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In this paper, we present a new reduction algorithm for solving system of linear differential-algebraic equations with power series
coefficients. In the proposed algorithm, we transform the given system of differential-algebraic equations into another simple
equivalent system using the elementary algebraic techniques. �is algorithm would help to implement the manual calculations in
commercial packages such as Mathematica, Maple, MATLAB, Singular, and Scilab. Maple implementation of the proposed
algorithm is discussed, and sample computations are presented to illustrate the proposed algorithm.

1. Introduction

In many applications of science and engineering, for ex-
ample, simulation of electric circuits [1–4], mechanical
systems [5, 6], and chemical reactions subject to invariants
[7–13], the systems of differential-algebraic equations
(DAEs) arise naturally, and these systems of DAEs consist of
algebraic equations and differential operations. Many en-
gineers and scientists have studied the system of DAEs from
a theoretical as well as a numerical point of view and created
many new approaches to solve the system of linear differ-
ential-algebraic equations; see, for example, [14–25].

In this paper, we are concerned with a linear system of
differential-algebraic equations of the following form:

A(x) zu(x) +B(x) u(x) � f(x), (1)

where x is a complex variable, A(x) and B(x) are m × n
matrices with analytic functions entries, f(x) is an m-di-
mensional column matrix with analytic functions entries,
u(x) is an n-dimensional unknown column matrix which is
going to be determined, and z � (d/dx) is a differential
operator. In this paper, we focus on creating a new reduction
algorithm using elementary algebraic techniques as well as
the implementation of the proposed algorithm in Maple.
Using this algorithm, we can transform a given system of

DAEs into another equivalent system, where we can solve
the reduced system easily.

�e rest of the paper is organized as follows: in Section 2,
we present a new reduction algorithm to solve the given
system of DAEs with certain examples to illustrate the
proposed reduction algorithm and Section 3 discusses the
Maple implementation of the proposed algorithm with
sample computations.

2. A New Reduction Algorithm

Let K be a subfield of the field of complex numbers C. Note
that (Q⊆K⊆C). We denote the ring of formal power series by
K[[x]] in the variable x and K((x)) denotes its quotient
field, that is, K((x)) � K[[x]][x− 1]. �e ring of differential
operators is denoted by K[[x]][z] with coefficients in
K[[x]], that is, the set of finite sums ∑ aizi with ai ∈ K[[x]]
is equipped with the addition and the multiplication defined
by

z
i
z
j
� z

i+j, i, j ∈ N,

zf � f z +
df

dx
,

(2)

where f ∈ K[[x]]. Recall the system of DAEs in equation
(1):
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A(x) zu(x) +B(x)u(z) � f(x), (3)

where A(x),B(x) ∈ K[[x]]m×n, f(x) ∈ K[[x]]m, and
u(x) ∈ K[[x]]n. �e corresponding matrix differential op-
erator of system (3) is L � A z +B ∈ K[[x]][z]m×n. We
recall the basic concepts of the matrix differential operators;
see [23, 26–29] for further details.

Definition 1. A matrix differential operator T ∈ K[[x]]
[z]n×n is said to be unimodular matrix if there exists V ∈ K
[[x]][z]n×n such that VT � TV � In.

Definition 2. Two matrix differential operators L, L̃ ∈ K
[[x]][z]m×n are said to be equivalent if there exist two
unimodular matrices S ∈ K[[x]][z]m×m and
T ∈ K[[x]][z]n×n such that L̃ � SLT.

�e following section presents a new reduction algo-
rithm using elementary algebraic techniques.

2.1. Reduction Algorithm. �e following lemma is one of the
essential steps to create a new reduction algorithm. It shows
that any matrix of formal power series centered at origin can
be transformed into a block matrix.

Lemma 1 (see [23, 26, 29]). Let A ∈ K[[x]]n×n. 'en there
exist two unimodular matrices S, T ∈ K[[x]]n×n such that

SA �
A

11

0
 ,AT � A

11 0( ),
SAT �

A
11 0

0 0
 ,

(4)

where Aij denote the i-th row and j-th column block of
matrix A, A11 ∈ K[[x]]r×r is a block matrix, and r is the
rank of matrix A.

Suppose that L ∈ K[[x]][z]m×n is a given matrix dif-
ferential operator. Using Lemma 1, we can construct two
unimodular matrix differential operators S1 and T1, by
finding the basis of left null space and right null space of the
matrix differential operator L, such that

L1 � S1LT1 � A1z +B1, (5)

where A1 �
A

11 0
0 0

( ) and B1 �
B

11 0
0 0

( ). Now using

Lemma 1 to matrix A1 of (5), we can get an unimodular
matrix S2 such that

L2 � S2L1 � A2z +B2, (6)

whereA2 � S2A1 �
Â

11
0

0 0
( ) and Â

11
is invertible matrix,

and B2 � S2B1 �
B̂

11
0

0 0
( ). Again, using Lemma 1 to

matrixB2 of (6), we can construct an unimodular matrix T2

such that

L3 � L2T2 � A3z +B3, (7)

where A3 � A2T2 �
Â

11
0

0 0
( ) and B3 �B2T2 �

B̂
11

0
0 0

( ). If we denote S � S2S1 and T � T1T2, then we

have two unimodular matrix differential operators
S ∈ GLm(K[[x]]) and T ∈ GLn(K[[x]]) such that the given
system is in reduced form as follows:

L̃ � Ãz + B̃, (8)

where L̃ � SLT has the form L̃
11

0
0 0

( ) and L̃
11

is invertible

matrix differential operator; Ã has the form Ã
11

0
0 0

( ); and
B̃ has the form B̃

11
0

0 0
( ). Note that the ranks of Ã

11
and

B̃
11

may not be the same, but the ranks of Ã
11

and B̃
11

are
the same only when the coefficient matrices A and B have
the same rank. We generalize the above reduction algorithm
in the following theorem.

Theorem 1. Let L � AD +B ∈ K[[x]][z]m×n be a matrix
differential operator. 'en we can construct two unimodular
matrices S ∈ GLm(K[[x]]) andT ∈ GLn(K[[x]]) such that the
given system L � A z +B ∈ K[[x]][z]m×n is in reduced form:

L̃ � Ãz + B̃, (9)

where L̃ � SLT has the form L̃
11

0
0 0

( ) and L̃
11

is invertible

matrix differential operator; Ã has the form Ã
11

0
0 0

( ); and

B̃ has the form B̃
11

0
0 0

( ).

Proof. Using Lemma 1 to L, we can construct two unim-
odular matrices S ∈ GLm(K[[x]]) and T ∈ GLn(K[[x]]). If
we use the substitution u(x) � Tv(x) in (3) and left mul-
tiplying the resultant equation with S, we have the following
reduced form:

SLTv(x) � SAT zv(x) + SBTv(x) � Sf(x),

or L̃v � Ãzv + B̃v � f̃,
(10)

where L̃ � SLT ∈ K[[x]][z]m×n, Ã � SAT ∈ K[[x]]m×n,
B̃ � SBT ∈ K[[x]]m×n, and f̃ � Sf ∈ K[[x]]m×1.

Indeed, (i) if rank (L) < rank (A) and rank (L) < rank
(B), then the reduced system of DAEs (10) has the following
form:

L̃v � Ãzv + B̃v � f̃, (11)

where L̃ �
L
11
z L

12
0

L
21

L
22

0
0 0 0

 , v � v1
v2
v3

 , f̃ � f1

f2

f3

 .

Hence, the system of DAEs in (3) is decomposed into two
systems as follows:
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L
11
zv1 + L

12
v2

L
21
v1 + L

22
v2

, (12)

with some necessary conditions on the right-hand side
expressed by f3 � 0.

(ii) If rank (L)� rank (A)� rank (B), then the reduced
DAS (10) has the following form:

L̃v � Ãzv + B̃v � f̃, (13)

where L̃ � L
11

0
0 0

( ), v � v1
v2

( ), f̃ � f1

f2

( ). Hence, the

system of DAEs in (3) is decomposed as L
11
v1 � f1 with

some necessary conditions on the right-hand side expressed
by f2 � 0.

In the following section, we present certain examples to
illustrate the proposed method presented in�eorem 1. □

2.2. Examples

Example 1. Consider a matrix differential operator of DAS.

L � A z +B

�

0 x 1 − x 1 1

1 0 0 1 0

1 x 1 − x 2 1

1 x − 1 1 0 2

1 − x x − 1 0 − 1




z +

1 0 0 1 0

0 0 − 1 0 0

0 0 0 0 0

0 x + 1 0 1 0

0 0 0 0 0





�

1 x z (1 − x)z z + 1 z

z 0 − 1 z 0

z x z (1 − x)z 2 z z

z (x − 1)z + x + 1 z 1 2 z

z − x z (x − 1)z 0 − z




.

(14)
Using Lemma 1 to L, one can construct two unimodular

matrices S1 and T1 (obtained using a basis of left null space
and right null space of L) as follows:

left null space of L �
2 z

z − 1
0

z + 1

1 − z
0 1( ),

right null space of L �
x + 1 − (x + 1)z

(2x − 1)z + 1

1 − 3 z

(2x − 1)z + 1
0
(x + 1)z − x − 1

(2x − 1)z + 1
1( ).

(15)

Now the unimodular matrices S1 and T1 are

S1 �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

2 z

z − 1
0

z + 1

1 − z
0 1





,

T1 �

1 0 0 0
x + 1 − (x + 1)z

(2x − 1)z + 1

0 1 0 0
1 − 3 z

(2x − 1)z + 1

0 0 1 0 0

0 0 0 1
(x + 1)z − x − 1

(2x − 1)z + 1

0 0 0 0 1





.

(16)

�us, multiplying operator L on the left and right by S1
and T1 yields the operator

L1 � S1LT1 �

1 x z (1 − x)z z + 1 ⋮ 0

z 0 − 1 z ⋮ 0

z x z (1 − x)z 2 z ⋮ 0

z (x − 1)z + x + 1 z 1 ⋮ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0





,

(17)
where

A1 �
A

11 0

0 0

  �

0 x 1 − x 1 ⋮ 0

1 0 0 1 ⋮ 0

1 x 1 − x 2 ⋮ 0

1 x − 1 1 0 ⋮ 0

. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0





,
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B1 �
B

11 0
0 0

( ) �
1 0 0 1 ⋮ 0
0 0 − 1 0 ⋮ 0
0 0 0 0 ⋮ 0
0 x + 1 0 1 ⋮ 0
. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0


. (18)

Now, using Lemma 1 to matrix A1, we can construct an
unimodular matrix S2, using a basis of left null space of A1,
as follows:

S2 �

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

− 1 − 1 1 0 0

0 0 0 0 1




. (19)

We have

L3 � S2L2 � A2z +B2 �

1 x z (1 − x)z z + 1 ⋮ 0

z 0 − 1 z ⋮ 0

z (x − 1)z + x + 1 z 1 ⋮ 0

− 1 0 1 − 1 ⋮ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0




, (20)

where

A2 �
Â

11
0

0 0
( ) �

0 x 1 − x 1 ⋮ 0

1 0 0 1 ⋮ 0

1 x − 1 1 0 ⋮ 0

. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0

0 0 0 0 ⋮ 0




,

B2 �
B̂

11
0

0 0
( ) �

1 0 0 1 ⋮ 0

0 0 − 1 0 ⋮ 0

0 x + 1 0 1 ⋮ 0

− 1 0 1 − 1 ⋮ 0

. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0




.

(21)

Again, using Lemma 1 to matrix B2 of the matrix
differential operator L2, we can construct an unimodular
matrix T2 using a basis of right null space of B2 as follows:

T2 �

1 0 0 − 1 0

0 1 0
− 1

x + 1
0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





. (22)

We have

L3 � L2T2 � A3z +B3 �

1 x z (1 − x)z
z

1 + x
⋮ 0

z 0 − 1 0 ⋮ 0

z (x − 1)z + x + 1 z
− 2x z

1 + x
⋮ 0

− 1 0 1 0 ⋮ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0





, (23)
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where

A3 � A2T2 �
Ã

11
0

0 0

  �

0 x 1 − x
1

x + 1
⋮ 0

1 0 0 0 ⋮ 0

1 x − 1 1
− 2x

1 + x
⋮ 0

. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0

0 0 0 0 ⋮ 0





,

B3 �B2T2 �
B̃

11
0

0 0

  �

1 0 0 0 ⋮ 0

0 0 − 1 0 ⋮ 0

0 x + 1 0 1 ⋮ 0

− 1 0 1 0 ⋮ 0

. . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0





.

(24)
If we denote S � S2S1 and T � T1T2, then we have two

unimodular matrix differential operators:

S � S2S1 �

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

− 1 − 1 1 0 0

2 z

z − 1
0

z + 1

1 − z
0 1





,

T � T1T2 �

1 0 0 − 1
x + 1 − (x + 1)z

(2x − 1)z + 1

0 1 0
− 1

x + 1

1 − 3 z

(2x − 1)z + 1

0 0 1 0 0

0 0 0 1
(x + 1)z − x − 1

(2x − 1)z + 1

0 0 0 0 1





.

(25)

We have that the given system is in reduced form as
follows:

L̃ � Ãz + B̃

�

1 x z (1 − x)z
z

1 + x
⋮ 0

z 0 − 1 0 ⋮ 0

z (x − 1)z + x + 1 z
− 2x z

1 + x
⋮ 0

− 1 0 1 0 ⋮ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ⋮ 0





,

(26)

where L̃ � SLT has the form L̃
11

0
0 0

( ) and

L̃
11
�

1 x z (1 − x)z
z

1 + x

z 0 − 1 0

z (x − 1)z + x + 1 z
− 2x z

1 + x

− 1 0 1 0





, (27)

is invertible matrix differential operator.

Example 2. Consider a matrix differential operator as given
below:

L �

z (1 + x)z 1 z + 1

1 − x z z − 1

z + 1 z z + 1 z

− z + 1 (− 2x − 1)z z − 1 − z − 2




�

1 x + 1 0 1

0 − x 1 0

1 1 1 1

− 1 − 2x − 1 1 − 1


z +

0 0 1 1

1 0 0 − 1

1 0 1 0

1 0 − 1 − 2


.

(28)

Applying the proposed algorithm in�eorem 1 tomatrix
differential operator (28) similar to example 1, one can
construct two unimodular matrix differential operators S
and T as
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S �

1 0 0 0

0 1 0 0

− 1 − 1 1 0

1 − 1 0 1




,

T �

1 0
1 − x z

x z + x + 1
−
x z + z + x

x z + x + 1

0 1 −
2 z + 1

z(x z + x + 1)

z
2
− 1

z(x z + x + 1)

0 0 0 1

0 0 1 0





,

(29)

such that the given system is in reduced form as follows:

L̃ �

z (1 + x)z 0 0

1 − x z 0 0

0 0 0 0

0 0 0 0


, (30)

where L̃ � SLT has the form L̃
11

0
0 0

( ) and

L̃
11
�

z (1 + x)z

1 − x z
( ), (31)

is invertible matrix differential operator.

Example 3. Consider the following system of differential-
algebraic equations to verify that the reduced system and the
given system of DAEs have the same solution:

u1′ + u3′ + u3 � 0,

u1 + 2u2′ + u3 � x,
2u1′ + 2u3′ + 2u3 � 0.

(32)

�e solution of the given system (32) is u1 � c1, u2 � (x
2

/2) + (c2e
− x/2) − (c1x/2) + c3 and u3 � c2e

− x. In particular,
if we take u1 � 0, then the solution becomes u1 � 0, u2 � (x

2

/2) + (c2e
− x/2) + c2 and u3 � c1e

− x.
�e operator notation Lu � f of the given system (14) is

given by

z 0 z + 1

1 2 z 1

2 z 0 2 z + 1

 
u1

u2

u3

  �

0

x

0

 , (33)

where L �
z 0 z + 1
1 2 z 1
2 z 0 2 z + 1

 . Now, apply the proposed

algorithm to matrix differential operator L to get a reduced

operator L̃ with two unimodular matrix differential oper-
ators S and T. We get

L̃ �

z 0 0

1 2 z 0

0 0 0

 ,

S �

1 0 0

0 1 0

− 2 0 1

 ,

T �

1 0 −
1 + z

z

0 1
1

2z2

0 0 1




.

(34)

System (33) is reduced to L̃(z(x)) � f̃(x), where u(x) �
T(z(x)) and f̃(x) � S(f(x)). On simplification, we can get
z(x) � T− 1(u(x)) and f̃(x) � S(f(x)).

�erefore, we have

L̃(z(x)) � f̃(x)⟹ L̃ T− 1(u(x))( ) � S(f(x))

⇒

z 0 0

1 2 z 0

0 0 0




1 0 −
1 + z

z

0 1
1

2z2

0 0 1





− 1

u1

u2

u3




�

1 0 0

0 1 0

− 2 0 1




0

x

0




⇒

z 0 0

1 2 z 0

0 0 0




u1 +
z + 1

z
u3

u2 −
u3

2z2

u3




�

0

x

0




⇒

zu1 +(z + 1)u3

u1 + 2 zu2 + u3

0


 �

0

x

0


.

(35)

Now the reduced system of DAEs is

u1′ + u3′ + u3 � 0,

u1 + 2u2′ + u3 � x.
(36)
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Solution of the reduced system (36), for u1 � 0, is u1 �
0, u2 � (x

2/2) + (c1e
− x/2) + c2 and u3 � c1e

− x.
One can observe that the solution of the given system of

DAEs (32) and the reduced system of DAEs (36) have the
same solution. We can also observe that solving the reduced
system (36) (contains two equations only) is simple com-
pared to solving the given system (32) (contains three
equations).

3. Maple Implementation

In this section, we discuss the Maple implementation of the
algorithm by creating different data types. Using the Maple
package, one can obtain the two unimodular matrix dif-
ferential operators S, T and the reduced matrix differential
operator of the given system. InMaple implementation, x is
complex variable and δ � (d/dx) is the differential
operator.

Input: A and B, the coefficient matrices of a given
matrix differential operator L � A z +B.

Output: L̃, S, and T, the reduced matrix differential
operator L̃ of a given matrix differential operator L and
two unimodular matrix differential operators S and T.

3.1. Pseudocode

(1) A, B← coefficient matricies
(2) m← row dimension of L

(3) n← column dimension of L
(4) r← rank ofA
(5) k← rank ofB
(6) NS Ls← left null space of L
(7) S1← i de ntitymatrix with LNS Ls as bottom

block matrix

(8) NS Lt← right null space of L
(9) T1← i de ntitymatrix withNS

Lt as right blockmatrix

(10) L1← S1.L.T1

(11) A1, B1← coefficient matricies of L1
(12) NS A1← left null space ofA1

(13) S2← i de ntitymatrix with LNS A1

as bottom block matrix

(14) L2← S2.L1
(15) A2, B2← coefficient matricies of L2
(16) NS B2← right null space ofB2

(17) T2← i de ntitymatrix withNS
B2 as right blockmatrix

(18) L3← L3.T2

(19) S← S2.S1
(20) T←T1.T2

3.2. Maple Code. Using the procedure ArrangeZeroLines,
we can replace the zero rows at the bottom and zero columns
at right side of the matrix.

ArrangeZeroLines :� proc (M::Matrix)

local m,n,ZR,L1,DR,m1,ZM,A1,ZC,L2,DC,m2,ZM2,
A2;

uses LinearAlgebra;

m,n :� op(1, M);

ZR :� LinearAlgebra: − ZeroVector[row](n);

L1 :� [seq(‘if‘(LinearAlgebra: − Equal(M[i],ZR),i,-
NULL), i� 1..m)];

DR :� LinearAlgebra: − DeleteRow(M, L1);

m1 :� op([1, 1], DR);

ZM :� LinearAlgebra: − ZeroMatrix(m − m1, n);

A1:� convert(linalg[blockmatrix](2, 1, [DR, ZM]),
Matrix);

ZC:� LinearAlgebra: − ZeroVector(m);

L2 :� [seq(‘if‘(LinearAlgebra: − Equal(A1
[()..(),i],ZC),i,NULL), i� 1..n)];

DC :� LinearAlgebra: − DeleteColumn(A1, L2);

m2 :� op([1, 2], DC);

ZM2 :� LinearAlgebra: − ZeroMatrix(m, n − m2);

A2 :� linalg[blockmatrix](1, 2, [DC, ZM2]);

return convert(A2, Matrix);

end proc:

�e following procedure is DAEs_Reduction: the re-
duced matrix differential operator of a given matrix dif-
ferential operator with two unimodular matrix differential
operators. In this procedure, δ � (d/dz) is differential op-
erator and x is complex variable.

DAEs_Reduction :� proc (A::Matrix, B::Matrix)

local L,m,n,r,k,Id,transpose_L,NS_Ls,Id_partA,
NS_partA,

S1,NS_Lt,Id_part3,NS_part3,T1,L1na,L1,A1,B1,

transpose_A1,NS_A1,Id_partA1,NS_partA1,S2,L2na,L2,

A2,B2,NS_B2,Id_partB2,NS_partB2,T2,L3na,-
L3,A3,B3,S,T;

uses MatrixPolynomialAlgebra;

L :� A∗ delta + B;

m :� LinearAlgebra: − RowDimension(L);

n :� LinearAlgebra: − ColumnDimension(L);

r :� MTM: − rank(A);

k :� MTM: − rank(B);

Id :� LinearAlgebra: − IdentityMatrix(n);

transpose_L :� LinearAlgebra: − Transpose(L);

NS_Ls :� LinearAlgebra: − NullSpace(transpose_L);

Id_partA :� LinearAlgebra: − Transpose

(Matrix(‘ ∼ ‘[LinearAlgebra: − Transpose](‘ ∼ ‘
[convert]
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([seq(Id[i],i� 1..m-nops(NS_Ls))],Matrix))));

NS_partA :� LinearAlgebra: − Transpose (Matrix(‘ ∼ ‘
[convert]

([seq(NS_Ls[i], i� 1 .. Nops(NS_Ls))], Matrix)));

S1 :� convert(linalg: − blockmatrix(2,1,[Id_partA,
NS_partA]),Matrix);

NS_Lt :� ‘ ∼ ‘[simplify](LinearAlgebra: − NullSpace(L));

Id_part3 :� Matrix(‘ ∼ ‘[LinearAlgebra: − Transpose]
(‘ ∼ ‘[convert]

([seq(Id[i], i� 1 .. n-nops(NS_Lt))], Matrix)));

NS_part3 :� Matrix(‘ ∼ ‘[convert]

([seq(NS_Lt[i], i� 1 .. Nops(NS_Lt))], Matrix));

T1 :� convert(linalg: − blockmatrix(1,2,[Id_part3,
NS_part3]),Matrix);

L1na :� ‘ ∼ ‘[simplify](S1.L.T1);

L1 :� ArrangeZeroLines(L1na);

A1:� seq(MatrixPolynomialAlgebra: − Coeff(L1,delta,i),i�
0..1)[2];

B1 :� seq(MatrixPolynomialAlgebra: − Coeff(L1,delta,
i),i� 0..1)[1];

transpose_A1:� LinearAlgebra: − Transpose(A1);

NS_A1:� LinearAlgebra: − NullSpace(transpose_A1);

Id_partA1:�LinearAlgebra: − Transpose(Matrix

(‘ ∼ ‘[LinearAlgebra: − Transpose](‘ ∼ ‘[convert]

([seq(Id[i], i� 1 .. m-nops(NS_A1))], Matrix))));

NS_partA1 :� LinearAlgebra: − Transpose(Matrix(‘ ∼ ‘
[convert]

([seq(NS_A1[i], i� 1 .. Nops(NS_A1))], Matrix)));

S2 :� convert(linalg: − blockmatrix(2,1,[Id_partA1,NS_
partA1]),Matrix);

L2na :� ‘ ∼ ‘[simplify](S2.L1);

L2 :� ArrangeZeroLines(L2na);

A2 :� seq(MatrixPolynomialAlgebra: − Coeff(L2,delta,
i),i� 0..1)[2];

B2 :� seq(MatrixPolynomialAlgebra: − Coeff(L2,delta,
i),i� 0..1)[1];

NS_B2 :� ‘ ∼ ‘[simplify](LinearAlgebra: − NullSpace
(B2));

Id_partB2 :� Matrix(‘ ∼ ‘[LinearAlgebra: − Transpose]

(‘ ∼ ‘[convert]([seq(Id
[i],i� nops(NS_B2)+1..n)],Matrix)));

NS_partB2 :� Matrix(‘ ∼ ‘[convert]

([seq(NS_B2[i], i� 1..nops(NS_B2))], Matrix));

T2 :� LinearAlgebra: − IdentityMatrix(n);

L3na :� ‘ ∼ ‘[simplify](L2.T2);

L3 :� ArrangeZeroLines(L3na);

A3 :� seq(MatrixPolynomialAlgebra: − Coeff(L3,delta,
i),i� 0..1)[2];

B3 :� seq(MatrixPolynomialAlgebra: − Coeff(L3,delta,
i),i� 0..1)[1];

S :� ‘ ∼ ‘[simplify](S2.S1);

T :� ‘ ∼ ‘[simplify](T1.T2);

return S, T, L3

end proc:

3.3. Sample Computations

Example 4. Consider the following matrix differential op-
erator as given in Example 2:

L �

z (1 + x)z 1 z + 1

1 − x z z − 1

z + 1 z z + 1 z

− z + 1 (− 2x − 1)z z − 1 − z − 2


, (37)

where A �

1 x + 1 0 1
0 − x 1 0
1 1 1 1
− 1 − 2x − 1 1 − 1

  and

B �

0 0 1 1
1 0 0 − 1
1 0 1 0
1 0 − 1 − 2

 . Using Maple implementation, with

DAEs_Reduction in the proposed algorithm, we have the
following:

>A :� Matrix([[1, x+ 1, 0, 1], [0, − x, 1, 0], [1, 1, 1, 1],
[− 1, − 2x − 1, 1, − 1]]).

>B :� Matrix([[0, 0, 1, 1], [1, 0, 0, − 1], [1, 0, 1, 0], [1,
0,− 1, − 2]]).

A ≔

1 x + 1 0 1

0 − x 1 0

1 1 1 1

− 1 − 2x − 1 1 − 1


,

B ≔

0 0 1 1

1 0 0 − 1

1 0 1 0

1 0 − 1 − 2


.

(38)

>S, T, Lred :� DAEs_Reduction(A, B).
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1 0 0 0

0 1 0 0

− 1 − 1 1 0

1 − 1 0 1



,

1 0 −
δx − 1

δx + x + 1
−

δx + δ + x

δx + x + 1

0 1 −
2δ + 1

δ(δx + x + 1)

δ2
− 1

δ(δx + x + 1)

0 0 0 1

0 0 1 0




,

δ δ(1 + x) 0 0

1 − δx 0 0

0 0 0 0

0 0 0 0



.

(39)

From Maple implementation, we have that two unim-
odular matrices differential operators S, T are

S �

1 0 0 0

0 1 0 0

− 1 − 1 1 0

1 − 1 0 1




,

T �

1 0
1 − x z

x z + x + 1
−
x z + z + x

x z + x + 1

0 1 −
2 z + 1

z(x z + x + 1)

z
2
− 1

z(x z + x + 1)

0 0 0 1

0 0 1 0





,

(40)

and the reduced matrix differential operator of the given
DAS (37) is

L̃ �

z (1 + x)z 0 0

1 − x z 0 0

0 0 0 0

0 0 0 0


. (41)

One can also verify in Maple that L̃ � SLT as follows:

>L :� Matrix([[delta, delta∗ (1 + x), 1, delta + 1],

[1, − delta∗ x, delta, − 1], [delta + 1, delta, delta + 1,
delta],

[− delta + 1, − delta∗ (1 + 2∗ x), delta − 1, − delta − 2]]);

δ δ(1 + x) 1 δ + 1

1 − δx δ − 1

δ + 1 δ δ + 1 δ

− δ + 1 − δ(1 + 2x) δ − 1 − δ − 2


. (42)

>simplify ∼ (S.L.T);

δ δ(1 + x) 0 0

1 − δx 0 0

0 0 0 0

0 0 0 0


. (43)

4. Conclusion

In this paper, we discussed a new reduction algorithm to
solve a given system of linear differential-algebraic equations
with power series coefficients. With the proposed algorithm,
one can transform the given matrix differential operator into
another simple equivalent matrix differential operator using
the elementary algebraic techniques. Certain examples are
presented to illustrate the algorithm. �e implemented
Maple package is discussed and sample computations are
presented.

Data Availability

�e datasets generated and analyzed during the current
study are included within the article.

Additional Points

In this paper, the authors presented a new reduction al-
gorithm to solve a system of linear DAEs with power series
coefficients. In this algorithm, they transform the given
matrix differential operator to simple equivalent matrix
differential operator using the elementary algebraic tech-
niques. Several examples are presented to illustrate the al-
gorithm and also theMaple package is discussed with sample
computations.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

References

[1] M. Günther and P. Rentrop, “�e differential-algebraic index
concept in electric circuit simulation,” Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik, vol. 76, no. 1, pp. 91–94, 1996.

[2] M. Günther and U. Feldmann, “�e DAE-index in electric
circuit simulation,” Mathematics and Computers in Simula-
tion, vol. 39, no. 5-6, pp. 573–582, 1995.

International Journal of Mathematics and Mathematical Sciences 9



[3] S. �ota and S. D. Kumar, “Solving system of higher-order
linear differential equations on the level of operators,” In-
ternational Journal of Pure and Applied Mathematics, vol. 106,
no. 1, pp. 11–21, 2016.

[4] D. E. Schwarz and C. Tischendorf, “Structural analysis of
electric circuits and consequences for MNA,” International
Journal of Circuit 'eory Applications, vol. 28, no. 2,
pp. 131–162, 2000.

[5] P. Rabier and W. C. Rheinboldt, Nonholonomic Motion of
Rigid Mechanical Systems from a DAE Viewpoint, p. 148,
SIAM, Philadelphia, PA, USA, 2000.

[6] B. Simeon, C. Fuhrer, and P. Rentrop, “Differential-algebraic
equations in vehicle system dynamics,” Surveys on Mathe-
matics for Industry, vol. 1, pp. 1–37, 1991.

[7] R. Gani and I. T. Cameron, “Modelling for dynamic simu-
lation of chemical processes: the index problem,” Chemical
Engineering Science, vol. 47, no. 5, pp. 1311–1315, 1992.

[8] C. C. Pantelides, D. Gritsis, K. R. Morison, and
R. W. H. Sargent, “�e mathematical modelling of transient
systems using differential-algebraic equations,” Computers &
Chemical Engineering, vol. 12, no. 5, pp. 449–454, 1988.
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