
Research Article

On Some Compound Random Variables Motivated by
Bulk Queues

Romeo MeštroviT

Maritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro

Correspondence should be addressed to Romeo Meštrović; romeo@ac.me
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We consider the distribution of the number of customers that arrive in an arbitrary bulk arrival queue system. Under certain
conditions on the distributions of the time of arrival of an arriving group (�(�)) and its size (�) with respect to the considered
bulk queue, we derive a general expression for the probability mass function of the random variable �(�) which expresses the
number of customers that arrive in this bulk queue during any considered period �. Notice that �(�) can be considered as a well-
known compound random variable. Using this expression, without the use of generating function, we establish the expressions for
probability mass function for some compound distributions �(�) concerning certain pairs (�(�), �) of discrete random variables
which play an important role in application of batch arrival queues which have a wide range of applications in di	erent forms of
transportation. In particular, we consider the cases when �(�) and/or � are some of the following distributions: Poisson, shi
ed-
Poisson, geometrical, or uniform random variable.

1. Introduction

As noticed by Feller [1], a substantial part of probability the-
ory is connectedwith sums of independent randomvariables,
and in many situations the number of terms in such sums is
itself a randomvariable. In particular, in several situations the
numbers of these sums are integer-valued random variables.
In queueing theory, a discipline within the mathematical
theory of probability, a bulk queue (sometimes called batch
queue) is a general queueing model where customers arrive
and/or are served in groups of random size. �ere is a large
practical interest in investigating the behavior of general-
arrival queueing systems (see, e.g., Dragović et al. [2], Gontijo
et al. [3], Lee [4], Liu [5], Man�eld and Tran-Gia [6], and
Mezghiche and Tadj [7]). In Kendall notation [8] for single
queueing nodes, the random variable denoting bulk arrivals

or service is denoted by a superscript, for example,��/��/1
denotes an �/�/1 queue where the arrivals are in batches
determined by the randomvariable� and the services in bulk
are determined by the randomvariable �.Mathematically and
also from practical point of view, the cases when the size of

an arriving group is a random variable aremore common and
also more di�cult to handle.

According to Kendall-Lee notation, an arbitrary bulk

queueing system can be described as �(�)�/�/�/	/
/�. In
this notation the �rst component�(�)�means that customers
arrive in system in groups following a random variable �(�)
depending on the time �, and the group size � (i.e., the
number of customers that arrive in the system at the same
time) is a discrete random variable. �e system has � servers
whose service times are distributed in accordance to the
random variable �. �e capacity of the queue is equal to 	,
 is the size of the population of customers to be served,
and � is the queueing discipline. In this paper we focus our
attention on the study of the number of customers that arrive
in an arbitrary previously described bulk queue under certain
conditions on the distributions of random variables �(�) and�. Notice that this number is closely related to the notion of
compound discrete distribution (see, e.g., Charalambides [9,
Section 7.3], Feller [1, Chapter XII], Minkova [10], and Peköz
and Ross [11]) given as follows.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 291402, 6 pages
http://dx.doi.org/10.1155/2015/291402



2 Mathematical Problems in Engineering

Let �1, �2, . . ., be a sequence of mutually independent
and identically distributed positive random variables that are
independent of the nonnegative integer-valued random vari-
able �. �en the random variable �� de�ned as a sum

�� = �1 + �2 + ⋅ ⋅ ⋅ + �� (1)

is called a compound random variable (or a compound distri-
bution). In this respect, the distribution of � is a compounded
random variable (or a compounded distribution), while the
random variable � is called a compounding random variable

(or a compounding distribution). If (�) = ∑��� is a gener-
ating function of �� (� = 1, 2, . . .) and �(�) = ∑���� is a gen-
erating function of �, then it is well known (see, e.g., Feller
[1, Chapter XII, �eorem on page 287]) that the generating
function of the random variable �� given by (1) is the com-
pound function�((�)).�is fact was used in [5, ChapterXII]
for determining the probability function for some compound
discrete random variables.�e term compound random vari-
able (distribution) is used by Feller [1] in his classic book
on discrete probability and subsequently by several other
authors. �ese random variables are also known as general-
ized random variables (distributions), a term used by Feller
[12] and Gurland [13] and others. In these two papers instead
of mixture and compound distributions the terms compound
and generalized distributions, respectively, were used (for the
notion of the mixture distribution see [9, Section 7.3]).

Formore information on the notion of compound random
variable followed by several examples see Charalambides [9,
Chapter 7]. Namely, in [9, Chapter 7], under the random
occupancy model, with a random number of urns and the
number of balls distributed into any speci�c urn obeying
a discrete probability law, the compound discrete variables
(distributions) of the total number of balls distributed into the
urns are derived. Furthermore, several particular compound
discrete distributions are examined in [9, Chapter 7]. Notice
that in order to determine the probability function for
many compound discrete random variables it was applied
in [9, Sections 7.4–7.8] a technique involving the binomial
moment generating function of related compound distribu-
tion. Furthermore, Peköz and Ross [11] considered the cases
when the compounded distribution � is Poisson, binomial,
negative binomial random, hypergeometric, logarithmic, or
negative hypergeometric random variable. Namely, in [11]
were established the recursive formulas for the probability
mass function of compound random variables involving any
of the mentioned random variable. Furthermore, the notion
of compound distributions in more general setting and
several related examples are established by Minkova in [10].

�e rest of the paper is organized as follows. In Section 2,
we focus our attention on the study of the number of cus-
tomers, �(�), that arrive during considered period � at the
systemmodelled by a general�(�)�/�/�/	/
/� bulk queue.
Without the use of generating function, we derive the expres-
sion (2) of �eorem 2 for probability mass function of the
compound random variable�(�). In view of the fact that�(�)
may be considered as a compound random variable, in this
setting is reformulated �eorem 2 by �eorem 4. Further-
more, in Section 2 are given some combinatorial notions

(De�nitions 5 and 6) and a related result (Lemma 7) which
are used in the next section. Using�eorem 2 and Lemma 7,
in Section 3, we derive the expressions concerning the follow-
ing pairs (�(�), �): (1) �(�) is a Poisson distribution and� is a
geometric distribution; (2) �(�) is a Poisson distribution and� is a shi
ed-Poisson distribution; (3) �(�) is a geometric dis-
tribution and � is also a geometric distribution; (4) �(�) is a
uniform distribution and� is a shi
ed-Poisson distribution;
and (5) �(�) is a uniform distribution and � is a geometric
distribution. Concluding remarks are given in Section 4.

2. The Main Result and Auxiliary Results

2.1. 	e Main Result. Let us take into consideration a bulk
queue�(�)�/�/�/	/
/� described in Introduction.Namely,
customers arrive in this queue in groups following a random
variable �(�) depending on the time �. Assume that, for any
�xed �, the probability mass function of �(�) is distributed
as ��(�) = �(�(�) = �) with � = 0, 1, 2, . . ., and its mean is�(�(�)) = �(�). Furthermore, the group size� (i.e., the num-
ber of customers that arrive in the system at the same time)
is a discrete random variable whose distribution is given by�� = �(� = �) with � = 1, 2, . . ., where � ≥ 1 is a number
of customers in a group, and its mean is �(�) = �. We also
suppose that the random variables � and �(�) are mutually
independent for any �xed � > 0.

�e notions and related notations, which will be used in
the sequel, are given by the following de�nition.

De
nition 1. �e number of customers that arrive in the sys-

tem modelled by a �(�)�/�/�/	/
/� bulk queue during
considered period � is a discrete random variable�(�) whose
distribution is given by ��(�) = �(�(�) = �), � = 0, 1, 2, . . .,
and whose mean is �(�(�)).

�e following result gives the expressions for the distri-
butional values ��(�) of �(�) independent of the values ��(�)
and �� (� = 0, 1, 2, . . ., � = 1, 2, . . .).
�eorem 2. Under the notations of De
nition 1, for any 
xed� > 0, the following formula for the probability mass function
of the random variable �(�) holds:
�� (�) = �∑

�=1
�� (�) ∑
�1+�2+⋅⋅⋅+��=�

��1��2 ⋅ ⋅ ⋅ ��� , � = 1, 2, . . . , (2)

where the summation ranges over all �-tuples (�1, �2, . . . , ��) of
positive integers satisfying the condition �1 + �2 + ⋅ ⋅ ⋅ + �� = �.
Furthermore, the following holds:

�0 (�) = �0 (�) . (3)

Proof. Let � > 0 be any �xed positive real number. Let ��
(� = 1, 2, . . .) denote the event that exactly � customers arrive
in the system during a time �. Furthermore, let ��(�) = �� (� =0, 1, 2, . . .) denote the event that exactly � groups of customers
arrive in the system during a time �; that is,

� (��) = �� (�) . (4)
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�en the conditional probability�(�� | ��) is obviously equal
to the sum of products

� (�� | ��) = ∑
	�1+	�2+⋅⋅⋅+	��=�

��1��2 ⋅ ⋅ ⋅ ��� , (5)

where the summation ranges over all �-tuples (��1 , ��2 , . . . , ���)
of positive integers satisfying the condition ��1 +��2 +⋅ ⋅ ⋅+��� =�. �en using (4), (5), and the assumption that the random
variables � and �(�) are mutually independent, applying the
formula for the total probability, we �nd that for each � ≥ 1
there holds

� (��) = �∑
�=1
� (��) � (�� | ��)

= �∑
�=1
�� (�) ∑
	�1+	�2+⋅⋅⋅+	��=�

��1��2 ⋅ ⋅ ⋅ ��� ,
(6)

which proves (2). Finally, (3) trivially holds in view of the fact
that no customer arrives in the system if and only if no group
arrives in the system.

Remark 3. Notice that in accordance to the notion of a com-
pound random variable given by (1) and assuming that each
term of a sequence �1, �2, . . ., of mutually independent and
identically distributed positive random variables coincides
with the random variable � from De�nition 1 (with �� =�(� = �) being the number of customers that arrive in

the queue �(�)�/�/�/	/
/� at the same time), then for any� > 0 the random variable �(�) from De�nition 1 may be
written as a sum

� (�) = �1 + �2 + ⋅ ⋅ ⋅ + ��(
). (7)

�is means that �(�)may be considered as a compound ran-
dom variable ��(
) de�ned by (2) and (3). Furthermore, under
these notations and notations of �eorem 2, there hold �� ={�(�) = �}, �(��) = ��(�) = �(�(�) = �) for all � = 0, 1, 2, . . .,
and �� = {��(
) = �} for all � = 1, 2, . . .. Accordingly, the
conditional probability �(�� | ��) is equal to �(��(
) = � |�(�) = �), and, therefore, �eorem 2 can be reformulated in
the following form.

�eorem 4. Let �1, �2, . . ., be a sequence of mutually inde-
pendent and identically distributed positive integer-valued ran-
dom variables that are independent of the nonnegative integer-
valued random variable �. Assume that for any � = 1, 2, . . .,�� = �(�� = �) with � = 1, 2, . . ., and �� = �(� = �) with� = 0, 1, 2, . . ., then the probability mass function of compound
random variable

�� = �1 + �2 + ⋅ ⋅ ⋅ + �� (8)

is given by the following double sum:

� (�� = �) = �∑
�=1
�� ∑
�1+�2+⋅⋅⋅+��=�

��1��2 ⋅ ⋅ ⋅ ��� ,
� = 1, 2, . . . ,

(9)

where the summation ranges over all �-tuples (�1, �2, . . . , ��) of
positive integers satisfying the condition �1 + �2 + ⋅ ⋅ ⋅ + �� = �.
Furthermore, the following holds:

� (�� = 0) = �0. (10)

2.2. Auxiliary Results. �e formulae (2) and (3) (i.e., the
formulae (9) and (10)) are suitable for deriving related
expressions for the probability mass function of a random
variable �(�) (i.e., of a compound random variable ��) con-
cerning several pairs of important discrete random variables(�(�), �). Related examples are presented in the next section.
Moreover, for a simpli�cation of some formulae concerning
some pairs of random variables considered in our examples,
it is necessary to use some results involving the notion of a
composition in combinatorics.

De
nition 5 (see, e.g., [14, Section 4.2, pp. 54-55]). A com-
position of a positive integer � is any �-tuple (�1, �2, . . . , ��) of
positive integers (1 ≤ � ≤ �) such that

�1 + �2 + ⋅ ⋅ ⋅ + �� = �. (11)

Furthermore, � is said to be the number of parts or length of
the above composition. A composition with � parts is said to
be a �-composition.

De
nition 6 (see, e.g., [14, Section 4.2, pp. 54-55]). A com-
position of a positive integer � with � parts is any �-tuple(�1, �2, . . . , ��) of positive integers such that

�1 + �2 + ⋅ ⋅ ⋅ + �� = �. (12)

Lemma 7 (see, e.g., [14, Section 4.2, pp. 54-55]). For every
positive integers � and � the number of �-compositions of a
positive integer � with � parts,  �(�), is equal to

 � (�) = (� − 1� − 1) . (13)

3. Applications of Theorem 2

In this section we will apply �eorem 2 to di	erent pairs of
discrete random variables (�(�), �). We focus our attention
on the random variables that are involved in several queueing
systems which have numerous applications in transportation.
In particular, this concerns the batch Poisson arrivals pro-
cesses.

3.1. 	e Case When �(�) Is a Poisson Distribution and � Is a
Geometric Distribution. Suppose that �(�) is the Poisson dis-
tribution with the associated parameter #�; that is,
� (� (�) = �) = �� (�) = $−�
 (#�)��! ,

� = 0, 1, 2, . . . ; # > 0,
(14)

with the mean #� and the variance #�, and let � be the geo-
metric distribution with the parameter �; that is,

� (� = �) = (1 − �) ��−1, � = 1, 2, . . . , (15)

whose mean is 1/(1 − �) and variance is �/(1 − �)2.
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In order to �nd the values of a distribution �(�) con-
cerning the pair (�(�), �) given by De�nition 1, the product
of the second sum on the right-hand side of equality (2) of

�eorem 2 with �� = ��−1(1 − �) is equal to
��1��2 ⋅ ⋅ ⋅ ��� = ��1−1 (1 − �) ��2−1 (1 − �) ⋅ ⋅ ⋅ ���−1 (1 − �)

= ��1+�2+⋅⋅⋅+��−� (1 − �)� = ��−� (1 − �)� . (16)

�en, substituting equality (16) into (2), we get

� (� (�) = �) = �� (�)
= �∑
�=1
�� (�) ��−� (1 − �)� ∑

�1+�2+⋅⋅⋅+��=�
1

for each � = 1, 2, . . . ,
(17)

where the summation ranges over all �-tuples (�1, �2, . . . , ��) of
positive integers satisfying the condition �1 + �2 + ⋅ ⋅ ⋅ + �� = �.
Observing that∑�1+�2+⋅⋅⋅+��=� 1 is in fact equal to the number of
compositions of the integer � with � parts, which is by (13) of
Lemma 7 equal to ( �−1�−1 ), (17) becomes

� (� (�) = �) = �� (�) = �∑
�=1
�� (�) (� − 1� − 1) ��−� (1 − �)�

for each � = 1, 2, . . . .
(18)

Finally, substituting (14) into (18), we �nd that

� (� (�) = �) = �� (�)
= $−�
 �∑

�=1

(#�)��! (� − 1� − 1) ��−� (1 − �)�
for each � = 1, 2, . . . .

(19)

Furthermore, inserting (14) with � = 0 into (3), we have
� (� (�) = 0) = �0 (�) = $−�
. (20)

Remark 8. Notice that the distribution �(�) de�ned by (19)
and (20) is in fact a compound Poisson distribution with
respect to the geometric distribution (with themean#�/(1−�)
and the variance #�(1+�)/(1−�)2), and it is sometimes called
the Polya-Aeppli distribution (see [9, Subsection 7.5.3]; also
see [10]). Minkova [10, Remark 1] noticed that the Polya-
Aeppli distribution coincides with the in�ated-parameter
Poisson distribution (see Johnson et al. [15, Section 2]). In [16,
Section 2] Haydn and Vaienti proved a very general theorem
that can be used to establish the distribution in many other
settings. Moreover, in [16], a result is proved on the approx-
imation of the compound Poisson distribution. For more
general compound Poisson distributions see Feller’s book [1,
Chapter XII].

3.2. 	e Case When �(�) Is a Poisson Distribution and � Is a
Shi�ed-Poisson Distribution. Let �(�) be the Poisson distri-
bution given by (14) with the mean #� and the variance #�.

Let � be the shi�ed-Poisson distribution with the param-
eter �; that is,

� (� = �) = �� = $−	 ��−1(� − 1)! , � = 1, 2, . . . ; � > 0, (21)

with the mean � + 1 and the variance �.
In order to �nd the values of related distribution �(�)

given by De�nition 1, the product which appears in the sec-
ond sum on the right-hand side of equality (2) of �eorem 2

with �� = $−	��−1/(� − 1)! is equal to
��1��2 ⋅ ⋅ ⋅ ��� = $−�	 ��1−1��2−1 ⋅ ⋅ ⋅ ���−1(�1 − 1)! (�2 − 1)! ⋅ ⋅ ⋅ (�� − 1)!

= $−�	 ��−�(�1 − 1)! (�2 − 1)! ⋅ ⋅ ⋅ (�� − 1)! .
(22)

Observe that by the multinomial formula, we have

( �∑
�=1
1)
�−�

= (1 + 1 + ⋅ ⋅ ⋅ + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

�−�

= ∑
�1+�2+⋅⋅⋅+��=�−�

(� − �)!:1!:2! ⋅ ⋅ ⋅ :�! ,
(23)

where the summation ranges over all �-tuples (:1, :2, . . . , :�) of
nonnegative integers satisfying the condition :1+:2+⋅ ⋅ ⋅+:� =� − �. �e identity (23) immediately yields

��−� = ∑
�1+�2+⋅⋅⋅+��=�

(� − �)!(�1 − 1)! (�2 − 1)! ⋅ ⋅ ⋅ (�� − 1)! , (24)

whence it follows that

∑
�1+�2+⋅⋅⋅+��=�

1(�1 − 1)! (�2 − 1)! ⋅ ⋅ ⋅ (�� − 1)! =
��−�(� − �)! , (25)

where the summation ranges over all �-tuples (�1, �2, . . . , ��) of
positive integers satisfying the condition �1 + �2 + ⋅ ⋅ ⋅ + �� = �.

�en, substituting equalities (25) and (22) into (2) of
�eorem 2, we immediately obtain

�� (�) = �∑
�=1
�� (�) (��)�−�(� − �)! $−�	 for each � = 1, 2, . . . . (26)

Finally, substituting (14) into (26), we get

� (� (�) = �) = �� (�) = �∑
�=1
$−�
 (#�)��! ⋅ (��)�−�(� − �)! $−�	, (27)

whence it follows that

� (� (�) = �) = �� (�) = �∑
�=1
$−(�
+�	) (#�)� (��)�−��! (� − �)!

for each � = 1, 2, . . . .
(28)
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Furthermore, inserting (14) with � = 0 into (3), we have
� (� (�) = 0) = �0 (�) = $−�
. (29)

If � = #�, or equivalently, at the time � = �/#, then equality
(28) clearly becomes

� (� (�) = �) = �� (�) = $−	 ���!
�∑
�=1
$−�	��−� �!�! (� − �)! , (30)

which by the identity ( �� ) = �!/�!(� − �)! can be written as

� (� (�) = �) = �� = $−	 ���!
�∑
�=1
(��) $−�	��−�
for each � = 1, 2, . . . .

(31)

Notice that the factor $−	��/�! preceding the sum on the
right-hand side of (31) is in fact the (� + 1)th probability
of considered shi
ed-Poisson distribution � given by (21).
Recall that the distribution �(�) was discovered by �omas
[17], and hence it is o
en called	omas distribution.

3.3. 	e Case When Both �(�) and� Are Geometric Distribu-
tions. Let� be the geometric distributionwith the parameter� de�ned by (15), and let �(�) be also the geometric distribu-
tion with the parameter � = �(�) depending on �; that is,

�� (�) = � (� (�) = �) = (1 − �) ��−1, � = 1, 2, . . . . (32)

�en substituting (32) into (18) and using the binomial for-
mula, for each � = 1, 2, . . . ., we get
� (� (�) = �) = �� (�)
= �∑
�=1
(� − 1� − 1) ��−� (1 − �)� (1 − �) ��−1

= ��−1 (1 − �) (1 − �) �∑
�=1
(� − 1� − 1)(

(1 − �) �� )�−1

= ��−1 (1 − �) (1 − �) (1 + (1 − �) �� )�−1 .

(33)

3.4. 	e CaseWhen �(�) Is a Uniform Distribution and� Is a
Shi�ed-Poisson Distribution. Let �(�) be the uniform distri-
bution whose probability mass function is given by

�� = � (� (�) = �) = 1� (�) for � = 0, 1, . . . , � (�) − 1, (34)

where �(�) is a positive integer depending on �. Assume that� is the shi
ed-Poisson distribution with the parameter �
de�ned by (21). �en substituting (34) into (26), we obtain

� (� (�) = �) = �� (�) = 1� (�)
min{(
)−1,�}∑
�=1

(��)�−�(� − �)! $−�	
for each � = 1, 2, . . . .

(35)

Furthermore, inserting (34) with � = 0 into (3), we have
�0 (�) = 1� (�) . (36)

3.5. 	e Case When �(�) Is a Uniform Distribution and� Is a
Geometric Distribution. Let �(�) be the uniform distribution
whose probabilitymass function is given by (34), and let� be
the geometric distribution de�ned by (15). �en substituting
(34) into (18), we obtain

� (� (�) = �) = �� (�)
= 1� (�)

min{(
)−1,�}∑
�=1

(� − 1� − 1) ��−� (1 − �)�
for each � = 1, 2, . . . .

(37)

By the well-known identity we have

�∑
�=1
� (��) ��−� (1 − �)� = � (1 − �) . (38)

�e above identity is, for example, equivalent to the fact that
the mean of the binomial distribution with parameters @ and1 − � is equal to @(1 − �). �en using the identities ( �−1�−1 ) =(�/�) ( �� ), (38), and the binomial formula, we obtain

�∑
�=1
(� − 1� − 1) ��−� (1 − �)� = 1�

�∑
�=1
� (��) ��−� (1 − �)�

= � (1 − �)� = 1 − �.
(39)

Substituting (39) into (37) under the condition that � ≤ �(�)−1, we get
� (� (�) = �) = �� (�) = 1 − �� (�)

for each � = 1, 2, . . . , � (�) − 1.
(40)

4. Conclusion

Motivated by the notion of bulk queue, in this paper we
focus our attention on the distribution of the number of
customers that arrive in an arbitrary bulk arrival queue
system with some conditions on the distributions of the time
of arriving group (�(�)) and its size (�). For such a bulk queue
model, we derive a general expression for the probability
mass function of the random variable �(�) which expresses
the number of customers that arrive in this bulk queue
during any considered period of time �. Using this expression
and some auxiliary combinatorial results, without the use
of generating function, we derive the related expressions
concerning some pairs (�, �(�)) of discrete random variables
which have a wide range of applications in transportation,
computer networks, telecommunications, and so forth. We
believe that this expression can be used for the same purposes
with respect to some other pairs (�, �(�)) of discrete random
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variables. Since there are no expressions in closed form for
the basic performance measures related to many investigated
types of bulk queues, our future research could be directed to
estimating some of these performance measures. In particu-
lar, we hope that the obtained results in this paper should be
applied for �nding e�cient simulation techniques to estimate
signi�cant performance characteristics of some bulk arrival
queueing systems.
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