
MATHEMATICS OF COMPUTATION
Volume 66, Number 220, October 1997, Pages 1663–1687
S 0025-5718(97)00880-6

ON SOME COMPUTATIONAL PROBLEMS

IN FINITE ABELIAN GROUPS

JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

Abstract. We present new algorithms for computing orders of elements, dis-
crete logarithms, and structures of finite abelian groups. We estimate the
computational complexity and storage requirements, and we explicitly deter-
mine the O-constants and Ω-constants. We implemented the algorithms for
class groups of imaginary quadratic orders and present a selection of our ex-
perimental results.

Our algorithms are based on a modification of Shanks’ baby-step giant-
step strategy, and have the advantage that their computational complexity
and storage requirements are relative to the actual order, discrete logarithm,
or size of the group, rather than relative to an upper bound on the group order.

1. Introduction

Let G be a finite abelian group, written multiplicatively, in which we assume
that the following are possible:

• for a, b ∈ G we can compute c = a ∗ b
• for a ∈ G we can compute a−1

• for a, b ∈ G we can test whether a = b

We call these the group operations. Note that from every group element a we can
determine the neutral element 1 = a ∗ a−1. As an example, we will consider class
groups of imaginary quadratic fields. Another example is the group of points on an
elliptic curve over a finite field.

For any subset S of G, denote by 〈S〉 the subgroup of G generated by S. If
〈S〉 = G, then S is called a generating set of G. If S = {g}, then write 〈g〉 instead
of 〈S〉.

Three common computational problems in such groups are:

• Given g ∈ G compute |〈g〉|, the order of g in G, i.e., the least positive integer
x such that gx = 1.

• Given g, d ∈ G decide whether d belongs to the cyclic subgroup 〈g〉 of G
generated by g. If d ∈ 〈g〉, find logg d, the discrete logarithm of d to the base
g, i.e., the least non-negative integer x such that gx = d.

• Given a generating set of G compute the structure of G. By computing the
structure of G we mean computing positive integers m1, . . . ,mk with m1 > 1,

Received by the editor April 1, 1996 and, in revised form, July 19, 1996.
1991 Mathematics Subject Classification. Primary 11Y16.
The second author was supported by the Natural Sciences and Engineering Research Council

of Canada.
The third author was supported by the Deutsche Forschungsgemeinschaft.

c©1997 American Mathematical Society

1663

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1664 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

mi|mi+1, 1 ≤ i < k, and an isomorphism φ : G→ Z/m1Z×· · ·×Z/mkZ. This
isomorphism is given in terms of the images of the generators. The integers
mi are the uniquely determined invariants of G.

In this paper we present improved versions of Shanks’ algorithms for solving these
problems. As in Shanks’ original method [10] (see also [4], [8]), operations in G
and table look-ups are used in our algorithms. The table entries are pairs (Sz, z),
where S is a set of group elements, z belongs to the set ZS of all maps S −→ Z, and
Sz =

∏
g∈S g

z(g). When we estimate the complexity of our algorithms, we count
the number of group operations, the number of table look-ups, and we determine
bounds on the table sizes, i.e., the number of group elements which have to be
stored. We ignore the time and space for doing index calculations. If hashing on
the group elements is possible, the tables of group elements are hash tables and the
time for one table look-up is comparable to the time required for a group operation.

Here are our main results.

Theorem 1.1. There is an algorithm for computing the order x of an element
g ∈ G which executes one inversion and at most

4
⌈√

x
⌉

+

⌈
log

√
x

2

⌉
multiplications in G. It uses a table of at most

2
⌈√

x
⌉

pairs (g, r) ∈ G × {1, . . . , 2 d√x e}. The total number of table look-ups is bounded
by

2
⌈√

x
⌉
.

Theorem 1.2. There is an algorithm that decides for g, d ∈ G, d 6= 1, whether
d ∈ 〈g〉 and if so computes logg d. Let

x =

{ |〈g〉| if d 6∈ 〈g〉,
logg d if d ∈ 〈g〉.

The algorithm executes at most

6
⌈√

x
⌉

+
⌈
log

√
x
⌉

multiplications in G. It uses a table of at most

2
⌈√

x
⌉

pairs (g, r) ∈ G × {1, . . . , 2 d√x e}. The total number of table look-ups is bounded
by

4
⌈√

x
⌉
.

Our algorithm for computing the structure of G may behave differently if the
generators are input in different orders. Therefore, the algorithm receives as input
a generating sequence, i.e., a finite sequence S = (g1, . . . , gl) of group elements such
that {g1, . . . , gl} is a generating set of G. Set

Gj = 〈g1, . . . , gj〉, 0 ≤ j ≤ l,(1)

and

l(S) = |{j ∈ {1, . . . , l} : Gj−1 6= Gj}| .(2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1665

In other words, if we generate G by using g1, g2, g3, . . . , l(S) is the number of
generators which enlarge the group. Note that l(S) is at least as large as the
number of invariants of G. We will prove the following result.

Theorem 1.3. There is an algorithm that computes the structure of G from a
generating sequence S of G which executes |S| inversions and at most

2
l(S)
2 (|S|+ 5)

√
|G|+ 4 l(S)

√
|G|+ log |G|

multiplications in G, with l(S) from (2). It uses two tables of at most

2
l(S)
2

√
|G| and 2

l(S)
2 +1

√
|G|

pairs (g, ~q) ∈ G×{0, . . . , 2√|G|}|S|. The total number of table look-ups is bounded
by

2
l(S)
2 (|S|+ l(S) + 2)

√
|G|.

The upper bound for the complexity of the group structure algorithm is expo-
nential in the number l(S) of generators that are really used to determine the group

structure. If that number is fixed, the complexity of the algorithm is O(|S|√|G|).
On the other hand, our analysis shows that if

G = (Z/2Z)l

for some positive integer l, the complexity of our algorithm is Ω(|G|), where the
symbol Ω(f(n)) stands for the set of all functions g such that there exists a constant
M with |g(n)| ≥ M |f(n)| for all large n. This lower bound also holds for Shanks’
original algorithm and its variations. Hence, for finite abelian groups with a large
number of small invariants our algorithm is not appropriate.

The basic idea of this paper is to use baby-step giant-step algorithms with some
initial step-width v ∈ 2N and to double that step-width as long as the result of the
computation has not been found. A similar idea has been used in [2] but the results
obtained there are weaker than ours. For v = 2 we obtain the above theorems. If
v is chosen such that L = v2 is an upper bound on the group order, we obtain
Shanks’ original algorithms. Our analysis shows that for v =

√
L the number of

multiplications and the table size in the order and discrete logarithm algorithms is
Ω(
√
L). Also, for that choice of v the number of multiplications and the table size in

the group structure algorithm is Ω(2l(S)/2|S|√|L|). Thus, if the upper bound L is
much larger than the actual order, discrete logarithm or group order, the algorithm
wastes a lot of time and space.

We implemented our algorithms for class groups of imaginary quadratic orders
using the computer algebra system LiDIA [7]. We present experimental results
which yield good choices for the initial step-width v for these groups.

The paper is organized as follows. In Section 2 we describe and analyze the order
algorithm. That section also contains the basic idea of the paper. In Section 3 we
discuss the algorithm for computing discrete logarithms, and Section 4 is devoted
to the group structure algorithm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1666 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

2. Computing the order of an element

Given an element g ∈ G we wish to compute x = |〈g〉|. Our improved algorithm,
a modification of Shanks’ baby-step giant-step method, is based on the following
statement:

Lemma 2.1. Let v be an even positive integer. For every positive integer x there
are uniquely determined integers k, q and r with k ≥ 0, b4k−1cv2 ≤ 2kvq < 4kv2

and 1 ≤ r ≤ 2kv such that x = y + r, y = 2kvq.

Proof. Let x ∈ N. We first show the existence of such k, q and r. We choose k
such that b4k−1cv2 < x ≤ 4kv2, and write x = 2kvq + r with 1 ≤ r ≤ 2kv. Then
b4k−1cv2 − 2kv < 2kvq ≤ 4kv2 − 1, which implies that 2kvq < 4kv2. Moreover, if
k = 0, we have −v < vq, so 0 ≤ vq. If k ≥ 1, we have 4k−1v2 − 2kv < 2kvq; hence
2k−1(v/2) − 1 < q. Since v/2 is integral, this implies that 2k−1(v/2) ≤ q, so that
4k−1v2 ≤ 2kvq.

To show the uniqueness of this representation, let x = 2kvq + r with k, q and
r as stated above. Then b4k−1cv2 ≤ 2kvq < 4kv2, which implies q ≤ 2kv − 1, so
that x = 2kvq + r ≤ 2kv(2kv − 1) + 2kv = 4kv2. Moreover, we have b4k−1cv2 <
2kvq + r = x. These inequalities determine k uniquely. The uniqueness of q and r
is due to the uniqueness statement for division with remainder.

We explain the method for computing x = |〈g〉|. We select an even positive
integer v which is used as the initial step-width in the algorithm. Then there is a
unique non-negative integer k such that x belongs to the interval

Ik = {b4k−1cv2 + 1, . . . , 4kv2}.

We search those intervals for k = 0, 1, 2, . . . until x is found. By Lemma 2.1, each
number in Ik can be written as y+r with y = 2kvq and r, q as stated in Lemma 2.1.
Also, each integer that can be written in this way belongs to the interval Ik. To
check whether x is in Ik we test whether gy+r = 1 with y = 2kvq and r and q as
stated in Lemma 2.1. This means that we test whether

gy = g−r, 1 ≤ r ≤ 2kv, y = 2kvq, b4k−1cv2 ≤ y < 4kv2.

For this purpose, we compute the set

Rk = {(g−r, r) : 1 ≤ r ≤ 2kv},
and for all values of q such that b4k−1cv2 ≤ y < 4kv2 we check whether there exists
(gy, r) ∈ Rk for some r. If so, |〈g〉| = y + r. Otherwise, we increase k by 1. If
x ≤ v, the set R0 contains at least one pair (1, r), and |〈g〉| = r for the smallest
such r. Therefore, before adding a pair (g−r, r), 1 ≤ r ≤ v, to R0 in the course
of the computation of R0, we always check whether g−r = 1, and we break if the
answer is “yes”, since then |〈g〉| is already found.

The efficiency of the algorithm can be improved if we know a lower bound B of
|〈g〉|. Writing C = B − 1, we then work with the set Rk = {(g−(r+C), r) : 1 ≤ r ≤
2kv}, and if we find (gy, r) ∈ Rk, |〈g〉| = y + r + C. If no lower bound for |〈g〉| is
known, we set C = 0.

We now present the algorithm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1667

Algorithm 2.2.

This algorithm computes the order of the group element g in G.

Input: g ∈ G, lower bound C + 1 for |〈g〉|, initial step-width v (v ∈ 2N)
Output: x = |〈g〉|

(1) x = 0
(2) s = 1; y = v; u = v
(3) h = g−1

(4) a = hC ; b = gv; c = b /∗ a = g−C−r;
(5) R = ∅ b = gy; c = gu ∗/
(6) while (x == 0) do
(7) for (r = s, s + 1 . . . , u) do /∗ new baby steps ∗/
(8) a = a ∗ h
(9) if (s == 1) then /∗ check if 1 ≤ x ≤ v ∗/

(10) if (a == 1) then
(11) x = r + C
(12) return (x)
(13) break while
(14) else
(15) R = R ∪ {(a, r)}
(16) fi
(17) else
(18) R = R ∪ {(a, r)}
(19) fi
(20) od
(21) while (x == 0 and y < u2) do /∗ giant steps ∗/
(22) if (there is a number r such that

(b, r) ∈ R) then
(23) x = y + r + C
(24) return (x)
(25) else
(26) y = y + u
(27) b = b ∗ c
(28) fi
(29) od
(30) s = u+ 1; u = 2u /∗ double
(31) c = c2 step-width ∗/
(32) od

Theorem 2.3. Let C = 0. Let x = |〈g〉|. For every choice of v, Algorithm 2.2
executes one inversion and at most 2blog vc + 1 multiplications in G and requires
space for three group elements. On further group multiplications, space required,
and table look-ups, we have the following estimates.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1668 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

1. If x ≤ v, Algorithm 2.2 executes x additional multiplications in G. It uses
a table of x − 1 pairs (g, r) ∈ G × {1, . . . , x − 1} and it performs x equality
checks.

2. If
√
x ≤ v < x, the number M of additional multiplications in G satisfies

v ≤M ≤ ⌈√x ⌉+ v − 2.

The algorithm uses a table of v pairs (g, r) ∈ G×{1, . . . , v}, and it performs
v equality checks. The total number TL of table look-ups satisfies

1 ≤ TL ≤ ⌈√x ⌉− 1.

3. If
√
x > v, the number M of additional multiplications in G satisfies

5

4

⌈√
x
⌉

+

⌈
log

√
x

v

⌉
− 1 ≤M ≤ 4

⌈√
x
⌉− v

2
+

⌈
log

√
x

v

⌉
− 5.

It performs v equality checks. It uses a table of at least d√x e and at most
2 d√x e − 2 pairs (g, r) ∈ G× {1, . . . , 2 d√x e}. The total number TL of table
look-ups satisfies

d√x e
4

≤ TL ≤ 2
⌈√

x
⌉− v

2
− 2.

Proof. For the initialization, Algorithm 2.2 requires one inversion and at most
2blog vc + 1 multiplications to compute g−1 and b = c = gv. It must store g−1, b
and c.

If x ≤ v, we find x = |〈g〉| during the first iteration of the outer while loop,
in the course of the computation of the set R (= R0). This requires x group
multiplications and x equality checks, and the set R contains x− 1 pairs (g−r, r).

If
√
x ≤ v < x, we also find x = |〈g〉| during the first iteration of the outer while

loop. The set R contains v pairs (g−r, r), which also means that the algorithm must
perform v multiplications in G to compute R. It performs v equality checks to test
whether g−r = 1. In the iterations of the inner while loop, the algorithm checks
whether (gqv, r) ∈ R while v ≤ qv ≤ x− r (r ∈ {1, . . . , v}), i.e., 1 ≤ q ≤ (x− 1)/v,
so we have 1 ≤ q <

√
x. It computes gqv while 2v ≤ qv ≤ x − r, thus 2 ≤ q <

√
x.

This requires between 1 and d√x e− 1 table look-ups, and at most d√x e− 2 group
multiplications. Hence, the total number of multiplications in the outer while loop
is between v and v + d√x e − 2, if

√
x ≤ v < x.

If v <
√
x, the algorithm performs k additional iterations of the outer while loop,

where

4k−1v2 < x ≤ 4kv2(3)

i.e., k − 1 < log
√
x
v ≤ k, hence k =

⌈
log

√
x
v

⌉
. After the last iteration, the set

R contains 2kv pairs (g−r, r). Thus, to compute R the algorithm performs 2kv
multiplications in G, and it must store a table of 2kv pairs. From (3) we see that
2k−1v <

√
x ≤ 2kv, so ⌈√

x
⌉ ≤ 2kv ≤ 2

⌈√
x
⌉− 2.(4)

In the first inner while loop, the algorithm computes gqv for 2 ≤ q ≤ v, which
requires v − 1 multiplications. In all of the following inner while loops except the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1669

last, it computes gq2
iv while

4i−1v2 < q2iv ≤ 4iv2,

i.e.,

2i−1 v

2
< q ≤ 2iv,

where 1 ≤ i ≤ k − 1. This requires

2iv − 2i−1 v

2
= 3 · 2i−1 v

2

multiplications in each loop, which can be summed to

k−1∑
i=1

3 · 2i−1 v

2
= 3 · (2k−1 − 1)

v

2

multiplications. In the last loop, the algorithm computes gq2
kv while

4k−1v2 < q2kv ≤ x− r, r ∈ {1, . . . , 2kv},
so 2k−1 v

2 < q ≤ x−1
2kv . Since

√
x ≤ 2kv, we have x−1

2kv ≤ x−1√
x
<
√
x, and this requires

at most ⌈√
x
⌉− 1− 2k−1 v

2

multiplications. Thus, the total number of multiplications in the inner while loops
is at least

v − 1 + 3 · (2k−1 − 1)
v

2
= 3 · 2k−1 v

2
− v

2
− 1

(4)

≥ 3

4

⌈√
x
⌉− √

x

2
− 1 ≥ d√x e

4
− 1,

and at most

v − 1 + 3 · (2k−1 − 1)
v

2
+
⌈√

x
⌉− 1− 2k−1 v

2
= 2k−1v − v

2
+
⌈√

x
⌉− 2

(4)

≤ 2
⌈√

x
⌉− v

2
− 3,

The total number of table look-ups is bounded below by d√x e /4 and above by
2 d√x e− v

2 −2, which is the maximum number of iterations of the inner while loops.
Finally, note that in k outer while loops the algorithm performs one multiplication
to compute c2. Together with (4) we get that Algorithm 2.2 performs at least⌈

log

√
x

v

⌉
+

5

4

⌈√
x
⌉− 1

and at most ⌈
log

√
x

v

⌉
+ 4

⌈√
x
⌉− v

2
− 5

additional multiplications in G to find |〈g〉|, if v <
√
x.

Remark 2.4. To adapt Theorem 2.3 to the case C ≥ 1, we just have to replace each
x by x−C and add to the total number of group multiplications the multiplications
required to compute a = (g−1)C , i.e., at most 2 blogCc+ 1 multiplications.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1670 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

In practice, the most efficient way to handle the set R is by means of a hash
table. This is possible as long as the group elements are represented as sequences
of integers. Then, each look-up in the table R requires just one computation of a
hash value and usually one equality test for group elements.

As we see from Theorem 2.3, the efficiency of Algorithm 2.2 depends largely on
the appropriate choice of the initial step-width v. As noted by Shanks [10], the op-

timal choice of v is v =
√|〈g〉|. This results in about 2

√|〈g〉| group multiplications

in our algorithm. If v is chosen too large (in comparison with
√|〈g〉|), we waste

space and time because the set R is too big. If v is chosen too small, we waste time
because of superfluous iterations of the outer while loop.

In order to test our algorithm, we implemented it using the LiDIA system [7] to
compute orders of elements in ideal class groups of imaginary quadratic orders. For
three discriminants of sizes ten, fifteen, and twenty decimal digits, we computed
the orders of the ideal classes of four prime ideals that we knew from previous
computations had different orders. In Tables 1, 2, and 3 we show the actual numbers
of group multiplications and table look-ups, denoted by GM and TL respectively,
that were required to compute the order of each prime ideal class, together with
the lower and upper bounds predicted by Theorem 2.3. ∆ denotes the discriminant
of the quadratic order and Ip denotes the ideal class of which the prime ideal lying
over the prime p is the reduced representative. We compute the order of each prime
ideal class three times, using a different value of v each time. The simplest version
of our algorithm uses v = 2, v = ∆1/4 is equivalent to Shanks’ original algorithm
[10], and v = ∆1/4/2 is half-way between the other two and has been shown to
yield the best overall run times in our tests. Table 4 gives the run times for these
computations on a SPARCstation 20.

Table 1. Order algorithm — group multiplications and table
look-ups (v = 2)

Lower Computed Upper
∆ p |〈Ip〉| GM TL GM TL GM TL

−4(1010 + 1) 5 4033 85 16 164 94 258 125
3 16132 166 32 324 189 515 253

13 24198 202 39 485 221 628 309
7 48396 282 55 580 316 884 437

−4(1015 + 1) 7 2 0 0 4 0 5 0
29 42908 267 52 558 294 836 413
17 128724 456 89 1027 506 1441 715
3 257448 643 127 1278 757 2037 1013

−4(1020 + 1) 13 232024638 19054 3808 38750 22352 60942 30463
5 464049276 26941 5385 63327 30544 86179 43081

37 928098552 38095 7616 77489 44706 121871 60927
7 1856197104 53870 10771 126642 61090 172348 86165

For ∆ = −4(1010+1), our algorithm using v = 2 is faster than Shanks’ algorithm
(i.e. v = ∆1/4) for I5, the class with the smallest order. It is slower for I3 and
I13, even though it executes fewer total group operations, because it performs four

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1671

Table 2. Order algorithm — group multiplications and table
look-ups (v = ∆1/4/2)

Lower Computed Upper
∆ p |〈Ip〉| GM TL GM TL GM TL

−4(1010 + 1) 5 4033 224 1 251 18 297 63
3 16132 224 1 305 72 361 127

13 24198 224 1 341 108 389 155
7 48396 224 1 449 216 453 219

−4(1015 + 1) 7 2 0 0 19 0 19 0
29 42908 3976 1 4002 10 4199 207
17 128724 3976 1 4024 32 4350 358
3 257448 3976 1 4056 64 4499 507

−4(1020 + 1) 13 232024638 70711 1 74014 3281 85965 15232
5 464049276 70711 1 77295 6562 92274 21541

37 928098552 70711 1 83858 13125 101197 30464
7 1856197104 70711 1 96983 26250 113816 43083

Table 3. Order algorithm — group multiplications and table
look-ups (v = ∆1/4)

Lower Computed Upper
∆ p |〈Ip〉| GM TL GM TL GM TL

−4(1010 + 1) 5 4033 448 1 467 9 523 63
3 16132 448 1 494 36 587 127

13 24198 448 1 512 54 615 155
7 48396 448 1 566 108 679 219

−4(1015 + 1) 7 2 0 0 21 0 21 0
29 42908 7953 1 7977 5 8178 207
17 128724 7953 1 7988 16 8329 358
3 257448 7953 1 8004 32 8478 507

−4(1020 + 1) 13 232024638 141422 1 143086 1640 156678 15232
5 464049276 141422 1 144727 3281 162987 21541

37 928098552 141422 1 148008 6562 171910 30464
7 1856197104 141422 1 154571 13125 184529 43083

times as many giant steps than Shanks’ algorithm, which requires additional table
look-ups. In the case of I7, the optimal value of v is v =

√
48396 ≈ 220, and the

initial step-width v = ∆1/4 ≈ 447 that is used in Shanks’ algorithm is sufficiently
accurate that the extra giant steps taken by our algorithm cause it to execute more
group operations in total. v = ∆1/4/2 ≈ 223 is closer to the optimal value than
v = ∆1/4, and this choice of v does result in the best overall performance for three
of the four ideals.

For ∆ = −4(1015 + 1), our algorithm using v = 2 is the fastest for three of
the four prime ideals. The orders of the ideals are sufficiently small that selecting
v = ∆1/4 or ∆1/4/2 results in too many extra baby steps. For ∆ = −4(1020 + 1),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1672 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

Table 4. Order Algorithm — run times

∆ p |〈Ip〉| v = 2 v = ∆1/4/2 v = ∆1/4

−4(1010 + 1) 5 4033 0.19 sec 0.16 sec 0.27 sec
3 16132 0.31 sec 0.22 sec 0.27 sec

13 24198 0.44 sec 0.30 sec 0.37 sec
7 48396 0.60 sec 0.44 sec 0.41 sec

−4(1015 + 1) 7 2 0.13 sec 0.09 sec 0.10 sec
29 42908 0.86 sec 2.83 sec 4.87 sec
17 128724 1.20 sec 2.39 sec 4.60 sec
3 257448 1.74 sec 1.95 sec 3.26 sec

−4(1020 + 1) 13 232024638 61.40 sec 51.80 sec 92.22 sec
5 464049276 81.68 sec 52.72 sec 78.71 sec

37 928098552 128.06 sec 78.76 sec 116.60 sec
7 1856197104 172.86 sec 102.08 sec 111.14 sec

our algorithm using v = 2 is faster than Shanks’ algorithm for one of the four ideals.
In this case, ∆1/4 is closer to the optimal value of v than for ∆ = −4(1015 + 1).
Using v = ∆1/4/2, as in the case of ∆ = −4(1010 + 1), actually results in the best
overall performance.

Our results suggest that Algorithm 2.2 has two main advantages over Shanks’
original algorithm. The first and most obvious advantage is that it is faster when
the order of the element is much smaller than the order of the group. In these cases,
Shanks’ algorithm executes too many baby steps, and although our algorithm using
v = 2 will execute some unnecessary giant steps, it will still execute fewer group
operations overall. The second advantage is when the upper bound on the order of
the group is too large. Shanks’ algorithm will execute too many baby steps in this
case as well. Our algorithm allows one to select an initial step-width that is much
smaller than the estimated order of the group, in the hope of attaining a better
approximation of

√|〈g〉|. Using Shanks’ algorithm, an initial step-width that is too
small results in far too many giant steps, but our algorithm will detect if the initial
step-width is too small and enlarge it if necessary.

3. Computing discrete logarithms

Given g, d ∈ G, we wish to decide whether d belongs to the group 〈g〉 generated
by g. If the answer is “yes,” we want to compute x = logg d. We use the following
modification of Algorithm 2.2 to solve this problem. We compute the order of g
in G as in Algorithm 2.2, i.e., we try to find integers y and r such that gy+r = 1.
However, for each y, before checking whether gy+r = 1, we check whether gy+r = d.
For this, we work with the same set R as in Algorithm 2.2. We first check whether
(d−1 ∗ gy, r) ∈ R, with R as in Algorithm 2.2. If this is the case, logg d = y + r.
Otherwise, we check whether (gy, r) ∈ R. As soon as we have found |〈g〉|, we know
that there is no discrete logarithm of d for base g, since logg d < |〈g〉|. Just as in

Algorithm 2.2, during the computation of R0 = {(g−r, r) : 1 ≤ r ≤ v} we always
check whether logg d or |〈g〉| is already found before we include a pair (g−r, r).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1673

Algorithm 3.1.

This algorithm computes the discrete logarithm of d (d 6= 1)
for base g.

Input: d, g ∈ G (d 6= 1), initial step-width v (v ∈ 2N)
Output: t = 1 and x = logg d if d ∈ 〈g〉,

t = 0 and x = |〈g〉| if d /∈ 〈g〉

(1) t = 2; x = 0
(2) s = 1; y = v; u = v
(3) h = g−1

(4) a = 1; b = gv; c = b /∗ a = g−r, b = gy,
(5) R = ∅ c = gu ∗/
(6) f = d−1

(7) while (t == 2) do
(8) for (r = s, s + 1 . . . , u) do /∗ new baby steps ∗/
(9) a = a ∗ h

(10) if (s == 1) then /∗ check if 1 ≤ x ≤ v ∗/
(11) if (a == f) then
(12) x = r; t = 1
(13) break while
(14) else
(15) if (a == 1) then
(16) x = r; t = 0
(17) break while
(18) else
(19) R = R ∪ {(a, r)}
(20) fi
(21) fi
(22) else
(23) R = R ∪ {(a, r)}
(24) fi
(25) od

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1674 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

(26) while (t == 2 and y < u2) do /∗ giant steps ∗/
(27) if (there is a number r such /∗ checking for
(28) that (f ∗ b, r) ∈ R) then discrete log. ∗/
(29) x = y + r; t = 1
(30) else
(31) if (there is a number r such /∗ checking for
(32) that (b, r) ∈ R) then the order of g ∗/
(33) x = y + r; t = 0
(34) else
(35) y = y + u
(36) b = b ∗ c
(37) fi
(38) fi
(39) od
(40) s = u+ 1; u = 2u /∗ double
(41) c = c2 step-width ∗/
(42) od
(43) return (t, x)

To discuss the complexity of Algorithm 3.1 we use the same arguments as in
Theorem 2.3. We only have to observe that there are twice as many equality checks
during the computation of R0. Moreover, in each inner while loop, we have one
additional multiplication to compute f ∗ b and at most one additional table look-
up to check whether (f ∗ b, r) ∈ R. With x = logg d if d ∈ 〈g〉 and x = |〈g〉|
if d /∈ 〈g〉, this causes at least 1 additional multiplication and at most d√x e − 1
additional multiplications and table look-ups if

√
x ≤ v < x. If

√
x > v, this causes

at least d√x e /4 − 1 and at most 2 d√x e − v
2 − 2 additional multiplications and

table look-ups. Therefore, we have the following result:

Theorem 3.2. Let d 6= 1. Let

x =

{ |〈g〉| if d 6∈ 〈g〉,
logg d if d ∈ 〈g〉.

For every choice of v, Algorithm 3.1 executes two inversions and at most 2blog vc+1

multiplications in G and requires space for five group elements. On further group
multiplications, space required, and table look-ups, we have the following estimates.

1. If x ≤ v, Algorithm 3.1 executes x further multiplications in G. It uses a
table of x − 1 pairs (g, r) ∈ G × {1, . . . , x − 1}, and it performs at most 2x
equality checks.

2. If
√
x ≤ v < x, the number M of further multiplications in G satisfies

v + 1 ≤M ≤ 2
⌈√

x
⌉

+ v − 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1675

The algorithm uses a table of v pairs (g, r) ∈ G×{1, . . . , v}, and it performs
2v equality checks. The total number TL of table look-ups satisfies

1 ≤ TL ≤ 2
⌈√

x
⌉− 2.

3. If
√
x > v, the number M of further multiplications in G satisfies

3

2

⌈√
x
⌉

+

⌈
log

√
x

v

⌉
− 2 ≤M ≤ 6

⌈√
x
⌉− v +

⌈
log

√
x

v

⌉
− 7.

It performs at most 2v equality checks. It uses a table of at least d√x e and
at most 2 d√x e− 2 pairs (g, r) ∈ G×{1, . . . , 2 d√x e}. The total number TL
of table look-ups satisfies

d√x e
2

− 1 ≤ TL ≤ 4
⌈√

x
⌉− v − 4.

Algorithm 3.1 was implemented using the LiDIA system [7] to compute discrete
logarithms in ideal class groups of imaginary quadratic orders. For the same three
discriminants used in the previous section, we select the prime ideal class Ip with
the largest order and use our algorithm to compute logIp I

x
p in the class group, for

5 different values of x with varying sizes. Again, we perform the discrete logarithm
computation three times using the same three values of v as before. Table 5 shows
the number of group multiplications and table look-ups, denoted by GM and TL,
required for each computation and Table 6 gives the run times for each computation.

Table 5. DL algorithm — group multiplications and table look-ups

v = 2 v = ∆1/4/2 v = ∆1/4

∆ p x GM TL GM TL GM TL

−4(1010 + 1) 7 9679 411 275 319 85 500 41
19358 668 403 405 171 544 85
29037 744 479 491 257 586 127
38716 820 555 577 343 630 171
48395 896 631 665 431 674 215

−4(1015 + 1) 3 51491 920 655 4016 23 7984 11
102980 1433 911 4042 49 7996 23
154469 1633 1111 4068 75 8010 37
205958 1835 1313 4094 101 8022 49
257447 2035 1513 4120 127 8036 63

−4(1020 + 1) 7 371239423 88207 55423 81233 10499 146696 5249
742478843 110865 78081 91733 20999 151946 10499

1113718263 165072 99519 102233 31499 157196 15749
1484957683 176402 110849 112733 41999 162446 20999
1856197103 187732 122179 123233 52499 167696 26249

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1676 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

Table 6. DL algorithm — run times

∆ p x v = 2 v = ∆1/4/2 v = ∆1/4

−4(1010 + 1 7 9679 0.34 sec 0.20 sec 0.24 sec
19358 0.53 sec 0.28 sec 0.28 sec
29037 0.58 sec 0.36 sec 0.32 sec
38716 0.66 sec 0.45 sec 0.37 sec
48395 0.56 sec 0.40 sec 0.34 sec

−4(1015 + 1) 3 51491 1.28 sec 1.55 sec 3.13 sec
102980 1.80 sec 1.51 sec 3.09 sec
154469 2.05 sec 1.67 sec 2.73 sec
205958 2.20 sec 1.44 sec 2.63 sec
257447 1.53 sec 1.40 sec 3.22 sec

−4(1020 + 1) 7 371239423 130.04 sec 55.17 sec 80.03 sec
742478843 179.09 sec 80.61 sec 90.70 sec

1113718263 238.34 sec 101.31 sec 106.19 sec
1484957683 264.40 sec 127.83 sec 113.06 sec
1856197103 188.05 sec 105.26 sec 106.34 sec

In the DL Algorithm, the advantages of our method in comparison with Shanks’
method become even clearer. This is due to the fact that for logg d all values
between 0 and |〈g〉| are possible, and they are equally probable (this is, however,
not the case in cryptographic circumstances). Assuming that |〈g〉| is not known
a priori, Shanks’ original algorithm still uses the upper bound of the group order,
i.e., v = ∆1/4, which causes the algorithm to perform far too many baby steps.

For ∆ = −4(1010 + 1) and the prime ideal lying over 7, in which case the bound
v = ∆1/4 is quite accurate, Shanks’ algorithm is faster than our algorithm using v =
∆1/4/2 for about half of the computed logarithms in our experiments. For all DL’s
smaller than half of the order of I7, our algorithm using v = ∆1/4/2 works better.
The comparatively bad results for our algorithm using v = 2 are due to the fact
that in the DL Algorithm each giant step causes two group multiplications and two
table look-ups, so that too many giant steps cause twice as much unnecessary work
as in the Order Algorithm. Note that computing discrete logarithms of elements
generated by I7 represents the best case for Shanks’ algorithm and the worst case
for our algorithm because I7 is the largest prime ideal.

For ∆ = −4(1015 + 1) and ∆ = −4(1020 + 1), where the upper bounds of
the group order are much larger than the orders of the largest prime ideals, our
algorithm using v = ∆1/4/2 works better for almost all possible logarithms.

Thus, our experiments lead to similar conclusions to those related to Algo-
rithm 2.2, namely that our algorithm works better when logg d is small compared
to |〈g〉| and when the upper bound on the order of the group is too large.

4. Computing the structure of a subgroup

Given a generating system, i.e., a finite sequence S = (g1, . . . , gl), of a finite
abelian group G that is given as described in the introduction, we want to find the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1677

structure of G. By this we mean finding positive integers m1, . . . ,mk with m1 > 1,
mj|mj+1, 1 ≤ j < k, and an isomorphism

φ : G −→ Z/m1Z × · · · × Z/mkZ.(5)

This isomorphism will be given in terms of the images of the elements of the gen-
erating system S. The integers mi are the invariants of G.

We describe our method. For ~z = (z1, . . . , zl) ∈ Zl we write

S ~z =
l∏

i=1

gi
zi .

A relation on S is a vector ~z ∈ Zl such that S ~z = 1. The set L(S) of all rela-
tions on S is a lattice in Zl of dimension l, since it is the kernel of the surjective
homomorphism

Zl −→ G, ~z 7→ S ~z.

Our approach will be to compute a basis B = (~b1, . . . ,~bl) of L(S). That basis is

identified with a matrix of column vectors ~bj = (b1j , . . . , blj)
t. Then the order of G

is | detB|. Using standard techniques, e.g. [6], [4], we compute the Smith normal
form N of B and a matrix U ∈ Zl×l with detU 6≡ 0 mod |G| such that there exists
V ∈ Zl×l with detV 6≡ 0 mod |G| and N ≡ UBV mod |G|. This means that we
do not need to find two unimodular transformations for the Smith normal form but
only a left unimodular transformation modG. Therefore, modular techniques for
finding the Smith normal form can be applied.

Let N be the diagonal matrix diag(1, . . . , 1,m1, . . . ,mk) where m1 > 1. Then
m1, . . . ,mk are the invariants of G. To define the map (5) delete in U all but
the last k rows. Let ~u1, . . . , ~ul be the column vectors of that new matrix, ~uj =
(u1j, . . . , ukj)

t. Set

φ(gj) = (u1j modm1, . . . , ukj modmk), 1 ≤ j ≤ l.

Then φ is the isomorphism we were looking for.
We describe the computation of the basis B of the relation lattice L(S). The

matrix B will be an upper triangular matrix with positive entries on the diagonal.

Suppose that we have computed ~b1, . . . ,~bj−1. We describe the computation of
~bj. The diagonal entry bjj is the smallest positive integer such that gj

bjj belongs

to the subgroup of G generated by {g1, . . . , gj−1}. The problem of finding ~bj
is therefore similar to a discrete logarithm problem. Indeed, our solution is an
extension of Algorithm 3.1. Instead of a single initial step-width v we now use
a vector ~v = (v1, . . . , vl) ∈ 2Nl of step-widths. Since there is a basis B with
0 ≤ bij < bii for 1 ≤ i < j ≤ l we can write

bij = qiBi + ri,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1678 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

where Bi =
⌈√

bii
⌉
, 0 ≤ qi < Bi, and 0 ≤ ri < Bi. We also write

bjj = y + rj ,

where y = 2kvjq and 1 ≤ rj ≤ 2kvj with k and q as in Lemma 2.1. Set

Si = (g1, . . . , gi), 1 ≤ i ≤ l.

As in Algorithms 2.2 and 3.1 we proceed to find the smallest value of y such that

Sj−1
~q ~Bgj

y = Sj
−~r,(6)

where

~q = (q1, . . . , qj−1), 0 ≤ qi < Bi, qiBi < bii, 1 ≤ i < j,(7)

~B = (B1, . . . , Bj−1), ~q ~B denotes the componentwise multiplication, and

~r = (r1, . . . , rj), 0 ≤ ri < Bi, 1 ≤ i < j, and 1 ≤ rj ≤ 2kvj .(8)

Once y is found we have

~bj = ~q ~B ◦ (y) ◦ (0, . . . , 0)︸ ︷︷ ︸
l−j

+~r ◦ (0, . . . , 0)︸ ︷︷ ︸
l−j

where ◦ denotes the concatenation of vectors.
To be able to check quickly whether (6) holds for a given y we use the sets

Q =
{

(Sj−1
~q ~B, ~q) : ~q as in (7)

}
and

R =
{
(Sj

~r, ~r) : ~r as in (8)
}
.

Just as in the order algorithm and the discrete logarithm algorithm we check
whether bjj ≤ vj already during the first computation of R, i.e., when k = 0 in (8).
For this we use the set

R′ =
{
(Sj−1

~r : 0 ≤ ri < Bi, 1 ≤ i < j
}
.

Moreover, before computing any element of R we check if bjj = 1. This is done
separately, because in many cases the algorithm will compute the entire group
structure with only a few generators, and all the others can be handled by this
special case. For this check we use the set Q instead of R′, since in general Q is
considerably smaller than R′.

Here is the algorithm which determines the HNF-basis B for the relation lattice
L(S).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1679

Algorithm 4.1.

This algorithm computes the HNF-basis for the lattice of
relations on a generating system for a finite abelian group.

Input: A generating system S = (g1, . . . , gl) of G,
initial step-width ~v = (v1, . . . , vl) ∈ 2Nl.

Output: A basis B = (~b1, . . . ,~bl) of the lattice of relations
on S in upper triangular form.

(1) R′ = {(1, ())}, Q = {(1, ())},
~B = ()

/∗ initialization ∗/

(2) for (j = 1, . . . , l) do
(3) s = 1, y = vj , u = vj
(4) h = gj

−1 /∗ a = gj
−i, b = gj

y,
(5) a = 1, b = gj

vj , c = b c = gj
u ∗/

(6) R = ∅
(7) for (all (e, ~q) ∈ Q) do /∗ check whether gj is
(8) d = e ∗ gj contained in current
(9) if (there is ~r such that (d,~r) ∈ R′

and qi+ri < bii∀i = 1, . . . , j−1)
then

subgroup ∗/

(10) ~bj = ~q ~B ◦ (0) ◦ (0, . . . , 0) + ~r ◦
(1) ◦ (0, . . . , 0)

(11) break for
(12) fi
(13) od
(14) while (bjj == 0) do
(15) for (i = s, . . . , u) do /∗ new baby steps ∗/
(16) a = a ∗ h
(17) if (s == 1 and i > 1) then /∗ check whether
(18) for (all (d,~r) ∈ R′) do 1 < bjj ≤ vj ∗/
(19) e = d ∗ a
(20) if (there is ~q such that (e, ~q) ∈ Q

and qi+ri < bii∀i = 1, . . . , j−1
) then

(21) ~bj = ~q ~B ◦ (0) ◦ (0, . . . , 0) + ~r ◦
(i) ◦ (0, . . . , 0)

(22) break while
(23) else
(24) R = R ∪ {(e, ~r ◦ (i))}
(25) fi
(26) od
(27) else
(28) R = R∪{(d∗a,~r◦(i)) : (d,~r) ∈

R′}
(29) fi
(30) od

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1680 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

(31) while ((bjj == 0) ∧ (y < u2)) do /∗ giant steps ∗/
(32) for (all (e, ~q) ∈ Q) do
(33) d = e ∗ b
(34) if (there is ~r such that (d,~r) ∈ R

and qi+ri < bii∀i = 1, . . . , j−1
) then

(35) ~bj = ~q ~B ◦ (y) ◦ (0, . . . , 0) + ~r ◦
(0, . . . , 0)

(36) break while
(37) fi
(38) od
(39) y = y + u
(40) b = b ∗ c
(41) od
(42) s = u+ 1 /∗ double step-

width ∗/
(43) u = 2u
(44) c = c2

(45) od
(46) if (j 6= l) then

(47) Bj =
⌈√

bjj
⌉

(48) ~B = ~B ◦ (Bj)
(49) R′ = {(d,~r◦(0)) : (d,~r) ∈ R′}∪ /∗ compute new

{(d,~r) ∈ R : 1 ≤ rj < Bj} R′ and Q ∗/
(50) Q = {(e, ~q ◦ (0)) : (e, ~q) ∈ Q} ∪

{(e ∗ gjqjBj , ~q ◦ (qj)) : (e, ~q) ∈
Q, 1 ≤ qj < Bj , qjBj < bjj}

(51) fi
(52) od

(53) B = (~b1, . . . ,~bl)
(54) return (B)

We implemented our algorithm using the LiDIA system [7] to compute, once
again, in ideal class groups of imaginary quadratic orders. During the course of the
implementation, we found that the sets R′, R, and Q are most efficiently stored as
indexed hash tables, since the algorithm requires traversing the tables in addition
to fast searching. Using this data structure also allows one to maintain R′ and R
in one table. In the interest of saving storage, the exponent vectors in these tables
are encoded into single integers.

For simplicity, we analyze the complexity of Algorithm 4.1 only with initial step-
width ~v = (2, . . . , 2). We need the following lemma.

Lemma 4.2. Let m1, . . . ,ml ∈ N and e = |{mj |mj > 1}|. Then we have

l∏
j=1

⌈√
mj

⌉ ≤ 2
e
2 ·

l∏
j=1

√
mj .

Equality holds if and only if mj = 2 for all mj with mj > 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1681

Proof. Let m ∈ N. If m = 1, d√m e =
√
m. If m = 2, d√m e =

√
2
√
m. If

3 ≤ m ≤ 5, d√m e < √
2
√
m. If m ≥ 6, 1 <

√
6(
√

2 − 1) ≤ √
m(

√
2 − 1), thus

d√m e < √
m + 1 <

√
2
√
m. Hence, d√m e ≤ √

2
√
m for all m ≥ 2, with equality

if and only if m = 2. From this our claim follows.

Theorem 4.3. Let ~v = (v1, . . . , vl) with v1 = · · · = vl = 2. Algorithm 4.1 executes
l inversions and at most

2
l(S)
2 (l + 5)

√
|G|+ 4l(S)

√
|G|+ log |G|

multiplications in G, where l denotes the number of generators and l(S) denotes
the number of the bjj that are larger than 1. It uses two tables of at most

2
l(S)
2

√
|G| and 2

l(S)
2 +1

√
|G|

pairs (e, ~q) ∈ G × {0, . . . , |G|}l. The total number of table look-ups is bounded by

2
l(S)
2 (l + l(S) + 2)

√|G|.
Proof. Algorithm 4.1 performs l outer loops to compute the column vectors ~b1, . . . ,
~bl. We first estimate the sizes of the sets Q, R and R′ for each of these outer loops,
and how many group operations are needed to build up these sets. Let Qj , Rj and
R′
j denote the sets Q, R and R′ after the j-th loop. We have

|Q0| = 1 and |Qj | ≤ |Qj−1| ·Bj ,

where Bj =
⌈√

bjj
⌉
. Thus |Qj | ≤

∏j
i=1 Bi. Writing

T =

l∏
i=1

Bi,(9)

we get that |Qj | ≤ T for all j. It takes at most

|Qj−1| · (Bj − 1) ≤ (Bj − 1) ·
j−1∏
i=1

Bi

multiplications to compute Qj given Qj−1. The maximum number MQ of multi-
plications to compute all the sets Q1, . . . , Ql−1 can be estimated as follows:

MQ ≤
l−1∑
j=1

(Bj − 1)

j−1∏
i=1

Bi =

l−1∑
j=1

(
j∏

i=1

Bi −
j−1∏
i=1

Bi

)

=

l−1∏
j=1

Bj − 1 ≤ T − 1.

In considering Rj , we use the arguments of the proof of Theorem 2.3, with initial
step-width v = 2. At the end of the j-th loop, the set R (= Rj) consists of (at
most) pj |R′

j−1| pairs (d ∗ gji, ~r) with d ∈ R′
j−1 and 1 ≤ i ≤ pj , where pj = 0 if

bjj = 1, pj = 1 if bjj = 2, pj = 2 if 2 < bjj ≤ 4, and pj ≤ 2
⌈√

bjj
⌉− 2 if 2 <

√
bjj .

So we have pj ≤ 2Bj − 2 in all cases. Hence

|Rj | ≤ (2Bj − 2)|R′
j−1|.

Moreover, the algorithm performs at most 2Bj − 2 multiplications a = a ∗ h (step
(16)), so that the maximum number of multiplications needed to compute Rj given

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1682 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

R′
j−1 can be estimated by (2Bj − 2)|R′

j−1|+ 2Bj − 2. From the way in which |R′|
is built up, we see that

|R′
j | = |R′

j−1|+ (Bj − 1)|R′
j−1| = Bj |R′

j−1|,
where |R′

0| = 1. Thus,

|R′
j | =

j∏
i=1

Bi, j = 1, . . . , l− 1,(10)

and

|Rj | ≤ 2(Bj − 1)

j−1∏
i=1

Bi, j = 1, . . . , l,

so that we always have |R′| ≤ T and |R| ≤ 2T . Therefore, the algorithm requires
space for at most 4T pairs (e, ~q) ∈ G× {0, . . . , |G|}l to store Q, R and R′. Let

E = {gj : j ∈ {1, . . . , l}, bjj ≥ 2}
= {gj : j ∈ {1, . . . , l}, Gj−1 6= Gj} ,

where Gj = 〈g1, . . . , gj〉, 0 ≤ j ≤ l. Let l(S) = |E|. Then the maximum number
MR of multiplications required to compute all the sets Rj satisfies

MR ≤ 2

 l∑
j=1

(Bj − 1)

j−1∏
i=1

Bi +

l∑
j=1

(Bj − 1)

= 2

 l∏
j=1

Bj − 1 +
l∑

j=1

(Bj − 1)

≤ 2T − 2 + 2

l∑
j=1
gj∈E

bjj ≤ 2T − 2 + 2l(S) ·
√
|G|.

Next, let us consider the remaining group multiplications and table look-ups in
the l outer loops. It takes l inversions and l multiplications to compute gj

−1 and
gj

2 at the beginning of each outer loop. To check whether bjj = 1, i.e., whether gj
is contained in the subgroup generated by g1, . . . , gj−1, the algorithm checks for at
most |Q| elements e whether (e ∗ gj, ~r) ∈ R′ for some ~r. In total, this requires at
most

l · |Q| ≤ l · T
multiplications and table look-ups. We only have iterations of the outer while loops
((14) - (45)) if gj ∈ E. To check whether 1 < bjj ≤ 2 (= vj), the algorithm checks
for at most |R′| elements d whether (d ∗ gj−bjj , ~q) ∈ Q for some ~q. This requires at
most |R′| ≤ (bjj − 1)T = T table look-ups for each gj ∈ E, so altogether at most

l(S) · T
table look-ups (the multiplications have already been considered above). We only
have further computations in the j-th outer loop if 2 < bjj . In this case, we have to

distinguish between the cases
√
bjj ≤ 2 and 2 <

√
bjj . If

√
bjj ≤ 2, i.e., bjj = 3 or

4, then bjj is found during the first iteration of the outer while loop. We conclude
from the proof of Theorem 2.3 that it takes at most (Bj − 1)|Qj−1| = |Qj−1| table

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1683

look-ups and multiplications to check whether some element (e ∗ b, ~r) is in R (steps
(33)/(34)), and it requires at most Bj−2 (= 0) multiplications b = b∗c (step (40)),

plus one additional multiplication in step (44). If 2 <
√
bjj , we have in total

kj =

⌈
log

bjj
2

⌉
+ 1 = dlog bjje

iterations of the outer while loop, which means in all dlog bjje multiplications
for squaring c in step (44). We use the results of the proof of Theorem 2.3 to
see that in the inner while loops ((31) - (41)), the algorithm performs at most
(2Bj − 3)|Qj−1| table look-ups and multiplications in steps (33)/(34) and at most

2Bj − 4 multiplications in step (40). Combining the results of the cases
√
bjj ≤ 2

and 2 ≤√bjj , we get that for each gj ∈ E the algorithm performs at most

(2Bj − 3)|Qj−1|
table look-ups in the inner while loops and at most

(2Bj − 3)|Qj−1|+ 2Bj − 4 + dlog bjje
group multiplications in the inner while loops and step (44). The maximum total
number of table look-ups in the inner while loops, TLI, can be estimated by

TLI ≤
l∑

j=1

(2Bj − 3)|Qj−1| ≤ 2

l∑
j=1

(Bj − 1)|Qj−1|

≤ 2

l∑
j=1

(Bj − 1)

j−1∏
i=1

Bi ≤ 2

 l∏
j=1

Bj − 1

 ≤ 2T − 2.

For the maximum total number of multiplications in the inner while loops, MI , we
get

MI ≤ 2T − 2 + 2
l∑

j=1

(Bj − 1)− 2l +
l∑

j=1

dlog bjje

≤ 2T + 2l(S) ·
√
|G|+ log |G|+ l(S)− 2l − 2,

where we use that
∑l

j=1 dlog bjje ≤ log
∏l

j=1 bjj + l(S) = log |G|+ l(S).

Summing up, Algorithm 4.1 performs l inversions, at most (l+5)T+4l(S)
√|G|+

log |G| group multiplications, and at most (l + l(S) + 2)T − 2 table look-ups. It

requires space for at most 4T pairs (e, ~q) ∈ G×{0, . . . , |G|}l. Since T ≤ 2
l(S)
2

√|G|
(see Lemma 4.2), this completes the proof.

To get reasonable lower bounds for the total number of group multiplications
and table look-ups we should treat many different distributions and orders of
{b11, . . . , bll} separately. So we just give lower bounds for the sizes of Q, R and R′,
and the number of group multiplications required to compute these sets. This is
done in the proof of the following theorem.

Theorem 4.4. Let ~v = (2, . . . , 2) in Algorithm 4.1. Then the number of group
multiplications and the table sizes are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1684 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

Ω

 l∏
j=1

⌈√
bjj

⌉ ,

where b11, . . . , bll denote the diagonal elements of the basis B computed by the al-
gorithm.

Proof. Just as in the previous proof, let Qj , Rj and R′
j denote the sets Q, R and

R′ after the j-th outer loop.
From the way Q is built up we get that |Qj | = |Qj−1| if bjj = 1, and |Qj | ≥

|Qj−1|(Bj − 1) if Bj > 1 (i.e., if gj ∈ E). Thus |Qj | ≥
∏j

i=1
gi∈E

(Bi − 1), so at the

end of the algorithm we have

|Q| ≥
l−1∏
j=1
gj∈E

(Bj − 1) = : L,

and it takes at least L − 1 multiplications to compute all the sets Q1, . . . , Ql−1.

This lower bound is sharp: If bjj ≤ 2 for all j, then Q = {(1,~0)} at the end of the
algorithm.

From the way R is built up and from Theorem 2.3 we see that |Rj | = 0 if bjj = 1,
|Rj | ≥ |R′

j−1| if bjj = 2, and |Rj | ≥ Bj |R′
j−1| if bjj ≥ 3. With (10) it follows that

|Rj | ≥ 1

2

j∏
i=1
gj∈E

Bi.

Let p = max{j ∈ {1, . . . , l} : gj ∈ E}. Then |Rp| ≥ 1/2 · T , and it takes at least
1/2 · T multiplications to compute Rp, with T as in (9). It also follows from (10)
that at the end of the algorithm we have that |R′| = T/Bl. (Especially, |R′| = T if
gl 6∈ E.) This proves the theorem.

Corollary 4.5. Let G = (Z/2Z)k. Then Algorithm 4.1 is of complexity Ω(|G|).
Proof. Let S be a generating sequence of G. Let l = |S|. Then for the diagonal
elements bjj computed by the algorithm we necessarily have k times bjj = 2 and
l− k times bjj = 1. Since k = log |G|, the assertion follows by Lemma 4.2 together
with Theorem 4.4.

Let us further comment on the factor 2
l(S)
2 , which appears in Theorem 4.3. We

conclude from Theorem 4.4 that the more cyclic subgroups G has and the smaller
they are, the larger R and R′ (and Q) are, and thus the storage required and the
number of group multiplications increases. However, this effect only depends on
the structure of the type of groups we are dealing with. For example, in the case
of groups of points on elliptic curves over finite fields, which are either cyclic or
isomorphic to a product of two cyclic groups, this phenomenon is not relevant. In
the case of ideal class groups of imaginary quadratic fields, where we expect small
ranks [5], we can say that the worst case does not occur very frequently, especially
for large discriminants.

Theoretically there is another possibility to have a disturbingly large exponent
l(S) even if G is cyclic or consists of very large cyclic subgroups, namely if many
generators are needed to build up each cyclic factor.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1685

To estimate the damage caused by these effects, we did the following experiments.
For n = 3, 4, . . . , 10 we took the first 1000 discriminants smaller than 10n. For each
of these discriminants, we took the ten prime ideal classes of smallest norm in the
corresponding imaginary quadratic order and used our algorithm to compute the
subgroup generated by these classes. We measured the sizes of Q and R′ and
counted the number l(S) of prime ideal classes actually used in the algorithm to

compute the subgroup. In Table 7 we compare |Q| and |R′| with |G| and
√|G|,

and in Table 8 we compare l(S) with the number of cyclic factors of |G|, which is
the minimum number of generators needed to compute |G|.

Table 7. Subgroup algorithm — size of R′ and Q relative to |G|
and |G|1/2

|Q|/|G| |R′|/|G| |Q|/√|G| |R′|/√|G|
n max ave max ave max ave max ave
3 0.50000 0.18271 1.00000 0.42068 1.30931 0.74079 5.65685 1.67457
4 0.44444 0.11417 1.00000 0.28418 1.33333 0.71759 5.65685 1.74131
5 0.19048 0.06389 0.66667 0.16840 1.25988 0.69884 5.36656 1.80439
6 0.13187 0.03534 0.66667 0.09723 1.35710 0.68240 9.23760 1.83296
7 0.06028 0.01932 0.26667 0.05590 1.34739 0.66498 7.15542 1.89770
8 0.03896 0.01055 0.16000 0.03205 1.26179 0.64524 9.05097 1.93323
9 0.01755 0.00581 0.09231 0.01835 1.31979 0.63294 8.41976 1.96326

10 0.01094 0.00317 0.05424 0.01059 1.15923 0.61567 8.21715 2.02498

Table 8. Subgroup algorithm — worst case data

l(S) - number of cyclic factors
n 0 1 2 3
3 549 423 28 0
4 520 422 58 0
5 505 415 77 3
6 525 385 84 6
7 505 402 86 7
8 537 380 77 6
9 552 373 66 9

10 536 384 75 5

Table 7 shows that usually the sets Q and R′ do not blow up to the entire group
size but contain less than 2

√|G| pairs (g, ~q) in average. Only for discriminants with
absolute value smaller than 105 it occurred that |R′| ≥ |G|. Due to the way Q is
built up by Algorithm 4.1, the set Q always contains considerably fewer elements
than R′.

Table 8 shows that in more than half of all our experiments the algorithm actually
uses no more generators than theoretically necessary. Also in the remaining cases,
l(S) is always very small.

In Tables 9 and 10 we give some examples of subgroups computed with our
algorithm. For each discriminant, we compute the group G generated by the classes
of the 10 prime ideals of smallest norms in the order. As before, GM is the number

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1686 JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE

of group multiplications required and TL is the number of table look-ups. We used
~v = (2, . . . , 2) as an initial step-width in all cases.

Table 9. Subgroup algorithm — sample run times

∆ G GM TL time

−(102 + 3) [5] 50 14 0.03 sec
−(103 + 3) [4] 44 13 0.04 sec
−(104 + 3) [12] 59 17 0.05 sec
−(105 + 3) [39] 92 31 0.06 sec
−(106 + 3) [105] 122 51 0.08 sec
−(107 + 3) [706] 332 149 0.20 sec
−(108 + 3) [1702] 421 196 0.28 sec
−(109 + 3) [1840, 2] 595 245 0.40 sec
−(1010 + 3) [10538] 1038 369 0.73 sec
−(1011 + 3) [31057] 2213 1067 1.60 sec
−(1012 + 3) [62284, 2] 3223 1989 2.56 sec
−(1013 + 3) [124264, 2, 2] 5794 2464 4.25 sec
−(1014 + 3) [356368, 2, 2] 9233 3751 7.53 sec
−(1015 + 3) [3929262] 23564 13182 18.41 sec
−(1016 + 3) [12284352] 37249 16409 30.36 sec
−(1017 + 3) [38545929] 67130 29484 1 min, 0.12 sec
−(1018 + 3) [102764373] 103039 54913 1 min, 30.62 sec
−(1019 + 3) [78425040, 2, 2, 2] 149197 83049 3 min, 39.47 sec
−(1020 + 3) [721166712, 2] 343423 210837 6 min, 13.87 sec

Table 10. Subgroup algorithm — sample run times

∆ G GM TL time

−4(102 + 1) [14] 63 18 0.03 sec
−4(103 + 1) [10, 2, 2] 87 30 0.04 sec
−4(104 + 1) [40, 4] 140 58 0.06 sec
−4(105 + 1) [230, 2] 223 91 0.10 sec
−4(106 + 1) [516, 2] 319 114 0.13 sec
−4(107 + 1) [1446, 2] 598 243 0.26 sec
−4(108 + 1) [4104, 4] 1223 640 0.71 sec
−4(109 + 1) [2560, 2, 2, 2, 2] 1509 385 0.80 sec
−4(1010 + 1) [48396, 2, 2] 3388 1622 1.93 sec
−4(1011 + 1) [56772, 2, 2, 2] 4891 2660 2.54 sec
−4(1012 + 1) [117360, 4, 2] 6680 3323 3.76 sec
−4(1013 + 1) [742228, 2, 2] 12037 4233 7.11 sec
−4(1014 + 1) [1159048, 4, 2, 2] 27615 11729 16.91 sec
−4(1015 + 1) [257448, 4, 2, 2, 2, 2, 2] 57387 22013 36.58 sec
−4(1016 + 1) [11809616, 2, 2, 2, 2] 120027 26425 1 min, 11.94 sec
−4(1017 + 1) [46854696, 2, 2, 2] 134990 65584 1 min, 28.21 sec
−4(1018 + 1) [264135076, 2, 2] 233224 94688 2 min, 40.54 sec
−4(1019 + 1) [1649441906, 2] 572162 236334 6 min, 33.53 sec
−4(1020 + 1) [1856197104, 2, 2, 2] 979126 380022 15 min, 39.46 sec

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1687

References

[1] I. Biehl and J. Buchmann, Algorithms for quadratic orders, Proc. Sympos. Appl. Math., vol.
48, Amer. Math. Soc., Providence, RI, 1994. MR 95m:11146

[2] J. Buchmann and S. Paulus, Algorithms for finite abelian groups, Extended abstract. To be
published in the proceedings of NTAMCS 93.

[3] D.A. Buell, Binary quadratic forms: classical theory and modern computations, Springer-
Verlag, New York, 1989. MR 92b:11021

[4] H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993.
MR 94i:11105

[5] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory,
Lecture Notes in Math., vol. 1068, Springer-Verlag, New York, 1984, pp. 33–62. MR 85j:11144

[6] P.D. Domich, Residual Hermite normal form computations, ACM Transactions on Mathe-
matical Software 15 (1989), no. 3, 275–286. MR 91d:15020

[7] J. Buchmann I. Biehl and T. Papanikolaou, LiDIA - a library for computational number
theory, The LiDIA Group, Universität des Saarlandes, Saarbrücken, Germany, 1995.

[8] A.K. Lenstra and H.W. Lenstra, Jr., Algorithms in number theory, Handbook of theoretical
computer science (J. van Leeuwen, ed.), Elsevier Science Publishers, 1990, pp. 673–715. CMP
92:01

[9] S. Paulus, Algorithmen für endliche abelsche Gruppen, Master’s thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1992.

[10] D. Shanks, Class number, a theory of factorization and genera, Proc. Symp. Pure Math. 20,
AMS, Providence, R.I., 1971, pp. 415–440. MR 47:4932

Technische Hochschule Darmstadt, Institut für Theoretische Informatik, Alexan-

derstraße 10, 64283 Darmstadt, Germany

E-mail address, J. Buchmann: buchmann@cdc.informatik.th-darmstadt.de

E-mail address, M. J. Jacobson, Jr.: jacobs@cdc.informatik.th-darmstadt.de

E-mail address, E. Teske: teske@cdc.informatik.th-darmstadt.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

