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ON SOLVABLE GROUPS OF FINITE MORLEY RANK 

ALI NESIN 

ABSTRACT. We investigate solvable groups of finite Morley rank. We find condi-
tions on G for G' to split in G. In particular, if G' is abelian and Z(G) = I 
we prove that G = G' )q T for some T and the ring Z[T]I ann G' is in-
tepretable in G. We exploit the methods used in proving these results to find 
more information about solvable groups. 

1. INTRODUCTION 

The concept of Morley rank was introduced by Morley in 1965 [Mo]. Roughly 
speaking, in a structure of finite Morley rank every definable subset of endowed 
with two integers: the Morley rank and the Morley degree. The first number 
behaves like the dimension and the second one like the number of irreducible 
components of constructible sets of algebraic geometry (see, e.g., [Sp] for the 
definition of a constructible set). [La, Pi, Pol, P02] give a detailed treatment 
of structures of finite Morley rank. In [ThI] and [NeI], the reader may find a 
faster introduction to the subject as far as groups are concerned. 

In the 1970s, Cherlin and Zil'ber independently discovered that groups of 
finite Morley rank behave like geometric groups and in view of Macintyre's 
result (infinite fields of finite Morley rank are algebraically closed) they made 
the following conjecture: 

Conjecture. Infinite simple groups of finite Morley rank are algebraic groups 
over algebraically closed fields. 

We are still far away from proving this conjecture. But considerable progress 
has been made in the last few years. First of all, Thomas proved the conjecture 
for locally finite groups using the classification of finite simple groups [Th2]. 
Second, Zil'ber showed that these groups look very much like algebraic groups 
[Zi2]. In §3 we will give a partial list of his results. 

In an algebraic group a Borel subgroup is a maximal (algebraically) connected 
solvable subgroup. Borel subgroups playa very important role in the study of 
algebraic groups. Similarly, one may define a Borel subgroup of a group of finite 
Morley rank as a maximal (model theotically) connected solvable subgroup and 
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expect that one day they will be important in solving the above conjecture. We 
can justify our faith by saying that we know more about solvable groups of finite 
Morley rank than about simple groups (unless they are nilpotent, but Borels are 
supposed to be centerless). In this article we investigate these solvable groups 
and in the particular case where the group is solvable of class 2 we show strong 
resemblances with algebraic groups. 

This paper may be seen as a sequel to [Ne2]. But it is self-contained. 
In §2 we fix our group theoretical notation. We also state some basic theorems 

to refresh the model theorist's memory. 
In §3 we do the same for model theory of groups. In that section we state 

some known facts that will be used in later sections. 
In §4 we define the socle of a solvable group and investigate its basic proper-

ties; in particular, we look closely at the action of the group on its socle. This 
action was completely described in [Ne2]. We survey the results here. 

In §5 we prepare the inductive step to prove two theorems and we prove 
them: 

Theorem 1. If G is a connected, solvable group of class 2 and of finite Morley 
rank and if G' n Z (G) = 1 , then there is a definable subgroup T of G for which 

G=G'><lT. 

Theorem 2. If G is a connected, solvable group of finite Morley rank and if for 
some g E G, CG,(g) = 1, then there is a definable subgroup T of G for which 

G=G'><lT. 

We give several examples to illustrate the theorems and Example 7 shows 
that the supplementary hypotheses of these two theorems (G' n Z (G) = 1 and 
CG, (g) = 1) are crucial. 

In the next section we investigate in detail solvable groups of class 2. We 
imbed each connected, centerless, solvable group of class 2 of finite Morley 
rank in another group with the same properties (Theorem 3). But this bigger 
group looks more like an algebraic group than the one we started with. We call 
it the full group of G and denote it by G. Then we look at G more attentively. 
We prove the following. 

Theorem 4. G = EB~=l G~ ><l R; where G' = EB~=l G~ and each G; is a definable 
normal subgroup of G, Ri is a connected, local, Artinian and Noetherian ring 
with identity and of finite Morley rank. 

There is a complete classification of these rings (see Cohen [Co], also [Sa]). 
The next theorem gives a smaller imbedding of G. 
In §7, we define the Fitting subgroup of a group of finite Morley rank as 

being the maximal connected nilpotent normal subgroup. The main result of 
this section is the following theorem. 

Theorem 6. Let G be a solvable connected group of finite Morley rank. If F is 
the Fitting subgroup of G, then G / F is a divisible group. 
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In §8 we look at the Fitting subgroup F of a centerless, connected solvable 
algebraic group. We show that the unipotent subgroup U is definable (Theorem 
7) and if the language is the pure language of groups then U = F. This result 
is proved with Anand Pillay. 

In the final section we show that if G is a connected, centerless, solvable 
group of finite Morley rank whose definable connected proper subgroups are 
nilpotent, then G = k ~ T where T < k * and k is an algebraically closed 
field (Theorem 7). This generalizes Cherlin's classification of centerless groups 
of Morley rank 2 (see [Ch]). We hope this result will be helpful in proofs by 
induction. 

2. GROUP THEORETICAL AND ALGEBRAIC BACKGROUND 

G will always stand for a group. We will denote its identity element by 
I. Z (G) stands for its center. If H is a subgroup of G we write H < G. 
If H is normal in G then we denote this fact by H <J G. If x, h E G 
then xh = h-Ixh. Clearly (xh)g = x hg . If n EN, x nh means (xn)h or 
(xh)n. If X ~ G, H < G and if for all x EX, h E H, Xh EX, then 
we will say that X is H -normal. [x, h] stands for x -I h -I X h. If X is an 
abelian subgroup which is normalized by H then [xy, h] = [x, h][y, h] for 
all x, y EX, all hE H. [X, H] denotes the subgroup of G generated by the 
set {[x, h] : x EX, hE H}. The subgroups d, GU) are defined inductively. 

GO = dO) = G, 

Gi+1 = [G, d], 
GU+ I ) = [GU) , GU)l. 

These subgroups are normal. We have d = dl) = [G, G]. We denote it by 
G'. G' is called the derived subgroup of G. It is the smallest subgroup H of 
G for which G / H is abelian. Any subgroup of G that contains G' is normal. 
We have d+ 1 ~ d and G(i+I) ~ G(i). A group G is said to be solvable if 
GU) = I for some i. If i happens to be the least integer for which G(i) = I , 
then G is called solvable of class i. If G is solvable then G i= G'. A group 
G is said to be nilpotent if d = I for some i. Define the ith center of G, 
Zi( G) , by induction on i. 

Zo = Zo(G) = {I}, 
Zi+1 = Zi+1 (G) = {g E G: [G, g] ~ Zi(G)}. 

Then Zi(G) <J G, Zi ~ Zi+1 ' and 

Zi+I/Zi = Z(G/Zi )· 

G is nilpotent iff Zi(G) = G for some i. Thus a nilpotent group has nontrivial 
center. Every nontrivial normal subgroup of a nilpotent group intersects the 
center nontrivially. Subgroups and quotients of nilpotent (resp. solvable) groups 
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are nilpotent (resp. solvable). If Hand G I H are solvable then so is G (here 
H <l G). Upper triangular matrices with nonzero determinant form a solvable 
group which is not nilpotent. Strictly upper-triangular matrices (1 's on the 
diagonal) form a nilpotent group. 

If A <l H are subgroups of a group G, then (HIA)' = H'AIA. 
If X, Y ~ G then we denote by XY the subset XY = {xy: x EX, Y E Y}. 
If (Xi)iEI are subsets of G, (Xi liE I) denotes the group generated by 

all the X/so It is the smallest subgroup of G containing Ui Xi' If I is a 
finite set {I, ... , n}, we write (XI' ... , Xn)' If H <l G, K < G, then 
(H, K) = {hk I hE H, k E K}. We denote it by HK. If K <l G also (and H 
and K are nilpotent) then HK <l G (and HK is nilpotent). 

We say that a group G is the semidirect product of two subgroups Hand 
K if 

(i) H <l G, 
(ii) G = HK, 

(iii) HnK={I}. 
In this case every element of g can be written uniquely as hk, for h E H, 
k E K. We write G = H ~ K if G is the semidirect product of Hand K (in 
that order). If G = H ~ K then we have a homomorhism 

rp : K --+ AutH 

given by 
rp(k)(h) = h 

k- I 

We say that a group K acts on a group H if a homomorphism 

rp : K --+ AutH 

is given. In that case we can construct a group G which is isomorphic to H ~ K 
as follows. We define 

G=HxK 

as a set. The product is defined as follows: 

(h, k)(h' , k') = (h . rp(k)h' , kk') . 

It is easy to check that G is a group and it is the semidirect product of H x { I } 
and {I} x K . The best way to visualize G is as follows: think of G as the set 

{(~ ~):kEK,hEH} 

and the multiplication as the matrix multiplication (kh' meaning rp(k)h'). If 
H = e , K = k\{O} where k is a field, we obtain the affine group in this way. 
In this case the action is multiplication: 

rp().)a = ).a 

for)' E k* , a E k . 
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If G = H ~ K for some subgroup K, we say that H splits in G. If Hand 
K are abelian then G is solvable of class at most 2. 

If G is a solvable, (algebraically) connected linear algebraic group then G 
is conjugate to upper-triangular matrices (Lie-Kolchin theorem; see, e.g., [Sp], 
Chapter 6). Suppose G is in upper-triangular form. Then the set of strictly 
upper-triangular matrices of G is denoted by U. V is called the unipotent 
subgroup (or radical) of G. It is clearly a normal subgroup of G. V is 
nilpotent and it contains G'. V is a connected subgroup of G. The set of 
diagonalizable matrices of G contains a closed connected subgroup T which 
is maximal for these properties. It is called a maximal torus. One has 

G=U~T. 

If H ~ K are subgroups of G, [K: H] will denote the index of H in K, 
i.e., [K: H] = Card(KjH). 

If H, K are subgroups of G, CH(K) will mean the centralizer of K in 
H, i.e., CH(K) = {h E H : hk = kh for all k E K}. CH(K) is a subgroup of 
G. If K and H are normal in G then so is CH(K). 

If R is a ring, I an ideal of R, we write I <l R. R* stands for the set of 
invertible elements of R. It is a group under multiplication. 

Z[G] denotes the group ring of Gover Z. It is defined as the formal set 

{t nigi : kEN, ni E Z, gi E G} 
1=1 

with the obvious addition and multiplication. If G is an Abelian group act-
ing on another abelian group A, then we can extend this action to Z[ G] by 
(denoting A additively) 

(I: nigi)(a) = I: nigia 

where gia is the element of A which is the result of the gi action on a. If 
). = 2: nigi , the length of ). is /().) = 2: Inil· 

Let M be an R-module. Let X ~ M. Then the annihilator of X in R is 

ann X = ann R X = {r E R I r X = O} . 

This is a left-ideal of R. If X is a submodule then ann X <l R. Then X 
becomes an Rj ann X-module in the obvious way. 

An ideal I of a ring R is said to be nilpotent if for some integer n, In = 0 , 
i.e., if for any Xl ' ... , Xn E I we have Xl ... Xn = O. 

A commutative ring R with identity is local if it has a unique maximal ideal 
M. Then R\M = R* and Rj M is a field. 

If I <l R, In denotes the ideal generated by Xl ... xn for all Xl' ... , Xn E I. 
Clearly 
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ZpOO denotes the Priifer group, i.e., 

Zpoo = {z E C : ~n = 1 for some n} . 

3. MODEL THEORY OF GROUPS. BACKGROUND 

If M is a structure for a language .2', by a definable subset of M we will 
mean a subset which is first-order definable using parameters from M. 

Let G be a group of finite Morley rank. So to each definable subset X of 
G we attached two integers: rand d. r will be called the (Morley) rank, d 
the (Morley) degree of X. We will write rkX = r, degX = d. 

If H ~ K are definable subsets of G then rk H ~ rk K. If they have 
the same rank then deg H ~ deg K. If Hand K are also subgroups and if 
rkH = rkK, then degK = [K : H] degH. In particular, K = H iff rkK = 
rkH, degK = degH. This shows that a group of finite Morley rank satisfies 
descending chain condition on definable subgroups. This has an important 
consequence: if H is a definable subgroup then 

HO = n{ K : K < G, K definable, K ~ H, [H : K] < oo} 

is the intersection of finitely many such subgroups, thus has finite index in H. 
HO is called the connected component of H. It is the smallest subgroup of 
H which is definable and has finite index in H. In other words, HO has no 
definable proper subgroups of finite index, and it is the biggest such definable 
subgroup of G. If H <l G, then HO <l G also. Cherlin [Ch] proved that 
degH is exactly [H: HO]. Thus degHO = 1. H is connected iff degH = 1, 
equivalently if H = HO . The sentence "H is connected" will always mean "H 
is definable and connected." 

If K <l H are definable subgroups and if K and H / K are connected then 
H is connected. If H <l G is definable and infinite then rk G > rk G / H . 
Definable subgroups of G/ H (in the G-Ianguage) are of the form K/ H where 
K is a definable subgroup of G containing H. 

We will now list some of the known facts that we will repeatedly use in the 
sequel. The proof of most of them can be found in [Po2]. Several of them are 
proved in more generality. 

Fact 1 (Macintyre [B.Ch.Mac]). Let G be a group of finite Morley rank. Let 
H be a connected subgroup of G. Then: any finite, H -normal subset of G is 
in the centralizer of H. 

Fact 2 (Zil/ber [Z2]). Let Ai< G be a family of connected subgroups of a 
group G of finite Morley rank. Then the subgroup 

H = (Ai: i E /) 

is connected. In fact, for some ii' ... , in E / 

H=A. ···A .. 'I In 
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If each A; is Abelian and they commute with each other (i.e., if H is Abelian), 
we may denote the m1:lltiplication in H additively and write 

Fact 3 (Zil/ber [Zi2]). Let G be a group of finite Morley rank. Let H < G be 
a connected subgroup of G. If X ~ G is any subset of G then the subgroup 
[H ,X] is connected. 

Fact 4 (Zil/ber [Zi2]). If G is a connected group of finite Morley rank then d , 
G(i) are connected. 

Fact 5 (Zil/ber [Zil]jNesin [Ne2]). Let G be a connected solvable group of 
finite Morley rank. Then G/ is nilpotent (and connected by Fact 4). 

Fact 6 (Macintyre [Mac2]). An infinite field of finite Morley rank is an alge-
braically closed field. It is also connected. 

Fact 7 (Macintrye [Mac1 D. An Abelian group G of finite Morley rank is of the 
form 

G=DffiB 

where D is a divisible subgroup and B is a subgroup of bounded exponent. 
Furthermore, for a given integer n, D has only finitely many elements of order 
n. 

Fact 8 (Zil/ber [Zi3]; see also [P02 or Ta]). Let G be a group of finite Morley 
rank. Let H < G be an arbitrary subgroup of G. Denote by H the smallest 
definable subgroup of G containing H. If H is nilpotent (resp. solvable) then 
so is H. 

Recall that an element e E R of a ring R is idempotent if e i: 0 and 
e2 = e. An idempotent is atomic if for any other idempotent f, either e f = 0 
or ef = e. 

Fact 9 (Cherlin-Reineke [Ch-R]). Let R be a commutative ring of finite Morley 
rank with an identity. Then R has finitely many atomic idempotents, say 
e1 , ••• , en . These idempotents give rise to a canonical decomposition of R (as 
a ring): 

R = Re I ffi ... ffi Re n . 

Each R; = Re; is a local noetherian ring with definable nilpotent maximal 
ideal M;. M;n jM;n+l is a finite-dimensional vector space over R;!M;. If R; 
is infinite then R;!M; is an algebraically closed field (by Fact 6). 

4. THE SOCLE 

For the rest of the article, unless otherwise stated, we assume that G is a 
connected, solvable group of finite Morley rank in which Z (G) n G/ = 1. In 
particular, G is not nilpotent. Normal and definable subgroups of G which are 
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minimal for these properties will be called G-minimal subgroups. An infinite 
G-minimal subgroup is necessarily connected. If it is finite it must be central 
by Fact 1. Thus finite ones intersect G' trivially. For infinite ones: either they 
are in G' or they intersect G' trivially. In the latter case they are central. 

Let S = SI (G) be the subgroup generated by all the G-minimal subgroups 
of G'. S will be called the socle of G. It is clearly a G-normal subgroup of 
G'. 

Proposition 1. S = Al EEl··· EEl An for some G-minimal subgroups Ai of G' . In 
particular, S is definable and connected. Furthermore S ~ Z(G'). 
Proof. By definition of the socle we have S = (Ai: Ai a G-minimal subgroup 
of G'). Since each Ai is infinite (if not Ai ~ Z(G)nG' = 1) they are connected 
(if not A~ <J G and A~ rt AJ. Since G' is nilpotent (Fact 5) Z(G') n Ai =f. 1. 
Ai being G-minimal, this forces Ai to be in Z(G'). Thus S ~ Z(G'). Now 
we apply Fact 2, to get 

(1) 

for some G-minimal A/s. For i = 2, ... , n, consider the subgroup 

Ain(AI +.·.+Ai_ I)· 

It is definable and normal. Since Ai is G-minimal either Ai cAl + ... +Ai_ l , 
in which case we may delete Ai from (1), or Ain(AI + .. ·+Ai_ l ) = 1. Starting 
from i = 2 and deleting unnecessary A/s we get a direct sum. 0 

We now fix our notation. For the rest of the article we will write 

(2) 

where each Ai IS a G-minimal subgroup in Z(G'). 

Lemma 2. Any nontrivial G-normal subgroup of G' intersects S nontrivial/yo 
Proof. Let X be such a subgroup. Then the subgroup [G, Xl is connected 
by Fact 3. Since X <J G, [G, Xl ~ X. Also [G, Xl =f. 1 because if not 
X ~ G' n Z (G) = 1. Thus [G, Xl contains a G-minimal subgroup A which 
must be in S. Thus A ~ S n X. 0 

Let us show by an example that even if G' is abelian S may be different 
from G'. 

Example 1. Let K be an algebraically closed field. Let 

2 * G = (K x K) ~ (K[x]/x ) 

where the action of K[x]/x2 on K x K is given by 

(0 + px)(a, b) = (oa, pa + ob), 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON SOLVABLE GROUPS OF FINITE MORLEY RANK 667 

for 0: + fix E K[x], (a, b) E K x K. G is an algebraic group. A matrix 
representation of G is 

G~{(~ ~ 1 n :o,p,a,bEK, o~o} 
Z (G) = 1, G' = K x K , the socle of G is 0 x K . 

Zil'ber proved in [Zi2] that each Ai is isomorphic to the additive group 
(Fi , +) of an algebraically closed field Fi • He also obtained the multiplication 
of Fi in G. We will now summarize the construction of the field (Fi , +, .) . 

Ai is a normal abelian subgroup of G. Thus G acts on Ai by conjugation. 
We can extend this action to the group ring Z[G] by 

(3) 

for I: nigi E Z[G], a E Ai. Since Ai is abelian, the order of multiplication 
in formula (3) is not important. Now Ai becomes a Z[G]-module. Since Ai 
is G-minimal, Ai is an irreducible Z[G]-module. Let us divide Z[G] by the 
annihilator of Ai. Thus Ai is an irreducible, faithful Z[G]/ Ann Ai-module. 
Set 

(4) Fi = Z[G]/ Ann Ai. 

F; is a commutative ring with 1. By Schur's lemma Fi has no O-divisors. In 
fact, if A E Fi , Ker A = {a E Ai: Aa = O} is a G-normal subgroup of Ai. Thus 
if A i- 0, Ker A is finite thus O. Therefore each A E Fi \ {O} is an automorphism 
of Ai and is determined uniquely by Aa for a fixed a E Ai \ {O}. Zil'ber proved 
that Fi is an interpretable field in G. More precisely, he proved that for some 
fixed integer ki , any A E Fi has a representative Il in Z[ G] of length ::; k i 
(we remind the reader that the length of Il = I: nigi E Z[G], 1(1l), is I: Inil) . 
Thus by Fact 6, Fi is an algebraically closed field. In the sequel, the phrase "by 
Zil'ber" will refer to the above result. 

Since for a E Ai\{O}, Fia is a definable G-normal subgroup of Ai' we have 
Fia = Ai. Since AnnF a = 0 we have 

I 

(Fi , +) ~ Ai· 

Clearly G/CG(A) imbeds in F;* and generates Fi additively. The conjecture 
is that G/CG(Ai) = Ft . This is saying that the fixed integer ki is 1. 

Now we give three examples to illustrate Zil'ber's method of finding the field. 
The examples will show that the construction may give rise to a field even if the 
group is unstable. 
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Example 2. This is the easiest example to check Zil'ber's construction; let K 
be any field and define 

G = K ~ K* = { (~ ~): a E K, b E K* } . 

Then 

Ai = S = G' = { (~ ~): a E K} . 

Thus n = 1. If T is the set of diagonal matrices we have T:::: K*. In this 
example the integer k is 1. G is w-stable iff K is algebraically closed, in 
which case the Morley rank of G is 2 (assuming the language is {', -I , id}) . 

Example 3. Let H = {pe21liU : p E R* , (J E Q}. H is a subgroup of (C* , .) 
Notice that R* , iR* ~ H. Thus any element of C can be written (not uniquely) 
as a sum of two elements of H. How consider the group 

G=C~H= {(~ ~) :aEC, hEH}. 

Again Ai = S = G' :::: C, n = 1. But now the integer k is 2. However, G can 
be shown not to have finite Morley rank. It is even unstable (one can define the 
field R), as James Loveys and David Marker have recently shown. 

Example 4. Let SI be the unit circle in C, i.e., 
I S = {P E C: IPI = I}. 

Then Sl < (C,·) and every element of C can be written as a sum of finitely 
many elements of Sl . But there is no bound in the number of elements of Sl 
that we need to sum in order to get C. Define 

G = { (~ ;): a E C, P E Sl } :::: C ~ Sl . 

If we do Zil'ber's construction we find Ai = S = G' , thus n = 1, but now 
k = 00. Thus G does not have finite Morley rank. In this case one can 
prove that G is unstable by interpreting the field R in G. Recently Marker 
generalized this result [Ma]. 

Above we explained G-actions on G-minimal subgroups. We may also look 
at the G-action on S = AI E9 ... E9 An' We know that if we restrict thedaction to 
any of the G-minimal subgroups Ai we find a field. But it may be that these 
restricted actions on Ai are not independent. In [Ne2] we found all possible 
actions of G on S. We will now explain this result. 

We extend the action of G' on S to Z[G] as in (3). Now S becomes a 
Z[G]j AnnS-module. Let 
(5) F = Z[G]/ annS. 
F also acts on each Ai' We clearly have natural isomorphisms 

(6) F j annF Ai:::: Fi . 
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But this is not enough to conclude that F is interpretable in G. We proved 
in [Ne2] that F is interpretable anyway. We need some notation before going 
further. Let 

(7) 

Since F / Mi ~ Fi and Fi is a field, Mi is a maximal ideal of F. Define an 
equivalence relation on the index set {1, ... , n} by 

(8) i rv j <=> Mi = M j <=> Mi ~ M j . 

thus if i rv j then Fi = Fj . (The reader should be aware that this is an 
equality, more than an isomorphism.) Furthermore, in this case Fi acts on 
Ai EB Aj by scalar multiplication; i.e., for (ai' a), (a;, a~) in Ai EB Aj' for 
A E F, A(ai , a) = (a;, a~) iff for some Ii E Fi = Fj we have a; = liai , , 
aj = liaj . 

On the other hand, if i 'i- j then F acts on Ai EB Aj "as freely as possible"; 
i.e., for (ai' a), (a;, a~) E Ai EB Aj , there is a A E P for which A(ai , a) = 

(a;, a~) iff for some Iii E Fi' lij E Fj 

In other words, 

i rv j <=> F / ann(Ai EB Aj) ~ Fi = Fj' 

if j <=> F / ann(Ai EB A) ~ Fi X Fj . 

Let us give examples of both cases. 

Example 5. Let G = (K x K) ~ K* where a E K* acts on K x K by 
2 a(a, b) = (aa, a b). 

Then G is an algebraic group. It is connected, solvable, and centerless. G' = 
K x K, S = G', n = 2, AI = K x {O}, A2 = {O} x K, FI ~ K ~ F2. Let 
us find F . Let us first suppose that char K :f. 2. Let i E K be an element for 
which P = -1. Imbed K* in G and Z[K*] in Z[G]. Consider the element 
(i) + (1) of Z[ G] (which is different from the element (1 + i) E K of Z[ GJ) . 
If (a, b) E K x K then 

((i) + (1))(a, b) = i(a, b) + 1(a, b) = (ia, -b) + (a, b) = «1 + i)a, 0). 

Thus (i) + (1) acts as the 0 endomorphism on A2 = {O} x K but not on AI' 
Next consider the element (1)+(-1) of Z[G]. If (a,b)EKxK then 

«1) + (-1))(a, b) = 1(a, b) + (-1)(a, b) = (a, b) + (-a, b) = (0, 2b). 

Thus (1) + ( -1) acts as the 0 endomorphism on A I but not on A2 . Therefore 
in this case we have two equivalence classes. By using these two endomorph isms 
it is easy to show that F ~ K x K and it acts on S = K x K componentwise. 
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If Char K = 2, then G is isomorphic to the group described in the next 
example. 

Example 6. Let G = (K x K) ~ K* with the following action: 

o:(a, b) = (o:a, o:b) 

for 0: E K* , (a, b) E K x K. We have S = G' = K x K, n = 2, AI = {O} x K, 
A2 = K x {O}. FI ~ K ~ F2. But in this case F ~ K also (because we have 
only one equivalence class). 

In [Ne2] we showed that these two examples are essentially the only possible 
actions of Z[ G] on S. Let us make this more precise. 

We first reindex 

(9) 

in such a way that if 

( 10) 

then 

(11 ) 

and 

( 12) 

In other words, we assemble in a block all the A;'s which have the same an-
nihilators in Z[G]. Thus (with the conventions (11) and (12)), Ann(Ai) = 
Ann(Bi) = Mi' Now Fi acts on Bi and Bi becomes a vector space over Fi . 

Fact (see [Ne2], claims 8, 9, and 10). 
(A) Let a = (ail' ... , aim)' a' = (a;1 ' ... ,a;m) be two elements of Bi . 

Then there is apE F for ~hich pa = a' iff th~re is ayE Fi for which 
yaij = a;j for all j = 1, ... , mi' 

(B) Let b = (b l , ... , b,), b' = (b l , ... , b;) E S with bi , b; E Bi . Then 
there is apE F for which Pb = b' iff there are Yi E Fi (i = 1, ... ,/) for 
which Yibi = b; for all i = 1 , ... , / . 

(C) There is an integer k such that any P E F has a representative Y E Z[G] 
of length :::; k. In other words, the ring F is interpretable in G. 

Facts A and B say that F ~ FI X ... x F,. We can state these two facts in 
one compact form: 

(D) S ~ F* = EB~=I (Bi ~ Ft) and 
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In particular, each group Bi )q Ft is an algebraic group over an algebraically 
closed field. 

Next, we state some immediate consequences of Facts A, B, C, and D. 

Lemma 3. Every G-normal subgroup of S is definable and connected. 
Proof. Since F = FI X ... x Fi and each Fi is connected (Fact 6), F is a 
connected ring. 

Now let U be a G-normal subgroup of S. Let x E U. Clearly F x ~ 
F / annF(x). Thus Fx is a definable connected subgroup. Since F has an 
identity element, x E F x. Thus 

U=(FX:XEU). 

By Fact 2, U is definable and connected. 0 

Lemma 4. S is a completely reducible F -module. 
Proof. Let U be an F -submodule of S. In particular, U is G-normal. Thus 
by Lemma 3, it is definable. We will find a complement V to U in S. If for 
all G-minimal A, A <; U, then there is nothing to do, because then U = S, 
V={O}. If not, for some G-minimal A, AnU={O}. Thus (U,A)=U$A. 
Since rk(S/U $ A) is strictly less than rk(S/U), by induction, U $ A has a 
complement in S. 0 

In §6 we will generalize Lemma 3 to G' in case G' is abelian (see Corollary 
19). 

5. SPLITTING G' 

The purpose of this section is to prove Theorems 1 and 2 stated in the Intro-
duction. We keep the same hypothesis about G: it is connected, solvable, has 
finite Morley rank, and G' n Z (G) = 1 . We will use the notation of §4. 

Lemma 5. Suppose G is wI-saturated. Then there is an element g E G whose 
order modulo each CG(Ai) is infinite. 
Proof. If the lemma does not hold then for all g E G there is an integer 
p = p(g) such that gP E U;=I CG(Ai). Since G is saturated the same integer 
p will work for all g E G. Thus gP E U;=I CG(A) for all g E G. Let 

G i = {g : gP E CG(Ai)} . 

Thus 
G=Glu···uGn • 

Therefore rk G = rk Gi for some i. But Gi is a subgroup (because G' <; 
CG(A) <; Gi and G/CG(A) is abelian). Since G is connected G = Gi . But 
then G/CG(Ai) is a group of exponent p. Also G/CG(Ai) < Fi*' Since Fi 
is a field it has finitely many elements of order p. Hence G/CG(Ai ) is finite. 
G being connected, this implies G = CG(A) , i.e., Ai <; G' n Z(G) = 1, a 
contradiction. This proves the lemma. 0 
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Remark. Since CG(Ai ) t- G and G is connected, G t- U7=1 CG(A). So it is 
easy to find a g not in any of the centralizers. Lemma 6 says that, if G is 
wI-saturated, we can find agE G\ U7=1 CG(Ai ) with the property that gP ~ 
CG(A) for any i = 1 , ... , n , any p ~ 1 . 

Lemma 6. Let g E G\U: I CG(Ai ). Then Cs(g) = 1. 
Proof· Since S = E97=1 Ai and Ai <l G, we have Cs(g) = E97=1 CA(g). Thus 
we just need to show that CA(g) = 1. We will show that CA(g) ~ G. Since 
Ai is G-minimal this will imply that either CA(g) = Ai or CA(g) = 1. But 
C A (g) = Ai means g E C G (A i), which contr~dicts the choice' of g. So let 
us'show CA (g) <l G. Let a E CA (g), h E G. Since by Proposition 1 G' ~ 
CG(Ai ) we have ' 

h gh hg 
a =a =a 

Thus ah E CA(g) and we are done. 0 , 
From now on we fix such a g. 
We would like to be able to do induction on the rank of G. But if G = G / S 

we may have Z (G) n d t- 1. This will keep us away from the hypothesis. Let - - -, us consider Z (G) and see what conditions we need on G for Z (G) n G to be 
the trivial subgroup of G. Let 

X = {x E d I [G, x] ~ S} . 

Then X is a G-normal definable subgroup of G' containing S. In fact, 

XIS = (G/S)' n Z(G/S). 

(Recall that (G/S)' = G'S/S = G'/S.) 

Lemma 7. X = S EB Cx(g). 

Proof. Since S ~ Z (G') and C x(g) ~ G' the additive notation EB makes sense. 
We will switch from multiplicative to additive notation without any comment. 

Clearly, S + Cx(g) ~ X. By Lemma 6, S + Cx(g) = S EB Cx(g). 
Conversely, let x EX. Then by definition of X, [g, x] E S. On the other 

hand, by the previous lemma Cs(g) = 1; thus the group homomorphism 

g:S-S 

defined by 
g(s) = [g, s] 

is an automorphism. Thus 
[g, x] = [g, s] 

for some s E S, i.e., 
-I 

S x E Cx(g) 

for some s E S. Hence x = SS-I X E S EB Cx(g). This proves the lemma. 0 
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Lemma 8. If Cx(g) <I G' then Cx(g) = 1. 

Proof. We will prove that C x(g) <I G' implies C x(g) <I G. This will prove the 
lemma in view of Lemmas 2 and 6. Let c E C x(g), hE G. Since [h, g] E G' , 
by the definition of X, 

[c, [h, g]] E Cx(g) nS = 1. 

Thus 
hg gh h 

C =c =c 

This shows that ch E C x (g). Since this is true for all C E C x (g), h E G, we 
have Cx(g) <I G. 0 

Corollary 9. If G is solvable of class 2 then Z ( GIS) n (GIS') = 1 . 
Proof. By hypothesis G' is abelian. So Cx(g) <I G' . By Lemma 8, Cx(g) = 1. 
By Lemma 7, X=S. Since 1 = XIS = Z(GIS)nG'IS, we have the lemma. 0 

Lemma 10. Iffor some t E G, CG,(t) = 1, then Ccr(t)' = 1 where G = GIS. 

Proof. Let Y = {y E G' : [y, t] E S}. Y is a definable subgroup of G. In fact 

YIS = ec;,(t). 

Let y E. Y . So [y, t] E S. On the other hand, 

Cs(t) ~ CG,(t) = 1 ; 

thus the homomorphism 1 defined by 

l:S-S, l(s) = [s, t] 

is in fact an automorphism. Therefore for some sET 

[y, t] = [s, tJ, 

i.e., S-Iy E CG,(t) = 1, so s = y. This shows that Y = S, so Cc;,(t) = 1. 0 

We next show that in order to split G' in G, it is enough to split (GIS)' in 
GIS. We say that G' splits definably in G if there is a definable subgroup T 
for which G = G' XI T. 

Proposition 11. If (GIS)' splits definably in GIS then G' splits definably in 
G. 
Proof. Suppose GIS = (GIS)' XI (TIS) for some definable subgroup T con-
taining S. Since (GIS)' = G' I S we have 

(i) G=G'T, 
(ii) G' n T = S. 

We will split S definably in T. More specifically, we will show that 
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for some t in T. Let t be an element of T for which Cs(t) = 1 (we know 
there is such an element in G; by (i) we may take it in T). As in the proof of 
Lemma 10 we have 

S = {[s, t] : s E S} . 
Let tl E T be any element. Then 

[t l , t] E T' ~ G' n T = S. 

Thus [t l , t] E S. So for some s E S 

[tl' t] = [s, t], 

i.e., for some s E S, S-I t , E CT(t). Now we can write 
-I 

tl =ss tl 

Clearly 
S n CT(t) = Cs(t) = I . 

This proves the proposition, becuase now G = G' ~ CT(t). 0 

We can now prove the first two theorems stated in the introduction. 

Theorem 1. Let G be a connected, solvable group of class S 2 and of finite 
Morley rank in which Z (G) n G' = 1. Then for some definable subgroup T, 
G=G'~T. 

Proof. The theorem easily follows from Corollary 9 and Proposition 11 by in-
duction on the rank of G. We first split G'IS in GIS (using Corollary 9) and 
apply Proposition 11. 0 

Theorem 2. Let G be a connected, solvable group of finite Morley rank. Assume 
for some t E G, CG/(t) = 1. Then there is a definable subgroup T of G such 
that 

G=G'~T. 

Proof. Using the inductive method of proof on the rank of G, the theorem 
follows from Lemma 10 and Proposition 11. We first split G'IS in GIS (using 
Lemma 10) and apply Proposition 11. 0 

Remark 1. T of the above theorems is necessarily connected. 

Remark 2. Since T' ~ Tn G' = 1, T is Abelain. 

Remark 3. If G is an algebraic group, the subgroup T of the theorems may 
be bigger than a maximal torus; i.e., it may contain unipotent elements. In 
Example 1, e.g., 

2 * T = (K[x]/x ) 
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and the elements of the form 
1 + ax 

of T are unipotent elements. The algebraic torus in this case is the set 
{P + O· x: P E K*}:::::: K*. 

We suspect that if Char K = 0 the torus is not definable. However, it is inter-
pretable as a quotient of G by the maximal nilpotent subgroup (see §8 for the 
definability of this maximal nilpotent subgroup). 

Corollary 12. Suppose G is as in Theorem 1. Assume furthermore that Z (G) = 
1 and G' = S. Then G can be interpretably imbedded in a finite product G of 
interpretable algebraic groups. G has the form of the group S ><I F* described 
in Fact D. 
Proof. Let G = G' ><I T. Since T is an abelian subgroup, CT ( G') commutes 
with T. It obviously commutes with G'. Thus 

CT(G') ~ Z(G) = 1. 
Thus T < F* (notation as in §4). In fact, Z[T]/ annS is naturally isomorphic 
to F . Since G = G' ><I T ~ G' ><I F* , we obtain the corollary from Facts C and 
D. 0 

Remark. Even if G is an algebraic group satisfying the hypothesis of Corollary 
1, G maybe strictly bigger than G. InExample5,e.g., G=(KxK)><I(K*xK*) 
with the componentwise action. 

Conjecture. Any centerless, connected, solvable group of finite Morley rank can 
be intepretably imbedded in a finite product of interpretable, (centerless, con-
nected, solvable), algebraic groups over algebraically closed fields. 

See [E-N] for a partial solution of the Conjecture. 

Corollary 13. Suppose G is as in Theorem 1. Then CG(G') = G'. 

Proof. We have G = G' ><I T. Since G' is abelian, G' ~ CG(G'). Thus 
CG(G') = G' ><I (T n CG(G')). But Tn CG(G') commutes with T (because 
T is abelian). It also commutes with G'; thus CG( G') n T ~ Z (G) = 1 . Hence 
CG(G') = G'. 0 

Let us show by an example that the hypotheses of Theorems 1 and 2 are 
crucial. We would like to thank Xialong Wu for providing the example. 

Example 7. Let G be the subgroup of invertible upper-triangular 6 x 6 matrices 
over a field K with all = a22 = a33 and a44 = a55 = a66 , i.e., 

a 
a * G= a la, bE K* b 

b 
0 b 
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Then G' is the set of strictly-triangular matrices with a l2 = a23 = a45 = 
a56 = 0, i.e., 

1 0 * 
0 1 0 * G'= 0 0 1 

1 0 * 
0 0 1 0 

0 0 
G' has no complement in G (definable or not). This is an example where G' 
is not abelian, CG,(g) f. 1 for all g, and Z(G) n G' = 1. To find a centerless 
counterexample divide G by its center. 

Definition. Let G be a connected solvable group of finite Morley rank in which 
Z (G) n G' = 1 . Assume furthermore that either 

( 1) G' is abelian or 
(2) for some g E G, CG,(g) = 1. 

In Lemmas 9 and 10, we showed that G / S satisfies the same properties; in 
particular Z(G) n G' = 1 where G = G/S. Thus we can define S2 = S2(G) by 

S2/SI = S(G/SI) 
where SI = S. In general we set 

Si+I/Si = S(G/Si ) 

and we call Si the ith socle of G. Since each Si is connected and we have Si ~ 
Si+1 ' for some integer j, Sj = G' . By Corollary 12, if T is a complement of 
G' in G, the group (Si+I/S;),XJ T modulo a subgroup of T imbeds interpretably 
in a product of interpretable algebraic groups (described in Fact D). 

6. SOLVABLE GROUPS OF CLASS 2 

We assume in this section that G is a connected, centerless 2-step solvable 
group of finite Morley rank. Notation is as in the previous sections. S denotes 
the socle of G. We have S = AI EB··· EBAn for G-minimal subgroups Ai. T is 
a complement of G' in G: G = G' ~ T. Z[T]/ ann Ai =}~ is an algebraically 
closed field. Z[ T]/ ann S = F is a ring which is isomorphic to a direct sum of 
some of the F;'s. The group S ~ F* was described in Facts A, B, C, and D. 

We now consider the action of T on G'. Since G' is an Abelian group we 
may make Z[T] act on G'. Let R = Z[T]/ ann G' . Clearly R also acts on S 
and Ai. It should be clear that we have the following canonical isomorphisms: 

R/ annR S ::::::: F, R/ annR Ai ::::::: Fi • 

By Corollary 13, T < R* . Therefore our group G = G' ~ T imbeds naturally 
in G = G' ~ R* . We call G the full group of G. We will show that the group 
G is interpretable in G. Then G will also have finite Morley rank. 

Let us find the full group of some of the examples we gave. 
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In Examples 1, 2, and 6, G = G. 
In Example 3, G ='C )(1 C* = {( b b) : a, b E C, b =rf O} . 
In Example 5, G = (C x C) )(1 (C* x C*) . 

677 

Already E~ample 3 shows that G may look more like an algebraic group than - - -, , G. Clearly G = G and G = G . 
The section is devoted to the proof of the fact that R is interpretable in G. 

By trying to prove this we obtain a lot of information about the action of R on 
G' . 

Lemma 14. Let XES. Then 
(i) Rx = Fx, 

(ii) Rx is a connected normal subgroup of G, 
(iii) Rx is a direct sum of G-minimal subgroups. 

Proof. Since XES and R/ annR S ~ F (naturally), (i) follows. (ii) and (iii) 
are immediate from Lemmas 3 and 4. 0 

Since Si is G-normal, Si is also an R-module. 

Lemma 15. Let x E Si+l' Then 
(i) (Si + RX)/Si is a connected, G/Si-normal subgroup of G' /Si' 

(ii) (Si + RX)/Si is a direct sum of G/S(minimal subgroup of G' /Si' 
Proof. We may proceed as in Lemma 14 (replacing G by G/Si) , if we can 
show that G / Si satisfies the hypothesis of Lemmas 3 and 4. This is done in 
Corollary 9. 0 

Lemma 16. Let x E G'. Then Rx is a connected, G-normal subgroup of G' . 
Proof. We will prove by induction on i that Rx n Si is connected. Since each 
x E G' is in some Si this will prove the first claim of the lemma. The second 
claim is obvious. 

Since 1 E R we have 

(Si_l + (RxnSJ)/Si_1 = (RylyERxnS) 
where y is the image of y in G / Si_1 . By Lemma 15, each Ry is connected. 
By Fact 2, the group generated by these Ry's is connected. Thus 

(Si_1 + (Rx n Si))/Si_1 ~ (Rx n SJ/(Rx n Si_l) 
is connected. But by induction Rx n Si_1 is connected. These easily imply that 
Rx n Si is connected. 0 

The next lemma gives explicitly the definition of Rx (or equivalently of 
R/ annR x). 

Lemma 17. Let x E G'. There is an integer k for which 
Rx = {r(x): r E Z[T] and I(r) ::; k} . 

lIence R/ ann x is an intrepretable ring. 
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Proof. Suppose x E Si\Si_' . Let x E GjSi_' be the image of x. By Fact C, 
for some integer ko' 

Rx = {r(x) : r E Z[T] and /(r) ~ ko}. 

Thus for all r E Z[T] , there is an r' E Z[T] of length ~ ko such that 

r(x) - r' (x) E Rx n Si_' . 

On the other hand, by Fact 2 and Lemma 16, 

Rx n Si_' = (Ry : y E Rx n Si_') = Ry, + ... + Ry u 

for some y, ' ... , Yu E Rx n Si_' . Write Yj = rj(x) , so 

Rx n Si_' = Rr, (x) + ... + Rru(x). 

Thus r(x) - r'(x) ERr, (x) + ... + Rru(x). But rj(x) E Si_' ' so by induction 
(on i) for some integer kj' 

Rrj(x) = {rrj(x) : /(r) ~ kj' r E Z[T]} 

= {s(x) : /(s) ~ kj + /(r) , s E Z[T]} . 

Hence r(x) = r' (x) + s, (x) + ... + sn(x) where r', Sj E Z[T] , /(r') ~ ko' 

/(s) ~ kj+/(r). If r" = r' +s, + .. ·+su we have r(x) = r"(x) and /(r") ~ ko+ 
.. ·+kn +/(r,)+·· .+/(rn). Set k to be the integer ko+·· ·+kn +/(r,)+·· ·+/(rn). 

Since an element r E Rj ann x is uniquely defined by r(x) , the last claim is 
now obvious. 0 

The above lemma does not say that R is interpretable in G. It just states 
that for any x E G', Rj annR x is interpretable in G. We will prove that 
R is indeed interpretable in G. Let us first give an example where G' # 
Rx, EEl··· EEl Rxu for any x, ' ... , Xu E G' . 

Example 8. Let G = (K x K x K) ><I (K[X]jx2)* with the following action: 

(a. + {3x)(a, b, c) = (o.a, o.b, o.c + {3a + {3b). 

Then 

S=OxOxK, 

G'=KxKxK, 

R = K[x]/x2 , 

R( 1 , 0, 0) = K x 0 x K, 
R(O, 1, 0) = 0 x K x K, 

G' = R( 1 , 0, 0) + R(O, 1 , 0) . 

Since dim G' = 3, dim R = 2, there is no x E G' for which Rx = G' . For the 
same reason there are no x, ' x 2 E G' for which G' = Rx, EEl Rx2 • 
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, fi ' Lemma 18. G = RXI + ... + Rxu or some XI' ... ,xu E G . 
Proof. Since 1 E R, G' = (Rx I X E G') . By Fact 2 (using Lemma 16), 

, 
G = RXI + ... + Rxu 

for some XI' ... , Xu E G'. 0 

The next result is an unexpected property of G: 

Corollary 19. Any G-normal subgroup of G' is definable and connected. 

Proof. Let X ~ G' be a G-normal subgroup. Since 1 E R , we have 

X = (Rx I X E X) . 

679 

By Lemma 16, each Rx is connected. So by Fact 2, X is definable and con-
nected. 0 

We say that X E G' is a minimal element (of S) if X E Si\Si_1 and if 
(RX+Si_I)/Si_1 is a G/Si_I-minimal subgroup. Notice that if X is a minimal 
element of Si then (Rx + Si_I)/Si_1 is isomorphic to the additive structure 
of the algebraically closed field R/ Mx where 

Mx = {r E R: r(x) E Si_I}' 

This is -the content of Zil'ber's construction. 
We say that X E G' is a local element if X is minimal and if R/ ann x is a 

local ring. 
By Fact 9 and Lemma 17 if x is a local element then the maximal ideal of 

R/ ann x is definable and nilpotent. Thus R/ annx cannot have a nontrivial 
idempotent. 

Notice that the local elements of SI are exactly the minimal elements of SI . 

Lemma 20. If x E Si \Si_1 is minimal then there is a local element y E Rx 
such that 

(Rx + Si_I)/Si_1 = (Ry + Si_I)/Si_1 . 
Proof. Let R = R/ annx. We know by Lemma 17 that R is interpretable in 
G. Thus it has finite Morley rank. Hence by Fact 9, R = Rei E£) •. - E£) Ret for 
orthogonal atomic idempotents ei E R, each Rej being a local ring. Now we 
can decompose Rx accordingly: 

Rx = Relx E£) ••• E£) Retx. 

Since (Rx + Si_I)/Si_1 is G/Si_I-minimal, all but one of the elements ejx 
are in Si_1 ' say elx ¢: Si_1 . Then 

(Rx + Si_I)/Si_1 = (Relx + Si_I)/Si_l· 

It remains to show that R/ ann(elx) is a local ring. This is the same as 
showing R/ann(elx) is a local ring. But clearly R/ann(elx)::::: Rei. 0 
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Lemma 21. Let x E G' be a local element. Then the maximal ideal of R/ annx 
is Mx/ ann x . Also Mx/ ann x is an interpretable nilpotent ideal. 
Proof. Mx/ annx is certainly a proper ideal of R/ ann x . Since 

(R/ annx)/(Mx/ annx) ~ R/Mx 

and the latter is a field, Mx/ ann x is the maximal ideal of R/ annx . The last 
statement follows from Lemma 17 and Fact 9. 0 

Lemma 22. Let X ~ G' be a G-normal subgroup of G'. Then there are finitely 
many local elements XI' ... , Xu for which X = RXI + ... + Rxu' 
Proof. We prove by induction that X n Si satisfies this property. For i = 1 
the result follows from Lemma 3 (minimal elements of SI are local elements 
of SI also). Similarly, XnS;/XnSi_ 1 = (Rxl +···+Rxu)/Xnsj_1 for some 
minimal elements of Sj. By Lemma 20, we may choose the elements Xj to be 
local elements. Now the lemma follows by induction. 0 

The next lemma is a variant of Nakayama's lemma (see, e.g., [McD]). 

Lemma 23. Let X E G' be a local element. Then 

MJSj nRx) ~ Sj_1 

for all i. Also, for any minimal element y E Rx, Mx = My. Thus any minimal 
element of Rx is also a local element. 
Proof. Let y E Rx be a minimal element. By Fact 9 and Lemma 17 for some 
integer n, M; ~ annx ~ anny ~ My. But My is maximal, thus prime, so 
Mx = My . This proves the second claim. The third claim follows. 

Let y E Sj n Rx. Say y = rox. If y E Sj_1 then MxY ~ Sj_I' Assume 
therefore that y E Sj\Sj_1 . Consider the ideal 

My = {r E R : r(y) E Si_I}' 

Since y f!. Si_1 ' My "I R. Since ann X ~ My and R/ ann x is a local ring, by 
Lemma 21 we have My ~ Mx' Conversely, let r E Mx' Assume r(y) E Si . 
Since 0"1 (Ry + Si_I)/Si_1 is G/Si_l-minimal (because Ry ~ Rx and x is 
minimal), for some s E R 

sr(y) == y(Si_I)' 
But r E Mx ' so rn E ann(x) for some natural number n. Therefore 

rn(y) = rnro(x) = rorn(x) = O. 

But also 
snrn(y) == y(Si_I)' 

Thus y E Si_1 ' a contradiction. This lemma is proved. 0 

Corollary 24. Let x, y E G' be two local elements. IfRx n Ry "I 0 then 
Mx=My' 
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Proof. Let z E Rx n Ry\{O} be a minimal element. Assume z E Si\Si_l. If 
Mx =1= My , then R = Mx + My . Thus 

l=a+p 

for some a E Mx ' P E My. So 

z = a(z) + P(z). 

But by Lemma 23 a(z), P(z) E Si_1 . Hence z E Si_1 ' a contradiction. 0 

Lemma 25. Let x, y E G' be two local elements. Then the following are equiv-
alent: 

(i) annx ~ My; 
(ii) Mx = My; 

(iii) anny ~ Mx. 

Proof. It is enough to show that (i) <=> (ii). (i) => (ii). Since Mxl annx is a 
nilpotent ideal M; ~ ann x ~ My for some n. But My is a prime ideal. Thus 
M; ~ My implies Mx ~ My. Since they are maximal Mx = My . 

(ii) => (i). ann(x) ~ Mx = My. 0 

Now we define an equivalence relation on the set of local elements of G' 
(which is a definable subset, but we do not need this): If x, y E G' are local, 
we say that x is equivalent to y, and we write x '" y, if annx ~ My. By 
Lemma 25 this is an equivalence relation. By Lemma 22, G' = RXI + ... + Rxu 
for some local elements XI' ... , xu. Let us fix these elements once for all and 
restrict our equivalence relation to the set {XI' ... , xu} . 

Let 
R j = n annxi · 

xii-Xj 

Let us assume, for the sake of the simplicity of notation and without loss of 
generality, that XI' ... , Xl are unique representatives of each equivalence class. 
Each R j is an ideal of R. Since we work modulo ann G' , R pRk = 0 if j =1= k . 
We will denote Mx by M j . 

J 

Proposition 26. R = EB~=I R j . 

Proof. Clearly RjRk = 0 if j =1= k. Also, if Xj f x k ' R = Mj + annxk . Thus 

(j =1= k) 

for a jk E Mj' Pjk E ann(xk). Let us first fix j and vary xk over the comple-
ment of the equivalence class of x j • Multiply them: 

1 = IT (a jk + Pjk ) = Yj + c5j 
xki-Xj 
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where "Ij E Mj' J j = I1Xd-Xj Pjk E Rj . Now vary j over the set of equivalence 
classes and multiply then: 

I 

1 = II ("Ij + J) = 11 + 11, + ... + 111 
j=' 

where 11 = "I, ... "II E M, n '" n MI and 11j E Rj . Since each MJ annxj is 
nilpotent if Xi'" Xj , some power of M, n··· n MI is the zero ideal. Let n be 
this power. Then 

1 = (11 + 11, + ... + 111)n = 11n + 'P, + ... + 'Pn = 'P, + ... + 'Pn 

where 'Pj E Rj . Thus R = LRj . Since Rj n LUk Rk = 0 we have 

I 

R=EBR j • 0 
j=' 

'en.! ' Lemma 27. G = Wj=' RjG . 

Proof. Since R = E9~=, Rj' we have G' = L~=, RjG' . Write 1 = e, + ... + el . 

with ej E Rj . Since RjRk = 0 if j i- k we have eiej = 0 if i i- j and e; = 1. 
Let us show that they direct-sum: if 

',", ' Pkxk E RkG n ~RjG 
Uk 

multiplying both sides by 1 = e, + ... + el ' we get 

PkXk = O. 

This proves the lemma. 0 

Notice that by Corollary 19, RG' is definable. But we do not yet know if 
J 

R j is interpretable in G. 

Lemma 28. If x, y E RjG' are minimal elements then Mx = My (i.e., x'" y). 

Proof. Since for the (fixed) local elements x, ' ... ,xu we have 

G' = Rx, + ... + Rxu 

and since RjXi = 0 if Xi f Xj we have 
, 

RjG = Rjxj' + ... + Rjxj/ 

for some xJ" ' ... , xJ"/ E {x, ' ... ,xu} for which Mx = ... = Mx = MJ" . For 
)1 }t 

each i some power of M j is in annxji . Thus for some integer n 
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Now if Z E RjG' then annRjG' ~ M z • Thus 
n 

M j ~ M z · 

If Z is minimal then M z is a prime ideal; thus the above inclusion gives 

M j ~ M z • 

But M j is also a maximal ideal, thus M j = M z • 0 

To prove that R is interpretable, in view of Proposition 26 and Lemma 
27 we need only show that the action of R j on RjG' is interpretable (this is 
saying that R j is interpretable). Thus we may assume for a while that R = Rj' 
G' = RjG' . With these hypot~eses we have the following property: if x, y E G' 
are minimal then Mx = My. We may therefore write M for Mx. Clearly if 
x E G' , then ann x ~ M . 

Lemma 29 (with the above additional hypothesis). R is a local ring with M as 
the maximal ideal. Furthermore, M is nilpotent. 
Proof. Let G' = RXI + ... + Rxu , Xi E G' local, r E R\M. Then for each 
i = 1 , ... , u there is an Si E R for which 

rSi == 1 mod (annx) 
(because RI ann Xi is a local ring with MI ann Xi as its maximal ideal). Thus 

u u II(l- rsi ) E nannxi = anna' = o. 
i=1 i=1 

The left-hand side is of the form 1 - rt . Thus rt = 1 and r is invertible. 
Let us now show that M is nilpotent. Since M I ann Xi is nilpotent, for some 

integer ni , M n, ~ ann Xi . Thus 

i=1 
To prove that R is interpretable we need some more notation. Assume that 

G' = Sf (l E N). Then we know by Lemma 23 that MG' ~ SI_I . Define 

M(i) = {r E R : ra' ~ SI_i}. 

M(i) is an ideal of R. M(i) 2 M(i+ 1), M = M(l), Mi ~ M(i) (by Lemma 
23 again). Since MSI _ i ~ SI_i_1 (Lemmas 22 and 23) we have 

M.M(i) ~ M(i + 1). 

This shows that M(i)/M(i + 1) is a vector space over RIM. We would like 
to show that it is finite dimensional. Since RI ann Xj is an interpretable ring 
(Lemma 17), it is w-stable; thus 

(M(i) + annxjl annx)I(M(i + 1) + annxjl ann x) 

is a finite-dimensional vector space over (R I ann x j) I (M ann x j). Let us record 
this in a nicer form. 
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Lemma 30 (hypothesis as in Lemma 29). M(i)j(M(i + 1) + (M(i) nannx)) is 
a finite-dimensional vector space over Rj M for any x E G' . 
Proof. 

(M(i) + annxj annx)j(M(i + 1) + annxj annx) 
::::= M(i) + annxjM(i + 1) + annx 
= M(i) + M(i + 1) + annxjM(i + 1) + annx 
::::= M(i)jM(i) n (M(i + 1) + annx) 
= M(i)jM(i + 1) + (M(i) n annx) 

with natural isomorphisms. Also 

(Rj annx)j(Mj annx)::::= RjM, 

again with natural isomorphism. The lemma follows from the previous re-
marks. 0 

Lemma 31 (hypothesis as in Lemma 29). M(i)jM(i + 1) is afinite-dimensional 
vector space over RjM. 
Proof. Let G' = RX1 + ... + Rxu be as usual. We first show that 

u 

n(M(i + 1) + (M(i) n ann x)) = M(i + 1). 
j=l 

Let r be in the left-hand side. Thus r = Q j + Pj where Q j E M(i + 1), 
Pj E annxj . Thus 

r(x) = Qj(x). 

But Q j E M(i + 1), so r(x) E Sl-(i+l)' This is true for all j. Hence r(G') c 
Sl-(i+l) ' so r E M(i + 1). This proves the claim. 

Next we consider the product of natural maps: 
u 

M(i)jM(i + 1) --> IT M(i)j(M(i + 1) + (M(i) n ann x)) . 
j=l 

By the above claim, this RjM-vector space homomorphism is 1-1. Since by the 
previous lemma each component of the right-hand side is a finite-dimensional 
vector space over Rj M , the lemma is proved. 0 

Lemma 32 (hypothesis as in Lemma 29). R is an interpretable ring. 
Proof. Choose a base Xii' ... , XiI, of M(i)jM(i+ 1) over RjM. Let Xii' ... , 
XiI be a set of representatives in M(i). Let r E R. By Zil'ber Rj M is 
interpretable: there is an s E Z[T] of bounded length such that r - s EM. 
Now each element of M can be written as linear combinations of xij's with 
coefficients rij E R of bounded length. The lemma follows. 0 
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In Lemma 32, we proved more: 

Lemma 33 (hypothesis as in Lemma 29). There is a fixed integer k such that if 
r E R then there is an element y E Z[ T] of length ~ k for which 

r = y E Z[T]j ann G' . 
We do not need the hypothesis of Lemma 29 anymore: 

Theorem 3. R is interpretable in G (its interpretation is given in Lemma 33). 
The full group a = G' ~ R* is a connected solvable group of class 2 and of fmite 
Morley rank. 
Proof. With the notation of Proposition 2~, Lemma 33 says that R j is inter-
pretable. Hence R is interpretable. Thus G is a solvable group of class 2 which 
has finite Morley rank. To show that it is connected we need to show that R 
is. We leave this to the next theorem. D 

Theorem 4. Let G be a connected centerless solvable group of class 2 and of 
~ ~ I , 

finite Morley rank. Let G be the full group of G. Then G =::: $j=l (G j ~ R;) 
where 

(i) R j is an interpretable connected local ring, with nilpotent maximal 
ideals. G; < G' and G; <J G. Furthermore, if i i- j then R; acts 
as identity on G~. 

(ii) R j is commutative, has an identity element, and every ideal is definable 
and connected. 

(iii) R j is Artinian and Noetherian. 
(iv) a' = $G~ = G'. 

Proof. At this point we may use eherlin-Reineke (Fact 9) but we have all the 
information in our possession already. Let G; be RjG'; then G' = $ G;. We 
know that R = $ R j . Thus a = G' ~ R* = ($ G;) ~ ($ R;) =::: $(G; ~ R;). 

By Lemma 32, R j is interpretable. R j is connected because RJ M j is an 
algebraically closed field (so is connected) and Mf /Mf+l are vector spaces over 
RJMj (so are connected). This proves (i). 

Let / <J Ri . Since Ri has an identity element 

/ = R/ = (Ria: a E /) . 

Since Rja =::: RJ anna, Ria is connected. by Zil'ber, / is definable and con-
nected. This proves (ii). (iii) follows from (ii). D 

Notice that all fields found by Zil'ber's method in G; ~ R; is isomorphic to 
RJMi . Notice also that Ri acts on Sj/Sj_l by scalar multiplication, where 
Sj is the jth socle of G; . 

Kathryn Enochs and the author have recently shown [E-N] that G; ~ R; is 
an algebraic group over the field RJMi . 

We can find a smaller imbedding of G. 
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Theorem 5. Let G be a connected centerless solvable group of class 2 and finite 
Morley rank. Then there are interpretable abelian subgroups ~ acting on G'; 
there are finitely many, definable G-normal subgroups G~ < G' such that 

(i) G~E9:I(G~~T). 
(ii) Z[T;]/ ann G~ is an interpretable, local, Noetherian ring with nilpotent 

maximal ideals and algebraically closed residue fields. 
(iii) T; is a homomorphic image of T where T is a definable complement 

of G' in G. 

Proof. Let R be as before. Let e l , ••• , em be atomic idempotents of R. 
(Then R; = Re; with the above notation.) Set T; = Te;, G~ = R;G'. 0 

Remark. Most of the results of this section also hold for modules (with two 
sorted languages Rand M) over commutative rings. 

7. FITTING SUBGROUP 

Let G be a connected solvable group of finite Morley rank. By Facts 4 and 
5, G' is connected and nilpotent. Let F be a nilpotent, normal, connected 
subgroup of G which is maximal for these properties. If FI and F2 are two 
such groups, then (FI' F2) = FI F2 is nilpotent and connected. Thus FI = F2 . 
Therefore such a subgroup is unique. We call it the Fitting subgroup of G. It 
contains G' . 

If H is a nilpotent, definable, normal subgroup of G then HO ~ F. Thus 
F H / F is finite. 

If G is algebraic (say over K), G / F is a quotient of a torus (:::: (K* t , 
some n). Thus in this case G/F is divisible. We generalize this. 

Theorem 6. Let G be a solvable connected group of finite Morley rank, Fits 
Fitting subgroup. Then G / F is divisible. 
Proof. G / F is abelian (because G' ~ F). Thus by Fact 7, 

G/F=B/FffiD/F 

where D / F is divisible and B / F has bounded exponent. If n is this exponent, 
then 

D={gn:gEG}F. 

Thus D is definable. Since D / F has finite Morley rank, for any fixed inte-
ger m, D / F has only finitely many elements of order m (if not we can find 
infinitely many copies of Zpoo for some prime number p) . 

B may not be definable, but the set 

C = {g E G : gn E F} 

is definable and contains B. Since G / F is abelian, C is a subgroup of G. It 
is clearly normal. By the above discussion, enD is finite, thus [C: B] < 00 . 

Notice also that F ~ CO . 
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We will show that CO is nilpotent. Since C' ~ F, we need only show that 

° ° ° JC ,[C , ... ,[C ,F]··· 11, = I 
v 

m times 

for some m. 
By considering socles and centers we can find a sequence of definable normal 

subgroups (Fi) i : 
o = Fo ~ FI ~ F2 ~ ... ~ Fn = F 

in such a way that either F) Fi_1 is G / Fi_I-minimal and Z (G / Fi_1 )nF) Fi_1 = 
I or 

F)Fi_1 = Z(G/Fi_ I )· 

We want to show that [Co, Fi ] ~ Fi_ 1 for all i. This will clearly imply that 
CO is nilpotent. 

If FJFi_1 = Z(G/Fi_ l ) then [G, Fi] ~ Fi_1 by definition of Z(G/Fi_ I ). 

If not, the action of C on FJ Fi_1 is a vector-space action; i.e., F) Fi_1 
is a I-dimensional vector space over an algebraically closed field and C acts 
on it as it should. Since elements of C have the same finite-order modulo 
F , these actions are automorphisms of order n. Thus we have finitely many 
possible actions. Therefore CO acts trivially (i.e. as identity) on F) Fi_ 1 ; in 

° other words, [Fi' C ] ~ Fi_1 . 
Thus CO is nilpotent. So CO ~ F ~ CO . Thus CO = F . 
Since F ~ B and I C / B I is finite, this shows that B / F is finite. But G / F 

is connected. So B / F = I and G / F = D / F is divisible. 0 

Corollary. Given any integer n, G/ F has only finitely many elements of order 
n. 

Recently, the author and Kathryn Enochs proved that in case G' is abelian 
and G is centerless, then F = CG(S)o . The proof relies heavily on the methods, 
results, and classification of local rings of the previous section. It would be 
interesting to find a simpler proof of this fact. We do not know if the statement 
F = CG(S/ (for some i) is true without any solvability class assumption. 

Conjecture. Let G be a connected solvable group of finite Morley rank. Let F 
be the Fitting subgroup of G. Then F splits (not necessarily definably) in G. 

The reason to believe in this conjecture will be more apparent in the next 
section. 

The conjecture has recently been proved by the author and Kathryn Enochs 
(see [E-N]) in case G is centerless and solvable of class 2. 

8. LINEAR ALGEBRAIC GROUPS 

Let G be a linear algebraic group over an algebraically closed field K. If 
G is algebraically connected, we say that G is a-connected. If G is model 
theoretically connected, we say that G is m-connected. 
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The following theorem was proved with Anand Pillay. 

Theorem 7. Let G be a centerless a-connected solvable linear algebraic group. 
Then the unipotent subgroup V is definable and if the language is the pure groups 
language V is also m-connected. 
Proof. We define the following subgroups: 

T = a maximal torus of G. 
V = definable closure of V , 
V = Zariski closure of V, 
V ° = a-connected component of V. 

By Fact 8, V is nilpotent. It is known that V is nilpotent (see Borel [Bo, 
§2.4, Corollary]). Then VO nTis central in VO (see [Sp, Corollary 6.8(i), 
p. 145]). Thus VO n T commutes with V (because V ~ Vo). Since T is 
abelian, VO n T also commutes with T. Thus VO n T commutes with G 
(= V ~ T). Thus VO n T = 1. Since V ~ VO , this implies that V = VO . 
Thus [V : V] < 00. Since V ~ V ~ V , we also have [V: V] < 00. Thus 
V = V ~ (V n T) with IV n TI < 00 . 

Let q be the order of V n T. Let p be the characteristic of the field. Since 
T is isomorphic to (K*)n we have (p, q) = 1. Let ut E V = V ~ (V n T). 
Then 

for some v E V . Thus 
V q ~V. 

On the other hand, since (p, q) = 1 we have 

V=Vq ~lJl, 

thus 

and V is definable. 
We now assume that the language is pure group language. Let VO be the m-

connected component of V. VO is a constructible set in the Zariski topology 
of G (i.e., finite union of intersections of an open and closed set). It contains 
an open in its closure [P02]. Thus VO is an open subgroup of V. Thus it is 
also closed, hence V = Vo. 0 

Fitting subgroup has the meaning we gave to it in §7. 

Corollary (G and V as above and in the pure language of groups). V is the 
Fitting subgroup of G. 
Proof. Let F be the Fitting subgroup of G. By Theorem 7, V ~ F. Replacing 
V by F in the first part of the proof of Theorem 7, we see that F = V. 0 
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Question. Does the last statement of Theorem 7 hold if the language is richer 
(but G is still w-stable)? 

9. MINIMAL NONNILPOTENT GROUPS 

Cherlin proved in [Ch] that a centerless connected group G of Morley rank 
2 is an affine group over an algebraically closed field, i.e., 

G ::: { (~ ~): a E K , b E K* } = K ~ K* 

for some algebraically closed field K. In this section we generalize this result. 

Theorem 8. Let G be a connected centerless solvable group of finite Morley rank. 
Assume all definable proper connected subgroups of G are nilpotent. Then for 
some algeb~aically closed field K and some definable T < K* for which T + 
... + T = K (finite number) we have G = K ~ T with T acting on K by field 
multiplications. 
Proof. Let S be the socle of G, g E G be as in Lemma 5. Let X be as in 
Lemma 7: 

X = {x E G' : [G, x] ~ S}. 

By Lemma 7, 
X=SEBCx(g)· 

• m ° Assume Cx(g) 1= 1. Let XECx(g)-{I}. Then g ECG(X) forsomeinteger 
m. Replacing g by gm, we may suppose that g E CG(x)o. By hypothesis 
CG(x)o 1= G, so CG(x)o is nilpotent. But S ~ CG(x)o, g E CG(x)o , thus 
[g[g, ... , [g , S] ... ]] = I; this is a contradiction because Cs (g) = 1. Thus 
X = S . This means that 

G' /S n Z(G/S) = 1. 
In particular, G / S is not nilpotent. Thus G / S satisfies the hypothesis of our 
statement. Thus by induction G / S = G' / S ~ T / S . By Proposition 11, G = G' ~ 
TI for some definable TI (T is definable by induction hypothesis). S ~ TI ~ G 
and S ~ TI is not nilpotent. Thus G = S ~ TI . If AI ~ S is a minimal normal 
then G = AI ~ TI for the same reason. Since G is centerless we get the result 
by Zil'ber. 0 

The natural question is now: 

Question. Suppose G is a centerless connected group of finite Morley rank. 
Assume every proper definable connected subgroup of G has a nontrivial center. 
What can we say about G? 
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