
 Open access  Journal Article  DOI:10.1287/OPRE.2013.1175

On Solving Multistage Stochastic Programs with Coherent Risk Measures
— Source link 

Andy Philpott, Vitor L. de Matos, Erlon Cristian Finardi

Institutions: University of Auckland, Universidade Federal de Santa Catarina

Published on: 19 Jul 2013 - Operations Research (INFORMS)

Topics: Stochastic programming, Coherent risk measure, Upper and lower bounds and Dynamic programming

Related papers:

 Multi-stage stochastic optimization applied to energy planning

 Coherent Measures of Risk

 Analysis of stochastic dual dynamic programming method

 Risk-averse dynamic programming for Markov decision processes

 Risk neutral and risk averse Stochastic Dual Dynamic Programming method

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-
3vt0mtbku3

https://typeset.io/
https://www.doi.org/10.1287/OPRE.2013.1175
https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3
https://typeset.io/authors/andy-philpott-zh30x5zgwq
https://typeset.io/authors/vitor-l-de-matos-qdc15w8ak4
https://typeset.io/authors/erlon-cristian-finardi-57apkr1y3u
https://typeset.io/institutions/university-of-auckland-j1idjqsv
https://typeset.io/institutions/universidade-federal-de-santa-catarina-s653iovu
https://typeset.io/journals/operations-research-3qeiu6n3
https://typeset.io/topics/stochastic-programming-3cao46s7
https://typeset.io/topics/coherent-risk-measure-11ixooqb
https://typeset.io/topics/upper-and-lower-bounds-26krndal
https://typeset.io/topics/dynamic-programming-qam1y7wv
https://typeset.io/papers/multi-stage-stochastic-optimization-applied-to-energy-zz2gfm6l7x
https://typeset.io/papers/coherent-measures-of-risk-1lxkpq4gi0
https://typeset.io/papers/analysis-of-stochastic-dual-dynamic-programming-method-298mcavu64
https://typeset.io/papers/risk-averse-dynamic-programming-for-markov-decision-2n4jawrjd9
https://typeset.io/papers/risk-neutral-and-risk-averse-stochastic-dual-dynamic-3enmgtgcdj
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3
https://twitter.com/intent/tweet?text=On%20Solving%20Multistage%20Stochastic%20Programs%20with%20Coherent%20Risk%20Measures&url=https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3
https://typeset.io/papers/on-solving-multistage-stochastic-programs-with-coherent-risk-3vt0mtbku3


On solving multistage stochastic programs with
coherent risk measures

Andy Philpott � Vitor de Matosy Erlon Finardiz

August 13, 2012

Abstract

We consider a class of multistage stochastic linear programs in which at each
stage a coherent risk measure of future costs is to be minimized. A general compu-
tational approach based on dynamic programming is derived that can be shown to
converge to an optimal policy. By computing an inner approximation to future cost
functions, we can evaluate an upper bound on the cost of an optimal policy, and
an outer approximation delivers a lower bound. The approach we describe is par-
ticularly useful in sampling-based algorithms, and a numerical example is provided
to show the e¢cacy of the methodology when used in conjunction with stochastic
dual dynamic programming.

1 Introduction

Multistage stochastic linear programming models have been studied for many years, and
although there are a number of reports of practical applications (see e.g. [2],[21]) there
are still very few implementations of these models in commercial settings. The classical
version of this model treats uncertainty using a scenario tree that branches at each stage.
Even with a small number of outcomes per stage, the size of the scenario tree grows
exponentially with the number of stages. In general this makes it impossible to �nd the
optimal solution of such problems, even using sampling approaches (see [17]).
In many circumstances multistage stochastic linear programming problems can be

modelled as stochastic optimal control problems. These distinguish between control and
state variables that together satisfy a state-constrained linear dynamical system with
some random disturbances. When the random disturbances are stagewise independent,
these models can be attacked by dynamic programming methods. This has proved to be a
very powerful approach in problems involving long-term planning of hydroelectric power
systems [12].
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Stochastic linear optimal control problems typically minimize the expectation of some
measure of cost. In hydrothermal scheduling this is the expected fuel and shortage cost.
This makes sense when decision makers wish to minimize the total average fuel and short-
age cost in the long run. In practice such an approach can result in a higher probability of
shortage than planners wish to accept. Then they might seek to control this probability
as well as keeping costs down. One way of doing this is to add chance constraints to the
model (see [16]). In general such constraints are not convex, and so this limits the scale
of problems to which this approach is useful.
An alternative approach that retains convexity is to use the axiomatic approach to risk

pioneered by Artzner et al [1]. They de�ne a risk measure to be a function from the space
of random variables to R, and this is said to be coherent if it satis�es four key axioms.
These guarantee that convex stochastic optimization problems that minimize expected
cost remain convex when this is replaced by the coherent risk measure.
The use of coherent risk measures in dynamic programming models was �rst introduced

by [14] and explored in detail by [15]. As demonstrated in [14], any time-consistent
dynamic risk measure can be constructed in terms of single-period risk measures by a
recursive formula. If the risk measure is coherent, then the resulting model can be solved
using a dynamic programming recursion that retains convexity in the Bellman functions.
This makes the model particularly attractive for optimization.
In this paper we explore the use of coherent risk measures in multistage stochastic

linear programming problems. We provide a general framework for computing solutions
to such models. This relies on an outer-approximation algorithm (formed by cutting
planes) and an inner approximation algorithm (formed by convex combinations of feasible
policies). The outer approximation provides a lower bound on the value of an optimal
policy, and the inner approximation gives a candidate policy and an upper bound on its
value. An important ingredient in our approach is the dual representation theorem for
coherent risk measures established in [1]. This enables us to replace the risk measure
computation at each stage by an expectation with an adjusted probability measure. This
approach been applied in [20] to the case where the risk measure is a convex combination
of expectation and conditional value at risk. Using such a �change of measure� removes
the need to record an extra �value-at-risk� state variable as described in [13]. We show
here how this approach can be extended to any coherent risk measure.
The theoretical basis of the approach we describe is quite general. In practical ap-

plication, however, it is limited to small problem instances unless we use sampling. We
show how the Stochastic Dual Dynamic Programming (SDDP) algorithm [12] for multi-
stage stochastic linear programming can be modi�ed to accommodate general coherent
risk measures. To illustrate the approach we apply it to an instance of a large-scale
hydro-thermal scheduling problem arising in Brazil.
The main contributions of our work are as follows. We formalize a general approxima-

tion procedure for computing solutions to multistage stochastic programming problems
that minimize dynamic coherent risk measures. This procedure gives lower and upper
bounds on the optimal value of the problem and a feasible policy with a value that lies
between these. This provides a stopping criterion for the approximation procedure. In
risk-averse SDDP models such as those discussed in [13] and [20], our approximation
procedure can be shown to provide a reasonably tight upper bound on the policy value.
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Estimating the value of a candidate policy (or an upper bound on this) by sampling ap-
pears to be very di¢cult for risk-averse SDDP models [20] and our approach provides a
straightforward alternative. We demonstrate the e¤ectiveness of these bounds by applying
the procedure to a large-scale hydro-thermal scheduling problem.
The paper is laid out as follows. In the next section we formulate the class of mul-

tistage stochastic programs that we study, and outline the theory of coherent dynamic
risk measures as applied to this class of problems. In Section 3 we describe the outer
approximation and inner approximation algorithms as they apply to the risk-neutral case
(where the risk measure is expectation). In Section 4 we show how these algorithms can
be extended to general coherent risk measures, and derive upper and lower bounds on
the optimal value of the problem. Section 5 examines how the SDDP algorithm might be
adapted to include general coherent risk measures, and then Section 6 presents some re-
sults of applying the methodology to an instance of a large-scale hydro-thermal scheduling
problem arising in Brazil. We conclude the paper with some discussion in Section 7.

2 Preliminaries

The type of problem we consider has T stages, denoted t = 1; 2; : : : ; T , in each of which
a random right-hand-side vector bt(!t) 2 R

m has a �nite number of realizations de�ned
by !t 2 
t, each with a strictly positive probability. The assumption of �nite probability
spaces greatly simpli�es the analysis, whereby we can dispense with most measurability
assumptions, such as, for example, specifying constraints that hold almost surely. Since
we have in mind the solution of a large-scale �nite problem that is obtained by sampling,
the assumption is not too restrictive.
We assume that the outcomes !t are stagewise independent, and that 
1 is a singleton,

so the �rst-stage problem is

z = min c>1 x1 + �2(Q2(x1; !2))
s.t. A1x1 = b1;

x1 � 0;
(1)

where x1 2 R
n is the �rst stage decision and c1 2 R

n a cost vector, A1 is a m� n matrix,
and b1 2 R

m.
We denote by Q2(x1; !2) the optimal value of the second stage problem associated

with decision x1 and realization !2 2 
2. In this problem �2 is de�ned to be a one-step
coherent risk measure de�ned on the random variables Q2(x1; !2). According to [1] a
function � from a space Z of random variables to R is a coherent risk measure if � satis�es
the following axioms for Z1 and Z2 2 Z.
Subadditivity: �(Z1 + Z2) � �(Z1) + �(Z2);
Monotonicity: If Z1 � Z2, then �(Z1) � �(Z2);
Positive homogeneity: If � 2 R and � > 0, then �(�Z1) = ��(Z1);
Translation equivariance: If � 2 R, then �(I�+ Z1) = �+ �(Z1).
Coherent risk measures have some attractive properties for optimization. Subadditiv-

ity and positive homogeneity implies:
Convexity: �(�Z1 + (1� �)Z2) � ��(Z1) + (1� �)�(Z2), for � 2 [0; 1],
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which with monotonicity guarantees that convex optimization problems remain convex
when the (convex) objective functions are composed with a coherent risk measure as in
(1) above.
The use of coherent risk measures in dynamic programming models was introduced by

[14] and is described for general Markov decision problems by [15]. Given a probability
space (
;F ; P ), a dynamic risk measure applies to a situation in which we have a random
sequence of costs (Z1; Z2; : : : ; ZT ) which is adapted to some �ltration f0;
g = F1 �
F2 : : : � FT � F of �-�elds, where Z1 is assumed to be deterministic. A dynamic
risk measure is then de�ned to be a sequence of conditional risk measures f�t;T g, t =
1; 2; : : : ; T . Given a dynamic risk measure, we can derive a corresponding single-period
risk measure using

�t(Zt+1) = �t;T (0; Zt+1; 0; : : : ; 0).

As demonstrated in [15, Theorem 1], any time-consistent dynamic risk measure can then
be constructed in terms of single-period risk measures �t by the formula

�t;T (Zt; Zt+1; : : : ; ZT ) = Zt + �t(Zt+1 + �t+1(Zt+2 + : : :+ �T�2(ZT�1 + �T�1(ZT )) : : :))):

The measure �t;T (Zt; Zt+1; : : : ; ZT ) can be interpreted as a certainty equivalent cost or
risk-adjusted expected cost, namely what deterministic sum would a decision maker pay at
stage t to avoid all the future costs (Zt; Zt+1; : : : ; ZT ) incurred by a candidate policy. In
the context of maximizing returns Zt, �t;T (Zt; Zt+1; : : : ; ZT ) can be interpreted (see [14])
as the minimum amount of money that one has to add to the position at stage t to make
it acceptable.
In our setting, this construction leads us to a recursive form for the problem to be

solved in the second and later stages t: Given a coherent one-step risk measure �t+1,
decisions xt�1 and realization !t, this problem can be written as

Qt(xt�1; !t) = min c>t xt + �t+1(Qt+1(xt; !t+1))
s.t. Atxt = bt(!t)� Etxt�1; [�t(!t)]

xt � 0;
(2)

where xt 2 R
n is the decision in stage t, ct its cost, and At and Et denote m�n matrices.

Here �t(!t) denotes the Lagrange multipliers of the constraints. We denote

Xt(!) = fxt � 0 : Atxt = bt(!)� Etxt�1g:

In the last stage we assume either that �T+1(QT+1(xT ; !T+1)) = 0, or there is some
known (convex) polyhedral function QT+1(xT ) that de�nes �T+1(QT+1(xT ; !T+1)). (We
adopt the notational convention that upper case Qt depends on !t whereas its caligraphic
counterpart Qt does not. That is, Qt is Ft�1-measurable but Qt is not.)
Observe that the coherence of �t+1 implies that it is monotonic and convex, and so

�t+1(Qt+1(xt; !t+1)) is a convex function of xt whenever Qt+1(xt; !t+1) is convex in xt
for every !t+1. This means that Qt(xt�1; !t) is convex in xt�1 for every !t whenever
Qt+1(xt; !t+1) is convex in xt for every !t+1, and so it follows by induction that for every
t = 1; 2; : : : ; T , Qt(xt�1; !t) is convex in xt�1 for every !t.
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A model of the form we descibe above has been implemented and applied to hydro-
thermal scheduling problems in Brazil by [13] and [20] in the special case where �t(Zt+1)
is a convex combination of expectation and conditional value at risk, i.e.

�t(Zt+1) = (1� �t)E[Zt+1 j Ft] + �t inf
u
fu+ ��1E[(Zt+1 � u)+ j Ft]g: (3)

These papers build a near optimal policy for instances of this problem using SDDP. The
approach of [13] represents �t(Zt+1) using a variable u that augments the state variables
representing reservoir storage. The approach of [20] is to represent �t(Zt+1) by a change
of probability measure that depends on the state variables representing reservoir storage.
We show below how this approach extends to general coherent risk measures.
Our goal is to construct an optimal solution for the multistage problem de�ned by (1)

and (2). Under the assumption that the random disturbances !t are stagewise indepen-
dent, the solution has the form of a policy � de�ned for each stage t by a mapping from
Xt�1(!t�1) � 
t to Xt(!t), specifying the decision xt(xt�1; !t) made by the policy � at
time t
When �t is the expectation operator, this problem becomes a classical multistage

stochastic linear program with stagewise independent random variables. Such a model
seeks to minimize the total cost on average. An important advantage of this special case
is that the objective function is the sum of expectations and so it can be expressed as the
expectation of a sum of random costs that is easy to estimate by sampling. This makes
the application of a methodology like SDDP particularly attractive as this yields a lower
bound on the cost of any feasible policy that can be compared with an estimate of its
actual cost by simulation.
Of course we would like to model situations in which �t is not expectation, but this

presents some challenges. As we show below, it is possible to derive a lower bound on
the optimal value of any policy when using outer approximation. However, estimating
the objective function value of a candiadte policy using Monte Carlo sampling seems to
be very di¢cult when �t is not expectation. The absence of such an estimate is a serious
disadvantage for decision makers, as well as posing a problem for SDDP, since estimating
or computing the value of a candidate policy is needed to determine when to stop the
algorithm, or at least to tell whether the algorithm has delivered a close to optimal policy
when it is stopped. We demonstrate that it is possible to de�ne a policy using inner
approximation and provide an upper bound on its value. This together with a lower
bound on the value of an optimal policy provides a suitable optimality check.

3 Policy speci�cation under expectation

We now proceed to describe methods to build policies for the problem to be solved. One of
these methods is the standard outer approximation algorithm based on Kelley�s cutting
plane method [8]. The outer approximation gives a lower bound on optimal solution
for the problem. The other method is an inner approximation based on the algorithm
developed by [5]. This can be shown to give an upper bound on optimal solution for the
problem. These algorithms are simplest to describe when the risk measure is expectation,
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so this section is con�ned to that case. As we shall see, the extension to general coherent
risk measures is straightforward.

3.1 Outer approximation

One may build a policy de�ned at each stage t by a polyhedral outer approximation
of E[Qt+1(xt; !t+1)]. This approximation is constructed using cutting planes. In other
words in each tth-stage problem, E[Qt+1(xt; !t+1)] is replaced by the variable �t+1 which
is constrained by the set of linear inequalities

�t+1 + ��
>

t+1;kEt+1xt � �gt+1;k for k = 1; 2; :::K; (4)

where K is the number of cuts. Here ��t+1;k = E[�t+1(!t+1)], which de�nes the gradient
���>t+1;kEt+1 and the intercept �gt+1;k for cut k in stage t, where

�gt+1;k = E[ ~Qt+1(x
k
t ; !t+1)] + ��

>

t+1;kEt+1x
k
t ,

and we de�ne ~Qt by the approximate stage problem

~Qt(xt�1; !t) = min c>t xt + �t+1
s.t. Atxt = bt(!t)� Etxt�1; [�t(!t)]

�t+1 + ��
>
t+1;kEt+1xt � �gt+1;k; k = 1; 2; :::K;

xt � 0:

(5)

Recall
Xt(!) = fxt � 0 : Atxt = bt(!)� Etxt�1g:

Proposition 1 If for any xt 2 Xt(!t), �gt+1;k� ��
>
t+1;kEt+1xt � E[Qt+1(xt; !t+1)] for every

k then
~Qt(xt�1; !t) � Qt(xt�1; !t)

Proof. For any xt 2 Xt(!t) the optimal choice of �t+1 satis�es

c>t xt + �t+1 = c>t xt +max
k
f�gt+1;k � ��

>

t+1;kEt+1xtg

� c>t xt + E[Qt+1(xt; !t+1)]

by hypothesis. It follows that

~Qt(xt�1; !t) = min
xt2Xt(!t)

fc>t xt +max
k
f�gt+1;k � ��

>

t+1;kEt+1xtgg

� min
xt2Xt(!t)

fc>t xt + E[Qt+1(xt; !t+1)]g

= Qt(xt�1; !t)

giving the desired result.
Proposition 1 shows that the outer approximation property is inherited from stage to

stage, so it can be used to compute a lower bound on an optimal policy for problem (1)
using the following algorithm.
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Outer Approximation Algorithm

1. Let ~QT+1(x) = 0 for every x 2 XT (!T ).

2. For t = 1; :::; T � 1 de�ne Jt points x
1
t ; x

2
t ; : : : ; x

Jt
t .

3. For t = T; :::; 2 and for each k = 1; 2; : : : ; Jt�1,

For each !t 2 
t, compute

~Qt(x
k
t�1; !t) = min c>t x+ ~Qt+1(x)

s.t. Atx = bt(!t)� Etx
k
t�1;

x � 0:
(6)

Compute ��t;k = E[�t(!t)], �gt;k = E[ ~Qt(x
k
t�1; !t)] + ��

>
t;kEtx

k
t�1,

and de�ne ~Qt(x) = maxkf�gt;k � ��
>
t;kEtxg, x 2 Xt�1(!t�1).

4. Solve
z = min c>1 x1 +

~Q2(x1)
s.t. A1x1 = b1;

x1 � 0:

This outer approximation algorithm de�nes a candidate policy in terms of the cutting
planes that de�ne ~Qt(x). The action to be taken at stage t at any state xt�1 is de�ned
by the solution to (5) with xt�1 chosen to be x

k
t�1. It is easy to see that the conditions

of Proposition 1 guarantee that the value z yields a lower bound on the value of an
optimal policy for the problem. In the context of minimizing expected cost, a statistical
upper bound can be obtained by simulating the candidate policy and computing a sample
average. This is not possible for more general risk measures as we shall see.
The outer approximation method has many variations that depend on how the points

x1t ; x
2
t ; : : : ; x

Jt
t are chosen. For example in the classical version of SDDP [12] these points

are constructed in increments (forward passes) by constructing sample paths using the
candidate policy obtained so far, and augmenting the set with the states visited in each
iteration. In other words, SDDP performs a sequence of outer approximations (backward
passes) increasing Jt at each pass. Our description above also admits algorithms that
select x1t ; x

2
t ; : : : ; x

Jt
t by other means (e.g. the quasi-Monte Carlo method described in

[7]).
We now turn our attention to the dual approach to outer approximation, that we

call inner approximation. This can be shown to give an upper bound on the optimal
policy. This will become important when this is di¢cult to estimate using Monte Carlo
simulation.

3.2 Inner approximation

Suppose at stage t that we have upper bounds q1t+1; q
2
t+1; : : : ; q

Jt
t+1 on the values of E[Qt+1(xt; !t+1)]

at Jt points x
1
t ; x

2
t ; : : : ; x

Jt
t . It is easy to see that the convex hull H of the points
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f(x1t ; q
1
t+1); (x

2
t ; q

2
t+1); : : : ; (x

Jt
t ; q

Jt
t+1)g de�nes a polyhedral set that is a subset of the convex

epigraph of E[Qt+1(xt; !t+1)]. It is convenient in what follows to de�ne the simplex

�t = f� j
JtX

j=1

�j = 1; �j � 0g:

Then the lower boundary of H is

Q̂t+1(xt) = min
PJt

j=1 �
jq
j
t+1

s.t.
PJt

j=1 �
jx
j
t = xt;

� 2 �t;

which de�nes an inner (upper bound) approximation to E[Qt+1(xt; !t+1)]. We use this
approximation to �nd an upper bound on c>t xt +E[Qt+1(xt; !t+1)] under each realization
of !t as follows.
Formally we de�ne a set fx1t�1; x

2
t�1; : : : ; x

Jt�1
t�1 g of Jt�1 possible values of xt�1, and for

each xit�1 we compute

qit(!t) = min c>t xt +
PJt

j=1 �
jq
j
t+1

s.t. Atxt = bt(!t)� Etx
i
t�1;PJt

j=1 �
jx
j
t = xt;

� 2 �t:

We denote by x̂t and �̂ the minimizers of this problem.

Proposition 2 If qjt+1 � E[Qt+1(x
j
t ; !t+1)] for all j = 1; 2; : : : ; Jt, then q

i
t(!t) � Qt(x

i
t�1; !t)

for all i = 1; 2; : : : ; Jt�1.

Proof. Since qjt+1 � E[Qt+1(x
j
t ; !t+1)] we have that

qit(!t) = c>t x̂t +
JtX

j=1

�̂
j
q
j
t+1

� c>t x̂t +

JtX

j=1

�̂
j
E[Qt+1(x

j
t ; !t+1)]

� c>t x̂t + E[Qt+1(

JtX

j=1

�̂
j
x
j
t ; !t+1)]

where the �rst inequality holds by hypothesis, and the second inequality follows from the
convexity of E[Qt+1(xt; !t+1)]. But the right-hand-side is c

>
t x̂t + E[Qt+1(x̂t; !t+1)], which

is the value of a feasible solution x̂t of (2), which must be at least the optimal value
Qt(x

i
t�1; !t).
It is easy to see that Proposition 2 also guarantees that E[qit(!t)] � E[Qt(x

i
t�1; !t)]

for every i. This means that for each i, qit = E[qit(!t)] will give an upper bound on
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E[Qt(x
i
t�1; !t)]. Thus q

i
t de�nes an inner approximation Q̂t(xt�1) of E[Qt(xt�1; !t)] formed

by the convex hull of the points f(x1t�1; q
1
t ); (x

2
t�1; q

2
t ); : : : ; (x

Jt�1
t�1 ; q

Jt�1
t )g.

For computational purposes, the inner approximation model can be expressed purely
in terms of multipliers �j. This gives

q
j
t�1(!t) = min

PJt
j=1

�
c>t x

j
t

�
�j +

PJt
j=1 �

jq
j
t

s.t.
PJt

j=1

�
Atx

j
t

�
�j = bt(!t)� Etxt�1;

� 2 �t:

Since the inner approximation property is inherited from stage to stage, it can be used to
compute an upper bound on an optimal policy for problem (1).

Inner Approximation Algorithm

1. Let Q̂T+1(x) = 0 for every xT 2 XT (!T ).

2. For t = 1; :::; T � 1 de�ne Jt points x
1
t ; x

2
t ; : : : ; x

Jt
t .

3. Compute q1T ; q
2
T ; : : : ; q

JT�1
T by solving for each i = 1; 2; : : : ; JT�1, and each !T 2


T ,
qiT (!T ) = min c>T xT + Q̂T+1(x)

s.t. ATxT = bT (!T )� ETx
i
T�1;

xT � 0;

and then computing qiT = E[q
i
T (!T )].

4. For t = T�1; :::; 2 compute q1t ; q
2
t ; : : : ; q

Jt�1
t by solving for each i = 1; 2; : : : ; Jt�1,

and each !t 2 
t,

qit(!t) = min c>t xt +
PJt

j=1 �
jq
j
t

s.t. Atxt = bt(!t)� Etx
i
t�1;PJt

j=1 �
jx
j
t = xt;

� 2 �t:

(7)

and then computing qit = E[q
i
t(!t)].

5. Solve
y = min c>1 x1 +

PJ1
j=1 �

jq
j
2

s.t. A1x1 = b1;PJ1
j=1 �

jx
j
1 = x1;

� 2 �1:

(8)

By Proposition 2, the optimal solution to (8) de�nes an upper bound y on the optimal
value of (1). Observe that this upper bound is not statistical, but it is a valid upper
bound on the optimal value of (1). Of course, if this �nite problem is a sample average
approximation of some �true� model, then we cannot assert that this bound is a valid
upper bound on the policy as applied to the true problem.

9



It is tempting to suppose that the cost �z incurred by a policy de�ned by outer ap-
proximation always satis�es �z � y, but this is not true in general. Suppose a candidate
policy that is computed using some methodology (like outer approximation) is evaluated
at stage t with a Bellman function that is an inner approximation of the expected future
cost. If the expected future cost from the start of stage t using the candidate policy is
not a convex function of the state then this makes it impossible to bound this cost using
inner approximation.
To illustrate this, consider the simple example of a single reservoir supplying free water

over two stages, where the demand in each period is 1 unit. One can buy water in stage 1
with cost 1, and can buy in stage 2 with cost 4. In�ows are zero. Let xt denote the storage
at the end of stage t. The optimal solution to this problem is to release maxfx0 � 1; 0g
in stage 1, and x1 in stage 2. The Bellman functions are therefore

Q2(x1) =

�
4� 4x1; x1 < 1
0 x1 � 1

Q1(x0) =

8
<

:

5� 4x0; x0 < 1;
2� x0; 1 � x0 < 2;
0 x0 � 2:

Suppose we wish to estimate the actual value of a myopic policy that at any stage with
reservoir level x releases minfx; 1g. Such a policy could arise for example from a (poor)
outer approximation with Bellman functions ~Q2(x) = ~Q3(x) = 0. Denote the actual cost
of this policy from the end of stage t to the end of stage 2 by vt(x) where x is the storage.
We can see that

v1(x) =

�
4� 4x; x < 1;
0; 1 � x;

v0(x) =

8
<

:

5� x; x < 1;
8� 4x; 1 � x < 2;
0 x � 2:

Now consider an inner approximation of the Bellman function at the end of stage 1 using
upper bounds W 1

1 and W
2
1 at two extreme storage levels x

1
1 = 0 and x

2
1 = 2. Suppose we

choose W 1
1 = v1(0) = 4, and W

2
1 = v1(2) = 0. An inner approximation is then obtained

by interpolation giving
Q̂2(x1) = 4� 2x1;

which is a pointwise upper bound on Q2(x1). The myopic policy evaluated with Q̂2(x1)
gives expected future costs at storage levels x10 = 0 and x20 = 2. These are W 1

0 =
1 + Q̂2(0) = 5, and W

2
0 = 0 + Q̂2(1) = 2. The inner approximation at the start of stage

1 is then

Q̂1(x0) = 5�
3

2
x0;

which is a pointwise upper bound on the cost Q1(x0) of the optimal policy.
However we can observe that the actual cost v0(x0) of the myopic policy starting

with x0 = 1 is v0(1) = 4, which is larger than the cost Q̂1(1) =
7
2
de�ned by the inner

approximation. So the inner approximation cannot be used here to provide a pointwise

10



upper bound on the cost of a suboptimal policy, because this cost is not a convex function
of x. If, on the other hand, the candidate policy were to minimize the objective of
the problem at stage t using Q̂t+1(xt) as a Bellman function, then the convexity of the
(approximate) optimal value function means that Q̂t(xt�1) provides an upper bound on
the expected value of the policy for any choice of xt�1. We proceed to demonstrate this
formally.
Consider a policy �̂ that is de�ned in terms of the set f(x1t ; q

1
t+1); (x

2
t ; q

2
t+1); : : : ; (x

Jt
t ; q

Jt
t+1)g

of points that de�ne Q̂t+1(x). The policy �̂ de�nes an action x̂t(xt�1; !t) to be taken at
stage t at any state xt�1 and random outcome !t, which is the solution to

qt(xt�1; !t) = min c>t xt + Q̂t+1(xt)
s.t. Atxt = bt(!t)� Etxt�1;

xt � 0:

Observe that Q̂t(xt�1; !t) =
PJt�1

j=1 �
jq
j
t (!t), where xt�1 =

PJt�1
j=1 �

jx
j
t�1, so Q̂t(x

j
t�1; !t) =

q
j
t (!t), and by convexity of qt(xt�1; !t) we have

qt(xt�1; !t) � Q̂t(xt�1; !t) (9)

This enables us to show the following proposition.

Proposition 3 The expected cost v(�̂) of policy �̂ when evaluated at x1 is less than or
equal to y.

Proof. Let the action to be taken by policy �̂ in stage t be given by x̂t(xt�1; !t), and
let v̂t(xt�1; !t) be the actual expected future cost of this and future actions over stages
t; t+ 1; : : : ; T . We show by induction that for every x we have

E[v̂t(xt�1; !t)] � Q̂t(xt�1):

When t = T , x̂T (xT�1; !T ) is the solution to

qT (xT�1; !T ) = min c>T xT + Q̂T+1(xT )
s.t. ATxT = bT (!T )� ETxT�1;

xT � 0;

giving E[v̂T (xT�1; !T )] = E[qT (xT�1; !T )]. Given an inner approximation policy de�ned
by xiT�1, i = 1; 2; : : : ; JT�1, any xT�1 can be written as

xT�1 =

JT�1X

i=1

�ixiT�1; � 2 �T�1;

so we have

E[v̂T (xT�1; !T )] = E[qT (xT�1; !T )]

� E[

JT�1X

i=1

�iqT (x
i
T�1; !T )]

= Q̂T (xT�1):

11



Now suppose that for every x we have

E[v̂t+1(xt; !t+1)] � Q̂t+1(xt).

Recall x̂t(xt�1; !t) is the optimal solution to

qt(xt�1; !t) = min c>t xt + Q̂t+1(xt)
s.t. Atx = bt(!t)� Etxt�1;

xt � 0:

The actual expected cost of the policy over stages t; t+ 1; : : : ; T is then

E[v̂t(xt�1; !t)] = E[c>t x̂t(xt�1; !t) + E[v̂t+1(x̂t(xt�1; !t); !t+1) j !t]]

� E[c>t x̂t(xt�1; !t) + Q̂t+1(x̂t(xt�1; !t))]

= E[qt(xt�1; !t)]

� Q̂t(xt�1)

where the �rst inequality follows from the inductive hypothesis, and the second inequality
follows from (9).
Finally the expected cost of policy �̂ when evaluated at the solution x̂1 to (8) is

v(�̂) = c>1 x1 + E[v̂2(x̂1; !2)]

� c>1 x̂1 + Q̂2(x̂1)

= y

which gives the result.
The performance of the inner approximation will depend critically on the choices of

the points x1t ; x
2
t ; : : : ; x

Jt
t . In problems where x has high dimension, we cannot expect

that the inner approximation will be very accurate for modest choices of Jt. Moreover
to ensure that we can capture all feasible values of x, we should choose some of the Jt
values to be extreme points of the range of possible x values. If x 2 RD then this means
having Jt � 2

D, which grows very fast with D. On the other hand, we might use points
x1t ; x

2
t ; : : : ; x

Jt
t selected from those generated by some other algorithm, such as SDDP for

example. This appears to give reasonable results in practice.
We conclude this section by summarizing the relationship between the bounds. Sup-

pose that �z is the actual expected value of the policy de�ned by the outer approximation,
and ŷ is the actual expected value of the policy de�ned by the inner approximation. Then
we have z � �z and z � ŷ � y. Observe that without estimating the values �z and ŷ we
cannot deduce which is larger. We do have a bound on the actual expected value of the
policy de�ned by the inner approximation, which can be used to estimate a gap between
this value and z. This becomes an important issue in the general case where �t is a general
coherent risk measure for which we cannot estimate �z or ŷ. We will return to discuss this
after presenting the extension of the inner and outer aproximation algorithms to the case
of general risk measures.

12



4 General coherent risk measures

In this section we repeat the above construction when expectation is replaced by a coherent
risk measure. We begin by examining a two-stage model, where our notation will suppress
the dependence on t. Recall that we restrict attention to �nite probability distributions,
so 
 = f!1; !2; : : : ; !Mg is �nite. Our space of random variables can then be identi�ed
with RM , in the sense that Z has a �nite number of outcomes fZ(!1); Z(!2); : : : ; Z(!M)g
with probabilities fp1; p2; : : : ; pMg.
Any coherent risk measure �(Z) has a dual representation (see [1],[19]) expressing it

as

�(Z) = sup
�2U

MX

m=1

pm�mZ(!m) (10)

where A is a convex subset of

B = f� 2 RM :

MX

m=1

pm�m = 1; � � 0g.

In the special case where the risk measure is CVaR1��[Z], we have

A=f� 2 B j �m �
1

�
, m = 1; 2; : : : ;Mg.

Now suppose that Z(x; !) is a convex function of x for each ! 2 
, and that when
x = ~x,

sup
�2A

MX

m=1

pm�mZ(~x; !m)

is attained at ~�, say. Then we have the following result.

Proposition 4 Suppose for each ! 2 
, that g(~x; !) is a subgradient of Z(x; !) at ~x.
Then

PM

m=1 pm
~�mg(~x; !m) is a subgradient of �(Z(x; !)) at ~x.

Proof. For any x,

�(Z(x; !)) = sup
�2U

MX

m=1

pm�mZ(x; !m)

�

MX

m=1

pm~�mZ(x; !m)

�
MX

m=1

pm~�m(Z(~x; !m) + g(~x; !m)
>(x� ~x))

= �(Z(~x; !)) +

MX

m=1

pm~�mg(~x; !m)
>(x� ~x)
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which demonstrates that
PM

m=1 pm
~�mg(~x; !m) is a subgradient at ~x.

Now, in a multistage context, given xt�1 we compute an optimal solution xt(!) to a
stage problem for each ! 2 
t to yield an optimal value ctxt(!t)+�t+1(Qt+1(xt(!t); !t+1);
!t 2 
t. Since �t is a coherent measure, it is monotone. So by the interchangeability
principle [19, Proposition 6.36] we can compute

min
xt(!)

�t(ctxt(!t) + �t+1(Qt+1(xt(!t); !t+1)))

by evaluating
�t(min

xt
fctxt + �t+1(Qt+1(xt; !t+1))g).

This evaluation is then equivalent to

sup
�2A

MX

m=1

pm�mmin
xt
fctxt + �t+1(Qt+1(xt; !t+1))g

which is e¤ectively a wait-and-see computation, followed by an expectation with a �changed�
probability measure. In contrast to the use of a polyhedral formula for the risk measure
(as used for CVaR in [13]), this construction simpli�es the computation considerably. This
observation was made in [20].
We can demonstrate the advantages of this �change-of-measure� approach by applying

it to the two-stage model from [13]:

SP: min c>1 x1 + (1� �)E[c
>
2 x2] + �CVaR1��[c

>
2 x2]

s.t. A1x1 = b1;
A2x2(!) + E2x1 = b2(!); for all ! 2 
2;
x1 � 0; x2(!) � 0; for all ! 2 
2:

written as the following linear program

SP: min c>1 x1 + (1� �)E[c
>
2 x2] + �u2 + ��

�1
E[v2]

s.t. A1x1 = b1;
A2x2(!) + E2x1 = b2(!); for all ! 2 
2;
v2(!) � c

>
2 x2(!)� u2; for all ! 2 
2;

x1 � 0; x2(!) � 0; v2(!) � 0; for all ! 2 
2:

where x1 and u2 are �rst-stage variables. In the multistage context, the approach of [13]
records xt�1 and ut as state variables, and computes cutting planes as functions of these.
In the �change-of-measure� approach, we maintain only xt�1 as a state variable. In

the two-stage context this would entail that x1 is �xed. We then solve

SP(!): min c>2 x2
s.t. A2x2 = b2(!)� E2x1

x2 � 0;

for each ! to yield x2(!), and Z(!m) = c>2 x2(!m). We then compute the probabilities
p1�1; p2�2; : : : ; pM�M that correspond to Z(!1); Z(!2); : : : ; Z(!M). Here

�(Z) = (1� �)

MX

m=1

pmZ(!m) + � sup
�2A

MX

m=1

pm�mZ(!m),

14



where

A=f� 2 B j �m �
1

�
, m = 1; 2; : : : ;Mg.

This is a straightforward calculation once Z(!m) is known. Without loss of generality
suppose Z(!1) � Z(!2) � : : : � Z(!M). De�ne index i so that

MX

m=i

pm � �;

MX

m=i+1

pm < �

where we choose i =M if pM � �. Then

�(Z) =

MX

m=1

pm�mZ(!m)

where

�m =

8
><

>:

(1� �); m < i

(1� �) + 1
pi

�
�� �

�

PM

n=i+1 pn

�
; m = i

(1� �) + �
�
; m > i

:

This construction avoids the necessity to maintain a VaR state variable u at each stage,
at the expense of having to compute �. Observe also that � will vary with the value of
the state variable x1, and so we cannot reduce the overall problem to the minimization of
an expectation - it is only possible to do this at each stage t given the values of the state
variables xt�1.
For general coherent risk measures, the construction is almost identical to that above.

The optimal value of (5), the tth stage problem in the outer approximation algorithm,
can be represented at any xt�1by

~Qt(xt�1; !t) = min c>t xt + �t+1
s.t. Atxt = bt(!t)� Etxt�1; [�t(!t)]

�t+1 + ��
>
t+1;kEt+1xt �

�ht+1;k; k = 1; 2; : : : ; Kt+1;

xt � 0:

(11)

where k counts the cuts that are added to the tth-stage problem,

��t+1;k =
MX

m=1

pm~�m�t+1;k(!t+1;m ); (12)

�ht+1;k =

MX

m=1

pm~�m ~Qt+1(x
k
t ; !t+1;m) + ��

>

t+1;kEt+1x
k
t ;

and ~� is de�ned by the collection of solution values ~Qt+1(x
k
t ; !t+1), !t+1 2 
t+1 and the

set A that characterizes the particular coherent risk measure we are using. More precisely,
~� is chosen to maximize

PM

m=1 pm�m
~Qt+1(x

k
t ; !t+1;m) over A. Finally Proposition 4 shows

that ��>t+1;k de�ned by (12) gives a subgradient ���
>
t+1;kEt+1 of �t+1(

~Qt+1(xt; !t+1)) at x
k
t ,

so the inequalities in (11) de�ne valid cutting planes for the outer approximation.
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We now return to the issue of constructing bounds on the risk-adjusted cost v(�) of
any risk-averse policy � that is feasible for the problem de�ned by (1) and (2). We know
that outer approximation produces a lower bound z on v(�), and a policy ~� de�ned by
a set of Bellman functions ~Qt(x) for t = 1; 2; : : : ; T . Inner approximation produces an
upper bound y on the value v(�̂) of the policy �̂ de�ned by the set of Bellman functions
Q̂t(x) for t = 1; 2; : : : ; T .
The inductive argument in Proposition 3 extends naturally to the case where expecta-

tion is replaced by a more general risk measure. Here we use upper bounds q1t+1; q
2
t+1; : : : ; q

Jt
t+1

on the values of �t+1(Qt+1(xt; !t+1)) at Jt points x
1
t ; x

2
t ; : : : ; x

Jt
t . As before we denote the

inner approximation using these bounds by Q̂t+1(xt).

Proposition 5 The risk-adjusted cost v(�̂) of policy �̂ when evaluated at x1 is less than
or equal to y.

Proof. Let the action to be taken by policy �̂ in stage t be given by x̂t(xt�1; !t), and let
v̂t(xt�1; !t) be the actual risk-adjusted future cost of this and future actions over stages
t; t+ 1; : : : ; T . Thus

v̂t(xt�1; !t) = c
>

t xt + �t+1(v̂t+1(xt; !t+1))

We show by induction that for every xt�1 we have

�t(v̂t(xt�1; !t)) � Q̂t(xt�1).

When t = T , x̂T (xT�1; !T ) is the solution to

qT (xT�1; !T ) = min c>T xT + 0
s.t. ATxT = bT (!T )� ETxT�1;

xT � 0;

giving �T (v̂T (xT�1; !T )) = �T (qT�1(xT�1; !T )). Given an inner approximation policy
de�ned by xiT�1, i = 1; 2; : : : ; JT�1, any xT�1 can be written as

xT�1 =

JT�1X

i=1

�ixiT�1;

JT�1X

i=1

�i = 1; �i � 0;

so for each !T we have

�T (v̂T (xT�1; !T )) = �T (qT (xT�1; !T ))

� �T (

JT�1X

i=1

�iqT (x
i
T�1; !T ))

= Q̂T (xT�1);

where the inequality follows from the convexity of qT (xT�1; !T ) and convexity and monotonic-
ity of �T .
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Now suppose that for every xt we have

�t+1(v̂t+1(xt; !t+1)) � Q̂t+1(xt).

Recall x̂t(xt�1; !t) is the solution to

min c>t xt + Q̂t+1(xt)
s.t. Atxt = bt(!t)� Etxt�1;

xt � 0:

(13)

The actual risk-adjusted cost of the policy over stages t; t+ 1; : : : ; T is then

�t(v̂t(xt�1; !t)) = �t(c
>

t x̂t(xt�1; !t) + �t+1(v̂t+1(x̂t(xt�1; !t); !t+1) j !t))

� �t(c
>

t x̂t(xt�1; !t) + Q̂t+1(x̂t(xt�1; !t)))

� Q̂t(xt�1)

where the �rst inequality is the inductive hypothesis, and the second inequality follows
from the fact that Q̂t(xt�1) is an inner approximation of the risk-adjusted optimal value
function of (13), and �t is monotone.
Finally the risk-adjusted optimal cost of policy �̂ when evaluated at the solution x̂1

to (8) is

v(�̂) = c>1 x̂1 + �2(v̂2(x̂1; !2))

� c>1 x̂1 + Q̂2(x̂1)

= y;

which gives the result.

5 Sampling algorithms with stage-wise independence

We have shown that the methods described in Section 3 can be used under a general risk
measure to compute policies that will lead to an upper or lower bound to problem (1).
However, in several practical applications it is impossible to build a policy considering
the whole scenario tree, due to its size. The Stochastic Dual Dynamic Programming
(SDDP) algorithm ([12],[18],[20]) for multistage stochastic linear programming attempts
to overcome this problem by sampling.
The SDDP algorithm performs a sequence of major iterations known as the forward

pass and the backward pass to build an outer approximation of the Bellman function at
each stage. In each forward pass, a set of N scenarios is sampled from the scenario tree
and decisions are taken for each node of those N scenarios, starting in the �rst stage and
moving forward up to the last stage. In each stage, the observed values of the decision
variables xt, and the costs of each node in all scenarios are saved.
In the backward pass SDDP amends the current policy by adding cutting planes to

each stage problem, starting at the last stage and working backwards to the �rst. In
each stage t we solve the next stage problems for all possible realizations (
t+1). The
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values of the objective functions and dual variables at optimality are averaged over all
realizations to de�ne a cut that is added to all problems at stage t. Under general risk
measures, SDDP is essentially the same as the risk-neutral method, with di¤erences in
cut computation. In order to compute a cut it is necessary to add a step in the backward
pass which calculates the �change-of-measure� probabilities as discussed in Section 4. The
cut computation proceeds using these probabilities as in (12). The SDDP algorithm is
then as follows.

1. Set it = 0

2. Sample N scenarios;

3. Forward Pass

For t = 1, solve (11) and save x1(it) and z;

For t = 2; :::; T and s = 1; :::; N ,

Solve (11), where !t is de�ned by s, and save xt(s; it) and ~Qt(xt�1(s; it); !t).

4. Backward Pass

For t = T; :::; 2, and s = 1; :::; N ,

For !t;m 2 
t, solve (11) using xt�1(s; it) and save �t(!t;m)

and ~Qt(xt�1(s; it); !t;m);

Compute ~� 2 A that maximizes
PM

m=1 pm�m
~Qt(xt�1(s; it); !t;m)

Calculate a cut using (12) for k = K + s, and add it to all nodes in stage

t� 1.

Set K = K +N:

5. Increment it. If it < itmax, go to step 2. Otherwise, stop.

After the SDDP method has performed itmax iterations, we compute an upper bound
on the optimal policy as follows:

Upper Bound Computation (U)

1. For t = T; :::; 2, and s = 1; :::; N , and it = 1; :::; itmax,

For !t;m 2 
t, solve (7) using xt�1(s; it) and save qt(xt�1(s; it); !t;m);

Compute ~� 2 A that maximizes
PM

m=1 pm�mqt(xt�1(s; it); !t;m) and save

the optimal value as qt(s; it);

2. Solve (8) and save y;

Recall that the value of y computed is an upper bound on the optimal value, but not
a bound on the value of the policy obtained in the outer approximation problem. It is
however an upper bound on the value of the policy de�ned by the inner approximation.
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6 Numerical experiments

In this section we present some numerical results from applying inner and outer ap-
proximation algorithms to a long-term hydrothermal scheduling problem arising in the
Brazilian electricity system [3]. The hydrothermal scheduling problem seeks a policy for
managing hydroelectricity reservoir storage to minimize thermal and shortage costs given
uncertainty in the in�ows. It can be viewed as a stochastic control problem in which the
reservoir levels are the state variables and the controls are water releases, thermal gener-
ation, and load shedding. The model we consider in this paper represents the Brazilian
national system comprising 158 hydroelectric power plants and 151 thermal power plants
(as at January 2012). The hydroelectric power plants are aggregated in each region -
South, Southeast, North and Northeast - to form four energy equivalent reservoirs (EERs)
as discussed in [10, 11], giving a state space of dimension four.
Long-term hydrothermal scheduling problems in Brazil typically consider a 10-year

horizon with 120 stages. To reduce the computational e¤ort, we build a policy for a
reduced horizon of 2 years with monthly time stages, giving a total of 24 stages. We
assume that all EERs have initial storage of 15% of the maximum storage, except for
the Northern EER which has 25% of its maximum storage. The only uncertainty in our
model is in the in�ows, which we assume to be stagewise independent.
The in�ow model is a stagewise independent lognormal model based on that described

in [3]. Following [9], the spatial correlation between the in�ows to the four EERs is
modelled by a matrix transformation of four independent time series, to give the same
covariance matrix as that estimated from a historical series of monthly data going back 80
years. Each of the four factors are assumed to be stage-wise independent with a di¤erent
lognormal distribution for each factor and each month, estimated from the 80 years of
monthly in�ow data.
In this paper we analyse two cases, one risk neutral and one risk averse. For each case,

we build a policy with up to 10,000 cuts/states for all 24 stages. In the risk-averse case
we used the risk measure de�ned by (3) with � = 0:5 and � = 0:2. The scenario tree for a
sample average approximation (SAA) problem is created by means of randomly sampling
20 vectors from the in�ow distribution at each stage.
The risk-neutral policies are evaluated using both bounds and statistical estimation.

For the latter, the policies were simulated over the 24 month horizon for 10,000 scenarios.
These scenarios were obtained by randomly sampling outcomes within the scenario tree.
Thus our experiments investigate the solution of the SAA problem and how close it is to
optimality. We do not evaluate the policy when applied to the original model.
In the risk-neutral case, Table 1 presents the lower and upper bounds obtained with

the outer and inner approximation, respectively, for several numbers of cuts/states. The
outer approximation algorithm is a standard variation of SDDP with 200 scenarios used
in each forward pass. We run each inner approximation algorithm �fteen times, using the
states visited after 200, 400, 600, 800, 1000, 1600, 2000, 3000, . . . , 10000 cuts have been
added in the outer approximation. In addition to the bounds, Table 1 shows the optimality
gap for the SAA problem and the computational time for both algorithms. From Table 1
it is possible to see that the gap between the bounds reduces as we increase the number
of cuts in the outer approximation and states in the inner approximation. One can also
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Table 1: Risk-neutral results.

Cuts
States

Lower Bound
(109 BRL)

Upper Bound
(109 BRL)

Gap
(109BRL)

Gap (%)
Time
Outer
(s)

Time
Inner
(s)

200 5.436 6.430 0.994 15.46 5 25
400 5.636 6.192 0.556 8.99 10 52
600 5.729 6.126 0.397 6.48 15 78
800 5.762 6.090 0.328 5.39 21 118
1000 5.787 6.074 0.288 4.74 28 167
1600 5.839 6.033 0.195 3.23 54 356
2000 5.849 6.020 0.171 2.84 77 514
3000 5.868 5.993 0.125 2.08 151 1056
4000 5.879 5.983 0.104 1.73 248 1824
5000 5.887 5.977 0.090 1.51 368 2629
6000 5.891 5.971 0.080 1.34 516 3867
7000 5.896 5.966 0.071 1.19 696 5213
8000 5.899 5.964 0.065 1.10 901 6915
9000 5.901 5.961 0.061 1.02 1140 8921
10000 5.903 5.959 0.056 0.95 1408 13401

notice that the outer approximation is much quicker than the inner approximation, owing
to the use of acceleration strategies that have been shown to improve the performance of
SDDP [4]. We have not developed analogous strategies for inner approximation.
In order to compare with the traditional strategies for estimating an upper bound

when minimizing expected cost, Table 2 shows statistical upper bounds. The values in the
second column (UB SDDP) are computed using the 200 scenarios sampled in each forward
pass of SDDP. The value reported is the sample average cost plus twice its standard error
(giving a one-sided test for 97.5% con�dence). This is an appropriate convergence test
as discussed in [18] and [7]. The upper bound values in the fourth and sixth columns are
computed using a single set of 10,000 scenarios (sampled independently from the forward
passes, and re-used for each estimation).
The estimates in the second column of Table 2 are relatively coarse since the standard

error of the estimator is large with only 200 scenarios. With a larger sample size these
values reduce to be very close to the lower bound. The results con�rm that for su¢cient
numbers of states/cuts the expected cost of the inner-approximation policy and that of
the outer-approximation policy are of comparable value. When comparing the statistical
estimates in Table 2 with the values of Table 1 one can see these are slightly smaller
than the deterministic upper bounds obtained from the inner approximation. This is
to be expected as these are estimates of the expected cost of the solution, whereas the
deterministic values are upper bounds on this value.
Table 3 shows the bounds when the methodology is applied to the risk-averse case.

One can observe a similar behaviour to the risk-neutral case, but with larger gaps for
the same number of cuts/states. In general, risk-averse problems need more cuts and
states to specify close to optimal policies, so we might expect to see these di¤erences
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Table 2: Risk-neutral statistical upper bounds.

Cuts
States

UB SDDP
Algorithm
(109 BRL)

Gap
SDDP

Algorithm
(%)

UB Outer
App.

Simulation
(109 BRL)

Gap Outer
App.

Simulation
(%)

UB Inner
App.

Simulation
(109 BRL)

Gap Inner
App.

Simulation
(%)

200 14.339 72.60 6.510 16.72 6.061 10.40
400 8.518 40.24 6.161 8.63 5.987 5.93
600 6.628 14.58 6.119 6.46 5.967 4.03
800 6.336 9.73 6.069 5.13 5.958 3.33
1000 5.857 1.27 6.040 4.25 5.953 2.82
1600 6.255 7.20 5.979 2.38 5.938 1.69
2000 6.194 5.85 5.973 2.09 5.937 1.49
3000 6.885 16.02 5.954 1.45 5.931 1.06
4000 6.025 2.55 5.940 1.03 5.928 0.83
5000 6.647 12.33 5.938 0.88 5.925 0.66
6000 6.705 13.39 5.929 0.65 5.923 0.55
7000 6.294 6.76 5.927 0.54 5.922 0.45
8000 6.313 7.00 5.926 0.46 5.921 0.38
9000 6.244 5.85 5.920 0.33 5.919 0.32
10000 6.208 5.30 5.920 0.30 5.920 0.28

when compared with the risk-neutral policy. Adding more cuts to give a better policy
will reduce the gap, but, as we can see, the time to compute an upper bound using our
approach will become prohibitive. We expect the computational e¤ort to be reduced by
acceleration strategies, though we have not studied these for inner approximation. For
outer approximation, these strategies make a substantial di¤erence, even leading to faster
solves in the risk-averse case as compared with corresponding times for the risk-neutral
case, where �Level 1 dominance� as de�ned in [4] results in a smaller number of selected
cuts in the risk-averse stage problems.

7 Conclusions

This paper shows how SDDP can be implemented with a general coherent risk measure.
We show how upper bounds on the value of candidate policies can be computed in this
setting, and used to evaluate how close these policies are to the optimal solution. The
performance of these bounds has been tested in a large-scale instance of a hydro-thermal
scheduling problem. These experiments are a �rst step towards a more e¢cient bounding
procedure, and give researchers a target at which to aim.
The upper bounds that we obtain are not statistical - they are deterministic upper

bounds on the policy value as computed for the scenario tree that we are working with.
Of course, if this tree is obtained by sampling then the bounds on the policy value when
tested in the �true� process become statistical. This might appear to confer a substantial
advantage over statistical bounds obtained using Monte Carlo methods. Observe however
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Table 3: Risk-averse results.

Cuts
States

Lower Bound
(109 BRL)

Upper Bound
(109 BRL)

Gap (109

BRL)
Gap (%)

Time
Outer
(s)

Time
Inner
(s)

200 17.387 27.886 10.498 37.65 5 23
400 18.465 26.472 8.007 30.25 9 50
600 18.942 26.061 7.119 27.32 14 99
800 19.112 25.783 6.671 25.87 19 126
1000 19.247 25.687 6.440 25.07 25 158
1600 19.718 25.249 5.531 21.91 47 416
2000 19.804 25.113 5.309 21.14 63 604
3000 20.457 24.677 4.220 17.10 109 1017
4000 20.561 24.559 3.998 16.28 169 2159
5000 20.641 24.470 3.829 15.65 243 2979
6000 20.749 24.357 3.609 14.82 334 3879
7000 20.905 24.255 3.350 13.81 454 6020
8000 20.983 24.229 3.246 13.40 593 8078
9000 21.040 24.161 3.121 12.92 762 10386
10000 21.081 24.132 3.051 12.64 959 13417

that the computational e¤ort required for an accurate inner approximation increases dra-
matically with the state dimension, a problem that is not faced by Monte Carlo sampling.
We have applied inner approximation to the Bellman function at every stage. Along

with the outer approximation de�ned by the cuts, this gives two bounding functions on
the optimal Bellman function. We expect that the di¤erence between these will decrease
as we approach the end of the horizon. This measure can be used to determine the stages
at which the outer approximation might need improving, and provide an opportunity to
avoid unnecessary cut calculations in some stages as the algorithm proceeds.
The axioms that de�ne coherent risk measures are not universally accepted. In par-

ticular, positive homogeneity does not represent the view that risk increases nonlinearly
as positions scale. The models that we study here could be extended to convex risk
measures [6] which replace the subadditivity and positive homogeneity conditions with
convexity. Convexity, monotonicity and translation equivariance are enough to give the
nested structure we require. The representation theorem for convex measures gives rise
to a dual problem that seeks a worst-case measure with the addition of a penalty function
of the measure. If the risk measure we adopt enables the optimal dual measure to be
readily identi�able from the primal solution to each stage problem, then the approach we
describe in this paper can be extended to deal with convex risk measures, by shifting the
cutting planes vertically by an appropriate penalty distance. In addition to that, the inner
approximation and upper bound computation remain valid, as we rely only on convexity.
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