The Galois theory for these fields has a simple geometric meaning.
First of all, such a field is isomorphic to the field PM of meromorphic functions

on some connected compact Riemann surface M defined up to an analytic diffeo-
morphism. The simplest example of a field of this kind is given by the field of
rational functions of a single complex variable, that is, the field of meromorphic
functions on the Riemann sphere.
Corresponding to a homomorphism τ : PM1 → PM2 between such fields extend-

ing the identity map between the subfields of complex numbers is a regular map
ρ : M2 →M1 of the Riemann surfaces such that ρ∗f = τ(f), where f and τ(f) are
1These forms of solvability differ if one omits the condition that the Galois group be triangular.
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meromorphic functions on M1 and M2, respectively. If the map ρ is non-constant,
then the image τ(PM1) = ρ

∗(PM1) of the field PM1 is isomorphic to the field PM1,
and PM2 is a finite algebraic extension of the subfield τ(PM1) = ρ

∗(PM1).
A non-constant analytic map ρ : M2 → M1 of a connected compact Riemann

surfaceM2 to a connected compact Riemann surfaceM1 determines a finite ramified
covering over the surface M1. Ramified coverings ρ1 : M2 →M1 and ρ2 : M3 →M1
determine isomorphic extensions of the field PM1 if and only if they are isomorphic,
that is, there is an invertible analytic map ρ : M2 → M3 commuting with the
projections: ρ1 = ρ2 ◦ρ. Thus, the theory of finite algebraic extensions of the fields
of this type is equivalent to the theory of finite ramified coverings over compact
Riemann surfaces. In particular, the theory of finite algebraic extensions of the
field of meromorphic functions is equivalent to the theory of finite-sheeted ramified
coverings over the Riemann sphere.
We now go into the details concerning the above facts and the related geometry.

Every finite algebraic extension of any field of characteristic zero is generated over
this field by a single element y satisfying some irreducible algebraic equation
over the original field. Let an extension of the field PM be generated by
an element y satisfying an irreducible equation

yn + r1y
n−1 + · · ·+ rn = 0 (10)

in which all the coefficients ri are meromorphic functions on M . There are n
analytic germs y1a, . . . , yna satisfying (10) defined in a small neighbourhood of a
point a. The equation (10) is irreducible if and only if each of these germs yia can
be obtained from any other germ yja by analytic continuation along some curve
belonging to the surface M (see [14]). Let us consider the Riemann surface Mi of
the germ yia over the surface M , ρi : Mi → M . The surface Mi is a connected
compact manifold. The field of meromorphic functions on Mi is generated over
the field ρ∗i PM by an element yi (see [14]). The irreducibility of the equation also
means that the ramified coverings ρi : Mi → M and ρj : Mj → M corresponding
to the Riemann surfaces of different solutions yia and yja of the equation (10) are
isomorphic when regarded as coverings. Thus, to every finite algebraic extension
of the field PM given up to isomorphism we have assigned an equivalence class of
finite ramified coverings over M .
The construction of the inverse map assigning to every finite ramified covering

ρ : M1 → M over M a finite extension of the field M is based on the Riemann
existence theorem. According to this theorem, on every one-dimensional complex
manifold and for any finite set of points on this manifold there is a meromorphic
function taking distinct values at the points of the set. Let us consider a meromor-
phic function on M1 taking pairwise distinct values at the distinct pre-images of
some regular value a∈M of the map ρ. A function y having this property is a multi
valued algebraic function on M , and it generates the entire field of meromorphic
functions on M1 over the subfield ρ

∗(PM ).
We proceed to a geometric description of the ramified coverings over a compact

Riemann surface M . To define such a covering, it suffices to choose a finite set
A ⊂ M and a finite-index subgroup F of the fundamental group π1(M \A) of the
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complement of A. A ramified covering over M is constructed from these data as
follows. From the subgroup F we first construct a covering over the set M \A such
that the image of the fundamental group of this covering under the projection onto
M \A coincides with F (see, for instance, [12]). The number of pre-images of any
point in M \ A under this covering coincides with the index of the subgroup F in
the group π1(M \A). The covering thus obtained can be uniquely compactified by
adding some points lying over the set A (the set of points added over a point a ∈ A
corresponds to the set of the cycles in the permutation of sheets of the covering
that corresponds to a loop around a).

Two ramified coverings constructed from sets A1 ⊂ M and A2 ⊂ M and from
groups F1 ⊂ π1(M \ A1) and F2 ⊂ π1(M \A2) are isomorphic if and only if for a
finite set B containing the sets A1 and A2 the subgroups F̃1 and F̃2 of the group
π1(M \B) are conjugate in this group, where F̃1 and F̃2 are the pre-images of the
groups F1 and F2 under the group homomorphisms of π1(M \B) into π1(M \A1)
and π1(M \A2) induced by the natural embeddings. It is easy to see that the above
condition does not depend on the choice of a finite set B containing A1 and A2.

A ramified covering ρ : M1 → M corresponds to a Galois extension of the field PM
if and only if the finite-index subgroup H of π1(M \A) determining this covering is
a normal subgroup of π1(M \A) (here A stands for an arbitrary finite set containing
all the critical values of the map ρ; the above condition does not depend on the
specific choice of the set A). The Galois group of this Galois extension coincides
with the quotient group π1(M\A)/H, which is isomorphic to the group of one-to-one
transformations of the surface M1 into itself that commute with the projection ρ.

Corresponding to an intermediate extension of the field PM is an intermedi-
ate ramified covering, that is, a covering ρ2 : M2 → M such that there is a map
ρ1 : M1 → M2 for which ρ2 ◦ ρ1 = ρ. An intermediate covering corresponds to an
intermediate subgroup F of π1(M \A), that is, to a subgroup F such that H ⊆ F .
An intermediate field is a Galois extension if and only if F is a normal subgroup

of π1(M \ A). The Galois group of an intermediate Galois extension is a quotient
group of the Galois group of the original extension, because the quotient group
π1(M \A)/H maps naturally onto the quotient group π1(M \A)/F .
We have presented above a geometric interpretation of the main theorem of the

Galois theory for fields of meromorphic functions on algebraic curves. It remains to
describe geometrically the behaviour of the Galois group of an algebraic equation
under an extension of the ground field. Thus, let ρ1 : M1 → M be a ramified cov-
ering corresponding to a Galois extension of the field PM , and let ρ2 : M2 →M be
another covering corresponding to another Galois extension of the same field PM .
Let B be an arbitrary finite set on M that contains the critical points of the maps
ρ1 and ρ2 and let G = π1(M \ B) be the fundamental group of the complement
of B. The coverings ρ1 : M1 \ B1 → M \ B and ρ2 : M2 \ B2 → M \ B, where
B1 = ρ

−1
1 (B) and B2 = ρ

−1
2 (B), correspond to normal subgroups H1 and H2

of G that are isomorphic to the fundamental groups of the manifolds M1 \ B1
and M2 \ B2, respectively. The projection ρ2 : M2 \ B2 → M \ B takes the
manifold M2 \ B2 to the base of the covering ρ1 : M1 \ B1 → M \ B. Using
the map ρ2, one induces the covering ρ : U → M2 \ B2 over M2 \ B2 from the
covering ρ1 : M1 \ B1 → S \ B. The manifold U is not connected in general.
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Each connected component Ui ⊂ U determines a covering ρ : Ui → M2 \ B2.
One can readily see that the coverings connected with different components Ui
are equivalent as coverings, and each of them corresponds to the normal subgroup
H1∩H2 of the group H2. Let us consider an arbitrary component Ui = V . The cov-
ering ρ : V →M2 \B2 admits a compactification ρ : M3 →M2, where V =M3 \B3
and B3 = ρ

−1(B2), which corresponds to the original Galois extension over the
field PM2 . The Galois group of this covering is the quotient group H2/(H1 ∩H2).
This very fact is stated in Theorem 3.4.
Thus, all assertions of the Galois theory for fields of meromorphic functions on

curves have a transparent geometric explanation. Moreover, the geometric con-
struction of the ramified coverings together with the Riemann existence theorem
give a complete description of all finite extensions of fields in the class under con-
sideration. For example, this solves instantly the inverse problem of Galois theory
for these fields (that is, the problem of constructing a Galois extension with a given
Galois group). We note that the inverse problem of Galois theory is still unsolved
for the field of rational numbers.

5.1.2. Topological non-representability of functions by radicals. Before passing to
the topological version of Galois theory, we dwell on another topological inter-
pretation of the Galois group for an algebraic equation over the field of rational
functions.
Let

yn + r1y
n−1 + · · ·+ rn = 0 (11)

be an irreducible equation over the field PS of rational functions (ri ∈ PS).
The following proposition is well known.

Proposition 5.1. The Galois group of the equation (11) over the field of ratio-
nal functions is isomorphic to the monodromy group of a (multivalued) algebraic
function y defined by the equation (11).

Proof. Let D be the discriminant of the equation (11). We denote by [D] the
set of zeros and poles of D. In a small connected neighbourhood U of a point
a /∈ [D] on the Riemann sphere, n holomorphic solutions y1a, . . . , yna of (11) are
defined. We denote by Q the field of meromorphic functions on U that is obtained
by adjoining all these solutions to the field PS. Let γ be a curve on the Riemann
sphere that begins and ends at the point a and that is disjoint from the set [D].
Every solution y1a, . . . , yna of (11) has a regular continuation along γ, and there-
fore every element z of the field Q has a meromorphic continuation along γ. The
map z → z(γ) assigning to an element z its meromorphic continuation along γ is
obviously an automorphism of the field Q. This automorphism is uniquely deter-
mined by the permutation yia → yia(γ) of the elements y1a, . . . , yna, it depends
only on the class [γ] of the curve γ in π1(S \ [D], a), and preserves (leaves fixed)
all rational functions. Conversely, the elements of Q that remain fixed under all
automorphisms z → z(γ) are single-valued algebraic functions, that is, are rational
functions. Hence, the group of automorphisms of Q of the form z → z(γ) coincides
with the Galois group of Q over the field PS. On the other hand, this group is
isomorphic to the group of permutations of the branches y1a, . . . , yna of the alge-
braic function y that correspond to the analytic continuations yia → yia(γ) along
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the paths γ ∈ π1(S \D, a), that is, it is isomorphic to the monodromy group of the
function y. This completes the proof of the proposition.

Galois theory, together with the last proposition, gives us the following corollary.

Corollary 5.2. 1) An algebraic function is representable by radicals if and only
if its monodromy group is solvable. 2) An algebraic function is representable by
k-radicals if and only if its monodromy group is k-solvable.

V. I. Arnol’d proved the topological unsolvability of a series of classical problems
[2]–[9]. We present a definition due to him.

Definition (Arnol’d). A map f : X → Y is said to be topologically bad (for exam-
ple, a topologically non-elementary function) if among (left-right) topologically
equivalent maps there are no good maps (for example, elementary maps).

To any multivalued analytic function f of a complex variable one can associate
its Riemann surface Mf and the projection πf : Mf → S2 of this surface onto the
Riemann sphere S2.

Corollary 5.3. Let the projections πf and πg of the Riemann surfacesMf and Mg
of the functions f and g onto the Riemann sphere be topologically equivalent. In this
case f and g are simultaneously representable or non-representable by radicals (by
k-radicals) (that is, the topological type of the projection of the Riemann surface
of a function onto the Riemann sphere is responsible for the representability of the
function by radicals and by k-radicals).

Proof. Corollary 5.3 follows immediately from Corollary 5.2. Indeed, the algebraic-
ity of a function is related to the compactness of its Riemann surface, its repre-
sentability by radicals is related to the solvability of its monodromy group, and
its representability by k-radicals is related to the k-solvability of its monodromy
group. All these properties are topological.

In the 1960s Arnol’d proved the topological non-representability by radicals for
general algebraic functions (see Corollary 5.3) by using direct topological tools
without employing Galois theory, and he gave a lecture course on this topic in
Kolmogorov’s boarding school. Alekseev significantly elaborated on this course
and published the result as the book [1]. According to Arnol’d, a topological proof
of the unsolvability of some problem implies new corollaries as a rule. For instance,
it readily follows from the topological proof of non-representability by radicals of
any function with unsolvable monodromy group that such a function cannot be
represented by any formula including not only radicals but also arbitrary entire
functions [19].
In the 1960s Arnol’d also found results about the topological non-elementarity

of elliptic functions and integrals (and other closely related objects), but published
nothing in this direction. In December 2003 he wrote me a letter on this subject.
The following theorem, as well as the above definition, is taken from that letter.

Theorem 5.4 (Arnol’d). If a meromorphic function g : U → CP 1 defined on a
complex domain U ⊂ C is topologically equivalent to an elliptic function f : C →
CP 1, then g is an elliptic function (possibly with different periods than for f).
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Proof. An elliptic function f is invariant under a group of translations isomorphic
to Z2 (z → z + k1w1 + k2w2, (k1, k2) ∈ Z2). Therefore, the function g is invariant
under a Z2-group of homeomorphisms of the domain U . Every homeomorphism h
belonging to this group is in fact a biholomorphic map of the domain U into itself.
Indeed, by the inverse function theorem it follows from the identity g(z) ≡ g(h(z))
that h is holomorphic in a neighbourhood of every point not belonging to the pre-
image (under h) of the set of critical points of g. The map h is holomorphic at the
points of this pre-image by the removable singularity theorem. By our assumption,
the domain U is homeomorphic to C. Hence, by the Riemann mapping theorem, U
either coincides with C or is biholomorphically equivalent to the interior of the
unit disc. The domain U coincides with C, because the group of biholomorphic
transformations of the unit disc contains no closed subgroup isomorphic to Z2.
Every subgroup isomorphic to Z2 in the group of biholomorphic transformations
of C that acts on C without fixed points is a group of translations (of the form
z → k1τ1 + k2τ2, (k1, k2) ∈ Z2). Therefore, g is an elliptic function.

As is well known, the elliptic functions are non-elementary2. This classical result
and the theorem proved above imply that the elliptic functions are topologically
non-elementary.
Below I quote from Arnol’d’s letter.
“As far as I remember, these considerations proved the topological non-

elementarity both of the elliptic functions f and the elliptic integrals f−1, and
of many other things. Moreover, all this can be generalized to curves of other
genera (with other coverings, or at least with universal coverings). I have forgot-
ten whether or not I proved these facts rigorously, but I think that I had grasped
reasons for which the multidimensional assertions analogous to the above theorem
must be wrong : as far as I remember, preservation of the topological type in the
multidimensional case does not ensure preservation of algebraicity. This in itself
is not an obstruction to a topological non-elementarity (badness), but it blocks
my proof of it, the proof by reduction to non-elementary properties of classical
(algebraic) objects like elliptic functions.”

5.1.3.On the one-dimensional topological version of Galois theory. The monodromy
group coincides with the Galois group for the class of algebraic functions and is
responsible for the representability of a function by radicals (see 5.1.2). However,
the monodromy group is defined not only for algebraic functions but also for
the logarithm, arctangent, and many other functions for which the Galois group
is not defined. It is natural to try to use the monodromy group for such functions

2The non-elementarity of the elliptic functions follows from Kolchin’s generalization of the
Picard–Vessiot theory [27]. This generalization can be applied not only to linear but also to some

non-linear differential equations, for instance, to the equation for the Weierstraß ℘-function. The
Galois group of the differential field of elliptic functions over the field of constants C obviously

contains the quotient group C/Z2 of the group of translations f(z) → f(z + a) by the subgroup
Z2 of periods of elliptic functions. (One can readily show that the Galois group coincides with

this group.) According to Kolchin, the fact that the elliptic functions cannot be represented
by generalized quadratures follows from the non-existence of a normal tower of subgroups in the

group C/Z2 such that every quotient group with respect to this tower is a finite group, the additive
group of complex numbers, or the multiplicative group of complex numbers.



706 A. G. Khovanskii

(instead of the Galois group) to prove that some function does not belong to some
classical class. This is the approach realized by the topological version of Galois
theory [18]–[22].

We present an example that shows what complications must be overcome in this
way.

Let us consider an elementary function f defined by the formula

f(z) = log

( n∑
j=1

λj log(z − aj)
)
,

where aj, j = 1, . . . , n, are distinct points in the complex line and λj, j = 1, . . . , n,
are complex constants. We denote by Λ the additive group of complex numbers
generated by the constants λ1, . . . , λn. It is clear that if n > 2, then the group Λ is
dense in the complex line for almost every set of constants λ1, . . . , λn.

Proposition 5.5. If the group Λ is dense in the complex line, then the elementary
function f has a dense set of logarithmic ramification points.

Proof. Let ga be one of the germs of the function g defined by the formula g(z) =∑n
j=1 λj log(z − aj) at a point a �= aj, j = 1, . . . , n. After going around the points

a1, . . . , an, the number 2πiλ is added to the germ ga, where λ is an element of the
group Λ. Conversely, every germ ga+2πiλ, where λ ∈ Λ, is obtained from the germ
ga by analytic continuation along some curve. Let U be a small neighbourhood of
the point a and let G : U → C be an analytic function whose germ at a is equal to
ga. The image V of the domain U under the mapG : U → C is open. Therefore, the
domain V contains a point of the form 2πiλ, where λ ∈ Λ. The function G− 2πiλ
is one of the branches of the function g over the domain U , and the set of zeros
of this branch in U is non-empty. Therefore, one of the branches of the function
f = log g has a logarithmic ramification point in U .

One can readily see that under the assumptions of the proposition the mon-
odromy group of the function f has the cardinality of the continuum (which is not
surprising, because the fundamental group π1(S \A), where A is a countable dense
set on the Riemann sphere, obviously contains a continuum of elements).

One can also show that the image of the fundamental group π1(S
2 \ {A ∪ b})

(where b /∈ A is an arbitrary point in the complex line) in the group of permuta-
tions of the branches of the function f is a proper subgroup of the monodromy
group of f . (The fact that the monodromy group can change when a single extra
point is removed somewhat complicates all the proofs.)

Thus, already the simplest elementary functions can have a dense set of singular
points and a monodromy group with the cardinality of the continuum.

In the topological version of Galois theory we regard functions representable by
quadratures as multivalued analytic functions of a single complex variable. It turns
out that there are topological restrictions on the covering of the complex line by
the Riemann surface of a function representable by quadratures. If a function does
not satisfy these conditions, then it cannot be expressed by quadratures.
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Besides geometric clarity, this approach has the following advantage. The topo-
logical obstructions relate to the character of the multivaluedness of the function.
These obstructions are preserved not only for functions representable by quadra-
tures but also for a much wider class of functions. This wider class is obtained if
one combines all meromorphic functions with the functions representable by quadra-
tures and allows meromorphic functions in all formulae. For this reason, the topo-
logical results on non-representability by quadratures turn out to be stronger than
the algebraic results. The point is that the composition of functions is not an alge-
braic operation. In differential algebra one can avoid the operation of composition
of functions by considering a differential equation satisfied by the desired composi-
tion. However, for example, the Euler Γ-function satisfies no algebraic differential
equation. Therefore, it is hopeless to seek an equation on the function Γ(expx).
All the known results on non-representability of functions by quadratures and, say,
by the Euler Γ-function have been obtained only by using our approach.

On the other hand, when using this approach it is impossible to prove the non-
representability by quadratures for any single-valued meromorphic function.

Using the differential Galois theory (to be more precise, the linear-algebraic
part of the theory, which deals with algebraic matrix groups and their differential
invariants), one can show that the only reason for the unsolvability by quadratures
of a Fuchsian linear differential equation is topological (cf. § 6). In other words, if
there are no topological obstructions to the solvability by quadratures for a Fuchsian
differential equation, then it is solvable by quadratures.

We list the possible topological obstructions to the representability of functions
by quadratures, by generalized quadratures, and by k-quadratures.

First, the functions representable by generalized quadratures and, in particular,
the functions representable by quadratures and by k-quadratures can have at most
countably many singular points in the complex line (see 5.2). (However, the set
of singular points can be dense even for the simplest functions representable by
quadratures.)

Second, the monodromy group of a function representable by quadratures must
be solvable (see 5.5.2). (However, the monodromy group can contain a continuum
of elements even for the simplest functions representable by quadratures.)

Similar restrictions on the covering of the Riemann sphere by the Riemann
surface exist for functions representable by generalized quadratures and by k-
quadratures. However, the formulation of these conditions is more complicated.
Under these conditions the monodromy group is regarded as a group of permu-
tations of the set of branches of the function rather than an abstract group. In
other words, the conditions involve not just the monodromy group but the
monodromy pair of the function under consideration, the pair consisting of
the monodromy group of the function and the stabilizer of some germ (see 5.3.3).

We proceed to a detailed description of this geometric approach to the solvability
problem.

5.2. Functions whose singular sets are at most countable. In this subsection
we introduce a vast class of functions of a single complex variable, a class needed
for the construction of the topological version of Galois theory.
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5.2.1. Forbidden sets. We introduce a class of functions in which the subsequent
arguments will be carried out. A multivalued analytic function of a single complex
variable is called an S-function if the set of singular points of f is at most countable.
Let us refine this definition.

Two regular germs fa and gb given at points a and b of the Riemann sphere
S2 are said to be equivalent if the germ gb can be obtained from the germ fa by a
regular continuation along some curve. Every germ gb that is equivalent to the germ
fa is also called a regular germ of the multivalued analytic function f generated by
the germ fa.

A point b ∈ S2 is said to be singular for the germ fa if there is a curve γ : [0, 1]→
S2 with γ(0) = a and γ(1) = b such that the germ has no regular continuation along
this curve, but for any t with 0 � t < 1 the germ admits a regular continuation
along the shortened curve γ : [0, t] → S2. One can readily see that the sets of
singular points of equivalent germs coincide.

A regular germ is called an S-germ if the set of its singular points is at most
countable. A multivalued analytic function is called an S-function if each of its
regular germs is an S-germ.
In what follows we need a lemma according to which a curve in the plane can

be moved away from a countable set by using a small deformation.

Lemma 5.6 (on releasing a curve from a countable set). Let A be an at most
countable set in the plane C, let γ : [0, 1]→ C be a curve, and let ϕ be a continuous
positive function on the interval 0 < t < 1. Then there is a curve γ̂ : [0, 1] → C
such that γ̂(t) /∈ A and |γ(t) − γ̂(t)| < ϕ(t) for any 0 < t < 1.

The ‘scientific’ proof of the lemma is as follows. In the function space of curves
γ that are close to the curve γ, |γ(t) − γ(t)| < ϕ(t), the curves not containing one
of the points of the set A form an open dense set. The intersection of countably
many open dense sets in such function spaces is non-empty.

We present an elementary proof of the lemma (it can be extended, almost liter-
ally, to a more general case in which the set A is uncountable but has Hausdorff
length zero; cf. 5.5.3). Let us first construct a broken line γ with infinitely many
links and with vertices not belonging to A and such that |γ(t) − γ(t)| < 1

2ϕ(t).
A broken line of this kind can be constructed, because the complement of the set
A is dense. We show how to modify each link [p, q] of the broken line γ in such
a way that the new link becomes disjoint from the set A. Consider the segment
[p, q]. Let m be the perpendicular to the segment at its middle point. We introduce
the two-linked broken lines [p, b], [b, q] with b ∈ m and b sufficiently close to the
segment. These broken lines intersect only at the endpoints p and q, and there are
a continuum of such broken lines. Thus, among them there is a broken line that
is disjoint from the set A. Modifying in this way each link of the broken line with
infinitely many links, we obtain a desired curve.

Along with the set of singular points, it is also convenient to consider other sets
outside which the function admits unrestricted analytic continuation. An at most
countable set A is said to be a forbidden set for a regular germ fa if fa has a regular
continuation along any curve γ(t) with γ(0) = a that can intersect the set A only
at the initial moment.
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Theorem 5.7 (on a forbidden set). An at most countable set is forbidden for a
germ if and only if it contains the set of singular points of the germ. In particular,
a germ has a forbidden set if and only if this is a germ of an S-function.

Proof. Suppose that there is a singular point b of a germ fa that does not belong to
some forbidden set A of the germ. By definition, there must be a curve γ : [0, 1]→
S2 with γ(0) = a and γ(1) = b along which there is no regular continuation of
fa, but the germ has a regular continuation along the curve up to any point with
t < 1. Without loss of generality one can assume that the points a and b and
the curve γ(t) belong to the finite part of the Riemann sphere, that is, γ(t) �= ∞
for 0 � t � 1. We denote by R(t) the radius of convergence of the series fγ(t)
obtained by continuing the germ fa along the curve γ(t). The function R(t) is
continuous on the half-interval [0, 1). According to Lemma 5.6, there is a curve
γ̂(t) with γ̂(0) = a and γ̂(1) = b such that |γ(t) − γ̂(t)| < 1

3R(t) and γ̂(t) /∈ A for
t > 0. By the assumption, the germ fa can be continued along the curve γ̂ up to
the point 1. But this would readily imply that fa can be continued along the
curve γ. The contradiction shows that the set of singular points of fa is con-
tained in any forbidden set of this germ. The converse assertion (a countable set
containing the set of singular points of a germ is forbidden for the germ) is
obvious.

5.2.2. Closedness of the class of S-functions. Let us prove that the function class
introduced above is closed with respect to all the natural operations.

Theorem 5.8 (on the closedness of the class of S-functions). The class S of all
S-functions is closed under the following operations:
1) differentiation, that is, if f ∈ S, then f ′ ∈ S;
2) integration, that is, if f ∈ S and g′ = f , then g ∈ S;
3) composition, that is, if g, f ∈ S, then g ◦ f ∈ S;
4) meromorphic operations, that is, if fi ∈ S, i = 1, . . . , n, F (x1, . . . , xn) is a
meromorphic function of n variables, and f = F (f1, . . . , fn), then f ∈ S;

5) solution of algebraic equations, that is, if fi ∈ S, i = 1, . . . , n, and
fn + f1f

n−1 + · · ·+ fn = 0, then f ∈ S;
6) solution of linear differential equations, that is, if fi ∈ S, i = 1, . . . , n, and
f(n) + f1f

(n−1) + · · ·+ fn = 0, then f ∈ S.

Proof. 1)–2). Let fa, a �= ∞, be a germ of an S-function and let A be the set
of singular points of fa. If the germ fa has a regular continuation along some
curve γ belonging to the finite part of the Riemann sphere, then the integral and
the derivative of this germ have regular continuations along the curve γ as well.
Therefore, it suffices to take the set A∪ {∞} as a forbidden set for an integral and
for the derivative of the germ fa.
3) Let fa and gb be germs of S-functions, let A and B be the sets of singular

points of fa and gb, respectively, and let fa(a) = b. We denote by f
−1(B) the

full pre-image of the set B under the multivalued correspondence generated by
the germ fa. In other words, x ∈ f−1(B) if and only if there is a germ ψx equivalent
to the germ fa and such that ψ(x) ∈ B. The set f−1(B) is at most countable. It
suffices to take the set A ∪ f−1(B) as a forbidden set of the germ gb ◦ fa.
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4) Let the germs fia be germs of S-functions, let Ai be the set of singular points
of fia, and let F be a meromorphic function of n variables. We assume that the
germs fia and the function F are such that the germ fa = F (f1a, . . . , fna) is a well-
defined meromorphic germ. Replacing the point a by a nearby point if necessary,
one can assume that fa is regular. If a curve γ(t) is disjoint from the set A =

⋃
Ai

for t > 0, then fa can be meromorphically continued along this curve. Let B be the
projection to the Riemann sphere of the set of poles of the function f generated by
the germ fa. It suffices to take the set A ∪B as a forbidden set of the germ.
5) Let the germs fia be germs of S-functions, let Ai be the set of singular points

of fia, and let fa be a regular germ satisfying the equality

fna + f1af
n−1
a + · · ·+ fna = 0.

If a curve γ(t) is disjoint from the set A =
⋃
Ai for t > 0, then there is a continuation

of the germ fa along this curve that contains, generally, meromorphic and algebraic
elements. Let B be the projection to the Riemann sphere S2 of the set of poles of
f and ramification points of the Riemann surface of f . It suffices to take the set
A ∪B as a forbidden set of the germ fa.
6) If the coefficients of an equation

f(n)a + f1af
(n−1)
a + · · ·+ fna = 0

have regular continuations along some curve γ belonging to the finite part of the
Riemann sphere, then every solution fa of this equation also has a regular contin-
uation along the curve γ. Therefore, it suffices to take the set A =

⋃
Ai ∪ {∞},

where Ai is the set of singular points of the germ fai , as a forbidden set of fa.

Remark. The arithmetic operations and exponentiation are examples of meromor-
phic operations, and therefore the class of S-functions is closed under the arithmetic
operations and the exponentiation.

Corollary 5.9. If a multivalued function f can be constructed from single-valued
S-functions by integration, differentiation, meromorphic operations, compositions,
and solutions of algebraic equations and linear differential equations, then f has at
most countably many singular points. In particular, any function having uncount-
ably many singular points cannot be represented by generalized quadratures.

5.3. Monodromy group. In this subsection we discuss diverse notions related
to the monodromy group.

5.3.1. Monodromy group with a forbidden set. The monodromy group of an S-
function f with a forbidden set A is the group of all those permutations of branches
of the function f that occur upon going around the points of the set A. We now
give an exact definition.
Let Fa be the set of all germs of an S-function f at some point a that does not

belong to some forbidden set A. We take a closed curve γ in S2 \A that begins at
the point a. The continuation of every germ in the set Fa along the curve γ leads
to a germ in Fa.
Thus, corresponding to every curve γ is a map of Fa into itself, this map is the

same for homotopy equivalent curves in S2 \A, and corresponding to a product of
curves is a product of maps. A homomorphism τ of the fundamental group of the
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set S2 \ A into the group S(Fa) of one-to-one transformations of the set Fa thus
arises. We refer to this homomorphism as the A-monodromy homomorphism. By
the monodromy group of an S-function f with a forbidden set A (or, briefly, by the
A-monodromy group) we mean the image of the fundamental group π1(S

2 \ A, a)
in the group S(Fa) under the homomorphism τ .

Proposition 5.10. 1) The A-monodromy group of an S-function does not depend
on the choice of the point a.
2) The A-monodromy group of an S-function f acts transitively on the branches

of the function f .

Both the assertions admit simple proofs, which use Lemma 5.6. For instance, let
us dwell on the proof of the second assertion.

Proof. Let f1a and f2a be some germs of f at a point a. Since f1a and f2a are
equivalent, there is a curve γ such that f2a is obtained when f1a is continued
along γ. By Lemma 5.6, there is an arbitrarily close curve γ̂ that is disjoint from
the set A. If γ̂ is sufficiently close to γ, then the permutation of branches that
corresponds to this curve still takes the germ f1a to the germ f2a.

5.3.2. Closed monodromy group. The dependence of the A-monodromy group on
the choice of the set A (see 5.1.3) leads us to introduce the Tikhonov topology on
the group of permutations of the branches. It turns out that the closure of the
A-monodromy group does not depend on the set A.
We equip the group S(M) of one-to-one transformations of a set M with the

following topology. For any finite set L ⊂ M we define the neighbourhood UL of
the identity transformation as the family of all transformations p such that p(l) = l
for l ∈ L. A basis of neighbourhoods of the identity transformation is defined as the
set of neighbourhoods of the form UL, where L ranges over all finite subsets ofM .

Lemma 5.11 (on the closure of the monodromy group). Let Γ be the monodromy
group of an S-function f with a forbidden set A. The closure of the group Γ in
the group S(F ) of all permutations of branches of f does not depend on the
choice of the forbidden set A.

Proof. Let A1 and A2 be two forbidden sets of f and let Fa be the set of all branches
of f at a point a /∈ A1∪A2. Let Γ1,Γ2 ⊆ S(Fa) be the monodromy groups of f with
these forbidden sets. It suffices to show that for any permutation µ1 ∈ Γ1 and any
finite set L ⊆ Fa there is a permutation µ2 ∈ Γ2 such that µ1|L = µ2|L. Let a curve
γ ∈ π1(S2 \ A1, a) determine the permutation µ1. Since the set L is finite, every
curve γ̂ ∈ π1(S2 \A1, a) that is sufficiently close to γ determines a permutation µ̂1
coinciding with µ1 on the set L: µ1|L = µ̂1|L. By Lemma 5.6, γ̂ can be chosen to be
disjoint from the set A2. In this case the permutation µ̂1 belongs to the group Γ2.

This lemma makes the following definition correct. By the closed mono-
dromy group of an S-function f we mean the closure in the group S(F ) of the
monodromy group of f with some forbidden set A.

5.3.3. Transitive action of a group on a set and the monodromy pair of an S-
function. A monodromy group of a function f is not only an abstract group but also
a transitive group of permutations of branches of this function. In this subsection
we recall an algebraic description of transitive actions of groups on sets.
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By an action of a group Γ on a set M one means a homomorphism τ of Γ into
the group S(M). Two actions τ1 : Γ → S(M1) and τ2 : Γ → S(M2) are said to be
equivalent if there is a one-to-one map q : M1 → M2 such that q ◦ τ1 = τ2, where
q : S(M1)→ S(M2) is an isomorphism induced by the map q.
By the stationary subgroup or stabilizer Γa of a point a ∈M under the action τ

one means the subgroup consisting of all elements µ ∈ Γ such that τµ(a) = a. An
action τ is said to be transitive if for any two points a, b ∈ M there is an element
µ ∈ Γ such that τµ(a) = b. The following proposition is obvious.
Proposition 5.12. 1) An action τ of a group Γ is transitive if and only if the
stabilizers of any two points a, b ∈ M are conjugate. The image of Γ under a
transitive action τ is isomorphic to the quotient group Γ/

⋂
µ∈Γ µΓaµ

−1.

2) For any subgroup of Γ there is a transitive action of the group for which
the given subgroup is the stabilizer of some point, and this action is unique up to
equivalence.

Thus, the transitive actions of a group Γ are described by pairs of groups. A
pair [Γ,Γa] of groups, where Γa is the stabilizer of some point a under a transitive
action τ of Γ, will be called the monodromy pair of the point a with respect to the
action τ . We refer to the group τ(Γ) ∼ Γ/

⋂
µ∈Γ µΓaµ

−1 as the monodromy group

of the pair [Γ,Γa].
An A-monodromy homomorphism τ defines a transitive action of the fundamen-

tal group π1(S
2 \A) on the set Fa of branches of the function f at the point a.

In this case we refer to the monodromy pair of a germ fa with respect to the
action τ as the monodromy pair of the germ fa with the forbidden set A. The
monodromy pair of fa under the action of the closed monodromy group will be
called the closed monodromy pair of the germ fa. Different germs of an S-function
f have isomorphic monodromy pairs with the forbidden set A, and therefore one can
speak of the monodromy pair with a forbidden set A and of the closed monodromy
pair of an S-function f . We denote by [f ] the closed monodromy pair of an S-
function f .

5.3.4. Almost normal functions. A pair [Γ,Γ0] of groups, Γ0 ⊆ Γ, is called an almost
normal pair if there is a finite set P ⊂ Γ such that⋂

µ∈Γ
µΓ0µ

−1 =
⋂
µ∈P
µΓ0µ

−1.

Lemma 5.13 (on a discrete action). The image τ(Γ) of a group Γ under a transitive
action τ : Γ→ S(M) is a discrete subgroup of S(M) if and only if the monodromy
pair [Γ,Γ0] of some element x0 ∈M is almost normal.
Proof. Let the group τ(Γ) be discrete. We denote by P a finite subset of M such
that the neighbourhood UP of the identity transformation contains no transforma-
tions in τ(Γ) other than the identity transformation. This means that correspond-
ing to the intersection

⋂
x∈P Γx of the stabilizers of the points x ∈ P is the trivial

action on the set M , that is,
⋂
x∈P Γx ⊆

⋂
µ∈Γ µΓ0µ

−1. The groups Γx are con-
jugate to the group Γ0, and therefore one can choose a finite set P ⊂ Γ such that⋂
µ∈P µΓ0µ

−1 =
⋂
µ∈Γ µΓ0µ

−1. The converse assertion can be proved in a similar
way.
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An S-function f is said to be almost normal if its monodromy group is discrete.
It follows from the lemma that a function f is almost normal if and only if its closed
monodromy pair [f ] is almost normal.
By a differential rational function in several functions one means a rational

function in these functions and their derivatives.

Lemma 5.14 (on finitely generated functions). Let every germ of an S-function
f at a point a be a differential rational function in finitely many fixed germs of f
at the point a. Then f is almost normal.

Indeed, if the fixed germs of the function are preserved when continued along
a closed curve, then the differential rational functions in these germs are also pre-
served.
It follows from the lemma on finitely generated functions that every solution of a

linear differential equation with rational coefficients is an almost normal function.
The same holds for many other functions naturally arising in differential algebra.

5.3.5. Classes of pairs of groups. In the next subsection we shall describe how closed
monodromy pairs of functions change under composition, integration, differentia-
tion, and so on. To this end, we need some notions related to pairs of groups.
By a pair of groups we always mean a pair consisting of a group and some

subgroup of it. We identify the group with the pair of groups consisting of the
group itself and its identity subgroup.

Definition. A familyL of pairs is called an almost complete class of pairs of groups if
1) for any pair [Γ,Γ0] ∈ L of groups, Γ0 ⊆ Γ, and each homomorphism τ : Γ→
G, where G is a group, the pair [τΓ, τΓ0] also belongs to L,

2) for any pair [Γ,Γ0] ∈ L, Γ0 ⊆ Γ, and each homomorphism τ : G→ Γ, where
G is a group, the pair [τ−1Γ, τ−1Γ0] also belongs to L,

3) for any pair [Γ,Γ0] ∈ L, Γ0 ⊆ Γ, and each group G equipped with a T2-
topology and containing Γ, Γ ⊆ G, the pair [Γ,Γ0] also belongs to L, where
Γ and Γ0 are the closures of the groups Γ and Γ0 in the groupG, respectively.

Definition. An almost complete classM of pairs of groups is said to be a complete
class of pairs of groups if

1) for any pair [Γ,Γ0] ∈ M of groups and each group Γ1 with Γ0 ⊆ Γ1 ⊆ Γ
the pair [Γ,Γ1] also belongs toM,

2) for any two pairs [Γ,Γ1], [Γ1,Γ2] ∈M the pair [Γ,Γ2] also belongs toM.

The minimal almost complete class and the minimal complete class of pairs of
groups containing a fixed set B of pairs of groups are denoted by L〈B〉 andM〈B〉,
respectively.

Lemma 5.15. 1) If the monodromy group of a pair [Γ,Γ0] is contained in some
complete classM of pairs, then the pair [Γ,Γ0] also belongs toM.
2) If an almost normal pair [Γ,Γ0] is contained in some complete class M of

pairs, then the monodromy group of this pair also belongs toM.

Let us dwell on the proof of the second assertion. Let Γi, i = 1, . . . , n, be finitely
many subgroups conjugate to Γ0 and such that

⋂n
i=1 Γi =

⋂
µ∈Γ µΓ0µ

−1. The pairs
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[Γ,Γi] are isomorphic to the pair [Γ,Γ0], and therefore [Γ,Γi] ∈M. Let τ : Γ2 → Γ
be the inclusion homomorphism. In this case τ−1(Γ1) = Γ2 ∩ Γ1, and therefore
[Γ2,Γ2 ∩ Γ1] ∈ M. The class M contains the pairs [Γ,Γ2] and [Γ2,Γ2 ∩ Γ1], and
hence [Γ,Γ1∩Γ2] ∈ M. Continuing this argument, we see that the classM contains
the pair [Γ,

⋂n
i=1 Γi], and therefore also the group Γ/

⋂
µ∈Γ µΓ0µ

−1.

Proposition 5.16 (on the class L〈[f ]〉). An almost complete class of pairs L con-
tains the closed monodromy pair [f ] of an S-function f if and only if this class
contains a monodromy pair of the function f for some forbidden set A.

Proof. Let [Γ,Γ0] be a monodromy pair of the function f for a forbidden set A. In
this case [f ] = [Γ,Γ0]. Therefore, every almost complete class L containing the pair
[Γ,Γ0] must also contain the pair [f ]. Conversely, if [Γ,Γ0] is contained in the class
L, then [Γ,Γ0] ∈ L. Indeed, the topology in the permutation group is such that
Γ0 = Γ ∩ Γ0. Therefore, the pair [Γ,Γ0] is the pre-image of the pair [Γ,Γ0] under
the inclusion of the group Γ in its closure.

5.4. Main theorem. In this subsection we formulate and prove the main theorem
of the topological version of Galois theory.

Theorem 5.17 (main theorem). The class M̂ of S-functions formed by the S-
functions whose closed monodromy pair belongs to some complete classM of pairs
is closed under differentiation, composition, and meromorphic operations.
Moreover, if the classM contains the group C of complex numbers with respect

to addition, then the class M̂ is closed with respect to integration. If M contains

the symmetric group S(k) formed by the permutations on k elements, then M̂ is
closed with respect to the solution of algebraic equations of degree at most k.

The proof of the main theorem consists of the following lemmas.

Lemma 5.18 (on the derivative). [f ′] ∈M〈[f ]〉 for any S-function f .

Proof. Let A be the set of singular points of the S-function f and let fa be a germ
of f at a non-singular point a. We denote by Γ the fundamental group π1(S

2 \A, a)
and by Γ1 and Γ2 the stabilizers of the germs fa and f

′
a, respectively. The group Γ1

is contained in the group Γ2. Indeed, the germ fa is preserved upon continuation
along the curve γ ∈ Γ1, and hence its derivative is also preserved. It follows
from the definition of a complete class of pairs that [Γ,Γ2] ∈ M〈[Γ,Γ1]〉. Using
Proposition 5.16, we see that [f ′] ∈M〈[f ]〉.

Lemma 5.19 (on composition). [g ◦ f ]∈M〈[f ], [g]〉 for any S-functions f and g.

Proof. Let A and B be the sets of singular points of f and g. Let f−1(B) be
the pre-image of the set B under the multivalued correspondence generated by the
multivalued function f . We set Q = A∪f−1(B). Let fa be a germ of the function f
at a point a /∈ Q and let gb be a germ of the function g at the point b = f(a). The set
Q is forbidden for the germ gb◦fa. Denote by Γ the fundamental group π1(S2\Q, a)
and by Γ1 and Γ2 the stabilizers of the germs fa and gb ◦ fa, respectively. Denote
by G the fundamental group π1(S

2 \B, b) and by G0 the stabilizer of the germ gb.
We define a homomorphism τ : Γ1 → G. To every curve γ ∈ Γ1 we assign the

curve τ ◦γ(t) = fγ(t)(γ(t)), where fγ(t) is the germ obtained by continuing fa along
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γ up to the point t. The curves τ ◦ γ are closed, because the germ fa is preserved
under continuation along every curve in Γ1. Under a homotopy of the curve γ in
the set S2 \Q one obtains a homotopy of the curve τ ◦ γ in the set S2 \B, because
f−1(B) ⊆ Q. Hence, the homomorphism is well defined.
The germ gb ◦ fa is preserved under any continuation along a curve in the group

τ−1(G0), or in other words, τ
−1(G0) ⊆ Γ2. This implies the lemma. Indeed,

we obtain the inclusions Γ ⊇ Γ2 ⊇ τ−1(G0) ⊆ τ−1(G) = Γ1 ⊆ Γ which imply
that [Γ,Γ2] ∈ M〈[G,G0], [Γ,Γ1]〉. Using Proposition 5.16, we see that [g ◦ f ] ∈
M〈[f ], [g]〉.
Lemma 5.20 (on the integral). [

∫
f(x) dx] ∈ M〈[f ],C〉 for any S-function f ,

where C is the group of complex numbers with respect to addition.

Proof. Let A be the set of singular points of the function f and let Q = A ∪ {∞}.
Let fa be a germ of the function f at a point a /∈ Q and let ga be a germ of a
function

∫
f(x) dx at this point, g′a = fa. For a forbidden set for the germs fa and

ga one can take the set Q. Denote by Γ the fundamental group π1(S
2 \ Q, a)

and by Γ1 and Γ2 the stabilizers of the germs fa and ga, respectively.
We define a homomorphism τ : Γ1 → C. To every curve γ ∈ Γ1 we assign the

number
∫
γ
fγ(t)(γ(t)) dx, where fγ(t) is the germ obtained by continuing fa along γ

up to the point t and x = γ(t). The stabilizer Γ2 of the germ ga coincides with the
kernel of the homomorphism τ , which implies that [Γ,Γ2] ∈ M〈[Γ,Γ1],C〉. Using
Proposition 5.16, we see that [

∫
f(x) dx] ∈M〈[f ],C〉.

In what follows it is convenient to use vector functions. The definitions of forbid-
den set, S-function, and monodromy group can be extended immediately to vector
functions.

Lemma 5.21 (on vector functions). For each vector S-function f = (f1, . . . , fn)

M〈[f ]〉=M〈[f1], . . . , [fn]〉.

Proof. Let Ai be the set of singular points of the function fi. The set of singular
points of the vector function f is the set Q =

⋃
Ai. Let fa = (f1a, . . . , fna) be a

germ of the vector function f at a point a /∈ Q. We denote by Γ the fundamental
group π1(S

2 \ Q, a), by Γi the stabilizer of the germ fia, and by Γ0 the stabilizer
of the vector germ fa. The stabilizer Γ0 is exactly equal to

⋂n
i=1 Γi, and hence

M〈[Γ,Γ0]〉 =M〈[Γ,Γ1], . . . , [Γ,Γn]〉.

Using Proposition 5.16, we obtain

M〈[f ]〉=M〈[f1], . . . , [fn]〉.

Lemma 5.22 (on the meromorphic operation). For any vector S-function f =
(f1, . . . , fn) and any meromorphic function F (x1, . . . , xn) such that the function
F ◦ f is defined one has [F ◦ f ] ∈M〈[f ]〉.
Proof. Let A be the set of singular points of f and let B be the projection to the
Riemann sphere of the set of poles of the function F ◦ f . For a forbidden set for
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the functions F ◦ f and f one can take the set Q = A ∪B. Let fa be a germ of the
function f at a point a /∈ Q. We denote by Γ the fundamental group π1(S2 \Q, a)
and by Γ1 and Γ2 the stabilizers of the germs fa and F ◦ fa. The group Γ2 is
contained in the group Γ1. Indeed, the vector function is preserved when continued
along any curve γ ∈ Γ1, and hence the meromorphic function of this vector function
is also preserved. It follows from the inclusion Γ2 ⊆ Γ1 that [Γ,Γ2] ∈ M〈[Γ,Γ1]〉.
Using Proposition 5.16, we see that

[F ◦ f ] ∈M〈[f ]〉.

Lemma 5.23 (on an algebraic function). For each vector S-function f =
(f1, . . . , fn) with n components and any algebraic function y of it determined by
the equality

yk + f1y
k−1 + · · ·+ fk = 0 (12)

one has the relation [y] ∈M〈[f ], S(k)〉, where S(k) is the group of permutations on
k elements.

Proof. Let A be the set of singular points of the function f and let B be the
projection to the Riemann sphere of the set of algebraic ramification points of
the function y. For a forbidden set for the functions y and f one can take the set
Q = A∪B. Let ya and fa be some germs of the functions y and f at a point a /∈ Q
that are related by the equality

yka + f1ay
k−1
a + · · ·+ fka = 0.

We denote by Γ the fundamental group π1(S
2\Q, a) and by Γ1 and Γ2 the stabilizers

of the germs fa and ya, respectively. The coefficients of the equation (12) are
preserved upon continuation along any curve γ ∈ Γ1, and hence the roots of the
equation (12) are permuted upon continuation along γ. A homomorphism τ of
the group Γ1 into the group S(k) is obtained, τ : Γ1 → S(k). The group Γ2 is
contained in the kernel of τ , which implies that [Γ,Γ2] ∈ M〈[Γ,Γ1], S(k)〉. Using
Proposition 5.16, we see that

[y] ∈M〈[f ], S(k)〉.

This completes the proof of the main theorem.

5.5. Group obstructions to the representability by quadratures. In this
subsection we compute the classes of pairs of groups occurring in the main theo-
rem and formulate the necessary conditions for the representability of functions by
quadratures, k-quadratures, and generalized quadratures.

5.5.1. Computation of some classes of pairs of groups. The main theorem makes it
an important problem to describe the smallest class of pairs of groups that contains
the additive group C of complex numbers and also the smallest pairs of classes of
pairs of groups that contain both the group C and all finite groups and also both
the group C and the group S(k), respectively. In this subsection we present the
solution of these problems.
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Proposition 5.24. The smallest complete class of pairs M〈Lα〉 that contains
given almost complete classes of pairs Lα consists of the pairs of groups [Γ,Γ0]
for which there is a chain of subgroups Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0 such that for
1 � i � m − 1 the pair of groups [Γi,Γi+1] belongs to some almost complete class
Lα(i).
To prove this proposition, it suffices to show that, first, the pairs of groups

[Γ,Γ0] satisfying the assumption of the proposition belong to the complete class
M〈Lα〉 and, second, these pairs form a complete class of pairs. Both facts follow
immediately from the definitions.
One can also readily verify the following propositions.

Proposition 5.25. The family of pairs of groups [Γ,Γ0] such that Γ0 is a normal
subgroup of the group Γ and the group Γ/Γ0 is commutative forms the smallest
almost complete class of pairs L〈A〉 that contains the class A of all Abelian groups.
Proposition 5.26. The family of pairs of groups [Γ,Γ0] such that Γ0 is a normal
subgroup of the group Γ and the group Γ/Γ0 is finite forms the smallest almost
complete class of pairs L〈K〉 that contains the class K of all finite groups.
Proposition 5.27. The family of pairs of groups [Γ,Γ0] such that ind(Γ,Γ0) � k
forms an almost complete class of groups.

We denote the class of pairs of groups in Proposition 5.27 by L〈ind � k〉. Propo-
sition 5.27 is of interest for us in connection with the characteristic property of
subgroups of the group S(k) in Lemma 3.13. A chain of subgroups Γi, i = 1, . . . , m,
Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0, is said to be a normal tower of a pair of groups [Γ,Γ0]
if the group Γi+1 is a normal subgroup of the group Γi for any i = 1, . . . , m− 1.
The family of quotient groups Γi/Γi+1 is called the family of divisors with respect
to the normal tower.

Theorem 5.28 (on the classes of pairsM〈A,K〉,M〈A, S(k)〉, andM〈A〉). 1) A
pair of groups [Γ,Γ0] belongs to the smallest complete classM〈A,K〉 containing all
finite and commutative groups if and only if this pair admits a normal tower such
that every divisor with respect to this tower is either a finite group or a commutative
group.
2) A pair of groups [Γ,Γ0] belongs to the smallest complete class M〈A, S(k)〉

containing the group S(k) and all commutative groups if and only if this pair admits
a normal tower such that every divisor with respect to this tower is either a subgroup
of S(k) or a commutative group.
3) A pair of groups [Γ,Γ0] belongs to the smallest classM〈A〉 if and only if the

monodromy group of this pair is solvable.

Proof. The first assertion of the theorem follows from the description of the classes
L〈A〉 and L〈K〉 in Propositions 5.25 and 5.26 and from Proposition 5.24.
To prove the second assertion, we consider the smallest complete class of pairs

of groups containing the classes L〈A〉 and L〈ind � k〉. This class consists of pairs of
groups [Γ,Γ0] for which there is a chain of subgroups Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0
such that for 1 � i � m − 1 either Γi/Γi+1 is commutative or ind(Γi,Γi+1) � k
(see Propositions 5.26 and 5.27 and Proposition 5.24). The class of pairs of groups
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thus described contains the group S(k) (see Lemma 3.13) and all commutative
groups, and it is obviously the smallest complete class of pairs that has these prop-
erties. It remains to reformulate the answer. Let us transform the chain of sub-
groups Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0 step by step into a normal tower of the pair
[Γ,Γ0]. Suppose that the group Γj+1 is a normal subgroup of the group Γj for

any j < i and that ind(Γi,Γi+1) � k. We denote by Γi+1 the largest normal sub-
group of Γi contained in Γi+1. It is clear that the quotient group Γi/Γi+1 is a
subgroup of S(k). Instead of the original chain of subgroups, we consider the chain
Γ = G1 ⊇ · · · ⊇ Gm = Γ0 in which Gj = Γj for j � i and Gj = Γj ∩ Γi+1 for
j > i. Continuing this process (at most m times), we pass from the original chain
of subgroups to a normal tower and obtain a description of the class M〈A, S(k)〉
in the desired terms.
Let us prove the assertion 3). By Propositions 5.25 and 5.26, a pair of groups

[Γ,Γ0] belongs to the class M〈A〉 if and only if there is a chain Γ = Γ1 ⊇
· · · ⊇ Γm ⊆ Γ0 such that Γi/Γi+1 is a commutative group. Consider a chain of
groups Γ = G1 ⊇ · · · ⊇ Gm in which Gi+1 is the commutator subgroup of Gi for
i = 1, . . . , m− 1. Every automorphism of the group Γ takes the chain of groups Gi
into itself, and therefore every group Gi is a normal subgroup of Γ. By induction
on the number i one can show that Gi ⊆ Γi and, in particular, Gm ⊆ Γm ⊆ Γ0.
The group Gm is a normal subgroup of the group Γ, and since Gm ⊆ Γ0, it follows
that Gm ⊆

⋂
µ∈Γ µΓ0µ

−1. By the definition of the chain Gi, the group Γ/Gm is

solvable. The group Γ/
⋂
µ∈Γ µΓ0µ

−1 is solvable as a quotient group of the group

Γ/Gm. The converse assertion (a pair of groups with solvable monodromy
group belongs to the classM〈A〉) is obvious.

Proposition 5.29. Each commutative group Γ with cardinality at most that of the
continuum belongs to the class L〈C〉.

Proof. The complex numbers C form a vector space over the rational numbers,
with dimension the cardinality of the continuum. Let {eα} be a basis of this space.
The subgroup C̃ of C generated by the numbers {eα} is a free Abelian group with
a continuum of generators. Every commutative group Γ with cardinality at most

that of the continuum is a quotient group of C̃, and hence Γ ∈ L〈C〉.

It follows from Proposition 5.29 and from the results on computation of the
classes M〈A,K〉, M〈S(n)〉, and M〈A〉 that a pair of groups [Γ,Γ0] such that
the cardinality of the group Γ is at most the cardinality of the continuum belongs
to the class M〈C,K〉 (M〈C, S(n)〉, M〈C〉) if and only if it belongs to the class
M〈A,K〉 (M〈A, S(n)〉,M〈A〉, respectively).
We may confine ourselves to this result, because the cardinality of the group of

permutations of branches of a function has cardinality at most that of the contin-
uum.

Lemma 5.30. Every free non-commutative group Λ does not belong to the class
M〈A,K〉.

Proof. Suppose that Λ ∈ M〈A,K〉, that is, suppose that Λ has a normal tower
Λ = Γ1 ⊇ · · · ⊇ Γm = e and every divisor with respect to this tower is a finite
group or a commutative group. Each group Γi is free as a subgroup of a free group
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(see [28]). The group Γm = e is commutative. Let Γi+1 be the commutative
group with the least index. For any elements a, b ∈ Γi there is a non-trivial
relation: if Γi/Γi+1 is commutative, then, for instance, the elements aba

−1b−1

and ab2a−1b−2 commute, and if Γi/Γi+1 is finite, then some powers a
p, bp of the

elements a, b commute. Hence, the group Γi cannot have more than one generator
and is therefore commutative. The contradiction shows that Λ /∈M〈A,K〉.
Lemma 5.31. For k > 4 the symmetric group S(k) does not belong to the class
M〈C, S(k − 1)〉.
Proof. For k > 4 the alternating group A(n) is simple and non-commutative. For
this group the condition of the criterion for a group to belong to the
class M〈C, S(k − 1)〉 certainly fails. Hence, S(n) does not belong to the class
M〈C, S(k − 1)〉 for k > 4.
Lemma 5.32. The only transitive group of permutations of k elements generated
by transpositions is the symmetric group S(k).

Proof. Let Γ be a transitive group of permutations of a setM containing n elements
and let Γ be generated by transpositions. A subset M0 ⊆M is said to be complete
if every permutation of M0 can be extended to some permutation of M belonging
to the group Γ. Complete subsets really do exist. For example, two elements of M
that are transposed by a basis transposition form a complete subset. Let M0 be a
complete subset of maximal cardinality. Suppose that M0 �=M . Since the group Γ
is transitive, there is a basis transposition µ transposing some element a /∈M0 and
some element b ∈ M0. The group of permutations generated by the transposition
µ and the group S(M0) is the group S(M0 ∪ {a}). The set M0 ∪ {a} is complete
and contains the set M0. This contradiction shows that Γ is the group S(M).

5.5.2. Necessary conditions for the representability of functions by quadratures, by
k-quadratures, and by generalized quadratures. The main theorem (see 5.4) and
the computation of classes of pairs of groups give topological obstructions to the
representability of functions by generalized quadratures, by k-quadratures, and by
quadratures. In this subsection we collect the information obtained above. Let us
begin with the definition of the class of functions representable by means of single-
valued S-functions and quadratures (k-quadratures, generalized quadratures). As
in 1.2, we define these classes by listing the basic functions and the admissible
operations.

The functions representable by means of single-valued S-functions and
quadratures.
List of the basic functions: the single-valued S-functions.
List of admissible operations: compositions, meromorphic operations, differenti-

ation, and integration.

The functions representable by means of single-valued SSS-functions and
kkk-quadratures. This class of functions is defined in exactly the same way. One
need only adjoin the operation of solving algebraic equations of degree � k to the
list of admissible operations.

The functions representable by means of single-valued S-functions and
generalized quadratures.This class of functions is defined in exactly the sameway.
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One need only adjoin the operation of solving algebraic equations to the list of
admissible operations.

It follows from the definition that the class of functions representable by means
of single-valued S-functions and quadratures (k-quadratures, generalized quadra-
tures) contains the class of functions representable by quadratures (k-quadratures,
generalized quadratures). It is clear that the function classes just defined are incom-
parably wider than their classical analogues. Therefore, for example, the assertion
that a function f does not belong to the class of functions representable by means
of single-valued S-functions and quadratures is much stronger than the assertion
that f is not representable by quadratures.

Proposition 5.33. The class of functions representable by means of single-valued
S-functions and quadratures (k-quadratures, generalized quadratures) is contained
in the class of S-functions.

This proposition follows immediately from the theorem on the closedness of the
class of S-functions (see 5.2.2).

Result on generalized quadratures. The closed monodromy pair [f ] of a func-
tion f representable by generalized quadratures admits a normal tower such that
every divisor with respect to this tower is either a finite group or a commuta-
tive group. Moreover, this condition holds for the closed monodromy pair [f ] of
every function f representable by means of single-valued S-functions and general-
ized quadratures. If it is known in addition that f is almost normal, then the above
condition also holds for the monodromy group of [f ].

Result on kkk-quadratures. The closed monodromy pair [f ] of a function f rep-
resentable by k-quadratures admits a normal tower such that every divisor with
respect to this tower is either a subgroup of the group S(k) or a commutative group.
Moreover, this condition holds for the closed monodromy pair [f ] of every function
f representable by means of single-valued S-functions and k-quadratures. If it is
known in addition that f is almost normal, then the above condition also holds for
the monodromy group of [f ].

Result on quadratures. The closed monodromy pair [f ] of a function f repre-
sentable by quadratures is solvable. Moreover, the closed monodromy group of every
function f representable by means of single-valued S-functions and quadratures is
solvable.

To prove these results, it suffices to apply the main theorem to the classes

M̂〈C,K〉, M̂〈C, S(k)〉, and M̂〈C〉 of S-functions and to use the above computation
of the classesM〈C,K〉,M〈C, S(k)〉, andM〈C〉.
We now present examples of functions that are not representable by generalized

quadratures. Let the Riemann surface of a function f be the universal covering
of the domain S2 \ A, where S2 is the Riemann sphere and A is a finite set con-
taining at least three points. Then the function f cannot be expressed by means
of single-valued S-functions and generalized quadratures. Indeed, f is almost nor-
mal. The closed monodromy group of f is free and non-commutative, because the
fundamental group of the domain S2 \A is free and non-commutative.
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Example 1. Let us consider a function f that maps the upper half-plane confor-
mally onto a regular triangle with zero angles that is bounded by arcs of circles. The
function f is the inverse of the Picard modular function. The Riemann surface of f
is the universal covering of the sphere with three punctures, and therefore f cannot
be expressed by means of single-valued S-functions and generalized quadratures.
We note that the function f is closely related to the elliptic integrals

K1(k) =

∫ 1
0

dx√
(1− x2)(1− k2x2)

and K2(k) =

∫ 1
k

0

dx√
(1− x2)(1− k2x2)

.

Among the functions K1, K2, and f , any two of them can be expressed in terms
of each other by quadratures (see [13]). Therefore, each of the integrals K1 and K2
cannot be expressed by means of single-valued S-functions and generalized quadra-
tures.

Example 1 admits a substantial generalization. In [21] (see also [22]) one can
find a list of all those polygons bounded by arcs of circles onto which the upper
half-plane can be mapped by a function representable by generalized quadratures.

Example 2. Let f be a k-valued algebraic function with non-multiple ramifica-
tion points located at different points of the Riemann sphere. If k > 4, then f
cannot be expressed by means of single-valued S-functions and (k− 1)-quadratures,
compositions, and meromorphic operations. In particular , f is not representable by
(k − 1)-quadratures.
Indeed, on going around a non-multiple ramification point of f , one obtains

a transposition of the set of branches of this function. The monodromy group
of f is a transitive group of permutations generated by transpositions, that is, the
monodromy group is the group S(k). For k > 4 the group S(k) does not belong to
the classM〈C, S(k − 1)〉.

In the papers [23]–[25] the topological results on non-representability of functions
by quadratures (k-quadratures and generalized quadratures) are generalized to the
case of functions of several complex variables.

5.5.3. Classes of singular sets and a generalization of the main theorem. In § 5 we
have considered S-functions, that is, multivalued analytic functions of a complex
variable with at most countable sets of singular points. Let S be the class of all
at most countable subsets of the Riemann sphere S2. We list the properties of the
class S that were used in an essential way:
1) if A ∈ S, then the set S2 \A is dense and locally arcwise connected,
2) there is a non-empty set A such that A ∈ S,
3) if A ∈ S and B ⊆ A, then B ∈ S,
4) if Ai ∈ S, i = 1, 2, . . . , then

⋃∞
i=1 Ai ∈ S,

5) if U1 and U2 are open subsets of the sphere and f : U1 → U2 is an invertible
analytic map and if A ⊆ U1 and A ∈ S, then f(A) ∈ S.

By a complete class of sets we mean any set of subsets of the Riemann sphere
that has the properties 1)–5). A multivalued analytic function is said to be a
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Q-function if the set of its singular points belongs to some complete class Q of
sets. The definitions and theorems of § 5 can all be extended to Q-functions. For
instance, the following version of the main theorem holds.

A version of the main theorem. For any complete class Q of sets and any

complete class M of pairs the class M̂ consisting of all Q-functions f such that
[f ] ∈M is closed under differentiation, composition, and meromorphic operations.

If in addition C ∈M, then the class M̂ of Q-functions is closed with respect to
integration.

If S(k) ∈ M, then the class M̂ of Q-functions is closed with respect to solving
algebraic equations of degree at most k.

We present examples of complete classes of sets. Let Xα be the set of all subsets
of the Riemann sphere that have zero Hausdorff measure of weight α. One can
readily show that if α � 1, then the set Xα forms a complete class of subsets of the
sphere.
We note that the new formulation of the main theorem enables us to strengthen

all negative results. For instance, let us dwell on the result on non-representability
of functions by quadratures. (The results on non-representability by k-quadratures
and by generalized quadratures can be generalized in the same way.) We introduce
the following class of functions.

The functions representable by means of single-valued X1X1X1-functions and
quadratures.
List of the basic functions: single-valued X1-functions.
List of admissible operations: composition, meromorphic operations, differenti-

ation, integration.
According to the new formulation of the main theorem, an S-function having an

unsolvable monodromy group is not only non-representable by quadratures but also
non-representable by single-valued X1-functions and quadratures.

§ 6. Solvability by quadratures of Fuchsian linear differential
equations and the topological version of Galois theory

6.1. The Picard–Vessiot theory for Fuchsian equations. In this subsection
we show that the topology of the covering of the complex plane by the Riemann
surface of a generic solution of a Fuchsian linear differential equation is completely
responsible for the solvability of the equation in explicit form.

6.1.1. Monodromy group of a linear differential equation, and its relation to the
Galois group. We consider a linear differential equation

y(n) + r1y
(n−1) + · · ·+ rny = 0, (13)

where the coefficients ri are rational functions in a complex variable x. The poles
of the rational functions ri and the point ∞ are called singular points of the equa-
tion (13).
In a neighbourhood of a non-singular point x0 the solutions of the equation form

an n-dimensional space V n. Let us now take in the complex plane an arbitrary curve
γ(t) going from x0 to a point x1 and not passing through the singular points ai.
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The solutions of the equation can be analytically continued along the curve, and
the continuations are still solutions of the equation. Therefore, corresponding to
every curve γ is a linear mapMγ of the solution space V

n
x0
at the point x0 into the

solution space V nx1 at the point x1.
If one slightly deforms the curve γ, leaving the ends fixed and not touching the

singular points, then the map Mγ remains unchanged. Corresponding to closed
curves are linear transformations of the space V n into itself. The family of all
these linear transformations of V n is a group, called the monodromy group of the
equation (13). Thus, the monodromy group of the equation is the group of linear
transformations (of the solutions) that arise when going around singular points. The
monodromy group of an equation characterizes the multivaluedness of its solutions.

Lemma 6.1. 1) The monodromy group of almost every solution of an equation (13)
is isomorphic to the monodromy group of this equation.
2) The monodromy pair of every solution of an equation of the form (13) is

almost normal.

Proof. The second assertion of the lemma follows from Lemma 5.14. We dwell
on the proof of the first assertion. The monodromy group of an equation of the
form (13) is a matrix group containing at most countably many elements. The set of
fixed points of every non-identity element of this group is an eigenspace of the finite-
dimensional space formed by the solutions of (13). The set of solutions that are
fixed under at least one non-identity transformation belonging to the monodromy
group is of measure zero in the space of solutions (because the union of at most
countably many proper subspaces of a finite-dimensional space is of measure zero
in this space). The monodromy group of the other solutions of (13) is isomorphic
to the monodromy group of the equation.

In a neighbourhood of a non-singular point x0 there are n linearly indepen-
dent solutions y1, . . . , yn of (13). In this neighbourhood one can consider the field
R〈y1, . . . , yn〉 of functions obtained by adjoining all solutions yi and all their deriva-
tives to the field R of rational functions.
Every transformationMγ of the space of solutions belonging to the monodromy

group can be extended to an automorphism of the entire fieldR〈y1, . . . , yn〉. Indeed,
together with the functions y1, . . . , yn, every element of the field R〈y1, . . . , yn〉
admits a meromorphic continuation along the curve γ. This continuation defines
the desired automorphism, because the continuation preserves the arithmetic oper-
ations and differentiation, and every rational function returns to its previous value
because it is single-valued.
Thus, the monodromy group of an equation (13) is contained in the Galois group

of this equation over the field of rational functions.
The field of invariants of the monodromy group is the subfield of R〈y1, . . . , yn〉

that consists of the single-valued functions. For differential equations, in contrast
to algebraic equations, the field of invariants with respect to the action of the
monodromy group can be larger than the field of rational functions.
For example, if all the coefficients ri(x) of a differential equation of the form (13)

are polynomials, then all the solutions of the equation are entire functions. How-
ever, the solutions of these equations are certainly far from being always polynomial.
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The point is that a solution of a differential equation can have exponential
growth when approaching a singular point. There is a wide class of linear differential
equations for which this complication is absent, that is, the class of equations
all of whose solutions admit at most power-law growth when approaching any
singular point (along any sector with vertex at the singular point). Differential equa-
tions having this property are called Fuchsian differential equations (see [11], [16]).
The following theorem of Frobenius holds for Fuchsian differential equations.

Theorem 6.2 (Frobenius). For any Fuchsian differential equation the subfield
formed by the single-valued functions in the differential field R〈y1, . . . , yn〉 coin-
cides with the field of rational functions.

Before proving the Frobenius theorem, let us dwell on its immediate corollaries.

Corollary 6.3. The algebraic closure of the monodromy group M (that is, the
smallest algebraic group containing M) of a Fuchsian equation coincides with
the Galois group of this equation over the field of rational functions.

Proof. The corollary follows from the Frobenius theorem and from the main theo-
rem of the differential Galois theory (see 4.3).

Theorem 6.4. A Fuchsian linear differential equation is solvable by quadratures,
by k-quadratures, or by generalized quadratures if and only if the monodromy group
of this equation is solvable, k-solvable, or almost solvable, respectively.

The proof follows from the Picard–Vessiot theorem (see 4.5) and the previous
corollary.

The differential Galois theory now proves two results.

1) If the monodromy group of a Fuchsian differential equation is solvable
(k-solvable, almost solvable), then this equation is solvable by quadratures
(by k-quadratures, by generalized quadratures, respectively).

2) If the monodromy group of a Fuchsian differential equation is not solvable (not
k-solvable, not almost solvable), then this equation is not solvable by quadratures
(by k-quadratures, by generalized quadratures, respectively).

The first of these results does not need the main theorem of Galois theory and
in essence relates to linear algebra. The point is that one needs no special con-
struction of the group of automorphisms of the differential field R〈y1, . . . , yn〉 that
preserve only the points of the field of rational functions. The desired group is the
monodromy group. Therefore, to prove solvability by quadratures and by the gen-
eralized quadratures for Fuchsian equations with solvable or almost solvable mon-
odromy group, it suffices to use the linear-algebraic considerations in 4.7. These
linear-algebraic considerations are insufficient to prove solvability by k-quadratures
of a Fuchsian equation with k-solvable monodromy group. One must also use
Galois theory of algebraic extensions of the field of rational functions (see Propo-
sition 4.21). However, the Galois theory of algebraic extensions of the field R is
quite intuitive and geometric (see 5.1.1).

Our theorem enables one to strengthen the negative result 2). For this strength-
ening, see 6.2.4. We now proceed to the proof of the Frobenius theorem.
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6.1.2. Proof of the Frobenius theorem. Let us show that every single-valued func-
tion in the differential field R〈y1, . . . , yn〉 is meromorphic on the Riemann sphere,
and hence rational. Let p ∈ S be a singular point of a Fuchsian equation and let x
be a local parameter near this point such that x(p) = 0. By the Fuchs theory, every

solution y can be represented near the point p as a finite sum y =
∑
fαkx

α logk x,
where the factors fαk are meromorphic functions near p. It is clear that the func-
tions representable in the form

∑
fαkx

α logk x, where the functions fαk are mero-
morphic near p, form a differential ring containing the field of functions that are
meromorphic near p. We must prove that the quotient of two functions in this
differential ring is a single-valued function near p if and only if this function is
meromorphic. The proof of this fact is based on Proposition 6.5 formulated below.
We need the following notation: U(0, ε) is the ε-neighbourhood of the point 0 in

the complex plane; Û(0, ε) is the punctured ε-neighbourhood of the point 0, that is,

Û(0, ε) = U(0, ε)\{0};M(0, ε) and M̂(0, ε) are the fields of meromorphic functions
on the domains U(0, ε) and Û(0, ε), respectively.
Two meromorphic germs fa and gb are said to be equivalent over a domain U ,

where a, b ∈ U , if the germ gb is obtained from the germ fa by continuation along
some curve contained in U .
We now define the ring Ka(0, ε). A meromorphic germ fa given at a point

a ∈ Û(0, ε) belongs to the ring Ka(0, ε) if
1) the germ fa can be meromorphically continued along all curves belonging

to Û(0, ε),
2) the complex vector space spanned by all the meromorphic germs at the

point a that are equivalent to fa over the neighbourhood Û(0, ε) is finite-
dimensional.

The ring Ka(0, ε) contains the field M̂(0, ε) and is a vector space over this field.

Proposition 6.5 (on a basis). For any choice of branches of the functions log x

and xα, [Reα] = 0, the germs xαa log
k
a x, k = 0, 1, 2, . . ., form a basis of the space

Ka(0, ε) over the field M̂(0, ε).

Let us first prove a lemma.

Lemma 6.6. The germs 1, loga x, . . . , log
k
a x, . . . are linearly independent over the

field M̂(0, ε).

Proof. Indeed, the existence of a non-trivial relation
∑
ak log

k
a x = 0 with ak ∈

M̂(0, ε) implies that the function logx takes finitely many values in a neighbourhood
of zero.

The proof of the proposition is based on a consideration of the monodromy
operator A : Ka(0, ε)→ Ka(0, ε) that assigns to every germ its continuation along
a closed curve going around the point 0.

Lemma 6.7. The germs xαa log
k
a x, [Reα] = 0, k = 0, 1, . . . , n− 1, form a basis in

the space ker(A− λE)n, where λ and α are connected by the relation λ = e2πiα.
Proof. We note that the dimension of the space ker(A− λE) is at most 1. Indeed,
if Afa = λfa and Aga = λga, then A(fa/ga) = fa/ga. Hence, the germ ψa = fa/ga
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is the germ of some function ψ in the field M̂(0, ε), and so fa = ψga. Therefore, the
dimension of the space ker(A−λE)n is at most n. On the other hand, one can read-
ily see that this space contains the germs xαa log

k
a x, [Reα] = 0, k = 0, 1, . . . , n− 1.

By Lemma 6.6, these germs are linearly independent, and therefore form a basis of
the space ker(A − λE)n.

Any two spaces of the form ker(A − λE)n with different values of λ have zero
intersection. Therefore, all the germs xαa log

k
a x are linearly independent. Let us

show that every germ fa in the space Ka(0, ε) can be expanded in these functions.
By definition, fa belongs to some finite-dimensional space V that is invariant under

the monodromy operator. Let Ã be the restriction of the operator A to the space V .
As is known in linear algebra, V can be decomposed into the direct sum of the
subspaces ker(Ã− λE)nλ , where λ is an eigenvalue of the operator Ã and nλ is the
multiplicity of this eigenvalue. It follows from Lemma 6.7 that every element of the
space V can be expanded in the vectors xαa log

k
a x.

Remark. The choice of different branches of the functions logx and xα leads to
different bases in the space Ka(0, ε). The coefficients of expansion of the vectors in
these bases with respect to another such basis are complex numbers.

Definition. 1) One says that a meromorphic germ fa, a ∈ Û(0, ε), has an entire
Fuchsian singularity over the neighbourhood Û(0, ε) if fa ∈ Ka(0, ε) and the coef-
ficients of the expansion of fa with respect to the basis x

α
a log

k
a x are meromorphic,

that is, if

fa =
∑
fα,k log

k
a x · xαa , where fα,k ∈M(0, ε).

2) A meromorphic germ fa, a ∈ Û(0, ε), is said to have a Fuchsian singularity
over the neighbourhood Û(0, ε) if this germ is representable as the quotient of two
germs ψa and ga each having an entire Fuchsian singularity over the neighbourhood
Û(0, ε), that is, fa = ψa/ga.

Corollary 6.8. A germ fa ∈ Ka(0, ε) has a Fuchsian singularity over the neigh-
bourhood Û(0, ε) if and only if it has an entire Fuchsian singularity over this
neighbourhood.

Proof. One has fa ∈ Ka(0, ε), and hence fa =
∑
rα,kx

α
a log

k
a x, where rα,k ∈

M̂(0, ε) are the coefficients of the expansion of fa with respect to the basis. The
germ fa has a Fuchsian singularity as well, and therefore we have the equality

∑
pα,kx

α
a log

k
a x∑

qα,kxαa log
k
a x
−
∑
rα,kx

α
a log

k
a x = 0,

where pα,k and qα,k are some elements of the field M(0, ε). Let us multiply the

last equality by the sum
∑
qα,kx

α
a log

k
a x, get rid of the parentheses, and reduce

the germ xβa log
k
a x to the form x

n · xαa logka x if necessary, where n is an integer and
[Reα] = 0. Since the germs xαa log

k
a x are linearly independent over the field M̂(0, ε),
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it follows that the above equality is equivalent to the system of equations obtained
by equating the coefficients with these functions to zero. The system thus
obtained is a system of linear equations with respect to the functions rα,k with
coefficients in the field M(0, ε). The system has a unique solution because the
functions rα,k are uniquely determined. Hence, the functions rα,k belong to
the field M(0, ε).

Corollary 6.9. If a germ fa of a function f that is meromorphic in the neigh-

bourhood Û(0, ε) has a Fuchsian singularity in this neighbourhood, then f is mero-
morphic in U(0, ε).

Proof. One has fa ∈ Ka(0, ε), and its expansion with respect to the basis is of the
form fa = f · 1. By Corollary 6.8, the germ fa has an entire Fuchsian singularity,
and therefore f ∈M(0, ε).
Corollary 6.9 completes the proof of the Frobenius theorem.

6.1.3.Monodromy group of a system of linear differential equations, and the relation
of this group to the Galois group. The results in 6.1.1 can automatically be extended
to systems of linear differential equations with regular singular points.
We consider a linear differential equation

y′ = A(x)y, (14)

where y = (y1(x), . . . , yn(x)), A(x) = (ai,j(x), 1 � i, j � n) is a matrix of rational
functions, and x is a complex variable. Let a1, . . . , ak be the poles of the matrix
A(x). In a neighbourhood of a non-singular point x0 with x0 �= ∞ and x0 �= ai,
i = 1, . . . , k, the solutions of the equation (14) form an n-dimensional space V n.
Let us now take an arbitrary curve γ(t) on the complex plane that goes from the
point x0 to the point x1 and does not pass through the singular points ai, that
is, γ(0) = x0, γ(1) = x1, and γ(t) �= ai. The solutions of the equation admit
analytic continuation along the curve, and these continuations are still solutions of
the equation. Therefore, corresponding to any curve γ is a linear mapMγ from the
space V nx0 of solutions at x0 into the space Vx1 of solutions at x1.
If one slightly deforms the curve γ, leaving the ends fixed and not touching the

singular points, then the map Mγ remains unchanged. Corresponding to closed
curves are linear transformations of the space V n into itself. The family of all these
linear transformations of the space V n is a group, called the monodromy group of
the system (14). Thus, the monodromy group of the system is the group of linear
transformations of solutions that arise when going around singular points. The
monodromy group of a system characterizes the multivaluedness of its solutions.

Lemma 6.10. 1) The monodromy group of almost every solution of the system (14)
coincides with the monodromy group of the system (14). 2) The monodromy pair of
every component of every solution of (14) is almost normal. 3) If the monodromy
group of (14) does not belong to some complete classM of pairs of groups, then the
monodromy pair of one of the components of almost every solution of this system
does not belong toM.
Proof. The first two assertions in the lemma are proved like Lemma 6.1. The
assertion 3) follows from 1) and Lemma 5.21.
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In a neighbourhood of a non-singular point x0 all the solutions y1, . . . ,yn of the
system (14) exist. In this neighbourhood one can consider the differential function
field R〈y1, . . . ,yn〉 obtained by adjoining all the components yi1, . . . , yin of all the
solutions yi and all their derivatives y

(p)
ij to the field R of rational functions.

Every transformationMγ of the solution space in the monodromy group can be
extended to an automorphism of the whole differential field R〈y1, . . . ,yn〉 over the
field R. Indeed, together with the vector functions y1, . . . , yn, every element of
the field R〈y1, . . . ,yn〉 can also be meromorphically continued along the curve γ.
This extension gives the desired automorphism, because continuation preserves the
arithmetic operations and differentiation, and every rational function returns to its
previous value because it is single-valued.

A singular point of the system (14) is said to be regular if all the solutions of
the system admit at most power-law growth when approaching any singular point
along any sector with vertex at the singular point (see [16], [11]). As is known, near
a regular singular point every component of every solution has an entire Fuchsian
singularity (see the definition in 6.1.2). The system (14) is said to be regular if all
its singular points (including the point ∞) are regular. For a regular system (14)
all single-valued functions in the field R〈y1, . . . ,yn〉 are rational functions.

Theorem 6.11. For an arbitrary regular system of linear differential equations of
the form (14) the differential field R〈y1, . . . ,yn〉 is a Picard–Vessiot extension
of the field R. The Galois group of this extension is the algebraic closure of the
monodromy group of the system of equations (14).

Proof. The monodromy group acts on the differential field R〈y1, . . . ,yn〉 as a group
of isomorphisms, and the corresponding field of invariants is equal to R. The field
R〈y1, . . . ,yn〉 is generated over R by a finite-dimensional C-linear space that is
invariant under the action of the monodromy group, namely, by the linear space
spanned by all the components of all the solutions of (14). The theorem follows
now from Corollary 4.5.

Theorem 6.12. Each component of each solution of a regular system of linear
differential equations can be expressed by quadratures (by k-quadratures, by gener-
alized quadratures) if and only if the monodromy group of the system is solvable
(k-solvable, almost solvable, respectively).

The proof follows from Theorem 4.12 (the Picard–Vessiot theorem) and from
the previous theorem. As in the case of a Fuchsian equation, the ‘positive’ part
of the theorem relating to the solvability of the system is proved mainly by
means of linear algebra (see 4.7). The negative part of the theorem can be strength-
ened significantly by the topological version of Galois theory (see 6.2.4).

6.2. Galois theory for systems of Fuchsian linear differential equations
with small coefficients. It turns out that the solvability conditions become
absolutely explicit for systems of Fuchsian equations with sufficiently small coeffi-
cients [15].
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6.2.1. Systems of Fuchsian equations. Among the systems of regular linear dif-
ferential equations one can distinguish the systems of Fuchsian linear differential
equations. This is an equation of the form y′ =A(x)y, where the matrix A(x) has
no multiple poles and vanishes at infinity. In other words, this is an equation of
the form

y′ =
k∑
p=1

Ap

x− ap
y,

where Ap is a complex n × n matrix for any p and y = (y1, . . . , yn) is a vector in
Cn. The points ap are called the poles and the matrices Ap are called the residue
matrices of the system of Fuchsian equations.

For systems of Fuchsian equations, as well as for other regular systems of dif-
ferential equations, the algebraic closure of the monodromy group coincides with
the Galois group of the corresponding Picard–Vessiot extension (generated by the
system of equations) of the field of rational functions (see 6.1.3).

Lappo-Danilevskii developed the theory of analytic functions of matrices and
applied this theory to differential equations [29]. We need some of his results
relating to systems of Fuchsian equations; we use these results in the form of a
corollary presented at the end of this subsection.

Let us take a non-singular point x0 �= ap. We choose k curves γ1, . . . , γk in such
a way that the curve γp starts at the point x0, approaches the pole ap, goes around
this pole, and returns back to x0. Corresponding to the curves γ1, . . . , γk are
monodromy matrices M1, . . . ,Mk. Obviously, the matrices M1, . . . ,Mk generate
the monodromy group. If one fixes the curves, then the monodromy matrices
depend only on the residue matrices. This dependence was studied by Lappo-
Danilevskii.

First, he showed that the monodromy matrices Mp are entire functions of the
residue matrices Aj . To be more exact, there are special series with complex coef-
ficients

Mp = E + 2πiAp +
∑

1�i,j�k
ci,jAiAj + · · · (15)

in the matrices A1, . . . , Ak that express the monodromy matrices Mp and are con-
vergent for any matrices A1, . . . , Ak.

Although the monodromy matrixMp depends on all the residue matrices Aj , its
eigenvalues are determined only by the eigenvalues of the residue matrix Ap.

Theorem 6.13 ([16], [11]). Let {µm} be the set of eigenvalues of the matrix Ap.
Then {e2πiµm} is the set of eigenvalues of the matrix Mp.

The famous Riemann–Hilbert problem is the question of the solvability of the
inverse problem, that is, the existence problem for a Fuchsian equation with a
given family of monodromy matrices. The Riemann–Hilbert problem is solvable for
almost every set of monodromy matrices. It was traditionally assumed that this
classical result can be extended to arbitrary sets of monodromy matrices. However,
as was discovered by Bolibrukh [10], [11], this is not the case. He gave an example of
a set of monodromy matrices for which the Riemann–Hilbert problem is unsolvable.
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Lappo-Danilevskii showed that if the residue matrices Aj are small, then they
are single-valued analytic functions of the monodromy matrices Mp. Namely, he
showed that if one confines oneself to Fuchsian equations with sufficiently small
residue matrices ‖Aj‖ < ε, ε = ε(n, a1, . . . , ak), then the Riemann–Hilbert problem
has a unique solution for monodromy matrices Mp sufficiently close to E, that is,
for ‖Mp − E‖ < ε. Moreover, there are special series

Ap = −
1

2πi
E +

1

2πi
Mp +

∑
1�i,j�k

bijMiMj + · · · (16)

with complex coefficients in the matricesM1, . . . ,Mk that express the residue matri-
ces Ap and converge for ‖Mp −E‖ < ε.
The series (16) are obtained by inverting the series (15). This result is a kind of

implicit function theorem (for analytic maps with non-commutative variables).
We shall use the Lappo-Danilevskii theory in the form of the following assertion.

Corollary 6.14. The monodromy matrices belong to the algebra (with identity)
generated by the residue matrices. Conversely, if the residue matrices are suffi-
ciently small and the monodromy matrices are sufficiently close to E, then the
residue matrices belong to the algebra (with identity) generated by the monodromy
matrices.

6.2.2. Groups generated by matrices close to the identity matrix. In this subsection
we prove an analogue of the Lie theorem for matrix groups generated by matrices
close to the identity matrix. Let us recall the formulation of the Jordan theorem.

Theorem 6.15 (Jordan). A finite group G of linear transformations of an n-
dimensional space has a diagonal normal subgroup Gd of bounded index, that is,
ind(G,Gd) � J(n).

Diverse explicit upper bounds for the numbers J(n) are known. (For instance,

Schur showed that J(n) � (
√
8n+ 1)2n

2 − (
√
8n− 1)2n2; see [37].)

Proposition 6.16. There is an integer T (n) such that a subgroup G in GL(n) has
a solvable normal subgroup of finite index if and only if it has a triangular normal
subgroup of index � T (n).

Proof. Suppose that G′ is a solvable normal subgroup of G of finite index. The
Lie theorem ensures that the group G has a triangular normal subgroup Gl of
finite index. Indeed, it suffices to take Gl = G

′ ∩ G0, where G0 is the connected
component of the identity of the algebraic closure G of G. However, the index of
Gl can be arbitrarily large. For instance, for the group Zk of kth roots of unity
this index is equal to k for n = 1. We enlarge the normal subgroup Gl but keep it
triangular. It suffices to prove the existence of a triangular subgroup of bounded
index, because a subgroup of index k contains a normal subgroup of index � k!.
Let us carry out the proof by induction on the dimension n. If the group G admits
an invariant space V k of dimension k, 0 < k < n, then we can make an induction
step. Indeed, in this case the group G acts both on the space V k of dimension k
and on the quotient space V n/V k of dimension (n − k). By induction, one can
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assume that G admits a normal subgroup of index � T (k)T (n − k), and that this
subgroup is triangular both in V k and in V n/V k, that is, it is triangular in V n.
The normal subgroup Gl can be reduced to triangular form, and hence it admits

a non-zero maximal eigenspace V k. Two cases can occur: V k ⊂ V n and V k = V n.
Consider the first case, that is, V k ⊂ V n. We denote by G̃l the subgroup of
G consisting of all transformations under which the subspace V k is invariant (we

thus enlarge the normal subgroup Gl). Let us prove that ind(G, G̃l) � n. Indeed,
the group of permutations given by G permutes the maximal eigenspaces of each
normal subgroup of G and, in particular, permutes these spaces for Gl. However,
there can be at most n maximal eigenspaces. This implies the desired relation

ind(G, G̃l) � n. To complete the proof, it suffices to apply the induction step
to the group G̃l. Consider the other case, that is, let V

k = V n, in which case
the subgroup Gl consists of the matrices λE. One can assume that G consists
of matrices with unit determinant. Indeed, otherwise one can consider the group
formed by the matrices (detA)−1A. Under this assumption, the normal subgroup
Gl is finite (because λ

n = 1). The group G is also finite, because ind(G,Gl) < ∞.
To complete the proof, it suffices to use the Jordan theorem.

Proposition 6.16′. There is an integer D(n) such that any subgroup G of GL(n)
has a diagonal normal subgroup of finite index if and only if it has a diagonal normal
subgroup of index � D(n).
The proof of Proposition 6.16′ is similar to that of Proposition 6.16, and we do

not dwell on this proof. The numbers T (n) and D(n) also admit an explicit upper
bound (cf. [37]).

Lemma 6.17. The equation XN = A, where ‖A −E‖ < ε, ‖X − E‖ < ε, and X
and A are complex n× n matrices close to E, has a unique solution if ε = ε(n,N)
is sufficiently small. Moreover, every invariant space V of the matrix A is also
X-invariant.

Proof. Let us write B = A −E and

X = E +
1

N
B +

1

2

1

N

(
1

N
− 1
)
B2 + · · · .

If ‖B‖ < 1, then the series is convergent and XN = A. We now take the number
ε = ε(n,N) to be so small that the implicit function theorem ensure the uniqueness
of the solution. The space V is invariant under B = A −E, and hence under X.
Lemma 6.18. Let the N th powers of all the matrices in a matrix group G belong
to some algebraic group L. Then the index of the group G ∩ L in the group G is
finite.

Proof. Consider the algebraic closure G of the group G. One can readily see that
if X ∈ G, then XN ∈ L. We denote by G0 and L0 the connected components of
the identity in the groups G and L, respectively. If A belongs to L0 and A = e

M ,
then the equation XN = A has a solution in the same group. Indeed, it suffices to
set X = e

M
N . However, the equation XN = A has a unique solution if the matrices

A and X are close to E. This implies that G0 ⊆ L0 ⊆ L. The lemma now follows
from the condition ind(G,G0) <∞.
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Remark. If L = e, then Lemma 6.18 becomes a theorem of Burnside: a matrix
group satisfying the identity XN = e is finite.

Proposition 6.19. There is an integer N(n) such that a subgroup G of GL(n)
has a solvable normal subgroup of finite index if and only if all the matrices AN(n),
A ∈ G, can simultaneously be reduced to triangular form.

Proof. In one direction, Proposition 6.19 follows from Proposition 6.16 if we set
N(n) = T (n)!. To prove it in the other direction, one must apply Lemma 6.18 to
the group G and the group L of triangular matrices.

One can prove the following proposition similarly.

Proposition 6.19′. There is an integer N(n) such that a subgroup G of GL(n)
has a diagonal normal subgroup of finite index if and only if all the matrices AN(n),
A ∈ G, can simultaneously be reduced to diagonal form.

Theorem 6.20. There is a number ε(n) > 0 such that the subgroup G of GL(n)
generated by matrices Aα that are close to the identity matrix, ‖E − Aα‖ < ε(n),
has a solvable normal subgroup of finite index if and only if all the matrices Aα can
simultaneously be reduced to triangular form.

Proof. Let us take a number ε(n) > 0 small enough that the equation

XN(n) = A,

where ‖E−X‖ < ε(n), satisfies the conditions of Lemma 6.17. By Proposition 6.19,
all the matrices A

N(n)
α can be reduced to triangular form. However, by Lemma 6.17,

the invariant subspaces of the matrices A
N(n)
α and Aα coincide. Therefore, the

matrices Aα can also be reduced to triangular form.

The proof of the next proposition is similar.

Proposition 6.21. There is a positive number ε(n) > 0 such that any subgroup G
of GL(n) generated by matrices Aα close to the identity matrix, ‖E −Aα‖ < ε(n),
has a diagonal normal subgroup of finite index if and only if all the matrices Aα
can simultaneously be reduced to diagonal form.

Remark. Both in Theorem 6.20 and in Proposition 6.21 one can weaken the con-
dition that the matrices Aα be close to the identity matrix. It suffices to restrict
ourselves to closeness in the Zariski topology. We say that a matrix A is k-resonant
if it has distinct eigenvalues λ1 and λ2 related by the condition λ1 = εkλ2, where
εkk = 1, εk �= 1. All k-resonant matrices form an algebraic set not containing the
identity matrix. It suffices to assume that the matrices Aα are not N(n)-resonant.

6.2.3. Explicit solvability criteria. We proceed to an explicit solvability criterion,
beginning with two simple lemmas.

Lemma 6.22. A Fuchsian system of order n of the form

ẏ =
k∑
i=1

Ai
x− ai

y
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with sufficiently small coefficients ‖Ai‖ < ε = ε(n, a1, . . . , ak) is solvable by
generalized quadratures if and only if its monodromy matrices Mi are triangular.

Proof. The monodromy group of the system is generated by the monodromy matri-
ces Mi. If the residue matrices Ai are small, ‖Ai‖ < ε, then the matrices Mi are
close to E. Let us choose a number ε = ε(n, a1, . . . , ak) small enough that the
monodromy matrices M1, . . . ,Mk satisfy the conditions of Theorem 6.20. By this
theorem, the monodromy group has a solvable normal subgroup of finite index if
and only if the matricesM1, . . . ,Mk are triangular. It remains to use Theorem 6.12.

Lemma 6.23. The triangularity and the diagonality of the Galois group for a
Fuchsian system are equivalent to the same condition on the monodromy matrices
M1, . . . ,Mk.

Proof. The monodromy group is generated by the monodromymatricesM1, . . . ,Mk
and is triangular or diagonal whenever they are. The lemma now follows from the
fact that for a Fuchsian equation the Galois group coincides with the algebraic
closure of the monodromy group (see 6.1.3).

Solvability criterion. For a set of poles a1, . . . , ak and a positive integer n there
is a number ε(n, a1, . . . , ak) such that the solvability conditions for Fuchsian systems
of order n,

ẏ =
k∑
i=1

Ai

x− ai
y,

with small coefficients, ‖Ai‖ < ε(n, a1, . . . , ak), acquire an explicit form.
Namely, the system is solvable:

1) by quadratures or by generalized quadratures3 if and only if the matrices Ai
are triangular (in some basis);

2) by integrals and algebraic functions or by integrals and radicals3 if and only
if the matrices Ai are triangular and their eigenvalues are rational ;

3) by integrals if and only if the matrices Ai are triangular and their eigenval-
ues are equal to zero;

4) by exponentials of integrals and by algebraic functions or by exponentials of
integrals3 if and only if the matrices Ai are diagonal ;

5) by algebraic functions or by radicals3 if and only if the matrices Ai are
diagonal and their eigenvalues are rational ;

6) by rational functions if and only if all the matrices Ai are zero.

Proof. Let ε(n, a1, . . . , ak) be a number small enough that the conditions of
Lemma 6.23 are valid and the residue matrices are expressible in terms of the
monodromy matrices (see 6.2.1).
Each of the forms of solvability implies solvability by generalized quadratures.

Under our assumptions, solvability by generalized quadratures implies a triangular
form of the monodromy matrices (Lemma 6.22), and hence the triangular form of
the Galois group (Lemma 6.23). Therefore, we can apply the criterion presented
at the end of 4.8. We must transform the conditions on the Galois group in this
criterion into conditions on the residue matrices Ai.

3These forms of solvability differ if the values of the coefficients are not subjected to the above
restriction.
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The conditions on the Galois group in the criterion in 4.8 are equivalent to the
same conditions on the monodromy matrices M1, . . . ,Mk. This fact was partially
verified in Lemma 6.23. The remaining verification is also not complicated.
Under the assumptions of our theorem, the condition that the monodromymatri-

ces M1, . . . ,Mk belong to some algebra with identity, for example, to the algebra
of triangular matrices or diagonal matrices, is equivalent to the same condition on
the residue matrices A1, . . . , Ak (Corollary 6.14).
The eigenvalues of the matrices Mi are roots of unity or 1s if and only if the

eigenvalues of the matrices Ai are rationals or integers, respectively (see 6.2.1).
Our criterion follows now from the criterion in 4.8.

Remark. At the conference dedicated to the 100th birthday of A. N. Kolmogorov,
Andrei Bolibrukh told me that in the solvability criterion one can weaken the
requirement that the matrices Ai be small. It suffices to assume that the eigenvalues
of these matrices are small. This was my last conversation with Andrei.

6.2.4. Strong unsolvability of equations. The topological version of Galois the-
ory enables one to strengthen the classical results on unsolvability of equations in
explicit form.
The monodromy group of an algebraic function coincides with the Galois group

of the corresponding Galois extension of the field of rational functions (see 5.1.2).
Therefore, by Galois theory, 1) an algebraic function can be expressed by radicals
if and only if its monodromy group is solvable; 2) an algebraic function can be
expressed in terms of rational functions by using radicals and solutions of algebraic
equations of degree k if and only if the monodromy group of this function is
k-solvable.
Our results (see 5.5.2) imply the following assertion.

Corollary 6.24. 1) If the monodromy group of an algebraic equation over the
field of rational functions is not solvable, then the solution of this equation does
not belong to the class of functions representable by single-valued S-functions and
quadratures.
2) If the monodromy group of an algebraic equation is not k-solvable, then the

solution of this equation does not belong to the class of functions representable by
single-valued S-functions and k-quadratures.
One can similarly strengthen the results on unsolvability in explicit form pre-

sented in 6.1.1, 6.1.3, and 6.2.3.

Corollary 6.25. If the monodromy group of a linear differential equation over the
field of rational functions is not solvable (not k-solvable, not almost solvable), then
a generic solution of the equation does not belong to the class of functions repre-
sentable by single-valued S-functions and quadratures (k-quadratures, generalized
quadratures, respectively).

Corollary 6.26. If the monodromy group of a system of linear differential equa-
tions over the field of rational functions is not solvable (not k-solvable, not almost
solvable), then at least one component of almost every solution does not belong to
the class of functions representable by single-valued S-functions and quadratures
(k-quadratures, generalized quadratures, respectively).
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Corollary 6.27. If a system of Fuchsian differential equations with small coeffi-
cients is not triangular, then at least one of the components of almost every solution
does not belong to the class of functions representable by single-valued S-functions
and quadratures (k-quadratures, generalized quadratures, respectively).
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R. Thom, ENS Éditions, Fontenay–St Cloud 1994, pp. 411–417.
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