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This paper is concerned with utilizing analog circuits to solve various 

linear and nonlinear programming problems. The dynamics of these circuits 

are analyzed. Then, the previously proposed circuit implementations for solv- 

ing optimization problems are examined. A new nonlinear programming net- 

work and its circuit implementation is then introduced which utilizes the non- 

linearities to eliminate the problems encountered in previous circuit implemen- 

tations. 
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1. Introduction 

Recently there has been much interest in constructing analog circuits to 

sirnulate mathematical programming problems. This concept was :first proposed 

by Dennis ([I]), and later studied by Stern ([2]). More recently Chua and Lin 

([3]) presented a general form of an analog circuit to solve nonlinear program- 

ming problems. They referred to their circuit as the canonical nonlinear pro- 

gramming circuit. Other canonical circuits were later introduced by Huertas, 

Rueda, Rodriguez-Vazquez and Chua ([4]). In [5], Chua and Lirl presented a 

circuit implementation which is capable of solving various progra,mming prob- 

lerns without numerical computation. Later, Wilson ([6]) stressed the impor- 

tance of negative components in quadratic programming and proposed an 

im.plementation which utilized floating negative resistors. Tank and Hopfield 

([7]) introduced a linear programming neural network whic:h had both 



inverting and noninverting outputs for each node and thus eliminating the 

need for the negative resistors. In addition, they introduced capacitors to 

allow for the modeling of the circuit dynamically. Then they showed that the 

state of the network evolved in such a way that the energy function of the net- 

work is monotonically nonincreasing with time. Kennedy and Chua ([8]) 

showed that the Tank and Hopfield linear programming networ:k is a specific 

implementation of the canonical nonlinear programming circuit of Chua and 

Lin ([5]) with a capacitor added to account for the dynamic behavior of the cir- 

cuit. Kennedy and Chua ([9]) examined the stability of the modified canonical 

nonlinear programming circuit and proposed a neural network circuit imple- 

mentation which could be utilized to solve a class of nonlinear programming 

prloblems. The above discussed methods for solving constrained optimization 

prloblems with neural networks implicitly utilize the penalty method. It is 

known ( Luenberger [ lo ,  Chapter 121 ) that if the weight assigned to the 

penalty function approaches infinity then the global minimizer of the 

transformed problem tends to the global minimizer of the original problem. 

However, when it comes to a practical circuit implementation, thme value which 

can be assigned to the weight of the penalty function is limited by physical 

co:nstraints. The effect of these physical constraints may result in the conver- 

gence of the circuit trajectory to a nonfeasible state, as shown 'in this paper. 

To remedy the above mentioned difficulty, a new neural network: implementa- 

tion for solving constrained optimization problems is proposed. This new 

architecture uses the penalty function to force the circuit trajecttory into the 

feasible region before optimizing the objective function. 

This paper is divided into six sections. In the next sectio~i some back- 

ground results are presented. The third section contains the stability analysis 

of the dynamical canonical circuit using the second method of Lyapunov. The 

fourth section discusses some of the implementation issues and introduces a 

new nonlinear programming network which is implemented utilizing common 

circuit elements. The fifth section gives a circuit implementation of the 
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proposed neural network for the case of quadratic programming problems, and 

presents results of several test problems. Conclusions are found in section six. 

2. Problem Statement and Background Results 

In this paper we are concerned with optimization problems of the follow- 

ing form 

minimize f(x) 

subject to g(x) 2 0 

where x E Rn,  f: Rn +R, and g = [ gl , ..., gp l T  : Rn +RP is a p-dimensional vec- 

tor valued function of n variables. It is also assumed that f and g are continu- 

ously differentiable functions. Utilizing the penalty method, a constrained 

optimization problem of the above form can be approximated by an uncon- 

strained optimization problem. The resulting unconstrained problem has the 

form: 

minimize E(x) = minimize (f(x) + c P(x)), 

where c is a positive constant, sometimes referred to as a weight, and P(x) is 

callled a penalty function. A penalty function is a continuou:3 nonnegative 

fu~iction which is zero at a point if and only if all the constraints are satisfied 

at  that point. 

One of the main results connecting the minimizers of the constrained and 

unconstrained problems is: 

Theorem ([lo], p. 368). 



Let {xk) be a sequence of minimizers generated by the penalty method for 

an increasing sequence of ck's tending to infinity. Then any limit of {xk) is a 

minimizer of the constrained problem. 

In this paper we consider penalty functions of the following form: 

where g i  (x) = - min (O,gj (x)) and q > 0. The penalty function Pl  (x) is often 

referred to as an exact penalty function ([lo]). The exact penalty function has 

the drawback that it is nondifferentiable on the border of the feasible region. 

This difficulty can be overcome by using a penalty function with q > 1 (see 

[10, pp. 372,3731 for more details). 

To simulate the constrained optimization problem using the penalty 

method with P2 (x) one can employ the so called dynamical canonical nonlinear 

programming circuit proposed by Kennedy and Chua ([9]) - see Fig. 1. Ken- 

neldy and Chua ([9]) utilized their canonical circuit to simula.te the Kuhn- 

Tucker conditions. In this paper we show that one can use their canonical cir- 

cu'it in the context of the penalty method. 

The functions (j = I ,  ...,p) in Fig. 1 relate the voltages across nonlinear 

resistors to the currents through them. 

In a manner similar to [4], we can introduce equivalent alternative cir- 

cuits. The conditions represented by the circuits on the left side of Fig. 1 can 

also be modeled using dependent current sources representing the constraint 

fuilctions and nonlinear resistors, where the voltages across the nonlinear resis- 

tors correspond to the variables p, (j = 1, ...,p). Likewise, the condition 

coi-responding to the circuits on the right side of Fig. 1 can also be simulated 

by two dependent voltage sources in series with an inductor. 



Figure 1. Dynamical canonical nonlinear programming circuit of Kennedy and 

Chua ([g]). 

For the remainder of this section, we only consider the dynitmical canoni- 

cal nonlinear programming circuit shown in Fig. 2. The ana,lysis of other 

canonical circuits is analogous. 

The above circuit (Fig. 2) can be split into two basic parts.. The circuits 

on the left are used to generate the penalty function for the given constraints. 

At steady state, the circuits on the right correspond to the first order necessary 

conditions for a local minimizer of the unconstrained objective fu:action 

Ob'serve that even though gr(x) is not differentiable a t  the boundary points, 

Lgi(x)l2 is differentiable there. The components of the gradient of E have the 

form 



Figure 2. An alternative version of the dynamical canonical nonlinear 

programming circuit. 

W'e will now see how the circuits on the left of Fig. 2 are used to generate the 

co:mponents of the gradient of the penalty term needed for the circuits on the 

right. The function Q, in Fig. 2, relates the current through a nonlinear resis- 

tor to the voltage across it, and is defined by 

where c > 0 is the weight of the penalty function. Thus from the circuit dep- 

icted in Fig. 2, we have 



cgj (x) if gj (x) < 0 
Pj = e(-gj (XI) = if gj(x) 1 0 ' j = 1, ...,p. 

Tlius 

and for k = 1, ..., n, 

Kirchhoffs current law applied to the right side of Fig. 2 yields 

Tlhe above equations can be rewritten as 



dxk - ----- I dE(x) , for k =I  ,..., n .  
dt Ck h k  

Thus any equilibrium point of the circuit equations will correspond to a 

critical point of the function E(x). 

Having noted all this, there remains a number of questions which must be 

answered: 

1. Will the circuit trajectory converge to a stable equilibrium? 

2. Will an equilibrium point correspond to a maximum, minirnium, or a sad- 

dle point? 

3. How well do the solutions of the unconstrained problem approximate the 

solutions of the constrained problem? 

In order to answer these questions we must first analyze the stability pro- 

perties of the circuit in Fig. 2. 

Remark 

The unconstrained optimization function E(x) can be rewritten as follows 

The above expression corresponds to the energy function of the circuits in Fig. 

1 and 2. This energy function was analyzed by Kennedy and Chua ([9]) in 

cclnnection with the circuit depicted in Fig. 1. 



3;. Stability Analysis of Programming Circuits 
Via the Lyapunov Second Method 

In [7],[9], and [13] it was shown that the function E = E(x(l;)) is a mono- 

tonically decreasing function of time. I t  was this condition combined with the 

assumption that E was bounded from below that led the authors of [7],[9], and 

[13] to conclude that the circuit trajectory would reach a steady state. While 

dE 
their conclusion was correct, it is worth mentioning that lim - may not 

t-co d t  

exist. As an example of the above scenario consider the following function: 

0 3 1  
E(t) = CTarctan(n3(n - t ) )  . 

n=l n 

Notice that this function is continuous and bounded from below. However, 

dE 
lim - does not exist. 

t-+co dt  

Having pointed this out we will now examine the stability s f  the circuits 

in Fig. 1 and 2. 

From the discussion before Remark 1, it follows that there is a one-to-one 

correspondence between the critical points of the function E and the equili- 

brium points of the circuit. What remains to be examined is whether any of 

the critical points are stable, and if so, which ones. Before we proceed with the 

stability analysis we will first review a few basic definitions and theorems per- 

taining to the stability of dynamical systems. For a more detailed discussion of 

stability analysis one may consult [ll]. 

The models for our circuits can be represented in the following general 

fo'rm: 



wlhere x =x(t)€Rn and f is a vector valued function having compolnents 

fi(x1,xZ ,..., x,) , i = 1 ,..., n. 

It is assumed that each fi is continuous and has continuous first partial deriva- 

tives. For further discussion we need the following definitions. 

1)efinition 1 ( Stability in the sense of Lyapunov ) 

Let x(t) be a solution of i = f(x). An isolated equilibrium point x*, that is 

f(x*) = 0, is said to be stable in the sense of Lyapunov if for any x0 = x(to) and 

any scalar E > 0 there exists a S>O so that 

I(x(to)-x.11 < 6  implies llx(t)-xtll < E  V t 5  l o  , 

where 11x1 1 is a norm of the vector x. In our discussion we use the Euclidean 

norm. 

Ilefinition 2 ( Asymptotic stability ) 

An isolated equilibrium point x* is said to be asymptotically stable if in 

addition to being stable in the sense of Lyapunov it has the property that 

x(t) +x* as t +m, if llx(to) - x* l  < 6. 



Clefinition 3 ( Positive definite function ) 

Let S2 Rn be an open neighborhood of x = 0. A continuously 

dijyerentiable function V:Rn +R is said to be positive definite over the set 

fl .- C R n  if V(x) > 0 V x E L?, xfl ,  and V(0) =O. 

In the following theorems we assume, without loss of generality, that the 

equilibrium point of interest has been translated to the origin of Rn. 

Theorem ( Lyapunov Stabili ty Theorem ) 

An isolated equilibrium point x* = 0 is stable in the sense of Lyapunov if 

for some neighborhood S2 about x*, there exists a positive definite function V(x) 

such that the function ~ ( x )  = <W(x),?> satisfies the inequality 

Here <u,v> denotes the dot product of the vectors u,v E Rn: 

Theorem ( Asymptot ic  Stabili ty Theorem ) 

An isolated equilibrium point x* = 0 is asymptotically stablle if for some 

neighborhood fl about x*, there exists a positive definite functio:~ V(x) so that 

the function ~ ( x )  = < W ( x ) , i >  satisfies 



Theorem ( Instability Theorem ) 
* 

An isolated equilibrium point x = 0 is unstable if there ex'ists a function 

V(x) with continuous partials such that for some neighborhood i;! about x*, the 

following conditions hold: 

b) In each neighborhood N C R about the point x* = 0, there exists a point z 

such that V(z) > 0. 

Having briefly reviewed the stability of dynamical systems, we now exam- 

ine the stability of the nonlinear programming circuits. We had previously 

il lOnS: sh'own that the dynamics of the circuits are described by the equ t' 

Rewriting the above equations using vector notation we have 

where 



Note that C = cT > 0. 

Systems of this form are referred to as gradient systems ([ll] and [12]). 

These systems have been shown to  have some nice properties, some of which 

we use in our analysis. 

An isolated equilibrium point of the circuit equations is .asymptotically 

stable if and only if it is a strict local minimizer of the function E:. 

F'roof 

Let x* be a strict local minimizer of E. Without loss of generality we 

assume that the equilibrium point is x* = 0. Let us define the Lyapunov func- 

tion candidate V(x) = E(x) -E(O). Note that since x* is a strict local minimizer 

of the function E(x), and V(0) = 0, V(x) is clearly positive definite in some 

neighborhood about the point x*. In addition, V(x) has contin.uous first par- 

tial derivatives. We have 

since C =cT > 0. The result follows from the Asymptotic Stability Theorem. 



Conversely, suppose that x* is an asymptotically stable equilibrium point 

of the circuit equations. Then there exists 6  > 0 so that if llx* - x(0)11 < 4 we 

have x ( t )+x*  as t + m .  Suppose /Ixo-x*ll < 6  and x o # x * .  Let 

x(O) = xo. Then we have 

since the trajectory moves from x(0) to x* = x(m) # ~ ( 0 ) .  Therefore, x* is a 

strict local minimizer of the function E on Ilx - x* 1 1  < S. 

Theorem 2 

If an isolated equilibrium point of the circuit is stable, the:n it is a local 

minimizer of the function E. 

P'roof 

We use contraposition. Without loss of generality, we assume x* =O.  Let 

us introduce the function V(x) = E(0) -E(x). Note that V(0) =: 0, and V has 

co:ntinuous partial derivatives. Since the equilibrium point x* = O is not a local 

minimizer it is clear that in each neighborhood N about x* = 0 there exists 

z Cf N so that E(z) < E(0). This implies in every neighborhood of x* = 0 there 

exists a z in the neighborhood so that V(z) > 0 in the neighborhood of x* = 0. 



Furthermore, we have 

This is due to the fact that x* is an isolated equilibrium point. Thus there 

exists a neighborhood St of 0 such that if xESt, x f l ,  then Vl3(x) # 0. The 

result then follows from the Instability Theorem. 

Corollary 1 

An isolated equilibrium point of the circuit corresponding to a local max- 

imizer of the function E is unstable. 

The next question to ask is whether the minimizers of E correspond to 

fe:xsible, locally optimal solutions to the original constrained minimization 

problem. To answer this question let us examine the function E which is being 

minimized. Recall that the circuit equations are given by 

where J is the index set of violated constraints. If we let c + oo, then 

pj -+ - oo if gj (x) < 0, and pj = 0 if gj (x) L 0. Thus it is clear that the cir- 

cuit works first to find a critical point of the penalty function. This, however, 

does not guarantee that the circuit trajectory will converge to a feasible point. 

It merely states that the circuit will be primarily concerned with finding a criti- 

cal point of the penalty function. Only then will it concern itself with the 

ok~jective function f. In the event that the penalty function is convex we 

expect that the circuit will be driven to a feasible critical point of the con- 

st rained optimization problem. 



4:. Implementation Issues 

Until now we have approached the problem in a very idealistic fashion. 

To this point we have not considered any circuit limitations such as op-amp 

saturations and the corresponding nonlinearities. The variables xl, ..., x, and 

pl, . . . , p,-, correspond to the outputs of the op-amps. Therefore, they must 

be within the saturation limits of the op-amps. Thus the state oB the circuit is 

constrained to be within the hypercube defined by 

x 5 x 5 x for j = l ,  ..., n . 

In addition, the weight c for the penalty function cannot be arbitrarily 

large in the circuit implementation due to physical limitations of the circuit 

components. This limitation on c degrades the approximati011 of the con- 

strained problem by the unconstrained problem. The difficulties which arise 

due to the solution space being constrained to be in a fixed hypercube can be 

overcome somewhat by scaling. This is accomplished by scaling the original 

problem as follows: 

minimize f(ax) 

subject to 

gj(ax) 2 0, j = I,..-,p, 

where the scalar a>O is sufficiently large to ensure that the solution space lies 

inside the hypercube constraining the problem. 

We now examine the type of difficulties which arise from the variables 

p, ( j=l ,  ...,p) being constrained. Recall that in the case exanlined earlier , 
pj = 0 if gj(x) > 0, and pj --f -co as c --t co if gj(x) < 0. As a result the 



system first seeks to minimize the penalty function, and then if it reaches the 

feasible region, it would then search for a local minimizer of f in the feasible 

region. However, when the pj's are bounded we find that the situation is quite 

different. 

As pointed out earlier we would like to have the weight c be as large as 

palssible in order to best approximate the unconstrained problem. However, if c 

is large, the circuit component producing p, may saturate. When this happens, 

the outputs no longer represent the true pj's. If the saturation limit is b < 0, 

then the output Gj is a smooth approximation of the function b)c:j, where Xj is 

the characteristic function of {gj (x) < 0) defined by 

If we use ,Gj in place of p, and the component is saturated, then in the region 

where the constraints are violated we have ' 

Oine can see that the value of c is not well defined, since it varies depending on 

the value of the constraint gj(x). Thus it would seem intractable to analyze 

the circuit implementation utilizing the penalty method with P2(x) as the 

penalty function. In order to see which model would be more a~ppropriate to 

use we will examine the dynamics of the previously proposed network (191) 

keeping in mind the threshold nature of the variables Gj. Recall tohat, 



When c is large, we can assume for practical purposes that 4 = bXj. The 

ahove equation becomes 

Note that the exact penalty function Pl(x) is differentiable except on the union 

of the boundaries of the sets {x I gj(x) < 0 )  which has n-dimensional Lebesgue 

measure 0. In the region where Pl(x) is differentiable, the com:ponents of its 

gradient are: 

Therefore, the circuit corresponds to solving the unconstrained problem using 

the exact penalty function Pl(x) and c = -b. Since our circ:uit utilizes a 

snlooth approximation of the exact penalty function, the resulting solution will 

closely approximate that of the original constrained problem provided that the 

weight c is sufficiently large. The following example illustrates what can hap- 

pen if c is not sufficiently large. 

ICxample 1 

Consider the programming problem: 



minimize f(x) = 10x 

subject to 

1 -x 
g2(x) = _p. L O .  

We consider the case where pj, j = 1,2, is defined by fij = 0 if gj (x) L 0, and 

6. = -15 if gj (x) < 0. We also assume that x is constrained to be in the inter- 1 

val -15 I x I 15. Let c = 15. The energy function becorr~es a smooth 

approximation to the function E* (x) given by: 

--I5 5 x < -1 
E* (n) = f(x) + cPl (x) = -11x1 I .  

13.75~ - 3.75 1 < x 5  15 

The dynamics of the circuit which models this programming problem would 

then be approximately described by the following equation: 



Thus, regardless of the initial value of x, the circuit trajectory will converge to 

th'e extreme point x = -15, which does not even correspond to a feasible point 

of the original problem. The solution to the problem is x = -1. 

There are two approaches which can be used to avoid this type of 

difFiculty. The most obvious approach would be to scale down the cost func- 

tion f so that  the penalty term in the energy function would doniinate the cost 

function. This is accomplished by multiplying the function f by a sufficiently 

sniall scalar r and then solve the problem: 

minimize rf(ax) 

subject to 

g(ax) 2 0 . 

There are some drawbacks to this approach. First of a.11, finding an 

appropriate value of r might involve a great deal of work. Secondly, even if 

0n.e is able to  find an appropriate value of r, that value is only good for that 

pa,rticular problem. The approach which we now propose has neither of these 

shortcomings. In this approach the circuit trajectory first seeks to minimize 

the exact penalty function approximation of the problem regardless of the 

value of the pj's. Before introducing the proposed approach it is necessary to 

define the saturation function: 



I -a for x < - p 
a 

sa,,Ax> = BX for -p 5 x 5 ,B 

a f o r x > p .  

Let SaJ8(x) be a smoothed version of Soj8(x) with the corners a t  x = -p and 
- - 

x := p smoothed out. When a = P, we write S,,, as S,. The proposed 

approach is illustrated by the network shown in Fig. 3. 

Figure 3. Proposed new network for solving programming problems. 

In the above circuit, a, p, and 7 are design parameters. We assume that 

a > y. Applying Kirchhoff's current law to the circuits on the right side of 

Fig. 3, we have for k = 1 ,..., n: 



anti thus, 

if 
ap 1 (XI 

is defined and c = -b. Observe that if 
h k  

- 
then Sa,p saturates. In which case, 

since a > 7 by the design assumption. Since Ck > 0, we co:nclude that if 

C 
- *l (XI 

ax, 
dxk > p, then - 

- ap 1 (XI 
dt  

and Fa,, [. hk 1, which has the same sign as 

>p ,  then 
i3P (x) 

c -- , have opposite signs. Hence, if 
h k  

c 
-*'("I 

h k  



and 

Thus 

This implies that whenever saturates and the trajectory is in the region 

where P1 is differentiable, then P1 is decreasing along that trajectory. Note 

that generically, P1 is differentiable in the complement of the feasible region 

except for a set of measure zero and that the circuits are designed so that S u P B  
is almost indistinguishable from SoPo,  which operates in the saturated mode. 

Thus, one would expect that the penalty function P1 would decrease along the 

tr:ijectories outside the feasible region. Note that if So,8 operates in the 

saturated mode, then the value of E > 0 and the form of the objective function 

ha.ve no effect on the rate of decrease of PI along any trajectory. 



R.emark 

If the initial condition is such that the system trajectory reaches the feasi- 

ble region, then the circuit dynamics are governed by the equations 

5. Circuit Implementation of Proposed Neural Network 

In order to test the ideas set forth in the previous sections, a circuit was 

built to solve 3-dimensional quadratic programming problems s-ubject to two 

constraints (see Fig. 4). The implementation proposed differs from that pro- 

posed in [7] and [9] in that op-amps are used to implement the nonlinear - - 
dependent sources and S7 as opposed to resistors being used to generate 

1in.ear dependent sources as in [7] and [9]. We can view the circuit as an inter- 

connection of subcircuits which we refer to as nodes. There are two kinds of 

nodes in the circuit: the ones with noninverting output correspc~nding to xi's, 

and the ones with noninverting output corresponding to the b, 's. We shall refer 

to these nodes as variable nodes and constraint nodes, respectively. The circuit 

irr~plementation for these nodes is given in Fig. 5 and Fig. 6. The constraint 

an.d variable nodes are connected in the manner shown in Fig. 7. 

As mentioned earlier, we would like to be somewhat careful in choosing a 

value for p. We want B to be small enough so that the constraint terms So,@ 
are not a factor when the circuit is operating in the feasible region, while a t  the 

same time we want the the constraint terms to dominate when the circuit is 

operating outside the feasible region. Before choosing a value of P we should 

first examine the behavior of the p terms which are used to determine the con- 
- 

straint terms Set@. We examine ,Tij as a function of the input voltage. A graph 



Figure 4. Circuit implementation of the proposed neural network for solving 

constrained optimization problems. 



Figure 5a. Circuit implementation for an x node. The values of the 

-%(x) 
unlabled resistors are chosen such that IF = -- mA and 

IP = 
-*1(x) *. 

A k  

Figure 5b. Symbol for a variable node. 



Figure 6a. Circuit implementation for an inequality constraint node. The 

unlabled resistances are chosen in such a way tha.t IPj = --gj(x) 

mA. 

Fig 

&a 

s'=@: 
s* 

ure 6b. Symbol for a constraint node. 



Figure 7. Schematic of the circuit implementation of the prloposed neural 

network for solving constrained optimization problems. 

of this function in terms of the voltage in the constraint node is depicted in 

Fig. 8. 

For our circuit we chose p = 0.5, cu = 27. The implementation is such that 

fij is 0.43 mV when the constraint gj(x) > 0 is satisfied and is equal to y when 

gj (x) < 0. It follows from the equations 



Figure 8. jlj as a function of gj(x). 

and the definition of S, and S,,' that a sufficient condition for the constraint 

term to dominate is 

If cu = 12, the condition necessary for the term to dominalte outside the 

feasible region is 



Note that this condition is independent of the objective function,. It is also of 

interest to see what contribution a nonactive constraint could1 have on the 

dynamics of the system under the same assumptions. Since the rnaximum gain 

of the constraint node circuit is 20, the maximum contribution a nonactive 

constraint could have on the dynamics is given by 

Using the previously specified values of ,8 the circuit was tested on three prob- 

leras. 

Test Problem 1 

Minimize f(x) = -2.5(x: + xg ) - 5xg + 3x1x2 + 5x, + x : ~  + 7x3 

For this problem we choose ct = 9 and y = 4.5. The satmation limits of 

the op-amps cause the circuit trajectory to be constrained to the hypercube 

Since the objective function is concave, one would expect the circuit trajectory 

to be driven to the boundaries of the hypercube imposed on the circuit by the 

saturation limits of the variable op-amps. The circuit went to one of the fol- 

lowing boundary points depending on the initial condition. This is illustrated 

by the measurements depicted in the following table. 



Test Problem 2 

Minimize f(x) = -2.5(x: + xg) + x $  + 3 0 x 1 ~ ~  + 5x1 + x 2  - 7x3 . 

Initial point 

1-2.5,1.5,3.0) 

(1.5,-2.5,3.5) 

(4.0,4.5,-2.0) 

(4.0,5.0,4.0) 

(-5.0,-5.1,O.O) 

(-5.0,-5.1,2.0) 

(2.4,-3.3,-1.8) 

(-2.8,2.0,0.3) 

For this problem we choose a = 12 and 7 = 6. The circuit trajectory is 

constrained to be in the hypercube 

Final point 

(-8.0,8.8,8.8) 

(8.7,-8.0,8.8) 

(8.7,8.8,-8.0) 

(8.7,8.8,8.8) 

(-8.0,-8.0,-8.0) 

(-8.0,-8.0,8.8) 

(8.7,-8.0,-8.0) 

(-8.0,8.8,-8.0) 

The objective function has local minimizers a t  the points (-13.0, 14.0, 3.5) and 

(13.7, -12.9, 3.5). The circuit trajectory converged to one of the above two 

poiints depending on the initial point as shown in the table below. 



I Initial point I Final point I 

'I'est Problem 3 

Minimize lox 

subject to 

For this experiment the circuit parameters a and y are 12 and 6 respec- 

tively. This problem has one minimizer a t  x = -1. Regardless of the initial 

conditions the network converged to the point x = --0.995. Noltice that this 

problem is identical to Example 1. We see from the above experimental result 

that the proposed new implementation does a satisfactory job of solving con- 

strained optimization problems. 



6. Conclusions 

The subject of this paper is solving constrained optimization problems 

with neural networks. We first examined the canonical dynamical nonlinear 

programming circuit proposed in [9] and noted that their circuit, is a gradient 

sy:ltem which acts to minimize the penalty function approximation of the con- 

strained optimization problem of interest utilizing the penalty function P2(x). 

Next we looked a t  their nonlinear programming neural network; implementa- 

tion and discussed the effects of the fact that the variables XI,  . . . ,x,, and the 

variables p1, . . . , are constrained by the saturation limits of the op-amps in 

the network. We found that in the case where the function which generated 

the pj terms approximated a hard limiter the behavior of the circuit trajectory 

was very close to that which would result if the circuit was based on the exact 

peinalty method (i.e. using penalty function Pl(x)). It was then noted that 

since the weight of the penalty function was bounded there would be cases 

where the circuit trajectory would converge to a nonfeasible solution. To 

remedy this difficulty we came up with a neural network which utilizes non- 

linearities to overcome the constraint problem associated with the implementa- 

tions proposed in [7] and 191. It was then shown that the proposed network 

would act first to decrease the exact penalty function before considering the 

ob-iective function. Some practical implementation issues such as the effects of 

circuit nonlinearities on the solutions of the optimization problems were dis- 

cussed. The proposed network was implemented and tested. The circuit was 

shown not to have the some of the shortcomings of the previously proposed 

networks. Finally, we would like to mention that one may try different tech- 

no1,ogies while implementing neural optimization networks. Some promising 

results in this direction, utilizing switched-capacitor circuits, are presented in 
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