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ON SOME CLASSES OF R-COMPLEX HERMITIAN

FINSLER SPACES

Nicoleta Aldea and Gabriela Câmpean

Abstract. In this paper, we investigate the R-complex Hermitian Finsler
spaces, emphasizing the differences that separate them from the complex
Finsler spaces. The tools used in this study are the Chern-Finsler and
Berwald connections. By means of these connections, some classes of
the R-complex Hermitian Finsler spaces are defined, (e.g. weakly Kähler,
Kähler, strongly Kähler). Here the notions of Kähler and strongly Kähler
do not coincide, unlike the complex Finsler case. Also, some kinds of
Berwald notions for such spaces are introduced. A special approach is

devoted to obtain the equivalence conditions for an R-complex Hermitian
Finsler space to become a weakly Berwald or Berwald. Finally, we obtain
the conditions under which an R-complex Hermitian Finsler space with
Randers metric is Berwald. We get some clear examples which illustrate
the interest for this work.

1. Introduction

Riemannian geometry is based on the fundamental concept of metric that
depends on each point of the manifold, and which is defined by the metric tensor
gij(x). For instance, by means of this it is possible to calculate the length of

the curve c : t →
(

xi(t)
)

, t ∈ [a, b] ⊂ R+, which is l =
∫ b

a
F
(

x(t), dx(t)
dt

)

dt,

where F =
√

gij(x)yiyj and yi = dxi

dt
is the tangent vector of the curve.

In 1918, P. Finsler was inspired to generalize Riemann’s ideas, taking F =
√

gij(x, y)yiyj . Of course, the first surprise was to find that in the integral,
which gives the arc length of the curve, the metric tensor depends on the
parameter t ∈ R. Therefore, an additional condition is required, namely the
function F is homogeneous in y, meaning F (x, λy) = λF (x, y) for any λ > 0.
Subsequently, the development of the Finsler geometry has been remarkable,
(see for instance [1, 9, 8, 10, 14, 20, 21], etc.).
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In 1963, G. B. Rizza [17] extended the above mentioned results to the com-
plex case, considering the function F : T ′M → R+ with the following homo-
geneity property F (z, λη) = |λ|F (z, η), for any λ ∈ C, where (z, η) are the co-
ordinates in holomorphic tangent bundle T ′M of a complex manifold M . But,
this complex theory gathered momentum after that S. Kobayashi introduced
the well-known Kobayashi metric which satisfies the mentioned homogeneity,
(in 1967). During the last years, a complex Finsler geometry has been devel-
oped which contains many interesting results (see [1, 2, 3, 4, 5, 6, 12, 13, 15,
18, 22, 23], etc.).

If we account only the initial problem, in complex Finsler geometry the
arc length is calculated for the curves which depend on a real parameter (c :

t →
(

zi(t)
)

and ηi = dzi

dt
) and the invariance of the integral to the change of

parameters is ensured only for the real parameters. This led to the idea of
restricting the homogeneity of the function F : T ′M → R+ to the real scalars,
i.e., F (z, λη) = |λ|F (z, η) for any λ ∈ R, (see [16]). Although the restriction
seems insignificant, the changes which arise are considerable. First of all, the
indicatrix is a convex set, it is not strongly pseudo-convex. Also, L := F 2

satisfies the so called R-homogeneity condition, (of second degree, see (2.2)),
instead of (1, 1)-homogeneity as in complex Finsler geometry and many others
differences.

The purpose of this paper is to continue the study of the R-complex Finsler
spaces and to point out others differences from the complex Finsler spaces. The
present paper appears as a necessary extension of [16], required by the already
known results from real and complex Finsler geometry, (e.g. [1, 4, 5, 6, 8, 9,
10, 20, 21, 23]).

Subsequently, we will present an overview of the content of the paper.
In Section 2, some preliminary properties of the n-dimensional R-complex

Finsler spaces are presented. A R-complex Finsler function L produces two

tensors gij :=
∂2L

∂ηi∂ηj and gij̄ :=
∂2L

∂ηi∂η̄j . The first is a symmetric one while the

second is a Hermitian one. We find that the dependence of one of these tensors
only on the base point of the complex manifold, implies the same property for
the second (Proposition 2.1). Subsequently, we will focus only on the study
of the R-complex Hermitian Finsler spaces, (meaning gij̄ is invertible). The
instruments of our study are the Chern-Finsler and the canonical complex
nonlinear connections which satisfy the R - homogeneity conditions. Also, we
work with two complex linear connections: Chern-Finsler and Berwald which
have specific properties.

In Section 3 we will introduce some classes of R-complex Hermitian Finsler
spaces. The main theme is that of finding the correspondences between them.
Namely, using some ideas from the complex Finsler case, we speak about three
kinds of Kähler metrics: strongly Kähler, Kähler and weakly Kähler. Here
the notions of Kähler and strongly Kähler do not coincide. We determine
the conditions under which such a Kähler metric becomes a strongly Kähler
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metric, (Theorem 3.1). Also, we find when the Chern-Finsler and the canonical
complex nonlinear connections coincide, (Theorem 3.2). By means of Chern-
Finsler and Berwald connections we define for R-complex Hermitian Finsler
spaces the classes of Berwald and weakly Berwald spaces. We show that any
purely Hermitian R-complex Hermitian Finsler space is a Berwald space. The
necessary and sufficient conditions under which a R-complex Hermitian Finsler
space is weakly Berwald or Berwald are established, (Theorems 3.4 and 3.5).
The Berwald spaces with Kähler property are called strongly Berwald. We
prove that any strongly Berwald space is strongly Kähler, (Corollary 3.1).

The general theory of the R-complex Hermitian Berwald spaces applies to the
class of Randers spaces. Theorem 4.2 offers sufficient conditions for a Randers
metric F = α + β to be a Berwald metric. The existence of the R-complex
Hermitian Berwald spaces with Randers metrics is attested by some explicit
examples.

2. Preliminaries

In this section, we give some preliminaries about n-dimensional R-complex
Finsler geometry with Chern-Finsler and Berwald complex linear connections.
We set the basic notions (for more details, see [15, 16]), and we prove some
important properties of these connections.

2.1. R-complex Hermitian Finsler spaces

Let M be an n-dimensional complex manifold and z = (zk)k=1,n be the
complex coordinates in a local chart. The complexification of the real tangent
bundle TCM splits into the sum of holomorphic tangent bundle T ′M and its
conjugate T ′′M . The bundle T ′M is itself a complex manifold and the local
coordinates in a local chart will be denoted by u = (zk, ηk)k=1,n. These are

changed into (z′k, η′k)k=1,n by the rules z′k = z′k(z) and η′k = ∂z′k

∂zl η
l.

A R-complex Finsler space is a pair (M,F ), where F is a continuous function
F : T ′M −→ R+ satisfying the conditions:

i) L := F 2 is smooth on T̃ ′M := T ′M\{0};
ii) F (z, η) ≥ 0 the equality holds if and only if η = 0;
iii) F (z, λη, z̄, λη̄) = |λ| F (z, η, z̄, η̄), ∀λ ∈ R.

The fundamental function L of a R-complex Finsler space, induces the fol-
lowing tensors

(2.1) gij(z, η) :=
∂2L

∂ηi∂ηj
; gij̄(z, η) :=

∂2L

∂ηi∂η̄j
; gı̄j̄(z, η) :=

∂2L

∂η̄i∂η̄j
,

which satisfy interesting properties, obtained as consequences of the homogene-
ity condition iii), [16],

∂L

∂ηi
ηi +

∂L

∂ηi
ηi = 2L ; gijη

i + gjı̄η
i =

∂L

∂ηj
;(2.2)

2L = gijη
iηj + 2gijη

iηj + gijη
iηj ;
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∂gik

∂ηj
ηj +

∂gik

∂ηj
ηj = 0 ;

∂gik
∂ηj

ηj +
∂gik
∂ηj

ηj = 0.

We say that a function f on T̃ ′M is (p, q)-homogeneous with respect to the
fibre variables η if and only if f(zk, µηk) = µpµ̄qf(zk, ηk), for any µ ∈ C. This

leads to ∂f
∂ηj η

j = pf and ∂f
∂η̄j η̄

j = qf. Also, we say that f is R-homogenous of

degree p in the fibre variables η if and only if ∂f
∂ηi η

i + ∂f
∂ηi η

i = pf. For example,

L is R-homogenous of degree 2 in the fibre variables.
Moreover, we can prove:

Proposition 2.1. Let (M,F ) be an R-complex Finsler space. Then, the tensor

gij̄ depends only on position z if and only if the tensor gij depends only on

position z.

Proof. We suppose that gij̄(z) = ∂2L
∂ηi∂η̄j depends only on z. This leads to

∂gij̄
∂ηk = ∂gik

∂ηj = 0, which substituted into (2.2) gives ∂gik
∂ηj η

j = 0. These last

two properties mean that gik is holomorphic and (0, 0)-homogenous with re-
spect to η. Based on strong maximum principle, we make a similar reasoning
like in [12, Proposition 1.1], for gij . Thus, we obtain that gij depends only on
z.

Conversely, if gij(z) =
∂2L

∂ηi∂ηj depends only on z, then its complex conjugate

gı̄j̄ depends only on z. As above, it results that gij̄ depends only on z. �

Hereinafter, an R-complex Finsler space with gij̄(z) (or gij(z)) will be called
purely Hermitian.

Having an R-complex Finsler space, if we suppose that F satisfies the regu-

larity conditions: gij̄ is nondegenerated, (i.e., det(gij̄) 6= 0, in any u ∈ T̃ ′M),
and it defines a positive definite Levi-form for all z ∈ M , then such a class of
spaces is called an R-complex Hermitian Finsler space [16].

Consider the sections of the complexified tangent bundle of T ′M. Let V T ′M

⊂ T ′(T ′M) be the vertical bundle, locally spanned by { ∂
∂ηk }. V T ′′M is its

complex conjugate. The idea of complex nonlinear connection, briefly (c.n.c.),
is an instrument in linearization of the geometry of the manifold T ′M . A
(c.n.c.) is a supplementary complex subbundle to V T ′M in T ′(T ′M), i.e.,
T ′(T ′M) = HT ′M ⊕ V T ′M. The horizontal distribution HuT

′M is locally

spanned by { δ
δzk = ∂

∂zk − N
j
k

∂
∂ηj }, where N

j
k(z, η) are the coefficients of the

(c.n.c.), i.e., they transform by a certain rule

(2.3) N ′i
j

∂z′j

∂zk
=

∂z′i

∂zj
N

j
k −

∂2z′i

∂zj∂zk
ηj .

The pair {δk := δ
δzk , ∂̇k := ∂

∂ηk } will be called the adapted frame of the

(c.n.c.) which obey to the change rules δk = ∂z′j

∂zk δ
′
j and ∂̇k = ∂z′j

∂zk ∂̇
′
j . By conju-

gation everywhere we have obtained an adapted frame {δk̄, ∂̇k̄} on T ′′
u (T

′M).
The dual adapted bases are {dzk, δηk} and {dz̄k, δη̄k}.
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Let us consider T the natural tangent structure which behaves on T ′(T ′M)

by T ( ∂
∂zk ) = ∂̇k, T (∂̇k) = 0, and it is globally defined (see [15]).

Definition 2.1 ([15]). A vector field S ∈ T ′(T ′M) is a complex spray if T ◦S =

Γ, where Γ = ηk∂̇k is the complex Liouville vector field.

Locally, this property of a complex spray can be expressed as follows

(2.4) S = ηk
∂

∂zk
− 2Gk(z, η)∂̇k,

where the functions Gk(z, η) are the local coefficients of the complex spray S.

Under the changes of complex coordinates on T ′M, the coefficients Gk are
transformed by the rule

(2.5) 2G′i = 2Gk ∂z
′i

∂zk
−

∂2z′i

∂zj∂zk
ηjηk.

Between the notions of complex spray and (c.n.c.) there exists an interde-
pendence, one determining the other. Differentiating (2.5) with respect to ηj

it follows that the functions N i
j := ∂̇jG

i satisfy the rule (2.3), and hence N i
j

define a nonlinear connection. Conversely, any (c.n.c.) determines a complex
spray. Indeed, a simple computation shows that if N i

j are the coefficients of a

(c.n.c.), then 1
2N

i
jη

j satisfy (2.5) and hence, they define a complex spray.

2.2. Connections on an R-complex Hermitian Finsler space

A (c.n.c.) related only to the fundamental function of the R-complex Her-
mitian Finsler space (M,F ), (called Chern-Finsler (c.n.c.)), has the following
local coefficients

(2.6) N i
k := gm̄i ∂2L

∂zk∂η̄m
= gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs).

Note that the Chern-Finsler (c.n.c.), locally given in (2.6), is not obtained
from a complex spray. We see in the next section that it comes from a complex
spray, only in a particular context. But, it induces a complex spray by

(2.7) Gi :=
1

2
N i

kη
k =

1

2
gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs)ηk.

It follows from the fact that L is R-homogenous of degree 2 in the fibre
variables that Chern-Finsler (c.n.c.) (2.6) and its induced complex spray (2.7)
satisfy the conditions,

(2.8) (∂̇jG
i)ηj + (∂̇r̄G

i)η̄r = 2Gi ; (∂̇jN
i
k)η

j + (∂̇r̄N
i
k)η̄

r = N i
k.

This means that Gi and N i
k are R-homogeneous of degree 2, respectively 1,

with respect to η.

Further, the complex spray (2.7) induces a (c.n.c.) by
c

N i
j := ∂̇jG

i, which

we call the canonical (c.n.c.). A simpler computation gives that
c

N i
j are R-

homogeneous of degree 1 and, the complex spray induced of the canonical
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(c.n.c.) is this

(2.9)
c

Gi :=
1

2

c

N i
kη

k = Gi −
1

2
(∂̇r̄G

i)η̄r.

It is obvious that the Chern-Finsler (c.n.c.) and the canonical (c.n.c.) induce

the same complex spray (2.7), (
c

Gi = Gi), if and only if the coefficients Gi given
in (2.7) are (2, 0)-homogeneous with respect to η.

Also, in an R-complex Hermitian Finsler space, we have recovered the Chern-
Finsler connection, ([16]), which is metrical, of (1, 0)-type, and it is given by

(2.10) Li
jk = gm̄i(δjgkm̄) ; Ci

jk = gm̄i(∂̇jgkm̄) ; Li
jk̄

= Ci
jk̄

= 0,

where here and further on δk is the frame corresponding to the Chern-Finsler
(c.n.c.). Moreover, we have the properties

(2.11) Li
jk = ∂̇jN

i
k ; N i

k = Li
jkη

j + (∂̇r̄N
i
k)η̄

r,

which together with (2.8) lead to

(2.12) (∂̇jL
i
hk)η

j + (∂̇r̄L
i
hk)η̄

r = 0,

i.e., the horizontal coefficients Li
jk are R-homogeneous of degree 0 with respect

to η. Also, an elementary calculations gives δk(∂̇r̄L) = 0.
Now, we associate to the canonical (c.n.c.), a complex linear connection of

Berwald type

BΓ :=

(

c

N i
j , B

i
jk := ∂̇k

c

N i
j , B

i
jk̄

:= ∂̇k̄

c

N i
j , 0, 0

)

,

where
c

δk is with respect to
c

N i
j . BΓ is neither h- nor v-metrical. Moreover, it

satisfies the following properties

(2.13) Bi
jkη

j =
c

N i
k − (∂̇r̄

c

N i
k)η̄

r ; Bi
jk = Bi

kj .

Subsequently, by means of this complex linear connection we characterize a
lot of classes of R-complex Hermitian Finsler spaces.

3. Classes of R-complex Hermitian Finsler spaces

We set the connection form of the Chern-Finsler connection,

(3.1) ωi
j(z, η) = Li

jkdz
k + Ci

jkδη
k,

which satisfies the following structure equations

(3.2) d(dzi)− dzk ∧ ωi
k = θi ; d(δηi)− δηk ∧ ωi

k = τ i,

and their complex conjugates, where d is exterior differential with respect to
the Chern-Finsler (c.n.c.). Since

d(δηi) = −(δhN
i
k)dz

k ∧ dz̄h − (∂̇hN
i
k)dz

k ∧ δηh − (∂̇hN
i
k)dz

k ∧ δη̄h,
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the torsion forms are

θi = −
1

2
T i
jkdz

j ∧ dzk − Ci
jkdz

j ∧ δηk ;

τ i = −(δhN
i
k)dz

k ∧ dz̄h − (∂̇hN
i
k)dz

k ∧ δη̄h,

where T i
jk := Li

jk − Li
kj . Further on, it is easy to check that

(3.3)
c

N i
k = N i

k −
1

2
[T i

jkη
j + (∂̇r̄N

i
k)η̄

r].

Its differentiation with respect to η gives the link between the local coefficients
Li
jk and Bi

jk,

(3.4) Bi
jk = Li

jk −
1

2
[∂̇j(T

i
lkη

l) + (∂̇r̄L
i
jk)η̄

r].

The mixed part of the torsion form θi vanishes in the purely Hermitian case,
(i.e., Ci

jk = 0), and the condition θi = 0 is equivalent to the Kähler property

of such a metric, i.e.,
∂gjm̄
∂zi = ∂gim̄

∂zj . But in the non-purely Hermitian case, the

situation is a bit subtler because the torsion form θi has horizontal and mixed
parts.

In complex Finsler geometry, accordingly to [1], there are three kinds of
Kähler properties. This fact suggest us to introduce the similar notions on the
R-complex Hermitian Finsler spaces. Therefore, we have:

Definition 3.1. Let (M,F ) be an R-complex Hermitian Finsler space. (M,F )
is called

i) strongly Kähler if T i
jk = 0;

ii) Kähler if T i
jkη

j = 0;

iii) weakly Kähler if gim̄T i
jkη

j η̄m = 0.

We notice that any strongly Kähler metric is a Kähler metric and any Kähler
metric is a weakly Kähler metric. Moreover, in the purely Hermitian case all

those nuances of Kähler are same with
∂gjm̄
∂zi = ∂gim̄

∂zj .

Although, in complex Finsler geometry, the notions of strongly Kähler and
Kähler coincide (see [11]), here this does not happen.

Theorem 3.1. Let (M,F ) be an R-complex Hermitian Finsler space. Then,

F is Kähler and the coefficients Li
jk are (0, 0)-homogeneous with respect to η if

and only if F is strongly Kähler and Bi
jk = Li

jk.

Proof. We first prove the necessity. Under the Kähler assumption and using
(3.4), we obtain Bi

jk = Li
jk − 1

2 (∂̇r̄L
i
jk)η̄

r. But, the (0, 0)-homogeneity with

respect to η of Li
jk implies Bi

jk = Li
jk. The symmetry property of Bi

jk gives

Li
jk = Li

kj , which means that F is strongly Kähler.

Using again (3.4), the sufficiency is immediate. �
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Theorem 3.2. Let (M,F ) be an R-complex Hermitian Finsler space. Then,

the Chern-Finsler (c.n.c.) comes from the complex spray (2.7) if and only if its

local coefficients (2.7) are (1, 0)-homogeneous with respect to η and F is Kähler.

Moreover, in this case F is strongly Kähler and N i
k =

c

N i
k.

Proof. If the Chern-Finsler (c.n.c.) comes from the complex spray (2.7), then

N i
k =

c

N i
k. By (3.3), it results T i

jkη
j + (∂̇r̄N

i
k)η̄

r = 0, which contracted with

ηk, implies (∂̇r̄G
i)η̄r = 0. Now, differentiating the last relation with respect

to ηk, we obtain (∂̇r̄
c

N i
k)η̄

r = 0 and so, (∂̇r̄N
i
k)η̄

r = 0, i.e., N i
k are (1, 0)-

homogeneous with respect to η.Also, the differentiation of the relationN i
k =

c

N i
k

gives Li
jk = Bi

jk and so, Li
jk = Li

kj , which means that F is strongly Kähler.

The converse immediately results by (3.3). �

Note that the (1, 0)-homogeneity with respect to η of the local coefficients
of Chern-Finsler (c.n.c.) implies the (0, 0)-homogeneity with respect to η of the
coefficients Li

jk, but the converse is not true.
A simpler computation gives

(3.5)
c

δk = δk − (
c

N i
k −N i

k)∂̇i.

Thus, by Theorem 3.2 and (3.5),
c

δk = δk if and only if the Chern-Finsler
(c.n.c.) comes from the complex spray (2.7).

Theorem 3.3. Let (M,F ) be an R-complex Hermitian Finsler space. Then,

F is weakly Kähler if and only if

[
c

2δk(∂̇r̄L) + gim̄η̄m(∂̇r̄N
i
k)]η̄

r = 0.

Proof. We contract the relation (3.3) with gim̄η̄m and then, we obtain

(3.6) (
c

N i
k −N i

k)gim̄η̄m = −
1

2
gim̄η̄m[T i

jkη
j + (∂̇r̄N

i
k)η̄

r].

Using (3.5), we have
c

δk(∂̇r̄L)η̄
r = (

c

N i
k −N i

k)gir̄ η̄
r, which substituted into (3.6)

leads to

(3.7)
c

2δk(∂̇r̄L)η̄
r = −gim̄η̄mT i

jkη
j − gim̄η̄m(∂̇r̄N

i
k)η̄

r.

So, by (3.7), gim̄η̄mT i
jkη

j = 0 if and only if [
c

2δk(∂̇r̄L) + gim̄η̄m(∂̇r̄N
i
k)]η̄

r =
0. �

Definition 3.2. Let (M,F ) be an R-complex Hermitian Finsler space.

i) (M,F ) is weakly Berwald if the local coefficients Bi
jk depend only on

the position z.

ii) (M,F ) is Berwald if the local coefficients Li
jk depend only on the po-

sition z.
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Taking into account (3.4), we can say that any R-complex Hermitian Finsler
space which is Berwald is a weakly Berwald space. The converse is not true.
Indeed, if the space is Berwald, then the relation (3.4) becomes Bi

jk(z) =
1
2 (L

i
jk + Li

kj).
The necessary and sufficient circumstances for the weakly Berwald and

Berwald properties of an R-complex Hermitian Finsler space are given by the
following theorems.

Theorem 3.4. Let (M,F ) be an R-complex Hermitian Finsler space. Then,

(M,F ) is a weakly Berwald space if and only if Bi
jk̄

depends only on z. More-

over, in this case,

(3.8)
c

N i
k = Bi

jk(z)η
j +Bi

kh̄
(z)η̄h.

Proof. We first suppose that Bi
jk = Bi

jk(z). Then 0 = ∂̇r̄B
i
jk = ∂̇r̄(∂̇k

c

N i
j) =

∂̇k(∂̇r̄
c

N i
j) = ∂̇kB

i
jr̄ and, by complex conjugation we have ∂̇k̄B

ı̄
j̄r

= 0, which

means that B ı̄
j̄r

are holomorphic and (0, 0)-homogeneous in the fibre variables

η. Due to the strong maximum principle, we obtain that B ı̄
j̄r

depends only on

z. So, the complex conjugation of the coefficients B ı̄
j̄r

also depend only on z.

Conversely, if Bi
jk̄

= Bi
jk̄
(z), then 0 = ∂̇lB

i
jk̄

= ∂̇l(∂̇k̄

c

N i
j) = ∂̇k̄(∂̇l

c

N i
j) =

∂̇k̄B
i
lj .

This implies that the coefficients Bi
lj are holomorphic and (0, 0)-homogene-

ous with respect to η, and further on it results Bi
jk(z).

Now, using (2.13), we obtain (3.8). �

Taking into account (2.11), (3.3) and (3.4), by a similar reasoning as the
above theorem, we prove:

Theorem 3.5. Let (M,F ) be an R-complex Hermitian Finsler space. Then,

(M,F ) is a Berwald space if and only if ∂̇r̄N
i
k depends only on z. Moreover, in

this case,

N i
k = Li

jk(z)η
j + (∂̇h̄N

i
j)(z)η̄

h;(3.9)

∂̇k̄

c

N i
j =

1

2
∂̇k̄N

i
j .

We call strongly Berwald space, an R-complex Hermitian Finsler spaces
which is at the same time Berwald and Kähler. Owing to Theorem 3.1, we
have proved the result.

Corollary 3.1. Let (M,F ) be an R-complex Hermitian Finsler space. If F is

strongly Berwald, then F is strongly Kähler.

Examples of BerwaldR-complex Hermitian Finsler spaces are provided firstly
by the class of purely Hermitian spaces. Indeed, considering a purely Hermitian
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metric (i.e., gij = gij(z) and gr̄m̄(z)) with gij invertible, we have

N i
k = gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs),

which implies that Li
sk = gm̄i ∂gsm̄

∂zk depends only on z. So, all purely Hermitian
spaces, with gij invertible, are Berwald.

Another example of Berwald space is given by the function

(3.10) F 2 = L(z, w; η, θ) = e2σ
√

(η + η̄)
4
+
(

θ + θ̄
)4
, with η, θ 6= 0,

on C2, where σ(z, w) is a real valued function. In (3.10) we relabeled the usual
local coordinates z1, z2, η1, η2 as z, w, η, θ, respectively. Direct computation
leads to N1

i = 2 (η + η̄) ∂σ
∂zi ; N

2
i = 2

(

θ + θ̄
)

∂σ
∂zi , i = 1, 2, and then we find that

the horizontal coefficients of the Chern-Finsler connection:

L1
1i = L2

2i = 2
∂σ

∂zi
; L1

2i = L2
1i = 0, i = 1, 2,

depend only on zi, i = 1, 2.

4. R-complex Hermitian Berwald spaces with Randers metrics

We consider z ∈ M, η ∈ T ′
zM, η = ηi ∂

∂zi . An R-complex Finsler space
(M,F ) is called Randers if

(4.1) F = α+ β,

where

α2(z, η, z̄, η̄) := Re{aijη
iηj}+ aij̄η

iη̄j ;(4.2)

β(z, η, z̄, η̄) := Re{biη
i},

with aij = aij (z), aij̄ = aij̄ (z), and b = bi(z)dz
i is a (1, 0)-differential form.

The Randers function (4.1) produces two tensor fields gij and gij̄ .

In order to study the R-complex Hermitian Finsler spaces with Randers
metrics, we suppose that aij = 0. Thus, only the tensor field gij̄ is invertible
and it is characterized by the following properties:

Proposition 4.1 ([7]). For the R-complex Hermitian Randers space, with

aij = 0, we have

i) gij̄ = F
α
aij̄ − β

2α3 lilj̄ +
1
2bibj̄ +

1
2α (bj̄ li + bilj̄) and gij = − β

2α3 lilj +
1
2bibj +

1
2α (bj li + bilj);

ii) gj̄i = α
F
aj̄i+ 2β+αω

FH
ηiη̄j− α3

FH
bib̄j− α

FH

[

(ε̄+ 2α) ηib̄j + (ε+ 2α) biη̄j
]

;

iii) det
(

gij̄
)

=
(

F
α

)n H
4αF det

(

aij̄
)

, where

α2 = ajk̄η
j η̄k; li = aij̄ η̄

j ; bk = aj̄kbj̄ ; bl = bk̄alk̄; b
k̄ := b̄k;(4.3)

ε := bjη
j ; ω := bjb

j = ω̄; ε+ ε̄ = 2β;

H := α(4F + 2β + αω) + εε̄ > 0.
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Once obtained the metric tensor of an R-complex Hermitian Randers space,
it is a technical computation to give the expressions of Chern-Finsler (c.n.c.)
from (2.6). Certainly, it involves some trivial calculus which lead to

(4.4) N i
j =

a

N i
j +

2

H
[(2F − ε)ηi + α2bi](

a

δjβ) + Fgri
∂br̄

∂zj
,

where
a

Nk
j := am̄i ∂2α2

∂zk∂η̄m
= am̄i ∂asm̄

∂zk
ηs;

2(
a

δjβ) :=
∂β

∂zj
−

a

Nk
j (∂̇kβ) =

∂b̄r

∂zj
lr̄ +

∂br̄

∂zj
η̄r.

Lemma 4.1. Let (M,F ) be an R-complex Hermitian Randers space, with

aij = 0. If (M,F ) is Berwald, then

(4.5)






































3β(N i
j −

a

N
i

j)bi = 2ε(
a

δjβ) + 2α2br̄ ∂br̄
∂zj ;

3β(N i
j −

a

N
i

j)li = 2α2(
a

δjβ) + α2 [(2 + ω) η̄r − 2βbr̄] ∂br̄
∂zj ;

(

4α2 + α2ω + εε̄
)

(N i
j −

a

N
i

j)li = 4α2ε̄(
a

δjβ) + 2α2
[

(2β + ε) η̄r − α2br̄
]

∂br̄
∂zj ;

(

4α2 + α2ω + εε̄
)

(N i
j −

a

N
i

j)bi = 2
(

εε̄+ α2ω
)

(
a

δjβ)

+2
[(

βε− α2ω
)

η̄r + α2 (β + ε̄) br̄
]

∂br̄
∂zj .

Proof. If (M,F ) is Berwald, then N i
k = Li

jk(z)η
j + (∂̇h̄N

i
j)(z)η̄

h, which means

that N i
k are R-homogeneous polynomials in η and η̄ of degree 1. Thus, using

(4.4) we have

{(4α2 + α2ω + εε̄)(N i
j −

a

N i
j)− 2(ε̄ηi + α2bi)(

a

δjβ)

− 2[3α2βar̄i + βη̄rηi − α2ηib̄r − α2biη̄r]
∂br̄

∂zj
}+ α{6β(N i

j −
a

N i
j)− 4ηi(

a

δjβ)

− [(4α2 + α2ω + εε̄)ar̄i + ωη̄rηi − α2bib̄r − ε̄ηib̄r − εbiη̄r]
∂br̄

∂zj
} = 0,

which contains a rational part and an irrational part. Thus, we obtain

(4α2 + α2ω + εε̄)(N i
j −

a

N i
j)

= 2(ε̄ηi + α2bi)(
a

δjβ) + 2[3α2βar̄i + βη̄rηi − α2ηib̄r − α2biη̄r]
∂br̄

∂zj

and

6β(N i
j −

a

N i
j)

= 4ηi(
a

δjβ) + [(4α2 + α2ω + εε̄)ar̄i + ωη̄rηi − α2bib̄r − ε̄ηib̄r − εbiη̄r]
∂br̄

∂zj
.

Contracting with bi and li, they yield (4.5). �
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Lemma 4.2. The functions bi and bi are holomorphic if and only if
a

δjβ = 0.

Proof. Since 2(
a

δjβ) =
∂b̄r

∂zj lr̄+
∂br̄
∂zj η̄

r, the direct implication is immediate. Con-

versely, the condition
a

δjβ = 0 can be rewritten as

(4.6)
∂bi

∂zj
ηi − bi

a

N i
j +

∂bm̄

∂zj
η̄m = 0.

Its derivation with respect to η̄ gives ∂bm̄
∂zj = 0 and so, (4.6) implies

(4.7)
∂bi

∂zj
ηi − bi

a

N i
j = 0,

which, by derivation with respect to η, it leads to ∂bi
∂zj = bm̄ ∂aim̄

∂zj . The last

relation is equivalently to aim̄
∂bm̄

∂zj = 0, because bm̄aim̄ = bi. This implies
∂bm̄

∂zj = 0, which proves our claim. �

Theorem 4.1. Let (M,F ) be an R-complex Hermitian Randers space, with

aij = 0. If (M,F ) is a Berwald space and (N i
j −

a

N
i

j)bi = 0, then
a

δjβ = 0 and

N i
j =

a

N
i

j.

Proof. Under our assumptions, the conditions (4.5) become
(4.8)






























0 = ε(
a

δjβ) + α2br̄ ∂br̄
∂zj ;

3β(N i
j −

a

N
i

j)li = 2α2(
a

δjβ) + α2 [(2 + ω) η̄r − 2βbr̄] ∂br̄
∂zj ;

(

4α2 + α2ω + εε̄
)

(N i
j −

a

N
i

j)li = 4α2ε̄(
a

δjβ) + 2α2
[

(2β + ε) η̄r − α2br̄
]

∂br̄
∂zj ;

0 =
(

εε̄+ α2ω
)

(
a

δjβ) +
[(

βε− α2ω
)

η̄r + α2 (β + ε̄) br̄
]

∂br̄
∂zj .

The first and the fourth relations from (4.8) give

(4.9) (βε− α2ω)(εη̄r + α2br̄)
∂br̄

∂zj
= 0.

We have βε 6= α2ω (the equality is not possible because it implies β = α = 0).
Then, it results

ε(
a

δjβ) = ε
∂br̄

∂zj
η̄r = −α2 ∂br̄

∂zj
br̄,

which substituted into the second and the third relations from (4.8) lead to

(
a

δjβ) = 0. Now, by Lemma 4.2 and (4.4), we obtain N i
j =

a

N
i

j . �

The next theorem provides the sufficient conditions for an R-complex Her-
mitian Randers space F := α+ β, with aij = 0 to be Berwald.

Theorem 4.2. Let (M,F ) be an R-complex Hermitian Randers space, with

aij = 0. If
a

δjβ = 0, then it is a Berwald space and N i
j =

a

N i
j . Moreover, if α is

Kähler, then F is strongly Kähler.
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Proof. Using again Lemma 4.2 and (4.4), it results N i
j =

a

N i
j . Since α is a

purely Hermitian metric, it is Berwald, and by the last relation we obtain that

F := α+ β is also Berwald and Li
kj(z) =

a

Li
kj(z), where

a

Li
kj := ∂̇k

a

N i
j .

Now, if we suppose that α is Kähler, we have T i
jk =

a

Li
jk −

a

Li
kj = 0, which

proves our claim. �

Finally, we give some explicit examples of such R-complex Hermitian Ran-
ders metrics which are Berwald or strongly Berwald.

Example 4.1. On M = C2 we consider the metric

(4.10) α2 = ez
1+z̄1 ∣

∣η1
∣

∣

2
+ ez

2+z̄2 ∣

∣η2
∣

∣

2

and we choose ε = ez
2

η2. These imply aij = 0, (i, j = 1, 2), 2β = ez
2

η2+ez̄
2

η̄2,

b1 = b1 = 0, b2 = ez
2

, b2 = e−z2

and ω = 1.
With the above tools we construct a complex R-complex Randers function

(4.11) F =

√

ez
1+z̄1 |η1|

2
+ ez

2+z̄2 |η2|
2
+

1

2
(ez

2

η2 + ez̄
2

η̄2),

which is a Hermitian Randers metric having det(gij̄) =
(

F
α

)2 H
4αF det(aij̄) =

HF
4α3 e

z1+z̄1+z2+z̄2

> 0, (i, j = 1, 2), and H = α(5F + β) + εε̄ > 0. A direct

computation gives 2(
a

δjβ) = ∂b̄2

∂zj l2̄ + ∂b2̄
∂zj η̄

2 = 0, and ∂bm̄
∂zj = 0, (j,m = 1, 2).

Substituting these relations into (4.4), we obtain

(4.12) N1
1 =

a

N1
1 = η1 ; N1

2 =
a

N1
2 = N2

1 =
a

N2
1 = 0 ; N2

2 =
a

N2
2 = η2,

and so, the metric (4.11) is Berwald one. Also, due to (4.12) it is obvious that
the metric (4.10) is Kähler. Thus, by Theorem 4.2, the metric (4.11) is strongly
Berwald, and so by Corollary 3.1, it is strongly Kähler.

The above example can be generalized to a class of strongly Berwald metrics,
taking on M = Cn,

α2 =

n
∑

k=1

ez
k+z̄k ∣

∣ηk
∣

∣

2
.

Example 4.2. On M = C3 we set the metric

(4.13) α2 = ez
1+z̄1 ∣

∣η1
∣

∣

2
+ ez

2+z̄2 ∣

∣η2
∣

∣

2
+ ez

1+z̄1+z3+z̄3 ∣

∣η3
∣

∣

2

and we choose the (1, 0)-differential form ε as

(4.14) ε = ez
2

η2.

Then, 2β = ez
2

η2 + ez̄
2

η̄2 and so, aij = 0, bi = bi = 0, (i, j = 1, 3), b2 = ez
2

,

b2 = e−z2

and ω = 1.
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Using (4.13) and (4.14), we construct
(4.15)

F =

√

ez
1+z̄1 |η1|2 + ez

2+z̄2 |η2|2 + ez
1+z̄1+z3+z̄3 |η3|2 +

1

2
(ez

2

η2 + ez̄
2

η̄2),

which is a Hermitian Randers metric, with det(gij̄) =
(

F
α

)3 H
4αF det

(

aij̄
)

=
HF 2

4α4 e2z
1+2z̄1+z2+z̄2+z3+z̄3

> 0, (i, j = 1, 2, 3), and H = α(5F + β) + εε̄ > 0.

Some computations give that the metric (4.15) has N i
j =

a

N i
j , (i, j = 1, 2, 3),

and so, it is Berwald.

Since ∂a31̄

∂z1 = ez
1+z̄1+z3+z̄3

6= ∂a11̄

∂z3 = 0, the metric (4.13) is not Kähler.
Thus, the metric (4.15) is not strongly Berwald.

Moreover, this example can be generalized to a class of R-complex Hermitian
Berwald spaces with Randers metrics, taking on M = Cn,

α2 =

n
∑

k=1
k 6=3

ez
k+z̄k ∣

∣ηk
∣

∣

2
+ ez

1+z̄1+z3+z̄3 ∣

∣η3
∣

∣

2
.

For ε, we can choose one of the following possibilities ε = ez
k

ηk, where k = 1, n,
excepting k = 1 and 3.
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