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Özet. Coullet sistemi olarak bilinen nonlineer denklem sisteminin çözümü diferensiyel
dönüşüm yöntemi ile elde edildi. Sayısal sonuçlar, önerilen yöntemin etkinliğini ve doğ-
ruluğunu göstermek için dördüncü mertebeden Runge-Kutta yöntemi ile karşılaştırıldı.
Önerilen yöntemin güçlü, doğru ve kolayca uygulanabilirliği gösterildi.

Anahtar Kelimeler. Coullet sistemi, diferensiyel dönüşüm, Runge-Kutta, nümerik metot.

Abstract. The differential transformation method is employed to solve a system of non-
linear differential equations, namely Coullet system. Numerical results are compared to
those obtained by the fourth-order Runge-Kutta method to illustrate the preciseness and
effectiveness of the proposed method. It is shown that the proposed method is robust,
accurate and easy to apply.
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1. Introduction

The concept of the differential transformation method has been introduced to solve

linear and nonlinear initial value problems in electric circuit analysis [1-6]. The

differential transformation method is a semi-numerical-analytic technique that for-

malizes the Taylor series in a totally different manner. With this method, the given

differential equation and related initial conditions are transformed into a recurrence

equation that finally leads to the solution of a system of algebraic equations as

coefficients of a power series solution. This method is useful for obtaining exact

and approximate solutions of linear and nonlinear differential equations. There is

no need for linearization or perturbations, large computational work and round-off

errors are avoided.
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The differential transformation method has solution in the form of polynomials.

It is different from the traditional high order Taylor series method, which requires

symbolic computation of the necessary derivatives of the data functions. The Taylor

series method is computationally taken a long time for large orders. The present

method reduces the size of computational domain and applicable to many problems

easily. When dealing with non-linear systems of ordinary differential equations,

it is often the case that a closed form analytic solution for the system of interest

is normally unobtainable. In the absence of such solution, the accuracy of the

differential transformation method is then usually tested with the classical numerical

methods such as the fourth-order Runge-Kutta method [7]. Here the system we are

interest in is Coullet system [8-13]. As is well-known, Coullet system does not admit

a closed form solution and moreover it can exhibit chaotic behaviour for distinct

parameter values:

dx

dt
= y, (1)

dy

dt
= z, (2)

dz

dt
= cz + by + ax + dx3, (3)

where x, y, z are the state variables, and a, b, c and d are real constants. If the

parameters are taken as a = 0.8, b = −1.1, c = −0.45 and d = −1.0, the system

(1)-(3) exhibits chaotic dynamics.

2. Numerical Results

Taking the differential transformation of Equations (1)-(3) with respect to time t

gives

X(k + 1) =
H

k + 1
Y (k), (4)

Y (k + 1) =
H

k + 1
Z(k), (5)

Z(k + 1) =
H

k + 1

[
aX(k) + bY (k) + cZ(k)

+d
k∑

k2=0

k2∑
k1=0

X(k1)X(k2 − k1)X(k − k2),

]
(6)
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where X(k), Y (k) and Z(k) are the differential transformations of the corresponding

functions x(t), y(t) and z(t), respectively, and the initial conditions are given by

X(0) = 0.1, Y (0) = 0.41 and Z(0) = 0.31.

The difference equations presented in Equations (4)-(6) describe Coullet system,

from a process of inverse differential transformation, i.e.

xi(t) =
n∑

k=0

(
t

Hi

)k

Xi(k), 0 ≤ t ≤ Hi, (7)

yi(t) =
n∑

k=0

(
t

Hi

)k

Yi(k), 0 ≤ t ≤ Hi, (8)

zi(t) =
n∑

k=0

(
t

Hi

)k

Zi(k), 0 ≤ t ≤ Hi, (9)

where k = 0, 1, 2, . . . , n represents the number of terms of the power series,

i = 0, 1, 2, . . ., expresses the ith sub-domain and Hi is the sub-domain interval.

The accuracy of the DTM is demonstrated against Maples built-in fourth-order

Runge Kutta procedure RK for the solutions of Coullet system. The domain is

divided using ∆t = 0.01 comparing with RK4 with step size h = 0.001. Figure

1 presents the comparison between DTM solution and RK4 solution. We can see

the good agreement for DTM solution with RK4 solution. The phase portray of

the Coullet system is given in Figure 2. It is clear that this is chaotic attractor for

Coullet system. Also, Figure 3 shows the chaotic attractors for the Coullet system

(1)-(3) using the DTM solution.The difference between 3-term DTM with ∆t = 0.01

and RK4 with h = 0.001 is given in Figure 4. Figure 4 shows that the DTM has

higher accuracy of the solution since in the x, y and z axis we have error until 10−5

(i.e., the solution via the new method has agreement with the purely numerical until

5 digit). In Equations (7)-(9), it must be indicated that the value of n selected equal

to 3.

For the benefit of the reader, Maple codes regarding Figure 1(a), Figure 2, Figure

3(a) and Figure 4(a) are given in the Appendix, respectively.
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(a) (b)

(c)

Figure 1. The DTM solution comparing with RK4: DTM (line);
RK4 (circle).

Figure 2. Phase portray for Coullet system with time span [0,50]
using DTM.
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(a) (b)

(c)

Figure 3. Chaotic attractors for the system (1)-(3).

(a) (b)
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(c)

Figure 4. Difference between DTM with ∆t = 0.01 and RK4 with
h = 0.001.

3. Conclusion

In this paper, DTM is implemented to solve Coullet chaotic system. Higher accuracy

solution was obtained via this method. Comparison between DTM solution and

RK4 solution is discussed and plotted. The solution via DTM is continuous on this

domain and analytical at each subdomain which is the best in our knowledge.

Appendix

The code for Figure 1(a):

> restart;

> st:= time():

> N:=3: K:=5: eps:=0.0001: tson:=100:

> b1:=0.1: b2:=0.41: b3:=0.31:

> X(0):=b1: Y(0):=b2: Z(0):=b3: T(0):=0:

> i:=1:dt:=0.001:

> a:=0.8:b:=-1.1:c:=-0.45:d:=-1:

> for k from 0 to N do

> X(k+1):=(Y(k))/(k+1);

> Y(k+1):=(Z(k))/(k+1);

> Z(k+1):=(c*Z(k)+b*Y(k)+a*X(k)+d*sum(sum(X(k1)*X(k2-k1)*X(k-k2),

k1=0..k2),k2=0..k))/(k+1);

> end do:
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> x:=sum(X(kk)*t^kk,kk=0..N):

> y:=sum(Y(kk)*t^kk,kk=0..N):

> z:=sum(Z(kk)*t^kk,kk=0..N):

> XX(0):=x: YY(0):=y:

> X(0):=subs(t=T(i),x);Y(0):=subs(t=T(i),y);Z(0):=subs(t=T(i),z);

> for k from 0 to N do

> X(k+1):=Y(k)/(k+1);

> Y(k+1):=Z(k)/(k+1);

> Z(k+1):=(c*Z(k)+b*Y(k)+a*X(k)+d*sum(sum(X(k1)*X(k2-k1)*X(k-k2),

k1=0..k2),k2=0..k))/(k+1);

> end do:

> x:=sum(X(kk)*(t-T(i))^kk,kk=0..N):

> y:=sum(Y(kk)*(t-T(i))^kk,kk=0..N):

> z:=sum(Z(kk)*(t-T(i))^kk,kk=0..N):

> XX(i):=x;YY(i):=y;ZZ(i):=z;

> i:=i+1;

> end do:

> time() - st;

> i;

> sys:=diff(xx(t),t)=yy(t), diff(yy(t),t)=zz(t),diff(zz(t),t)

=c*zz(t)+b*yy(t)+a*xx(t)+d*xx(t)^3: fcns := {xx(t),yy(t),zz(t)}:

> dsol1:=dsolve({sys,xx(0)=b1,yy(0)=b2,zz(0)=b3},fcns,type=numeric,

output=listprocedure,stepsize=0.001,method=classical[rk4]):

> with(plots):

> T(i):=tson:

> H1:=plot(XX(1),t=T(1)..T(2),color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot(XX(k),t=T(k)..T(k+1),color=black):

> P1:={op(P1),H1};

> end do:

> H2:=odeplot(dsol1,[t,xx(t)],0..tson,style=point,symbol=circle,

color=black):

> P1:={op(P1),H2}:

> display(P1,labels=["t","x(t)"],title="(a3)");
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> with(plots):T(i):=tson:

> H1:=plot(YY(1),t=T(1)..T(2),color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot(YY(k),t=T(k)..T(k+1),color=black):

> P1:={op(P1),H1};

> end do:

> H2:=odeplot(dsol1,[t,yy(t)],0..tson,style=point,symbol=circle,

color=black):

> P1:={op(P1),H2}:

> display(P1,labels=["t","y(t)"],title="(b3)");

> with(plots):T(i):=tson:

> H1:=plot(ZZ(1),t=T(1)..T(2),color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot(ZZ(k),t=T(k)..T(k+1),color=black):

> P1:={op(P1),H1};

> end do:

> H2:=odeplot(dsol1,[t,zz(t)],0..tson,style=point,symbol=circle,

color=black):

> P1:={op(P1),H2}:

> display(P1,labels=["t","z(t)"],title="(c3)");

The code for Figure 2:

> with(plots):

> T(i):=tson:

> H1:=spacecurve({[XX(1),YY(1),ZZ(1)]},t=T(k)..T(k+1),color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=spacecurve({[XX(k),YY(k),ZZ(k)]},t=T(k)..T(k+1),color=black):

> P1:={op(P1),H1};

> end do:

> display(P1,labels=["x","y","z"]);
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The code for Figure 3(a):

with(plots):T(i):=tson:

> H1:=plot([XX(1),YY(1),t=T(1)..T(2)],color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot([XX(k),YY(k),t=T(k)..T(k+1)],color=black):

> P1:={op(P1),H1};

> end do:

> display(P1,labels=["x","y"]);

> with(plots):

> T(i):=tson:

> H1:=plot([XX(1),ZZ(1),t=T(1)..T(2)],color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot([XX(k),ZZ(k),t=T(k)..T(k+1)],color=black):

> P1:={op(P1),H1};

> end do:

> display(P1,labels=["x","z"]);

> with(plots):

> T(i):=tson:

> H1:=plot([YY(1),ZZ(1),t=T(1)..T(2)],color=black):

> P1:={H1}:

> for k from 2 to i-1 do

> H1:=plot([YY(k),ZZ(k),t=T(k)..T(k+1)],color=black):

> P1:={op(P1),H1};

> end do:

> display(P1,labels=["y","z"]);

The code for Figure 4(a):

> byK:=10:

> for i from 0 to K*NN by byK do

> dsol1x := subs(dsol1,xx(t)):

> dsol1y := subs(dsol1,yy(t)):



120 Merdan et al.

> dsol1z := subs(dsol1,zz(t)):

> deltaxx(i/byK):=(dsol1x(i*dt/K)-XX(i));

> deltayy(i/byK):=(dsol1y(i*dt/K)-YY(i));

> deltazz(i/byK):=(dsol1z(i*dt/K)-ZZ(i));

> ddxx(i/byK):=(XX(i));

> ddyy(i/byK):=(YY(i));

> ddzz(i/byK):=(ZZ(i));

> end do:

> plot([seq( [deltaxx(i),deltayy(i)], i=0..K*NN/byK )],color=black,

labels=["x","y"],labeldirections=[horizontal,vertical]);

> plot([seq( [deltaxx(i),deltazz(i)], i=0..K*NN/byK )],color=black,

labels=["x","z"],labeldirections=[horizontal,vertical]);

> plot([seq( [deltayy(i),deltazz(i)], i=0..K*NN/byK )],color=black,

labels=["y","z"],labeldirections=[horizontal,vertical]);
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[5] H. Demir and İ. Ç. Süngü, Numerical solution of a class of nonlinear Emden-Fowler equations
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