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1. Introduction. About the behaviour of brownian motion at time point

3o there are many results by P. Levy and A. Khintchine etc. The method of

ΛV. Fellerl) is applicable to a similar discussion about a homogeneous differential

process. In this paper we shall study, applying his method, the properties of a

homogeneous differential process.

Let {X(t,ω)\ 0i=t<00, ω^Ω}2) be a homogeneous differential process

such that E(X(t)) =mt and ViX^t)) ^σ2t:') After P. Levy we shall define the

concept of upper class and lower class with respect to a homogeneous difίerential

process as follows: if the set of t such that

X(t, ω)>σftφ{t)

is bounded (unbounded) for almost all ω, then we say that (pit) belongs to the

upper (lower) class with respect to {X(t)\ 0^f<°o}. Then we may prove

the following three theorems. In these theorems, the distribution function of

X(t) is denoted by Vt(x).

THEOREM 1. Let {X(t, ω) Oώt< oo, ω e Ω) be a right continuous*' homo-

geneous differential process satisfying the following conditions:

(1)

For any ε>0,

(2) \ (x -

or

as

(2)' f (x-rnΫdVΛx) =o((loglog zΓ2) as
J I x-m !> z

Received April 30, 1953.
*) W. Feller: "The law of the iterated logarithm for identically distributed random varia

bles." Ann. of Math. vol. 47(1946).
2> ω is the probability parameter.
-]) The symbols E and V denote the expectation and the variance respectively.
[) This is not an essential restriction.
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There exist two positive numbers a and N such that, for 0^t^a5) and

(3) [ dVt(x)=θ(t[ dVχ(x)) as a-*™,

uniformly in t.
Then a monotone non-decreasing right continuous function φ(t) belongs to

the upper (loiver) class if, and only if,

(4)

Example L For a Poisson process, the conditions (1), (2) and (3) are well
satisfied.

Example 2. For a process of Pearson type, that is, a differential process
{X(t, ω); 0^t<oo} such that

dy if

I 0 otherwise,

the conditions (1), (2) and (3) are well satisfied.

THEOREM 2. Let {X(t, ω) Os=f< oc, ω E: Ω) be a right continuous homo-
geneous differential process with symmetric distribution function Vt(x). Then,
in Theorem 1, we may remove the assumption (1) and palliate (2) as follows:

(2)" ( (x-m)2άV1(x)^O((log\ogzΓ1)

Example 3. For a Gaussian process, the conditions (2)" and (3) are well
satisfied.

THEOREM 3. Let {X(t, ω) 0^£<cc ? ω & Ω) be a right continuous homo-
geneous differential process. If E((X(t) - mt)4) is finite, the criterion (4) is
valid,

2, Proofs. Without loss of generality we may assume that m = 0 and a = l.

LEMMA 1. Let ψ(t) be a monotone non-decreasing right continuous func-
tion. If φ(t) does not belong to the upper class, then there exists a monotone
increasing sequence {tk) such that {ψk — φitk)) does not belong to the upper class
with respect to {Xk ) Xk = X(tk) - X(tk-ι)).

Proof. Let φ(t) be a function which does not belong to the upper class.
Then there exists a set Ω']< HkΩ with positive probability such that, for any T>0,

5> We may assume α ί= 1 without losing generality.
6 ) e(ϊ(5)) denotes the convergence (divergence) of the integrals.
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there exists t(ω)>T such as

(5) X(t, ω) > J7φ(t) when ω e 42*.

Since X(t, ω) is right continuous in t, we have

(6) X(r, ω)>yJΎφ(r) when ω e Ω*,

with a rational number r(ω)(>T). Let us put

Let {Ti) be the set of all rational numbers. We shall define Ω{£) as follows:

Λί,1} = {ωefl* 3nέn, X(n, ω)>VfΓ«(r, )} (* = 1, 2, . . . ) ,

where " 3 n ̂  fl" means that there exists at least one n which does not exceed

n. Then we have, by (6) (with exception of the set of zero measure),

(7) Ufiίί^fl*, ΩPEΩPE. . . S t f ^ g . . . .
n

Hence, for any e>0, we may take m such as

(8) PΛΩ%)*c-ε/2.

Let us put

(9) Ωri = lωGΩ* X(n, ω)>VfΓ0(r, )>..

Then we have

so that, if 2*i is sufficiently large, we obtain

(10) PΛ U Ωri)*PΛΩ%)-e/2*c-e.

Rearranging {n ί^/i} according to the order of magnitude, we obtain the set

{ti, . . . , ί/J. Again we shall adopt the following definition:

1 {ω G Ω* 3r/, max(fi, Uj) <n^n and

X(r, , ω) > Vn>(tt)> if n>max ( i , fc,),

empty set otherwise.

Then by (6)
Accordingly there exists ni such that

and

U
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Therefore, if k is sufficiently large, we have

(12) PA U Ωr^PΛP-nD-trfr^c-ε2.

By the same method as in the previous discussion we have a monotone sequence

{ti1+1, . . . , ti2}. Repeating this process, we have a monotone sequence such

that

(13) ti<t2< . . . <*/,< . . . <f/,<//,-+!. . . <*y+i< . . . ,

(£,--* oo aS ί-» co)

and

PA U Ωu)*c-ε.

Hence, if ε<c/2, we obtain

(14) PAΠ U ^ ) i ί - ( β + β l+ . . . + s n + . ..)=c-r±->0.

(9) and (14) show that {$>;} does not belong to the upper class with respect to

According to the following lemma which will be proved after the method

of W. Feller, we can exchange in Lemma 1 the condition "{$&} does not

belong to the upper class" by the condition "{<pk) belongs to the lower class."

LEMMA 2. Let the conditions in Theorem 1 be satisfied. Let {tk) be a

monotone increasing sequence such that tk-+ °° (as k~* «>) and tk — tk-i£<x£l.

Then the monotone increasing sequence {ψk = φ(tk)} belongs to the upper (lower)

class with respect to {Xk Xk = X(tk) - X(tk-i)} if, and only if,

(15) Σ J * ^ = L ^ - ^

Theorem 1 is a simple corollary to Lemma 1 and Lemma 2.

Proof of Theorem I.

a) The case of convergence. Let us suppose that φ(t) does not belong to

the upper class. Then, according to Lemma 1 and Lemma 2, there exists a

monotone increasing sequence {tk} such that tk — tk-i = oc and {ψk — φ(tk)}

belongs to the lower class with respect to {Xk I Xk = X(tk) -X(tk-i)}. Hence

by Lemma 2

On the other hand, by the monotony of φ(t) and the assumption of convergence,

tk — tk-l Λ,Λ -jffc / V l x ώfj.\~ ~*r " (ft

k SΓ
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jφ(t)e 2

This is a contradicition. So φ(t) must belong to the upper class.
b) The case of divergence. Let us consider the monotone increasing se-

quences {tk — ka} and {Φk — φitk)). Then we have

Thus the divergence of the integrals yields that of the series (15). Therefore,
by Lemma 2, {φk} must belong to the lower class and accordingly φ(t) belongs
to the lower class with respect to the process {X(tf ω)}.

Now our purpose is to prove Lemma 2. We put

tkiloglogtk)'3 for tk>80,

(16) τfk= arbitrary in such a way that { ηk} becomes a

k monotone increasing sequence for tk—SO.

Furthermore we put

( ~\Ί\ D / V ^-* ΛS\

(18) bk

(19) Bn

(20) μ'k = - ( xdF(x), μl' = - f

and

(21) al=bk-μl\ s2n=ίl4.

We shall introduce three new sequences of random variables as follows

(22) «
otherwise,

= s
, ^ + ̂ ' if

/ = s otherwise,
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V* otherwise.

Then we have

(25) Xk = Xl + XL' + Xί",

and the variables of each of the three sequences are mutually independent.

Moreover

(26) E(Xk) = E{X'k) = E(X&') = E(Xl") = 0

and

(27) V(Xi) = σl

If we define Si as follows

(28). S'n = Xl + Xί+ . . .+Xί,

(the sums S" and S»" are defined similarly), then we have

(29)

LEMMA 3. With probability one

(30) S'ί'=O(tψ

Proof. From the assumption (3) we have

") = Σ

Thus, by Borel-Cantelli's lemma, it follows that with probability one there will

be only finitely many k such that X"1 ±tμψ. So, by the assumptions (1) and

(2), we have

2^,^1/2 \x\dV1(x)}
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This proves the lemma.

LEMMA 4. With probability one

(31) Si' = O( (tn log log log tn)ίβ).

Proof. According to a theorem of L. Kronecker,7) it will be sufficient to
prove that the series

converges with probability one. By a theorem of Khintchine and Kolmogoroff,8;

it is sufficient to show that

(33) ? l
To prove (33) we shall consider the following function

(34) Sin) - min k, Tn = {k ^ J ^ > *f >•

Obviously Sin) is monotone non-decreasing. Hence we can define the inverse

function of S(n) as follows

(35) S"1(w)

By the definition (23), we obtain

= o(DΣ

x2dVΛx) Σ
In

7 ' K. Knopp: Theorie und Anwendung der Unendlichen Reihen, 2 ed., Beriin, 1924, p. 127.
5) A. Kolmogoroff: Grundbegriffe der Wahrscheinϋchkeitsrechung, Berlin, 1933, p. 59.
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k

where log^} denotes the ^-times iterated logarithm. This proves the lemma.

LEMMA 5. For any δ>0 the probability is zero that there exist infinite many

n for which the inequalities

(36) SV>δtH2/(log login)112

and

hold simultaneously.

Proof. Let us denote by An the event that there exists at least one tk such

that

(38) 10 tn logΓ2? tn < tk ̂  tn and Xlf # μ'ί,

and by An its complementary event. Choosing m for which ίtml = DO tn log(T]ίn]9>

holds, we have

-OUVΣίfc-fc-i

tk - tk-χ

_ n(Ί) hι

~~ v ; (loglog^)^ 2 f ε "

Accordingly, if An occurs, then we have by Lemma 4

S5ί= s Sί4+(SΪ-SΪ)=O(U l »log ( 8 ) ί w ) 1 / s ) + O

This excludes (36).^ Therefore, for sufficiently large n, the event (36) will occur

on!y in conjunction with the event An with probability one, Let Bn denote the

event of a simultaneous realization of (37) and An It suffices to prove that

the probability that Bn occurs for infinitely many n is zero. To this purpose,

we consider the event

(39) C v = Σ Bn

which implies the realization of at least one Bn with

&) |>] denotes the largest integer which does not exceed x.
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(40) e'~ι<tnέe

Our lemma wili be proved if we show that

(41)

Put

(42) P v = v _ Σ _ v P r { ^ ' # μi'}.

Then we obtain

(43) T P ϊ ' ~m

and

(44) Pr(Cv)

Accordingly the series (41) converges.

LEMMA 6. For any monotone increasing sequence {φn} the divergence (con-

vergence) of the series (15) is a necessary and sufficient condition that ivith

probability one the inequality

(45) φ
k = l

be satisfied for infinitely (only finitely) many n.

Proof. Without loss of generality, we may assume that

(46) log log tn ^φl^A log log *„ .12>

If a and b are sufficiently large and b — a^sN, then we have by the assumption

(3)

\ X*dFn(x)=O(l)(tn-tn-i) \ X*

So we have

= tn - ί»-i - 0(1) (ίn - ί«-i)(.lθg lOg tn

Thus tn—tn-ι/<r2n-*l and therefore tn/s2

n-*l as »->^, So the divergence (con-

vergence) of (15) is equivalent to

10)11)12)
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(47) Έ~rΦ«e~^"<

According to a theorem of W. Feller,13) (47) implies that with probability one

there are infinitely (only finitely) many n such that

(48) Sn>Sn(<p?ι + c/φn),

where c is an arbitrary constant. From the definition (19) and (21), we have

and

x2dFk(x)

Hence Bn-~ s2

n ~O((log tn)
2) and we may take Blί2 for sn in (48), so we have

Hence, using Lemma 3 and Lemma 5, the divergence of (15) yields that with

probability one there exist infinitely many n for which the iπeqalities

(49) S'n>BXi\φn + c/φn)

and

(50) 1 Sil + S'4'! <M(tJ)og log U)m,

where c is an arbitrary constant and Mis a sufficiently large number, hold simul-

taneously. Let us put c = 2M in (49). Then we see that with probability one

there exist infinitely many n such that

(δl) Σ X = S,ί + s;/+S'«">BΪ,/s*,..

Conversely if (51) holds for infinitely many n with probability one, it follows,

by (30) and (31), that with probability one

for infinitely many n appearing in (51). From Lemma 5, it follows that

with probability one there exist infinitely many n for which (50) and (51) hold

simultaneously, so that we have

This means that {φn — 2M/φn} belongs to the lov/er class with respect to {X'n}.

13> W. Feller: "The general form of the so-called law of the iterated logarithm." Trans.
Amer. Math. Soc. vol. 54(1943), pp. 373-402.
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Then, by a theorem of W. Feller,14) we have

Sr.

and accordingly
2 __ J_ Λ

n Sn

This is equivalent to the divergence of (15).
Now Lemma 2 will be proved easily.

Proof of Lemma 2. If the series (15) diverges, then it is clear, from
Lemma 6, that for any constant c

will be satisfied for infinitely many n with probability one. Therefore it is

sufficient to show that

(52) tlί2-B]ί2

or, by (46),

(53) tn~Bn = O(f»/lθg log tn).

But we have

- Bn = Σ ( x'dFkix) - O(l)Σ(fc - fa-i)f x'dVxix)

= <Xl)Un/lθg lOg tn +

(the first term on the right is the contribution of the terms in the sum with
tk<tn/log ]ogtΛ9 and the integral is an upper bound for the contribution of the
remaining terms). Hence, by the assumption (2), we have

The converse is trivial.

Proof of Theorem 2. In the proof of Theorem 1, the condition (1) was

used to evaluate

But this is equal to zero in our case. Also the condition (2) was used to evalu-

ate

l l> loc. cit. 13).
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and

tn-Bn = O(tJ\Og lOg tn).

In our case the former is equal to zero and for the latter the condition (2)" is

sufficient. These prove Theorem 2.

Proof of Theorem 3. Let t = q/p be a rational number. Then we have

E((X{t))4) =

- X(0)) + (X(2/p) -

. . . +(X(qίp)-X(q-l/p))VP(dω)

Put ^ = 9 and E((.X"(1))4) = α. Then we obtain

a = E((X(1))4) =p f x*dVvp{χ) + 3(p - Dip,

and accordingly

Hence

(54) E((X(t)Y)=E((X(q/pm^ a q/p-3(1-q/p) q/p

= at-3t(l-t).

Since 2?((J*C(£))4) is a monotone increasing function of t, (54) holds for any real

number t.

Let us consider the sequence {Xk) in Lemma 2. Using the notations in

the previous proofs we have

\ dFk(x)

and so

According to Borel-Cantelli's lemma, it follows that with probability one there

will be only finitely many k such that

Λ T xAdFk(x)<a(tk-tk-i)/yL
TJk J-to



Put

Then we have

and so
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\ xdFk(x) otherwise.

E(Xί) = 0, V(Xl) - tk - tk-i + OUXfo - fc-i)

107

On the other hand, we heve

Hence

By a theorem of W. Feller15) the criterion (4) is valid for {Xί} and so for {Xk}.
Thus we may apply Lemma 2? and Theorem 3 will be proved similarly as in
ϊhe previous proof of Theorem 1.

Mathematical Institute,
Nagoya University

15> loc. cit. 13).




