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ON SOME CLASSES OF INVARIANT SUBMANIFOLDS

OF LORENTZIAN PARA-SASAKIAN MANIFOLDS

UDAY CHAND DE AND SRIMAYEE SAMUI

Abstract. The object of the present paper is to study invariant submanifolds of Lorenzian

Para-Sasakian manifolds. We consider the recurrent and bi-recurrent invariant subman-

ifolds of Lorentzian para-Sasakian manifolds and pseudo-parallel and generalized Ricci

pseudo-parallel invariant submanifolds of Lorentzian para-Sasakian manifolds. Also we

search for the conditions Z (X ,Y ) ·α = f Q(g ,α) and Z (X ,Y ) ·α = f Q(S,α) on invariant

submanifolds of Lorentzian para-Sasakian manifolds, where Z is the concircular curva-

ture tensor. Finally, we construct an example of an invariant submanifold of Lorentzian

para Sasakian manifold.

1. Introduction

In 1989, Matsumoto [14] introduced the notion of Lorentzian para-Sasakian manifolds.

An example of a five dimensional Lorentzian para-Sasakian manifold was given by Matsumoto,

Mihai and Rosaca [16]. Lorentzian para-Sasakian manifold is called LP-Sasakian manifold

The study of geometry of invariant submanifolds was initiated by Bejancu and Papaghuic.

The geometry of submanifolds have become an interesting subject in applied mathematics

and theoretical physics. Lorentzian para-Sasakian manifolds have been studied by De and

Shaikh [25], Özg ür [6], Shaikh and De [1] and also by several authors, such as ([15], [16], [21])

and many others.

Let M and M̃ be two Riemannian or semi-Riemannian manifolds, f : M → M̃ an iso-

metric immersion , α the second fundamental form and ∇̄ the van der Waerden-Bortolotti

connection of M . An immersion is said to be semiparallel if

R̄(X ,Y ) ·α= (∇̄X ∇̄Y −∇̄Y (∇̄X −∇̄[X ,Y ])α= 0 (1.1)
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holds for all vector fields tangent to M [11], where R̄ denotes the curvature tensor of the con-

nection ∇̄. Semiparallel immersion has been studied by many authors, see, for example, ([12],

[10], [13] and [20]).

An immersion is said to be pseudo-parallel ([2], [3]) if

R̄(X ,Y ) ·α= f Q(g ,α) (1.2)

holds for all vector fields X , Y tangent to M , where f denotes real valued function on M and

for a (0,k), k ≥ 1 tensor T and a (0,2) tensor E , Q(E ,T ) is defined by [19]

Q(E ,T )(X1, X2, . . . , Xk ; X ,Y ) = −T ((X ∧E Y )X1, . . . , Xk )

−T (X1, (X ∧E Y )X2, . . . , Xk )−·· ·

−T (X1, X2, . . . , Xk−1, (X ∧E Y )Xk ), (1.3)

where X ∧E Y is defined by

(X ∧E Y )Z = E (Y , Z )X −E (X , Z )Y . (1.4)

Therefore we can take the following equation instead of (1.2)

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V )−α(U ,R(X ,Y )V )

= − f [α((X ∧g Y )U ,V )+α(U , (X ∧g Y )V )]. (1.5)

Also Murathan, Arsalan and Ezentas [5] defined submanifolds satisfying the condition

R̄(X ,Y ) ·α= f Q(S,α). (1.6)

The equation (1.7) can be written as

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V )−α(U ,R(X ,Y )V )

= − f [α((X ∧S Y )U ,V )+α(U , (X ∧S Y )V )]. (1.7)

This kind of submanifolds are called generalized Ricci-pseudo parallel.

In a recent paper [22] , Pradip Majhi studied invariant submanifolds of Kenmotsu man-

ifolds. Also in [26], V. Mangione studied invariant submanifolds of Kenmotsu manifolds and

some conditions that these submanifolds are totally geodesic are given. Besides these, in-

variant submanifolds of Lorentzian para-Sasakian manifolds were studied by Özgür and Mu-

rathan [7]. Submanifolds of Lorentzian para-Sasakian manifolds have also been studied by

several authors, such as ([21], [24], [25]) and many others.

Motivated by these studies, in this paper we consider invariant submanifolds of Lorentzian

para-Sasakian manifolds and search some conditions that these submanifolds are totally geodesic.
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The paper is organized as follows: In section 2, we give necessary details about sub-

manifolds and concircular curvature tensor. In section 3, we discuss about Lorentzian para-

Sasakian manifolds and its submanifolds. In section 4, we study recurrent and bi-recurrent

invariant submanifolds of Lorentzian para-Sasakian manifolds. In section 5 and 6, pseudo-

parallel and generalized Ricci pseudo-parallel invariant submanifolds of Lorentzian para-

Sasakian manifolds have been studied. Section 7 and 8 are devoted to study invariant sub-

manifolds satisfying the conditions Z (X ,Y ) ·α = f Q(g ,α) and Z (X ,Y ) ·α = f Q(S,α) re-

spectively. Finally, we construct an example of an invariant submanifold of Lorentzian para-

Sasakian manifold.

2. Basic concepts

Let (M , g ) be an n-dimensional Riemannian submanifold of an (n +d )-dimensional Rie-

mannian manifold (M̃ , g̃ ). We denote by ∇̃ and ∇ the Levi-civita connections of M̃ and M ,

respectively. Then we have the Gauss and Weingarten formulas

∇̃X Y = ∇X Y +α(X ,Y ),

and

∇̃X N = −AN X +∇
⊥

X N , (2.1)

where X ,Y are vector fields tangent to M and N is normal vector field on M , respectively.

∇⊥ is called the normal connection of M . We call α the second fundamental form of the

submanifold M . If α= 0, then the submanifold is said to be totally geodesic. For the second

fundamental form α, the covariant derivative of α is defined by

(∇̄Xα)(Y , Z ) =∇
⊥
X N −α(∇X Y , Z )−α(Y ,∇X Z ) (2.2)

for any vector fields X ,Y , Z tangent to M . Then ∇̄α is a normal bundle valued tensor of type

(1,3) and is called the third fundamental form of M . ∇̄ is called the van der waerden-Bortolotti

connection M , i.e, ∇̄ is the connection in T M ⊕T ⊥M built with ∇ and ∇⊥. If ∇̄ = 0, then M is

said to have parallel second fundamental form [4]. From the Gauss and Weingarten formulas

we obtain

(R̃(X ,Y )Z )T
=R(X ,Y )Z + Aα(X ,Z )Y − Aα(Y ,Z ) X . (2.3)

Therefore from (1.1) we have

(R̄(X ,Y ) ·α)(U ,V ) = R⊥(X ,Y )α(U ,V ) (2.4)

−α(R(X ,Y )U ,V )−α(U ,R(X ,Y )V )

for all vector fields X ,Y ,U and V tangent to M , where

R⊥(X ,Y ) = [∇⊥
X ,∇⊥

Y ]−∇
⊥

[X ,Y ], (2.5)
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and R̄ denotes the curvature tensor of ∇̄.

For an n-dimensional (n ≥ 3) Riemannian manifold (M , g ), the concircular curvature ten-

sor Z is defined by [17]

Z (X ,Y )V = R(X ,Y )V −
r

n(n −1)
{g (Y ,V )X − g (X ,V )Y } (2.6)

for all vector fields X ,Y and V on M n , where r is the scalar curvature and R denotes the

curvature tensor of M.

Concircular curvature tensor appeared in the study of concircular mappings, i.e., conformal

mappings preserving geodesic circles [20]. Concircular curvature tensors play an important

role in the theory of projective and conformal transformations.

Similar to (2.4) and (2.6) the tensor Z (X ,Y ) ·α is defined by

(Z (X ,Y ) ·α)(U ,V ) = R⊥(X ,Y )α(U ,V )−α(Z (X ,Y )U ,V )−α(U ,Z (X ,Y )V ). (2.7)

3. Lorentzian Para-Sasakian manifolds

Let M̃ be an n-dimensional differential manifold endowed with a (1,1) tensor field ϕ, a

vector field ξ, a 1-form and a Lorentzian metric g̃ of type (0,2) such that for each point p ∈ M̃ ,

the tensor g̃p :Tp M̃ ×Tp M̃ →R is a non-degenerate inner product of signature (−,+,+, . . . ,+),

where Tp M̃ denotes the tangent space of M̃ at p andR is the real number space which satisfies

ϕ2(X ) = X +η(X )ξ, η(ξ) =−1, (3.1)

g̃ (X ,ξ) = η(X ), g̃ (ϕX ,ϕY ) = g̃ (X ,Y )+η(X )η(Y ) (3.2)

for all vector fields X ,Y . Then such a structure (ϕ,ξ,η, g̃ ) is termed as Lorentzian almost para-

contact structure and the manifold with the structure (ϕ,ξ,η, g̃ ) is called a Lorentzian almost

paracontact manifold [14]. In the Lorentzian almost paracontact manifold M̃ , the following

relations hold [14]:

ϕξ = 0, η(ϕX ) = 0, (3.3)

Φ(X ,Y ) = Φ(Y , X ), (3.4)

whereΦ(X ,Y ) = g̃ (X ,ϕY ).

A Lorentzian almost paracontact manifold M̃ equipped with the structure (ϕ,ξ,η, g̃ ) is

called an LP-Sasakian manifold [14] if

(∇̃X ϕ)Y = g̃ (ϕX ,ϕY )ξ+η(Y )ϕ2 X , (3.5)
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where ∇̃ denotes the operator of covariant differentiation with respect to the Lorentzian met-

ric g̃ . In an LP-Sasakian manifold M̃ with structure (ϕ,ξ,η, g̃ ), it is easily seen that

∇̃X ξ = ϕX , (3.6)

R̃(ξ, X )Y = g̃ (X ,Y )ξ−η(Y )X , (3.7)

R̃(X ,Y )ξ = η(Y )X −η(X )Y , (3.8)

S̃(X ,ξ) = (n −1)η(X ) (3.9)

for all vector fields X ,Y on M̃ [14], where S̃ denotes the Ricci tensor of M̃ and R̃ is the curva-

ture tensor of M̃ .

A submanifold M of an LP-Sasakian manifold M̃ is called an invariant submanifold of M̃

if ϕ(T M )⊂ T M . In an invariant submanifold of an LP-Sasakian manifold

α(X ,ξ) = 0, (3.10)

for any vector field X tangent to M ([24], [21]).

In [7] Özgür and Murathan proved the following Lemma:

Lemma 3.1. Let M be an n-dimensional invariant submanifold of an LP-Sasakian manifold

M̃. Then the following equations hold on M:

∇X ξ = ϕX , (3.11)

R(X ,Y )ξ = η(Y )X −η(X )Y , (3.12)

R(ξ,Y )ξ = η(Y )ξ−Y , (3.13)

S(X ,ξ) = (n −1)η(X ), (3.14)

S(ξ,ξ) = (n −1)ξ,Qξ= (n −1)ξ, (3.15)

(∇Xϕ)Y = g (X ,Y )ξ+η(Y )X +2η(X )η(Y )ξ, (3.16)

Z (ξ, X )ξ =
(

1−
r

n(n −1)

)

(η(X )ξ+X ), (3.17)

α(X ,ϕY ) = ϕα(X ,Y ), (3.18)

where Q denotes the Ricci operator of M defined by S(X ,Y )= g (Q X ,Y ).

4. Recurrent and bi-recurrent invariant submanifolds of LP-Sasakian manifolds

Let us consider that M be an invariant n-dimensional submanifold of an (n+d )-dimensional

LP-Sasakian manifold M̃ .

In [7], Özgür and Murathan proved the following lemma:
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Lemma 4.1. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

has parallel second fundamental form if and only if M n is totally geodesic.

Now we prove the following Lemma:

Lemma 4.2. If a non-flat Riemannian manifold has a recurrent second fundamental form,

then it is semiparallel.

Proof. The second fundamental form α is said to be recurrent if

∇α= A⊗α,

where α is non-zero and A is an everywhere nonzero 1-form. We now define a function f on

M by

f 2
= g (α,α),

where the metric g is extended to the inner product between the tensor fields in the standard

fashion. Then we know that f (Y f ) = f 2 A(Y ). So from this we have Y f = f A(Y ), since f is

nonzero. This implies that

X (Y f ) =
1

f
(X f )(Y f )+ (X A(Y )) f .

Hence, X (Y f )−Y (X f ) = {X A(Y )−Y A(X )} f .

Therefore, we get

(∇̃X ∇̃Y −∇̃Y ∇̃X −∇̃[X ,Y ]) f = {X A(Y )−Y A(X )− A([X ,Y ])} f .

Since the left hand side of the above equation is identically zero and f is nonzero on M by our

assumption, we obtain

d A(X ,Y ) = 0, (4.1)

i.e., the 1-form A is closed.

Now from

(∇Xα)(U ,V ) = A(X )α(U ,V ),

we get

(∇̃U ∇̃V α)(X ,Y )− (∇̃∇̃U V α)(X ,Y ) = [(∇̃U A)V + A(U )A(V )]α(X ,Y ).

Hence using (4.1), we get

(R̃(X ,Y ) ·α)(U ,V ) = [2d A(X ,Y )]α(X ,Y ) = 0.
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Therefore, we have

R̃(X ,Y ) ·α= 0.

for any vector field X, Y. If f = 0, then from f 2 = g (α,α) we get α = 0 and hence obviously

R(X ,Y ) ·α= 0. Hence the result. ä

From Lemma 4.1 and Lemma 4.2, we have the following:

Corollary 4.1. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

has recurrent second fundamental form if and only if M n is totally geodesic.

The second fundamental formα is bi-recurrent if there exists a non-zero covariant tensor

field B such that (∇X∇W α−∇∇X W α)(Y , Z ) = B (X ,W )α(Y , Z ). In a recent paper [23] Aikawa

and Matsuyama proved that if a tensor field T is bi-recurrent, then R(X ,Y ) ·T = 0. Therefore

by virtue of the lemma 4.1 we can state the following:

Corollary 4.2. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

has bi-recurrent second fundamental form if and only if M n is totally geodesic.

5. Pseudo-parallel invariant submanifolds of LP-Saskian manifolds

In this section we study pseudo-parallel invariant submanifolds of LP-Sasakian mani-

folds. Therefore we have

R̄(X ,Y ) ·α= f Q(g ,α) (5.1)

holds for all vector fields X ,Y tangent to M , where f denotes the real valued function on M n .

The equation (5.1) can be written as

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V ) (5.2)

−α(U ,R(X ,Y )V ) =− f
[

α((X ∧g Y )U ,V )+

α(U , (X ∧g Y )V )
]

,

where (X ∧g Y ) is defined by

(X ∧g Y )Z = g (Y , Z )X − g (X , Z )Y . (5.3)

Substituting (5.3) in (5.2), we have

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V ) (5.4)

−α(U ,R(X ,Y )V ) =− f [g (Y ,U )α(X ,V )− g (X ,U )α(Y ,V )
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+g (Y ,V )α(U , X )− g (X ,V )α(U ,Y )].

Putting X =V = ξ in (5.4), we obtain

R⊥(ξ,Y )α(U ,ξ)−α(R(ξ,Y )U ,ξ)−α(U ,R(ξ,Y )ξ)

= − f [g (Y ,U )α(ξ,ξ)− g (ξ,U )α(Y ,ξ)+ g (Y ,ξ)α(U ,ξ)− g (ξ,ξ)α(U ,Y )]. (5.5)

Using (3.10) and (3.13) in (5.5), we have

−α(U ,η(Y )ξ−Y )=− f [−α(U ,Y )], (5.6)

which implies

(1− f )α(U ,Y ) = 0, (5.7)

i.e, α(U ,Y ) = 0 which gives M n is totally geodesic, provided f 6= 1.

Conversely, let M n be totally geodesic. Then, from (5.4) we get M n is pseudo-parallel. Thus

we can state the following:

Theorem 5.1. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

is pseudo-parallel if and only if M n is totally geodesic, provided f 6= 1.

6. Generalized Ricci pseudo-parallel invariant submanifolds of LP-Sasakian manifolds

Let us consider M n be a generalized Ricci pseudo-parallel invariant submanifold of an

LP-Sasakian manifold M̃ . Therefore we have

R̄(X ,Y ) ·α= f Q(S,α) (6.1)

for all vector fields X ,Y tangent to M , where f denotes the real valued function on M n . The

equation (6.1) can be written as

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V )−α(U ,R(X ,Y )V )

= − f
[

α((X ∧S Y )U ,V )+α(U , (X ∧S Y )V )
]

, (6.2)

where (X ∧S Y ) is defined by

(X ∧S Y )Z = S(Y , Z )X −S(X , Z )Y . (6.3)

Substituting (6.3) in (6.2), we have

R⊥(X ,Y )α(U ,V )−α(R(X ,Y )U ,V )−α(U ,R(X ,Y )V )

= − f [S(Y ,U )α(X ,V )−S(X ,U )α(Y ,V )+S(Y ,V )α(U , X )−S(X ,V )α(U ,Y )]. (6.4)
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Putting X =V = ξ in (6.4), we obtain

R⊥(ξ,Y )α(U ,ξ)−α(R(ξ,Y )U ,ξ)−α(U ,R(ξ,Y )ξ)

= − f [S(Y ,U )α(ξ,ξ)−S(ξ,U )α(Y ,ξ)+S(Y ,ξ)α(U ,ξ)−S(ξ,ξ)α(U ,Y )]. (6.5)

Using (3.10), (3.13) and (3.15) in (6.5), we get

−α(U ,η(Y )ξ−Y ) =− f [−(n −1)α(U ,Y )], (6.6)

which implies

(1− (n −1) f )α(U ,Y )= 0, (6.7)

i.e, α(U ,Y ) = 0 which gives M n is totally geodesic, provided f 6=
1

n−1 .

Conversely, let M n be totally geodesic. Then, from (6.4) we get M n is pseudo-parallel. Thus

we can state the following:

Theorem 6.1. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

is generalized Ricci pseudo-parallel if and only if M n is totally geodesic, provided f 6=
1

n−1 .

7. Invariant submanifolds of LP-Sasakian manifolds satisfying Z (X ,Y ) ·α= f Q(g ,α)

Let us consider M n be an invariant submanifold of an LP-Sasakian manifold M̃ satisfying

Z (X ,Y ) ·α= f Q(g ,α) (7.1)

for all vector fields X ,Y tangent to M , where f denotes the real valued function on M n . The

equation (7.1) can be written as

R⊥(X ,Y )α(U ,V )−α(Z (X ,Y )U ,V )−α(U ,Z (X ,Y )V )

= − f
[

α((X ∧g Y )U ,V )+α(U , (X ∧g Y )V )
]

. (7.2)

Substituting (5.3) in (7.2), we have

R⊥(X ,Y )α(U ,V )−α(Z (X ,Y )U ,V )−α(U ,Z (X ,Y )V )

= − f [g (Y ,U )α(X ,V )− g (X ,U )α(Y ,V )+ g (Y ,V )α(U , X )− g (X ,V )α(U ,Y )]. (7.3)

Putting X =V = ξ in (7.3), we obtain

R⊥(ξ,Y )α(U ,ξ)−α(Z (ξ,Y )U ,ξ)−α(U ,Z (ξ,Y )ξ)

= − f [g (Y ,U )α(ξ,ξ)− g (ξ,U )α(Y ,ξ)+ g (Y ,ξ)α(U ,ξ)− g (ξ,ξ)α(U ,Y )]. (7.4)
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Using (3.10) and (3.17) in (7.4), we get

−α
(

U ,
(

1−
r

n(n −1)

)(

η(Y )ξ+Y
))

=− f [−α(U ,Y )], (7.5)

which implies
(

f +
(

1−
r

n(n −1)

))

α(U ,Y ) = 0, (7.6)

i.e., α(U ,Y )= 0 which gives M n is totally geodesic, provided f 6=
(

r
n(n−1) −1

)

.

Conversely, let M n be totally geodesic. Then, from (7.3) we get M n satisfies Z (X ,Y ) ·α =

f Q(g ,α). Thus we can state the following:

Theorem 7.1. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then M n

satisfies Z (X ,Y ) ·α= f Q(g ,α) if and only if M n is totally geodesic, provided f 6=
(

r
n(n−1) −1

)

.

8. Invariant submanifolds of LP-Sasakian manifolds satisfying Z (X ,Y ) ·α= f Q(S,α)

Let us consider M n be an invariant submanifold of an LP-Sasakian manifold M̃ satisfying

Z (X ,Y ) ·α= f Q(S,α) (8.1)

for all vector fields X ,Y tangent to M , where f denotes the real valued function on M n . The

equation (8.1) can be written as

R⊥(X ,Y )α(U ,V )−α(Z (X ,Y )U ,V )−α(U ,Z (X ,Y )V )

= − f
[

α((X ∧S Y )U ,V )+α(U , (X ∧S Y )V )
]

. (8.2)

Substituting (6.3) in (8.2), we have

R⊥(X ,Y )α(U ,V )−α(Z (X ,Y )U ,V ) (8.3)

−α(U ,Z (X ,Y )V ) =− f [S(Y ,U )α(X ,V )−S(X ,U )α(Y ,V )

+S(Y ,V )α(U , X )−S(X ,V )α(U ,Y )].

Putting X =V = ξ in (8.3), we obtain

R⊥(ξ,Y )α(U ,ξ)−α(Z (ξ,Y )U ,ξ)−α(U ,Z (ξ,Y )ξ)

= − f [S(Y ,U )α(ξ,ξ)−S(ξ,U )α(Y ,ξ)+S(Y ,ξ)α(U ,ξ)−S(ξ,ξ)α(U ,Y )]. (8.4)

Using (3.10), (3.15) and (3.17) in (8.4), we have

−α
(

U ,
(

1−
r

n(n −1)

)(

η(Y )ξ+Y
))

=− f [−(n −1)α(U ,Y )], (8.5)

which follows that
(

(n −1) f +
(

1−
r

n(n −1)

))

α(U ,Y ) = 0, (8.6)

i.e, α(U ,Y ) = 0 which gives M n is totally geodesic, provided f 6=
(

r
n(n−1)2 −

1
(n−1)

)

.

Conversely, let M n be totally geodesic. Then, from (8.3) we get M n satisfies Z (X ,Y ) ·α =

f Q(S,α). Thus we can state the following:
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Theorem 8.1. Let M n be an invariant submanifold of LP-Sasakian manifold M̃. Then M n

satisfies Z (X ,Y ) ·α = f Q(S,α) if and only if M n is totally geodesic, provided f 6=
(

r
n(n−1)2 −

1
(n−2)

)

.

In view of the Corollary (4.1)−(4.2) and Theorem (5.1)−(8.1) we can state the following:

Theorem 8.2. Let M n be an invariant submanifold of an LP-Sasakian manifold M̃. Then the

following statements are equivalent:

(1) Second fundamental form of M n is recurrent.

(2) Second fundamental form of M n is bi-recurrent.

(3) M n is pseudo-parallel, provided f 6= 1.

(4) M n is generalized Ricci pseudo parallel, provided f 6=
1

n−1 .

(5) M n satisfies the condition Z (X ,Y ) ·α= f Q(g ,α), provided f 6=
(

r
n(n−1) −1

)

.

(6) M n satisfies the condition Z (X ,Y ) ·α= f Q(S,α), provided f 6=
(

r
n(n−1)2 −

1
(n−2)

)

.

(7) M n is totally geodesic.

9. Example

Let us consider the 5-dimensional manifold M̃ = {(x, y, z,u, v)∈R5 : (x, y, z,u, v) 6= (0,0,0,0,0)},

where (x, y, z,u, v) are the standard coordinates in R5. The vector fields

e1 = ez ∂

∂x
, e2 = ez−ax ∂

∂y
, e3 =

∂

∂z
, e4 = ez ∂

∂u
, e5 = ez−u ∂

∂v

are linear independent at each point of M̃ where a is a scalar. Let g̃ be the metric defined by

g̃ (ei ,e j ) =















1, for i = j 6= 3,

0, for i 6= j ,

−1, for i = j = 3.

(9.1)

Here i and j runs from 1 to 5. Let η be the 1-form defined by η(Z ) = g̃ (Z ,e3), for any vector

field Z tangent to M̃ . Let ϕ be the (1,1) tensor field defined by

ϕe1 =−e1, ϕe2 =−e2, ϕe3 = 0, ϕe4 =−e4, ϕe5 =−e5.

Then using the linearity property of ϕ and g̃ we have

η(e3) =−1, ϕ2 Z = Z +η(Z )e3

for any vector field Z tangent to M̃ . Thus for e3 = ξ, M̃ (ϕ,ξ,η, g̃ ) defines an almost para-

contact metric manifold. Let ∇̃ be the Levi-Civita connection on M̃ with respect to the metric

g̃ . Then we have
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[e1,e2] =−aeze2, [e1,e3] =−e1, [e1,e4] = 0, [e1,e5] = 0,

[e2,e3] =−e2, [e2,e4] = 0, [e2,e5] = o, [e3,e4] = e4,

[e3,e5] = e5, [e4,e5] =−ez e5.

Taking e3 = ξ and using Koszul’s formula for g̃ , it can be easily calculated that

∇̃e1 e1 = e3, ∇̃e1 e2 = 0, ∇̃e1 e3 =−e1, ∇̃e1 e4 = 0, ∇̃e1 e5 = 0,

∇̃e2 e1 = aeze2, ∇̃e2 e2 =−aeze1 +e3, ∇̃e2 e3 =−e2, ∇̃e2 e4 = 0, ∇̃e2 e5 = 0,

∇̃e3 e1 = 0, ∇̃e3 e2 = 0, ∇̃e3 e3 = 0, ∇̃e3 e4 = 0, ∇̃e3 e5 = 0,

∇̃e4 e1 = 0, ∇̃e4 e2 = 0, ∇̃e4 e3 =−e4, ∇̃e4 e4 = 0, ∇̃e4 e5 = 0,

∇̃e5 e1 = 0, ∇̃e5 e2 = 0, ∇̃e5 e3 =−e5, ∇̃e5 e4 = ez e5, ∇̃e5 e5 = e3 −ez e5.

From the above calculations, we see the manifold under consideration satisfies η(ξ) =−1

and ∇̃X ξ=ϕX . Hence, M̃ is an LP-Sasakian manifold.

Let f be an isometric immersion from M to M̃ defined by f (x, y, z)= (x, y, z,0,0).

Let M = {(x, y, z) ∈R3 : (x, y, z) 6= (0,0,0)} where (x, y, z) are the standard coordinates in R3.

The vector fields

e1 = ez ∂

∂x
, e2 = ez−ax ∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . Let g be the metric defined by

g (e1,e3) = g (e2,e3) = g (e1,e2)= 0

g (e1,e1) = g (e2,e2) = 1, g (e3,e3) =−1.

Let η be the 1-form defined by η(Z ) = g (Z ,e3), for any vector field Z tangent to M . Let ϕ be

the (1,1) tensor field defined by

ϕe1 =−e1, ϕe2 =−e2, ϕe3 = 0

Then using the linearity property of ϕ and g we have

η(e3) =−1, ϕ2 Z = Z +η(Z )e3

for any vector field Z tangent to M . Thus for e3 = ξ, M (ϕ,ξ,η, g ) defines an almost para-

contact metric manifold. Let ∇ be the Levi-Civita connection on M with respect to the metric

g . Then we have

[e1,e2] =−aez e2, [e1,e3] =−e1, [e2,e3] =−e2.
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Taking e3 = ξ and using Koszul’s formula for g , it can be easily calculated that

∇e1 e1 = e3, ∇e1 e2 = 0, ∇e1 e3 =−e1,

∇e2 e1 = aeze2, ∇e2 e2 =−aeze1 +e3, ∇e2 e3 =−e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

We see that the (ϕ,ξ,η, g ) structure satisfies the formula ∇X ξ = ϕX and η(ξ) = −1. Hence

M (ϕ,ξ,η, g ) is a 3-dimensional LP-Sasakian manifold. It is obvious that the manifold M under

consideration is a submanifold of the manifold M̃ .

Also ϕX =−X ∈ T M for X ∈ T M . Hence M is invariant.

Let U = λ1e1 +λ2e2 +λ3e3 ∈ T M and V = µ1e1 +µ2e2 +µ3e3 ∈ T M where λi and µi are

scalars, i = 1,2,3.

Then

α(U ,V ) =
∑

λiµ jα(ei ,e j )

=
∑

λiµ j (∇̃ei
e j −∇ei

e j )

= 0.

Hence the submanifold is totally geodesic.
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