ON SOME BK SPACES

BRUNO DE MALAFOSSE

Received 25 April 2002

We characterize the spaces $s_{\alpha}(\Delta)$, $s_{\alpha}^{c}(\Delta)$, and $s_{\alpha}^{c}(\Delta)$ and we deal with some sets generalizing the well-known sets $w_{0}(\lambda)$, $w_{\infty}(\lambda)$, $w(\lambda)$, $c_{0}(\lambda)$, $c_{\infty}(\lambda)$, and $c(\lambda)$.

2000 Mathematics Subject Classification: 46A45, 40C05.

1. Notations and preliminary results. For a given infinite matrix $A = (a_{nm})_{n,m \geq 1}$, the operators A_{n}, for any integer $n \geq 1$, are defined by

$$A_{n}(X) = \sum_{m=1}^{\infty} a_{nm}x_{m},$$

where $X = (x_{n})_{n \geq 1}$ is the series intervening in the second member being convergent. So, we are led to the study of the infinite linear system

$$A_{n}(X) = b_{n}, \quad n = 1, 2, \ldots,$$

where $B = (b_{n})_{n \geq 1}$ is a one-column matrix and X the unknown, see [2, 3, 5, 6, 7, 9]. Equation (1.2) can be written in the form $AX = B$, where $AX = (A_{n}(X))_{n \geq 1}$. In this paper, we will also consider A as an operator from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $\|\|_{E}$ is a BK space if each projection $P_{n} : X \rightarrow P_{n}X$ is continuous. A BK space E is said to have AK (see [8]) if for every $B = (b_{n})_{n \geq 1}$, $B = \sum_{m=N}^{\infty} b_{m}e_{m}$, that is,

$$\left\| \sum_{m=N+1}^{\infty} b_{m}e_{m} \right\|_{E} \rightarrow 0 \quad (n \rightarrow \infty).$$

We shall write s, c, c_{0}, and l_{∞} for the sets of all complex, convergent sequences, sequences convergent to zero, and bounded sequences, respectively. We shall write cs and l_{1} for the sets of convergent and absolutely convergent series, respectively. We will use the set

$$U^{**} = \{(u_{n})_{n \geq 1} \in s \mid u_{n} > 0 \ \forall n\}.$$
Using Wilansky’s notations [12], we define, for any sequence \(\alpha = (\alpha_n)_{n \geq 1} \in U^{**} \) and for any set of sequences \(E \), the set

\[
\alpha \ast E = \left\{ (x_n)_{n \geq 1} \in s \mid \left(\frac{x_n}{\alpha_n} \right)_n \in E \right\}.
\]

(1.5)

Writing

\[
\alpha \ast E = \begin{cases}
s_{\alpha} & \text{if } E = c_0, \\
 s_{\alpha}^{(c)} & \text{if } E = c, \\
s_{\alpha} & \text{if } E = l_\infty,
\end{cases}
\]

(1.6)

we have for instance

\[
\alpha \ast c_0 = s_{\alpha} = \left\{ (x_n)_{n \geq 1} \in s \mid x_n = o(\alpha_n) \ n \to \infty \right\}.
\]

(1.7)

Each of the spaces \(\alpha \ast E \), where \(E \in \{c_0, c, l_\infty\} \), is a BK space normed by

\[
\|X\|_{s_{\alpha}} = \sup_{n \geq 1} \left(\frac{|x_n|_{\alpha_n}}{\alpha_n} \right),
\]

(1.8)

and \(s_{\alpha} \) has AK.

Now, let \(\alpha = (\alpha_n)_{n \geq 1} \) and \(\beta = (\beta_n)_{n \geq 1} \in U^{**} \). We shall write \(S_{\alpha,\beta} \) for the set of infinite matrices \(A = (a_{nm})_{n,m \geq 1} \) such that

\[
(a_{nm} \alpha_m)_{m \geq 1} \in l^1 \ \forall n \geq 1, \quad \sum_{m=1}^{\infty} |a_{nm}| \alpha_m = O(\beta_n) \ (n \to \infty).
\]

(1.9)

The set \(S_{\alpha,\beta} \) is a Banach space with the norm

\[
\|A\|_{S_{\alpha,\beta}} = \sup_{n \geq 1} \left(\sum_{m=1}^{\infty} |a_{nm}| \frac{\alpha_m}{\beta_n} \right).
\]

(1.10)

Let \(E \) and \(F \) be any subsets of \(s \). When \(A \) maps \(E \) into \(F \), we write \(A \in (E,F) \), see [10]. So, for every \(X \in E \), \(AX \in F \) \((AX \in F) \) will mean that for each \(n \geq 1 \), the series defined by \(y_n = \sum_{m=1}^{\infty} a_{nm} x_m \) is convergent and \((y_n)_{n \geq 1} \in F \). It has been proved in [8] that \(A \in (S_{\alpha},S_{\beta}) \) if and only if \(A \in S_{\alpha,\beta} \). So, we can write \((S_{\alpha},S_{\beta}) = S_{\alpha,\beta} \).

When \(S_{\alpha} = S_{\beta} \), we obtain the unital Banach algebra \(S_{\alpha,\beta} = S_{\alpha} \) (see [2, 3, 9]) normed by \(\|A\|_{S_{\alpha}} = \|A\|_{S_{\alpha,\alpha}} \).

We also have \(A \in (S_{\alpha},S_{\alpha}) \) if and only if \(A \in S_{\alpha} \). If \(\|I - A\|_{S_{\alpha}} < 1 \), we say that \(A \in \Gamma_{\alpha} \). The set \(S_{\alpha} \) being a unital algebra, we have the useful result: if \(A \in \Gamma_{\alpha} \), \(A \) is bijective from \(s_{\alpha} \) into itself.
If \(\alpha = (r^n)_{n \geq 1} \), then \(\Gamma_{\alpha}, S_{\alpha}, s_{\alpha}, s_{\alpha}^e \), and \(s_{\alpha}^{(c)} \) are replaced by \(\Gamma_r, S_r, s_r, s_r^e \), and \(s_r^{(c)} \), respectively, (see [2, 3, 5, 6, 7, 8, 9]). When \(r = 1 \), we obtain \(s_1 = l_\infty, s_1^e = c_0, \) and \(s_1^{(c)} = c \), and putting \(e = (1, 1, \ldots) \), we have \(S_1 = S_e \). It is well known, see [10], that

\[
(s_1, s_1) = (c_0, s_1) = (c, s_1) = S_1.
\]

We write \(e_n = (0, \ldots, 1, \ldots) \) (where 1 is in the \(n \)th position).

For any subset \(E \) of \(s \), we put

\[
AE = \{ Y \in s \mid \exists X \in E Y = AX \}.
\]

If \(F \) is a subset of \(s \), we denote

\[
F(A) = F_A = \{ X \in s \mid Y = AX \in F \}.
\]

We can see that \(F(A) = A^{-1}F \).

2. Sets \(s_\alpha(\Delta), s_\alpha^e(\Delta), \) and \(s_\alpha^{(c)}(\Delta) \). In this section, we will give necessary and sufficient conditions permitting us to write the sets \(s_\alpha(\Delta), s_\alpha^e(\Delta), \) and \(s_\alpha^{(c)}(\Delta) \) by means of the spaces \(s_\xi, s_\xi^e, \) or \(s_\xi^{(c)} \). For this, we need to study the sequence \(C(\alpha) \).

2.1. Properties of the sequence \(C(\alpha) \). Here, we will deal with the operators represented by \(C(\lambda) \) and \(\Delta(\lambda) \), see [2, 5, 7, 8, 9].

Let

\[
U = \{ (u_n)_{n \geq 1} \in s \mid u_n \neq 0 \ \forall n \}.
\]

We define \(C(\lambda) = (c_{nm})_{n,m \geq 1} \), for \(\lambda = (\lambda_n)_{n \geq 1} \in U \), by

\[
c_{nm} = \begin{cases}
\frac{1}{\lambda_n} & \text{if } m \leq n, \\
0 & \text{otherwise}.
\end{cases}
\]

It can be proved that the matrix \(\Delta(\lambda) = (c'_{nm})_{n,m \geq 1} \), with

\[
c'_{nm} = \begin{cases}
\lambda_n & \text{if } m = n, \\
-\lambda_{n-1} & \text{if } m = n - 1, \ n \geq 2, \\
0 & \text{otherwise},
\end{cases}
\]

is the inverse of \(C(\lambda) \), see [8]. If \(\lambda = e \), we get the well-known operator of first difference represented by \(\Delta(e) = \Delta \) and it is usually written \(\Sigma = C(e) \). Note that \(\Delta = \Sigma^{-1} \), and \(\Delta \) and \(\Sigma \) belong to any given space \(S_R \) with \(R > 1 \).
We use the following sets:

\[
\hat{C} = \left\{ \alpha \in U^+ : C(\alpha) \alpha = \left(\frac{1}{\alpha_n} \sum_{k=1}^{n} \alpha_k \right)_{n \geq 1} \in c \right\}, \\
\hat{C}_1 = \{ \alpha \in U^+ : C(\alpha) \alpha \in s_1 = l_{\infty} \}, \\
\Gamma = \left\{ \alpha \in U^+ : \lim_{n \to \infty} \left(\frac{\alpha_{n-1}}{\alpha_n} \right) < 1 \right\}.
\]

(2.4)

Note that \(\Delta \in \Gamma_\alpha \) implies \(\alpha \in \Gamma \). It can be easily seen that \(\alpha \in \Gamma \) if and only if there is an integer \(q \geq 1 \) such that

\[
y_q(\alpha) = \sup_{n \geq q+1} \left(\frac{\alpha_{n-1}}{\alpha_n} \right) < 1.
\]

(2.5)

See [7].

In order to express the following results, we will denote by \([C(\alpha) \alpha]_n \) (instead of \([C(\alpha)]_n(\alpha) \)) the \(n \)th coordinate of \(C(\alpha) \alpha \). We get the following proposition.

Proposition 2.1. Let \(\alpha \in U^+ \). Then

(i) \(\alpha_{n-1}/\alpha_n \to 0 \) if and only if \([C(\alpha) \alpha]_n \to 1 \);

(ii) (a) \(\alpha \in \hat{C} \) implies that \((\alpha_{n-1}/\alpha_n)_{n \geq 1} \in c \),

(b) \([C(\alpha) \alpha]_n \to l \) implies that \(\alpha_{n-1}/\alpha_n \to 1-1/l \);

(iii) if \(\alpha \in \hat{C}_1 \), there are \(K > 0 \) and \(y > 1 \) such that

\[
\alpha_n \geq K y^n \quad \forall n;
\]

(2.6)

(iv) the condition \(\alpha \in \Gamma \) implies that \(\alpha \in \hat{C}_1 \) and there exists a real \(b > 0 \) such that

\[
[C(\alpha) \alpha]_n \leq \frac{1}{1-\chi} + b\chi^n \quad \text{for } n \geq q+1, \quad \chi = y_q(\alpha) \in]0,1[.
\]

(2.7)

Proof. (i) Assume that \(\alpha_{n-1}/\alpha_n \to 0 \). Then there is an integer \(N \) such that

\[
n \geq N+1 \implies \frac{\alpha_{n-1}}{\alpha_n} \leq \frac{1}{2}.
\]

(2.8)

So, there exists a real \(K > 0 \) such that \(\alpha_n \geq K 2^n \) for all \(n \) and

\[
\frac{\alpha_k}{\alpha_n} = \frac{\alpha_k}{\alpha_{k+1}} \cdots \frac{\alpha_{n-1}}{\alpha_n} \leq \left(\frac{1}{2} \right)^{n-k} \quad \text{for } N \leq k \leq n-1.
\]

(2.9)
ON SOME BK SPACES

Then
\[
\frac{1}{\alpha_n} \left(\sum_{k=1}^{n-1} \alpha_k \right) = \frac{1}{\alpha_n} \left(\sum_{k=1}^{N-1} \alpha_k \right) + \sum_{k=N}^{n-1} \frac{\alpha_k}{\alpha_n} \leq \frac{1}{K^2} \left(\sum_{k=1}^{N-1} \alpha_k \right) + \sum_{k=N}^{n-1} \left(\frac{1}{2} \right)^{n-k};
\]

(2.10)

and since
\[
\sum_{k=N}^{n-1} \left(\frac{1}{2} \right)^{n-k} = 1 - \left(\frac{1}{2} \right)^{n-N} \to 1 \quad (n \to \infty),
\]

(2.11)

we deduce that
\[
\frac{1}{\alpha_n} \left(\sum_{k=1}^{n-1} \alpha_k \right) = O(1), \quad ([C(\alpha)\alpha]_n) \in l_\infty.
\]

(2.12)

Using the identity
\[
[C(\alpha)\alpha]_n = \frac{\alpha_1 + \cdots + \alpha_{n-1} \alpha_{n-1}}{\alpha_{n-1} \alpha_n} + 1
\]

(2.13)

we get \([C(\alpha)\alpha]_n \to 1\). This proves the necessity.

Conversely, if \([C(\alpha)\alpha]_n \to 1\), then

\[
\frac{\alpha_{n-1}}{\alpha_n} = \frac{[C(\alpha)\alpha]_n - 1}{[C(\alpha)\alpha]_{n-1}} \to 0.
\]

(2.14)

Assertion (ii) is a direct consequence of identity (2.14).

(iii) We put \(\Sigma_n = \sum_{k=1}^{n} \alpha_k\). Then for a real \(M > 1\),

\[
[C(\alpha)\alpha]_n = \frac{\Sigma_n}{\Sigma_n - \Sigma_{n-1}} \leq M \quad \forall n.
\]

(2.15)

So, \(\Sigma_n \geq (M/(M-1))\Sigma_{n-1}\) and \(\Sigma_n \geq (M/(M-1))^{n-1} \alpha_1\) for all \(n\). Therefore, from

\[
\frac{\alpha_1}{\alpha_n} \left(\frac{M}{M-1} \right)^{n-1} \leq [C(\alpha)\alpha]_n = \frac{\Sigma_n}{\alpha_n} \leq M,
\]

(2.16)

we conclude that \(\alpha_n \geq Ky^n\) for all \(n\), with \(K = (M-1)\alpha_1/M^2\) and \(y = M/(M-1) > 1\).
(iv) If $\alpha \in \Gamma$, then there is an integer $q \geq 1$ for which

$$k \geq q + 1 \Rightarrow \frac{\alpha_{k-1}}{\alpha_k} \leq \chi < 1 \quad \text{with } \chi = y_q(\alpha).$$

(2.17)

So, there is a real $M' > 0$ for which

$$\alpha_n \geq \frac{M'}{\chi^n} \quad \forall n \geq q + 1.$$

(2.18)

Writing $\sigma_{nq} = 1/\alpha_n(\sum_{k=1}^{q} \alpha_k)$ and $d_n = [C(\alpha)\alpha]_n - \sigma_{nq}$, we get

$$d_n = \frac{1}{\alpha_n} \left(\sum_{k=q+1}^{n} \alpha_k \right) = 1 + \sum_{j=q+1}^{n-1} \left(\prod_{k=1}^{j} \frac{\alpha_{n-k}}{\alpha_{n-k+1}} \right) \leq \sum_{j=q+1}^{n} \chi^{n-j} \leq \frac{1}{1-\chi}.$$

(2.19)

And using (2.18), we get

$$\sigma_{nq} \leq \frac{1}{M'} \chi^n \left(\sum_{k=1}^{q} \alpha_k \right).$$

(2.20)

So

$$[C(\alpha)\alpha]_n \leq a + b\chi^n$$

(2.21)

with $a = 1/(1-\chi)$ and $b = (1/M')(\sum_{k=1}^{q} \alpha_k)$.

Remark 2.2. Note that $\alpha \in \hat{C}_1$ does not imply that $\alpha \in \Gamma$.

2.2. New properties of the operator represented by Δ.

Throughout this paper, we will denote by D_ξ the infinite diagonal matrix $(\xi_n \delta_{nm})_{n,m \geq 1}$ for any given sequence $\xi = (\xi_n)_{n \geq 1}$. Now, we require some lemmas.

Lemma 2.3. The condition $\Delta \in (s^{(c)}_\alpha, s^{(c)}_\alpha)$ is equivalent to $\Delta_\alpha = D_{1/\alpha} \Delta D_\alpha \in (c_0, c_0)$ and $\Delta \in (s^{(c)}_\alpha, s^{(c)}_\alpha)$ implies $\Delta_\alpha = D_{1/\alpha} \Delta D_\alpha \in (c, c)$.

Proof. First, D_α is bijective from c_0 into s^*_α. In fact, the equation $D_\alpha X = B$, for every $B = (b_n)_n \in s^*_\alpha$, admits a unique solution $X = D_{1/\alpha} B = (b_n/\alpha_n)_n \in c_0$. Suppose now that $\Delta \in (s^*_\alpha, s^*_\alpha)$. Then for every $X \in c_0$, we get successively $X' = D_\alpha X \in s^*_\alpha$, $\Delta X' \in s^*_\alpha$, and $\Delta_\alpha = D_{1/\alpha} \Delta D_\alpha \in (c_0, c_0)$. Conversely, assume that $\Delta_\alpha \in (c_0, c_0)$ and let $X \in s^*_\alpha$. Then $X = D_\alpha X'$ with $X' \in c_0$. So, $\Delta X = D_\alpha c_0 = s^*_\alpha$, and $\Delta \in (s^*_\alpha, s^*_\alpha)$. By a similar reasoning, we get $\Delta \in (s^{(c)}_\alpha, s^{(c)}_\alpha) \Rightarrow \Delta_\alpha \in (c, c)$.

We need to recall here the following well-known results given in [12].
Lemma 2.4. The condition \(A \in (c, c) \) is equivalent to the following conditions:

(i) \(A \in S_1 \);
(ii) \((a_{nm})_{n \geq 1} \in c \) for each \(m \geq 1 \);
(iii) \((\sum_{m=1}^{\infty} a_{nm})_{n \geq 1} \in c \).

If for any given sequence \(X = (x_n)_{n} \in c \), with \(\lim_n x_n = l \), \(A_n(X) \) is convergent for all \(n \) and \(\lim_n A_n(X) = l \), it is written that

\[
\lim X = A - \lim X, \tag{2.22}
\]

and \(A \) is called a Toeplitz matrix. We also have the next result.

Lemma 2.5. The operator \(A \in (c, c) \) is a Toeplitz matrix if and only if

(i) \(A \in S_1 \);
(ii) \(\lim_n a_{nm} = 0 \) for each \(m \geq 1 \);
(iii) \(\lim_n (\sum_{m=1}^{\infty} a_{nm}) = 1 \).

Now, we can assert the following theorem.

Theorem 2.6. We have successively

(i) \(s_\alpha(\Delta) = s_\alpha \) if and only if \(\alpha \in \hat{C}_1 \);
(ii) \(s_{\alpha'}(\Delta) = s_{\alpha'} \) if and only if \(\alpha \in \hat{C}_1 \);
(iii) \(s^{(c)}_\alpha(\Delta) = s^{(c)}_\alpha \) if and only if \(\alpha \in \hat{C} \);
(iv) \(\Delta_{\alpha} = D_{1/\alpha} \Delta D_{\alpha} \) is bijective from \(c \) into itself with \(\lim X = \Delta_{\alpha} - \lim X \) if and only if

\[
\frac{\alpha_{n-1}}{\alpha_n} \to 0. \tag{2.23}
\]

Proof. (i) We have \(s_\alpha(\Delta) = s_\alpha \) if and only if \(\Delta, \Sigma \in (s_{\alpha'}, s_{\alpha}) \). This means that \(\Delta, \Sigma \in S_{\alpha} \), that is,

\[
\|\Delta\|_{S_{\alpha}} = \sup_{n \geq 1} \left(1 + \frac{\alpha_{n-1}}{\alpha_n} \right) < \infty, \quad \|\Sigma\|_{S_{\alpha}} = \sup_{n \geq 1} [C(\alpha) \alpha]_n < \infty. \tag{2.24}
\]

Since \(0 < \alpha_{n-1}/\alpha_n \leq [C(\alpha) \alpha]_n \), we deduce that \(\Delta, \Sigma \in S_{\alpha} \) if and only if \(\|\Sigma\|_{S_{\alpha}} < \infty \), that is, \(\alpha \in \hat{C}_1 \).

(ii) From Lemma 2.3, if \(s_{\alpha'}(\Delta) = s_{\alpha'} \), then \(\Delta_{\alpha} = D_{1/\alpha} \Delta D_{\alpha} \in (c_0, c_0) \). So, \(\Delta_{\alpha} \in (c_0, l) = S_1 \) and since \(\Delta_{\alpha} = (d_{nm})_{n,m \geq 1} \) with

\[
d_{nm} = \begin{cases}
1 & \text{if } m = n, \\
-\frac{\alpha_{n-1}}{\alpha_n} & \text{if } m = n - 1, \\
0 & \text{otherwise},
\end{cases} \tag{2.25}
\]
we deduce that \(\alpha_{n-1}/\alpha_n = O(1) \), \(n \to \infty \). Further, \(s^\ast_\alpha(\Delta) = s^\ast_\alpha \) implies \(\Sigma_\alpha = D_1/\alpha \Sigma D_\alpha \in (c_0,c_0) \) and \(\Sigma_\alpha \in (c_0,l_\infty) = S_1 \). Since \(\Sigma_\alpha = (\sigma_{nm})_{n,m \geq 1} \) with

\[
\sigma_{nm} = \begin{cases}
\frac{\alpha_m}{\alpha_n} & \text{if } m \leq n, \\
0 & \text{if } m > n,
\end{cases}
\]

(2.26)

we deduce that

\[
\sup_{n \geq 1} \left(\frac{1}{\alpha_n} \left(\sum_{k=1}^{n} \alpha_k \right) \right) < \infty,
\]

(2.27)

that is, \(\alpha \in \widehat{C}_1 \). Conversely, assume that \(\alpha \in \widehat{C}_1 \). First, \(\Delta \in (s^\ast_\alpha,s^\ast_\alpha) \). Indeed, from the inequality

\[
\alpha_{n-1}/\alpha_n \leq \sup_{n \geq 1} \left([C(\alpha)\alpha]_n \right) < \infty,
\]

(2.28)

we deduce that for every \(X \in s^\ast_\alpha \), \(x_n/\alpha_n = o(1) \),

\[
\frac{x_n-x_{n-1}}{\alpha_n} = \frac{x_n}{\alpha_n} - \frac{x_{n-1}}{\alpha_{n-1}} \frac{\alpha_{n-1}}{\alpha_n} = o(1)
\]

(2.29)

and \(\Delta X \in s^\ast_\alpha \). Further, take \(B = (b_n)_{n \geq 1} \in s^\ast_\alpha \). Then there exists \(\nu = (\nu_n)_{n \geq 1} \in c_0 \) such that \(b_n = \alpha_n \nu_n \). We must prove that the equation \(\Delta X = B \) admits a unique solution in the space \(s^\ast_\alpha \). First, we obtain

\[
X = \Sigma B = \left(\sum_{k=1}^{n} \alpha_k \nu_k \right)_{n \geq 1}.
\]

(2.30)

In order to show that \(X = (x_n)_{n \geq 1} \in s^\ast_\alpha \), we will consider any given \(\varepsilon > 0 \). From Proposition 2.1(iii), the condition \(\alpha \in \widehat{C}_1 \) implies that \(\alpha_n \to \infty \). So, there exists an integer \(N \) such that

\[
S_n = \frac{1}{\alpha_n} \left| \sum_{k=1}^{N} \alpha_k \nu_k \right| \leq \frac{\varepsilon}{2} \text{ for } n \geq N,
\]

(2.31)

Writing \(R_n = 1/\alpha_n \left| \sum_{k=N+1}^{n} \alpha_k \nu_k \right| \), we conclude that

\[
R_n \leq \left(\sup_{N+1 \leq k \leq n} \left| \nu_k \right| \right) [C(\alpha)\alpha]_n \leq \frac{\varepsilon}{2}.
\]

(2.32)
Finally, we obtain
\[
\frac{|X_n|}{\alpha_n} = \left| \frac{1}{\alpha_n} \left(\sum_{k=1}^{N} \alpha_k \nu_k \right) + \frac{1}{\alpha_n} \left(\sum_{k=N+1}^{n} \alpha_k \nu_k \right) \right| \leq S_n + R_n \leq \varepsilon \quad \text{for } n \geq N,
\]
and \(X \in s^0_{\alpha} \).

(iii) As above, \(s^{(c)}(\Delta) = s^{(c)}_{\alpha} \) if and only if \(\Delta_{\alpha}, S_{\alpha} \in (c,c) \); and from Lemma 2.4, we have \(\Delta_{\alpha} \in (c,c) \) if and only if \((\alpha_{n-1}/\alpha_n)_n \in c \). In fact, we have \(\Delta_{\alpha} \in S_1 \) and \(\sum_{m=1}^{n} d_{nm} = 1 + \alpha_{n-1}/\alpha_n \) tends to a limit as \(n \to \infty \). Afterwards, \(S_{\alpha} \in (c,c) \) is equivalent to
(a) \(\sum_{\alpha} \in S_1 \), that is, \(\alpha \in \hat{C}_1 \);
(b) \(\lim_{n} (\alpha_m/\alpha_n) = 0 \) for all \(m \geq 1 \);
(c) \(\alpha \in \hat{C} \).

From Proposition 2.1(iii), (c) implies that \(\alpha_n \) tends to infinity, so (c) implies \((\alpha_{n-1}/\alpha_n)_n \in c \). This completes the proof of (iii).

(iv) From Lemma 2.5, it can be easily verified that \(\Delta_{\alpha} \in (c,c) \) and \(\lim X = \Delta_{\alpha} - \lim X \) if and only if \(\alpha_{n-1}/\alpha_n \to 0 \). We conclude, using (iii), since \(\alpha_{n-1}/\alpha_n = o(1) \) implies that \(\alpha \in \hat{C} \).

Remark 2.7. In Theorem 2.6(iv), we see that \(\Sigma_{\alpha} \in (c,c) \) and \(\lim X = \Sigma_{\alpha} - \lim X \) if and only if \(\alpha_{n-1}/\alpha_n \to 0 \). In fact, we must have for each \(m \geq 1 \), \(\sigma_{nm} = \alpha_m/\alpha_n = o(1) \) \((n \to \infty) \) and
\[
\lim_{n} \left(\sum_{m=1}^{n} \sigma_{nm} \right) = \lim_{n} \left(1 + \sum_{m=1}^{n-1} \frac{\alpha_m}{\alpha_n} \right) = 1,
\]
and from Proposition 2.1(i), the previous property is satisfied if and only if \(\alpha_{n-1}/\alpha_n \to 0 \).

Remark 2.8. It can be seen that the condition \((\alpha_{n-1}/\alpha_n)_n \in c \) does not imply that \(\alpha \in \hat{C}_1 \). It is enough to consider \(C(e) \in (n)_n \notin c_0 \).

The next corollary is a direct consequence of the previous results.

Corollary 2.9. Consider the following properties:
(i) \(\alpha \in \hat{C} \);
(ii) \(s^{(c)}(\Delta) = s^{(c)}_{\alpha} \);
(iii) \(\alpha \in \Gamma \);
(iv) \(\alpha \in \hat{C}_1 \);
(v) \(s_{\alpha}(\Delta) = s_{\alpha} \);
(vi) \(s^{*}_{\alpha}(\Delta) = s^{*}_{\alpha} \).
Then (i) \(\Leftrightarrow \) (ii) \(\Rightarrow \) (iii) \(\Rightarrow \) (iv) \(\Leftrightarrow \) (v) \(\Leftrightarrow \) (vi).

We obtain from the precedent the following corollary.
COROLLARY 2.10. (i) \((s_\alpha - s_\alpha^*) (\Delta) = s_\alpha - s_\alpha^* \) if and only if \(\alpha \in \hat{C}_1\),
(ii) \((s_\alpha^{(c)} - s_\alpha^*) (\Delta) = s_\alpha^{(c)} - s_\alpha^* \) if and only if \(\alpha \in \hat{C}\),
(iii) \(\alpha \in \hat{C} \) implies \((s_\alpha - s_\alpha^{(c)}) (\Delta) = s_\alpha - s_\alpha^{(c)} \).

Proof. (i) If \(\Delta\) is bijective from \(s_\alpha - s_\alpha^*\) into itself, then for every \(B \in s_\alpha - s_\alpha^*\), we have \(X = \Sigma B \in s_\alpha - s_\alpha^*\). Since \(\alpha \in s_\alpha - s_\alpha^*\), we conclude that \(\Sigma \alpha \in s_\alpha\), that is, \(C(\alpha) \alpha \in l_\infty\). Conversely, from Theorem 2.6(i) and (ii), it can be easily seen that \(\Delta\) is bijective from \(s_\alpha\) to \(s_\alpha^*\) and from \(s_\alpha^*\) to \(s_\alpha^*\), since \(\alpha \in \hat{C}_1\). So, \(\Delta\) is bijective from \(s_\alpha - s_\alpha^*\) to \(s_\alpha - s_\alpha^*\).

(ii) Suppose that \(\Delta\) is bijective from \(s_\alpha^{(c)} - s_\alpha^*\) into itself. Reasoning as above, we have \(\alpha \in s_\alpha^{(c)} - s_\alpha^*\) and \(\Sigma \alpha \in s_\alpha^{(c)}\), so \(D_{1/\alpha} \alpha = C(\alpha) \alpha \in c\). Conversely, using Theorem 2.6(i) and (iii), we see that \(\Delta\) is bijective from \(s_\alpha^{(c)}\) to \(s_\alpha^{(c)}\) and from \(s_\alpha^*\) to \(s_\alpha^*\) since \(\alpha \in \hat{C}\) and \(\hat{C} \subset \hat{C}_1\). So, \((s_\alpha^{(c)} - s_\alpha^*) (\Delta) = s_\alpha^{(c)} - s_\alpha^*\).

Similarly, (iii) comes from the fact that \(\Delta\) is bijective from \(s_\alpha^{(c)}\) into itself and from \(s_\alpha^*\) into itself, since \(\alpha \in \hat{C}\). \(\square\)

Remark 2.11. Assume that \(\lim_{n \to \infty} [C(\alpha) \alpha]_n = l\). Then

\[
\frac{x_n}{\alpha_n} \to L \quad \text{implies} \quad \frac{x_n - x_{n-1}}{\alpha_n} \to \frac{L}{l}. \quad (2.35)
\]

Indeed, from Proposition 2.1(ii) (b), \(\alpha_{n-1}/\alpha_n \to 1 - (1/l)\) and

\[
\frac{x_n - x_{n-1}}{\alpha_n} = \frac{x_n}{\alpha_n} - \frac{x_{n-1}}{\alpha_{n-1}} \to L - L \left(1 - \frac{1}{l}\right) = \frac{L}{l}. \quad (2.36)
\]

3. Generalization to the sets \(s_r(\Delta^h)\) and \(s_\alpha(\Delta^h)\) for \(h\) real. In this section, we consider the operator \(\Delta^h\), where \(h\) is a real, and give among other things a necessary and sufficient condition to have \(s_\alpha(\Delta^h) = s_\alpha\).

First, recall that we can associate to any power series \(f(z) = \sum_{k=0}^{\infty} a_k z^k\), defined in the open disk \(|z| < R\), the upper triangular infinite matrix \(A = \varphi(f) \in \bigcup_{0 < r < R} S_r\) defined by

\[
\varphi(f) = \begin{pmatrix}
a_0 & a_1 & a_2 & \cdots \\
a_0 & a_1 & \cdots \\
0 & a_0 & \cdots
\end{pmatrix} \quad (3.1)
\]

(see [3, 4, 5]). Practically, we will write \(\varphi[f(z)]\) instead of \(\varphi(f)\). We have the following lemma.

Lemma 3.1. (i) The map \(\varphi : f \to A\) is an isomorphism from the algebra of the power series defined in \(|z| < R\) into the algebra of the corresponding matrices \(A\).
(ii) Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \), with \(a_0 \neq 0 \), and assume that \(1/f(z) = \sum_{k=0}^{\infty} a'_k z^k \) admits \(R' > 0 \) as radius of convergence. Then

\[
\phi \left(\frac{1}{f} \right) = \left[\phi(f) \right]^{-1} \in \bigcup_{0 < r < R'} S_r.
\]

(3.2)

Now, for \(h \in R - N \), we define (see [13])

\[
\left(\begin{array}{c} -h + k - 1 \\ k \end{array} \right) = \frac{-h(-h+1) \cdots (-h+k-1)}{k!} \quad \text{if } k > 0,
\]

\[
\left(\begin{array}{c} -h + k - 1 \\ k \end{array} \right) = 1 \quad \text{if } k = 0,
\]

(3.3)

and putting \(\Delta^+ = \Delta^t \), we get for any \(h \in R \),

\[
(\Delta^+)^h = \phi \left[(1-z)^h \right] = \phi \left[\sum_{k=0}^{\infty} \left(\begin{array}{c} -h + k - 1 \\ k \end{array} \right) z^k \right] \quad \text{for } |z| < 1.
\]

(3.4)

Then if \(\Delta^h = (\tau_{nm})_{n,m} \),

\[
\tau_{nm} = \begin{cases} \left(\begin{array}{c} -h + n - m - 1 \\ n - m \end{array} \right) & \text{if } m \leq n, \\ 0 & \text{if } m > n. \end{cases}
\]

(3.5)

Using the isomorphism \(\phi \), we get the following proposition.

Proposition 3.2 (see [5]). (i) The operator represented by \(\Delta \) is bijective from \(s_r \) into itself for every \(r > 1 \), and \(\Delta^+ \) is bijective from \(s_r \) into itself for all \(r > 1 \).

(ii) The operator \(\Delta^+ \) is surjective and not injective from \(s_r \) into itself for all \(r > 1 \).

(iii) For all \(r \neq 1 \) and for every integer \(\mu \geq 1 \), \((\Delta^+)^h s_r = s_r \).

(iv) We have successively

(a) if \(h \) is a real greater than 0 and \(h \notin N \), then \(\Delta^h \) maps \(s_r \) into itself when \(r > 1 \), but not for 0 < \(r < 1 \); if \(-1 < h < 0 \), then \(\Delta^h \) maps \(s_r \) into itself when \(r > 1 \), but not for \(r = 1 \);

(b) if \(h > 0 \) and \(h \notin N \), then \((\Delta^+)^h s_r \) into itself when 0 < \(r < 1 \), but not if \(r > 1 \); if \(-1 < h < 0 \), then \((\Delta^+)^h s_r \) into itself for 0 < \(r < 1 \), but not for \(r = 1 \).

(v) Let \(h \) be any given integer \(\geq 1 \), Then

\[
A \in (s_r(\Delta^h), s_r) \iff \sup_{n \geq 1} \left(\sum_{m=1}^{\infty} |a_{nm}| r^{m-n} \right) < \infty \quad \forall r > 1,
\]

\[
A \in (s_r(\Delta^+)^h, s_r) \iff \sup_{n \geq 1} \left(\sum_{m=1}^{\infty} |a_{nm}| r^{m-n} \right) < \infty \quad \forall r \in]0, 1[.
\]

(3.6)
(vi) For every integer \(h \geq 1 \),
\[
s_1 \subset s_1(\Delta^h) \subset s_{(n^h)_{n \geq 1}} \subset \bigcap_{r > 1} s_r.
\]

(vii) If \(h > 0 \) and \(h \notin \mathbb{N} \), then \(q \) is the greatest integer strictly less than \((h+1)\).

For all \(r > 1 \),
\[
\ker\left((\Delta^+)^h\right) \cap s_r = \text{span}(V_1, V_2, \ldots, V_q),
\]
where
\[
V_1 = e^t, \quad V_2 = (A_1^1, A_1^2, \ldots)^t, \\
V_3 = (0, A_2^2, A_3^2, \ldots)^t, \quad \ldots \quad V_q = (0, 0, \ldots, A_{q-1}^q, A_{q-1}^{q-1}, \ldots)^t \\
A_i^j = i!/(i-j)!, \text{ with } 0 \leq j \leq i, \text{ being the number of permutations of } i \text{ things taken } j \text{ at a time}.
\]

We give here an extension of the previous results, where \(s_r \) is replaced by \(s_\alpha \).

Proposition 3.3. Let \(h \) be a real greater than 0. The condition \(s_\alpha(\Delta^h) = s_\alpha \) is equivalent to
\[
\gamma_n(h) = \frac{1}{\alpha_n} \left[\sum_{k=1}^{n-1} \binom{h+n-k-1}{n-k} \alpha_k \right] = O(1) \quad (n \to \infty). \tag{3.10}
\]

Proof. The operator \(\Delta^h \) is bijective from \(s_\alpha \) into itself if and only if \(\Delta^h, \Sigma^h \in (s_\alpha, s_\alpha) \). We have \(\Delta^h \in (s_\alpha, s_\alpha) \) if and only if
\[
D_1/\alpha \Delta^h D_\alpha \in S_1, \tag{3.11}
\]
and using (3.5), we deduce that \(\Delta^h \in (s_\alpha, s_\alpha) \) if and only if
\[
\frac{1}{\alpha_n} \sum_{k=1}^{n} \left| \binom{-h+n-k-1}{n-k} \right| \alpha_k = O(1). \tag{3.12}
\]

Further, \((\Sigma^t)^h = \varphi[(1-z)^{-h}] \), where
\[
\varphi(z) = 1 + \sum_{n=1}^{\infty} \binom{h+n-1}{n} z^n \quad \text{with } |z| < 1. \tag{3.13}
\]
So, \(D_{1/\alpha} \Sigma^h D_{\alpha} \in S_1 \) if and only if (3.10) holds. Finally, since \(h > 0 \), we have

\[
\left| \binom{-h + n - k - 1}{n - k} \right| \leq \binom{h + n - k - 1}{n - k} \quad \text{for } k = 1, 2, \ldots, n - 1,
\]

and we conclude since (3.10) implies (3.12).

We deduce immediately the next result.

Corollary 3.4. Let \(h \) be an integer greater than or equal to 1. The following properties are equivalent:

(i) \(\alpha \in \hat{C}_1 \);
(ii) \(s_\alpha(\Delta) = s_\alpha^- \);
(iii) \(s_\alpha(\Delta^h) = s_\alpha^- \);
(iv) \(C(\alpha)(\Sigma^{h-1} \alpha) \in l_\infty \).

Proof. From the proof of Proposition 3.3, \(s_\alpha(\Delta^h) = s_\alpha^- \) is equivalent to \(D_{1/\alpha} \Sigma^h D_{\alpha} = C(\alpha) \Sigma^{h-1} D_{\alpha} \in S_1 \), that is, \(C(\alpha)(\Sigma^{h-1} \alpha) \in l_\infty \). So, (iii) and (iv) are equivalent. It remains to prove that (ii) \(\iff \) (iii). If \(s_\alpha(\Delta) = s_\alpha^- \), \(\Delta \) and consequently \(\Delta^h \) are bijective from \(s_\alpha^- \) into itself and condition (iii) holds. Conversely, assume that \(s_\alpha(\Delta^h) = s_\alpha^- \) holds. Then (3.10) holds, and since

\[
\binom{h + n - k - 1}{n - k} \geq 1 \quad \text{for } k = 1, 2, \ldots, n - 1,
\]

we deduce that

\[
[C(\alpha) \alpha]_n \leq \gamma_n(h) = O(1), \quad n \to \infty.
\]

So, (i) holds and (ii) is satisfied.

4. Generalization of well-known sets. In this section, we see that under some conditions, the spaces \(\tilde{w}_\alpha(\lambda), \tilde{w}_\alpha^\circ(\lambda), \tilde{w}_\alpha^\ast(\lambda), \tilde{c}_\alpha(\lambda, \mu), \tilde{c}_\alpha^\circ(\lambda, \mu), \) and \(\tilde{c}_\alpha^\ast(\lambda, \mu) \) can be written by means of the sets \(s_\xi \) or \(s_\xi^- \).

4.1. Sets \(\tilde{w}_\alpha(\lambda), \tilde{w}_\alpha^\circ(\lambda), \) and \(\tilde{w}_\alpha^\ast(\lambda) \). We recall some definitions and properties of some spaces. For every sequence \(X = (x_n)_n \), we define \(|X| = (|x_n|)_n \) and

\[
\tilde{w}_\alpha(\lambda) = \{ X \in s \mid C(\lambda)(|X|) \in s_\alpha \},
\]

\[
\tilde{w}_\alpha^\circ(\lambda) = \{ X \in s \mid C(\lambda)(|X|) \in s_\alpha^- \},
\]

\[
\tilde{w}_\alpha^\ast(\lambda) = \{ X \in s \mid X - le^t \in \tilde{w}_\alpha^-(\lambda) \text{ for some } l \in C \}.
\]

\[
(4.1)
\]
For instance, we see that
\[
\tilde{w}_\alpha(\lambda) = \left\{ X = (x_n)_n \in s \mid \sup_{n \geq 1} \left(\frac{1}{\lambda_n} \sum_{k=1}^{n} |x_k| \right) < \infty \right\}. \tag{4.2}
\]

If there exist \(A, B > 0 \) such that \(A < \alpha_n < B \) for all \(n \), we get the well-known spaces \(\tilde{w}_\alpha(\lambda) = w_\alpha(\lambda) \), \(\tilde{w}_\lambda(\lambda) = w_0(\lambda) \), and \(\tilde{w}_*^\alpha(\lambda) = w(\lambda) \) (see [12]). It has been proved that if \(\lambda \) is a strictly increasing sequence of reals tending to infinity, \(w_0(\lambda) \) and \(w_\alpha(\lambda) \) are BK spaces and \(w_0(\lambda) \) has AK, with respect to the norm
\[
\|X\| = \|C(\lambda)(|X|)\|_{\infty} = \sup_{n \geq 1} \left(\frac{1}{\lambda_n} \sum_{k=1}^{n} |x_k| \right) \tag{4.3}
\]
(see [11]).

We have the next result.

Theorem 4.1. Let \(\alpha \) and \(\lambda \) be any sequences of \(U^{++} \).

(i) Consider the following properties:
\begin{enumerate}
(a) \(\alpha_{n-1} \lambda_{n-1} / \alpha_n \lambda_n \to 0 \);
(b) \(s^{(c)}_\alpha (C(\lambda)) = s^{(c)}_\alpha \lambda \);
(c) \(\alpha \lambda \in \hat{\mathcal{C}}_1 \);
(d) \(\tilde{w}_\alpha(\lambda) = s^{\circ}_\alpha \lambda \);
(e) \(\tilde{w}_\lambda(\lambda) = s^{\circ}_\alpha \lambda \);
(f) \(\tilde{w}_*^\alpha(\lambda) = s^{\circ}_\alpha \lambda \).
\end{enumerate}

Then (a)\(\Rightarrow \) (b), (c)\(\iff \) (d), and (c)\(\Rightarrow \) (e) and (f).

(ii) If \(\alpha \lambda \in \hat{\mathcal{C}}_1 \), \(\tilde{w}_\alpha(\lambda) \), \(\tilde{w}_\lambda(\lambda) \), and \(\tilde{w}_*^\alpha(\lambda) \) are BK spaces with respect to the norm
\[
\|X\|_{s^{\alpha \lambda}} = \sup_{n \geq 1} \left(\frac{|X_n|}{\alpha_n \lambda_n} \right), \tag{4.4}
\]
and \(\tilde{w}_*^\alpha(\lambda) = \tilde{w}_\alpha^\alpha(\lambda) \) has AK.

Proof. (i) First, we prove that (a)\(\Rightarrow \) (b). We have
\[
s^{(c)}_\alpha (C(\lambda)) = \Delta(\lambda) s^{(c)}_\alpha = \Delta D_\lambda s^{(c)}_\alpha = \Delta s^{(c)}_\alpha, \tag{4.5}
\]
and from Proposition 2.1(i) and Theorem 2.6(iii), we get successively \(\alpha \lambda \in \hat{\mathcal{C}} \), \(\Delta s^{(c)}_\alpha = s^{(c)}_\alpha \lambda \), and (b) holds.

(c)\(\iff \) (d). Assume that (c) holds. Then
\[
\tilde{w}_\alpha(\lambda) = \{ X \mid |X| \in \Delta(\lambda) s_\alpha \}. \tag{4.6}
\]
ON SOME BK SPACES

Since $\Delta(\lambda) = \Delta D\lambda$, we get $\Delta(\lambda)s_{\alpha} = \Delta s_{\alpha \lambda}$. Now, using (c), we see that Δ is bijective from $s_{\alpha \lambda}$ into itself and $w_{\alpha}(\lambda) = s_{\alpha \lambda}$. Conversely, assume that $w_{\alpha}(\lambda) = s_{\alpha \lambda}$. Then $\alpha \lambda \in s_{\alpha \lambda}$ implies that $C(\lambda)(\alpha \lambda) \in s_{\alpha}$, and since $D_{1/\alpha}C(\lambda)(\alpha \lambda) \in s_{1} = l_{o}$, we conclude that $C(\alpha \lambda)(\alpha \lambda) \in l_{o}$. The proof of (c)$\Rightarrow$(e) follows on the same lines of the proof of (c)\Rightarrow(d) replacing $s_{\alpha \lambda}$ by $s_{\alpha \lambda}^*$. We prove that (c) implies (f). Take $X \in w_{\alpha}^*(\lambda)$. There is a complex number l such that

$$C(\lambda)(|X – le^t|) \in s_{\alpha}^*.$$ \hspace{1cm} (4.7)

So

$$|X – le^t| \in \Delta(\lambda)s_{\alpha}^* = \Delta s_{\alpha \lambda}^*,$$ \hspace{1cm} (4.8)

and from Theorem 2.6(ii), $\Delta s_{\alpha \lambda}^* = s_{\alpha \lambda}$.

Now, since (c) holds, we deduce from Proposition 2.1(iii) that $\alpha_n \lambda_n \rightarrow \infty$ and $le^t \in s_{\alpha \lambda}$. We conclude that $X \in w_{\alpha}^*(\lambda)$ if and only if $X \in le^t + s_{\alpha \lambda}^* = s_{\alpha \lambda}^*$.

Assertion (ii) is a direct consequence of (i).

4.2. Sets $\tilde{c}_{\alpha}^*(\lambda, \mu)$, $\tilde{c}_{\alpha}^*(\lambda, \mu)$, and $\tilde{c}_{\alpha}^*(\lambda, \mu)$. Let $\alpha = (\alpha_n)_n \in U^{++}$ be a given sequence, we consider now for $\lambda \in U$, $\mu \in s$ the space

$$\tilde{c}_{\alpha}^*(\lambda, \mu) = (w_{\alpha}(\lambda))_{\Delta(\mu)} = \{X \in s \mid C(\lambda)(|\Delta(\mu)X|) \in w_{\alpha}(\lambda)\}. \hspace{1cm} (4.9)$$

It is easy to see that

$$\tilde{c}_{\alpha}^*(\lambda, \mu) = \{X \in s \mid C(\lambda)(|\Delta(\mu)|) \in s_{\alpha}\}, \hspace{1cm} (4.10)$$

that is,

$$\tilde{c}_{\alpha}^*(\lambda, \mu) = \left\{X = (x_n)_n \in s \mid \sup_{n \geq 2} \left(\frac{1}{\alpha_n} \sum_{k=2}^{n} |\mu_k x_k - \mu_{k-1} x_{k-1}| \right) < \infty \right\}, \hspace{1cm} (4.11)$$

see [1]. Similarly, we define the following sets:

$$\tilde{c}_{\alpha}^*(\lambda, \mu) = \{X \in s \mid C(\lambda)(|\Delta(\mu)|) \in s_{\alpha}^*\}, \hspace{1cm} (4.12)$$

Recall that if $\lambda = \mu$, it is written that $c_0(\lambda) = (w_0(\lambda))_{\Delta(\lambda)}$,

$$c(\lambda) = \{X \in s \mid X - le^t \in c_0(\lambda) \text{ for some } l \in C\}, \hspace{1cm} (4.13)$$
and \(c_{\infty}(\lambda) = (w_{\infty}(\lambda))_{\Delta(\lambda)}\), see [11]. It can be easily seen that
\[
c_0(\lambda) = \tilde{c}_0(\lambda, \lambda), \quad c_{\infty}(\lambda) = \tilde{c}_{\infty}(\lambda, \lambda), \quad c(\lambda) = \tilde{c}_0(\lambda, \lambda).
\]
(4.14)

These sets of sequences are called strongly convergent to 0, strongly convergent, and strongly bounded. If \(\lambda \in U^{**}\) is a sequence strictly increasing to infinity, \(c(\lambda)\) is a Banach space with respect to
\[
\|X\|_{c_{\infty}(\lambda)} = \sup_{n \geq 1} \left(\frac{1}{\lambda_n} \sum_{k=1}^{n} |\lambda_k x_k - \lambda_{k-1} x_{k-1}| \right)
\]
with the convention \(x_0 = 0\). Each of the spaces \(c_0(\lambda), c(\lambda), \) and \(c_{\infty}(\lambda)\) is a BK space, relatively to the previous norm (see [1]). The set \(c_0(\lambda)\) has AK and every \(X \in c(\lambda)\) has a unique representation given by
\[
X = le^t + \sum_{k=1}^{\infty} (x_k - l)e_k^t,
\]
where \(X - le^t \in c_0\). The scalar \(l\) is called the strong \(c(\lambda)\)-limit of the sequence \(X\).

We obtain the next result.

Theorem 4.2. Let \(\alpha, \lambda, \) and \(\mu\) be sequences of \(U^{**}\).

(i) Consider the following properties:

 (a) \(\alpha \lambda \in \hat{C}_1\);

 (b) \(\tilde{c}_\alpha(\lambda, \mu) = s_{\alpha(\lambda/\mu)}\);

 (c) \(\tilde{c}_0(\lambda, \mu) = s_{\alpha(\lambda/\mu)}\);

 (d) \(\tilde{c}_0(\lambda, \mu) = \{X \in s \mid X - le^t \in s_{\alpha(\lambda/\mu)}\} \text{ for some } l \in C\}.

Then (a) \(\Leftrightarrow\) (b) and (a) \(\Rightarrow\) (c) and (d).

(ii) If \(\alpha \lambda \in \hat{C}_1\), then \(\tilde{c}_\alpha(\lambda, \mu), \tilde{c}_\alpha(\lambda, \mu),\) and \(\tilde{c}_0(\lambda, \mu)\) are BK spaces with respect to the norm
\[
\|X\|_{s_{\alpha(\lambda/\mu)}} = \sup_{n \geq 1} \left(\mu_n \frac{|x_n|}{\alpha_n \lambda_n} \right).
\]

The set \(\tilde{c}_\alpha(\lambda, \mu)\) has AK and every \(X \in \tilde{c}_\alpha(\lambda, \mu)\) has a unique representation given by (4.16), where \(X - le^t \in s_{\alpha(\lambda/\mu)}\).

Proof. We show that (a) \(\Rightarrow\) (b). Take \(X \in c_\alpha(\lambda, \mu)\). We have \(\Delta(\mu) X \in w_\alpha(\lambda)\), which is equivalent to
\[
X \in C(\mu)s_{\alpha \lambda} = D_{1/\mu} \Sigma s_{\alpha \lambda},
\]
and using Theorem 2.6(i), \(\Delta\) and consequently \(\Sigma\) are bijective from \(s_{\alpha \lambda}\) into itself. So, \(\Sigma s_{\alpha \lambda} = s_{\alpha \lambda}\) and \(X \in D_{1/\mu} \Sigma s_{\alpha \lambda} = s_{\alpha(\lambda/\mu)}\). We conclude that (b) holds. We prove that (b) implies (a). First, put \(\tilde{\alpha}_{\lambda, \mu} = (\lambda_n/\mu_n \alpha_n)_{n \geq 1}\). We have
$\tilde{c}_{\lambda,\mu} \in s_{\alpha(\lambda/\mu)} = \tilde{c}_{\alpha}(\lambda,\mu) = s_{\alpha(\lambda/\mu)}$, and since $\Delta(\mu) = \Delta D_{\mu}$ and $D_{\mu} \tilde{c}_{\lambda,\mu} = (-1)^n \lambda_n \alpha_n$ for $n \geq 1$, we get $|\Delta(\mu) \tilde{c}_{\lambda,\mu}| = (\xi_n)_{n \geq 1}$, with

$$
\xi_n = \begin{cases}
\lambda_1 \alpha_1 & \text{if } n = 1, \\
\lambda_{n-1} \alpha_{n-1} + \lambda_n \alpha_n & \text{if } n \geq 2.
\end{cases}
$$

(4.19)

From (b), we deduce that $\Sigma |\Delta(\mu) \tilde{c}_{\lambda,\mu}| \in s_{\alpha\lambda}$. This means that

$$
C'_n = \frac{1}{\alpha_n \lambda_n} \left(\lambda_1 \alpha_1 + \sum_{k=2}^{n} (\lambda_{k-1} \alpha_{k-1} + \lambda_k \alpha_k) \right) = O(1), \quad n \to \infty.
$$

(4.20)

From the inequality

$$
[C(\alpha\lambda)(\alpha\lambda)]_n \leq C'_n,
$$

(4.21)

we obtain (a). The proof of (a)\Rightarrow(c) follows on the same lines of the proof of (a)\Rightarrow(b) with s_{α} replaced by s'_{α}.

We show that (a) implies (d). Take $X \in \tilde{c}_{\alpha}^*(\lambda,\mu)$. There exists $l \in C$ such that

$$
\Delta(\mu)(X - le^t) \in \tilde{w}_{\alpha}^*(\lambda),
$$

(4.22)

and from (c)\Rightarrow(e) in Theorem 4.1, we have $\tilde{w}_{\alpha}(\lambda) = s_{\alpha\lambda}^r$. So

$$
X - le^t \in C(\mu)s_{\alpha\lambda}^r = D_{1/\mu} \Sigma s_{\alpha\lambda}^r,
$$

(4.23)

and from Theorem 2.6(ii), $\Sigma s_{\alpha\lambda}^r = s_{\alpha\lambda}^r$, and $D_{1/\mu} \Sigma s_{\alpha\lambda}^r = s_{\alpha(\lambda/\mu)}^r$, we conclude that $X \in \tilde{c}_{\alpha}(\lambda,\mu)$ if and only if $X \in le^t + s_{\alpha(\lambda/\mu)}^r$ for some $l \in C$.

Assertion (ii) is a direct consequence of (i) and of the fact that for every $X \in \tilde{c}_{\alpha}^r(\lambda)$, we have

$$
\left\| X - le^t - \sum_{k=1}^{N} (x_k - l)e_k^t \right\|_{s_{\alpha(\lambda/\mu)}} = \sup_{n \geq N+1} \left(\mu_n \frac{|x_n - l|}{\alpha_n \lambda_n} \right) = o(1), \quad N \to \infty.
$$

(4.24)

We deduce immediately the following corollary.

Corollary 4.3. Assume that $\alpha, \lambda, \mu \in U^+$.

(i) If $\alpha\lambda \in \tilde{C}_1$ and $\mu \in l_\infty$, then

$$
\tilde{c}_{\alpha}^r(\lambda,\mu) = s_{\alpha(\lambda/\mu)}^r.
$$

(4.25)
(ii) Then
\[\lambda \in \Gamma \Rightarrow \lambda \in \hat{C}_1 \Rightarrow c_0(\lambda) = s_\lambda^*, \quad c_\infty(\lambda) = s_\lambda. \]
\hfill (4.26)

\textbf{Proof.} (i) Since \(\mu \in l_\infty \), we deduce, using Proposition 2.1(iii), that there are \(K > 0 \) and \(\gamma > 1 \) such that
\[\frac{\alpha_n \lambda_n}{\mu_n} \geq K \gamma^n \quad \forall \, n. \]
\hfill (4.27)

So, \(le^t \in s_{\alpha(\lambda/\mu)}^e \) and (4.25) holds. (ii) comes from Theorem 4.2 since \(\Gamma \subset \hat{C}_1 \). \hfill \(\square \)

\textbf{Example 4.4.} We denote by \(\tilde{e} \) the base of the natural system of logarithms. From the well-known Stirling formula, we have
\[\frac{n^{n+1/2}}{n!} \sim \tilde{e}^n \frac{1}{\sqrt{2\pi}}, \]
so \(s_{(n^{n+1/2})/n!}_n = s_{\tilde{e}} \). Further, \(\lambda = (n^n/n!)_n \in \Gamma \) since
\[\frac{\lambda_{n-1}}{\lambda_n} = \tilde{e}^{-(n-1)\ln(1+1/(n-1))} \to \frac{1}{\tilde{e}} < 1. \]
\hfill (4.29)

We conclude that
\[\tilde{c}_e^o\left(\left(\frac{n^n}{n!}\right)_n, \left(\frac{1}{\sqrt{n}}\right)_n\right) = s_{\tilde{e}}^o, \quad \tilde{c}_e^o\left(\left(\frac{n^n}{n!}\right)_n, \left(\frac{1}{\sqrt{n}}\right)_n\right) = s_{\tilde{e}}. \]
\hfill (4.30)

\textbf{References}

Bruno de Malafosse: Laboratoire de Mathematiques Appliquées Havrais, Institut Universitaire de Technologie Le Havre, Université du Havre, BP 4006, 76610 Le Havre, France

E-mail address: bdemalaf@europost.org