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Chapter 1

Introduction générale

Cette thèse porte sur quelques aspects topologiques de la géométrie de contact. Cette
dernière est une branche de la géométrie qui étudie les propriétés des structures de contact,
i.e. des distributions d’hyperplans ξ sur une variété différentielle de dimension impaire
V 2n+1 qui sont définies localement par une 1-forme α telle que α ∧ dαn est une forme
volume (sur son domaine). Plus précisément, on se focalise ici sur les structures de
contact coorientées, i.e. sur celles qui sont globalement définies par une 1-forme.

Quelques exemples de variétés de contact fermées viennent naturellement du monde
symplectique. Par exemple, si W 2n est une variété compacte à bord V 2n−1, on peut
considérer les formes symplectiques ω sur W qui sont “compatibles” avec V dans le sens
suivant : il y a, dans un voisinage de V , un champ de Liouville Z (i.e. un champ de
vecteurs Z) tel que LZω = ω) qui est positivement transverse à V . Dans cette situation,
ξ := ker(ιZω|V ) est une structure de contact sur V , et (W,ω) est appelée remplissage
symplectique (fort) de (V, ξ).

Ceci dit, pas toutes les variétés de contact sont le bord convexe d’une variété sym-
plectique. Des exemples remarquables sont les structures de contact vrillées, définies
dans [Eli89] pour le cas 3-dimensionnel et généralisées à toutes dimensions impaires dans
[BEM15] : leur non-remplissabilité suit des résultats dans [Gro85, Eli90] (voir aussi
[Zeh03]) pour le cas de dimension 3 et de [Nie06, BEM15] dans le cas général. Les struc-
tures de contact remplissables sont alors une sous-classe des structures non vrillées, qui
sont aussi appelées tendues.

Les structures de contact vrillées sont une manifestation importante de la nature
topologique de la géométrie de contact. En fait, [Eli89, BEM15] montre que le problème
géométrique de la construction des structures de contact peut être réduit au problème
formel de la construction de leur équivalent homotopique : toute structure presque de
contact peut être déformée en structure de contact vrillée. De plus, deux structures de
contact vrillées sont isotopes si et seulement si elle sont homotopes parmi les structures
presque de contact.

Les structures de contact vrillées manifestent donc de la flexibilité concernant le prob-
lème de construction géométrique. Au contraire, les structures tendues peuvent présenter
des comportements rigides dans ce contexte : par exemple, deux structures tendues qui
sont homotopes parmi les structures presque contact ne sont pas nécessairement isotopes.
Ceci dit, des résultats récents suggèrent que, selon le problème considéré, les comporte-
ments flexible et rigide peuvent interagir de façon inattendue. Par exemple, [Laz] montre
que la cohomologie d’un domaine de Weinstein flexible est “codée” dans la variété de
contact qu’il remplit, donc que le bord d’un variété de Weinstein a une certaine rigidité.
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1.1. LA TOPOLOGIE DU GROUPE DES CONTACTOMORPHISMES

À cause de ces interactions non triviales, il n’y a pas de séparation nette entre les
comportements flexible et rigide flexible en géométrie de contact. Donc, le problème
suivant est très intéressant dans ce contexte :

Problème A. Étudier les interactions entre flexibilité et rigidité sous points de vue
différents.

La réduction du problème géométrique de la construction des structures de contact
à son équivalent formel dans [BEM15] n’est pas seulement importante en vue de l’étude
des interactions flexibilité-rigidité, mais aussi puisqu’il répond à la question fondamentale
de quelles variétés de grandes dimensions admettent des structures de contact (ou, plus
précisément, il montre que la topologie algébrique peut donner une réponse complète).
Comme la littérature montre (voir par exemple [Lut79, Gei91, Gei97a, GT98, GT01,
Bou02, CPP15, Etn12]), ceci a été pour longtemps un problème fondamental en géométrie
de contact, qui a motivé en particulier la recherche de constructions explicites de variétés
de contact en grandes dimensions. Bien sûr, depuis le travail [BEM15], la question
de l’existence des structures de contact n’est plus une motivation pour la recherche de
constructions explicites. Ceci dit, la question suivante a sans doute encore un certain
intérêt :

Problème B. Trouver (et étudier) des constructions de variétés de contact avec des
propriétés “remarquables”, e.g. qui donnent des structures vrillées, tendues, remplissables,
etc.

La Partie I de cette thèse porte principalement sur le Problème A. Plus précisément, il
contient un étude de la topologie de l’espace des contactomorphismes, avec une analyse de
quelques comportements rigides dans le cas des structures tendues et vrillées en grandes
dimensions; ceci sera présenté plus en détail dans la Section 1.1.
La Partie II porte sur le Problème B et contient, plus précisément, une réinterprétation
de quelques constructions explicites déjà connues en grandes dimensions et l’étude des
propriétés des variétés de contact qui en résultent. Ceci est présenté en détail dans la
Section 1.2.

Avant de présenter les résultats contenus dans Parties I, II de cette thèse, le lecteur
qui n’a pas beaucoup de familiarité avec la géométrie de contact pourrait lire Section
2, où on rappelle les objets principaux qui apparaîtront dans les énoncés présentés dans
Sections 1.1, 1.2.

1.1 La topologie du groupe des contactomorphismes

Dans Partie I de cette thèse, on s’interesse à la topologie de l’espace des contacto-
morphismes D (V, ξ) d’une variété de contact (V, ξ), en rapport à celle de l’espace des
difféomorphismes D (V ) de la variété différentielle V sous-jacente. Plus précisément,
on va étudier les propriétés de l’application j∗ : πk (D (V, ξ)) → πk (D (V )) induite par
l’inclusion naturelle j : D (V, ξ) → D (V ).

Soit Ξ (V ) l’espace de toutes les structures de contact sur V . Dans le cas des variétés
de contact fermées, l’application naturelle D (V ) → Ξ (V ), donnée par φ 7→ φ∗ξ, aide à
comprendre les propriétés de j∗, et montre que Ξ (V ) joue le rôle d’intermédiaire pour la
relation entre la topologie de D (V, ξ) et celle de D (V ). En fait, la preuve du théorème
de Gray implique, modulo un critère général de fibration, que cette application est une
fibration localement triviale avec fibre D (V, ξ); voir [GM17] pour une explication de ce
résultat ou [Mas15] pour une preuve détaillée. (On remarque que, dans [GGP04], il est
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CHAPTER 1. INTRODUCTION GÉNÉRALE

demontré que cette application est une fibration de Serre, ce qui est suffisant pour les
considérations suivantes.) Donc, la suite exacte longue en homotopie

. . .→ πk+1 (Ξ (V )) → πk (D (V, ξ))
j∗−→ πk (D (V )) → πk (Ξ (V )) → . . .

associé à la fibration donne une relation entre les topologies des trois espaces D (V ),
D (V, ξ) et Ξ (V ).

Concernant le cas de dimension 3, la disponibilité de résultats de classifications pour
les classes d’isotopie des structures de contact tendues sur des 3-variétés spécifiques V
donne quelques résultats explicites sur les groupes d’homotopie en dégrée 0 et 1 sur
quelques variétés spécifique. Le lecteur intéressé peut consulter [Gom98, GGP04, Bou06,
DG10, GK14, GM17] pour des résultats sur π1 (Ξ (V ) , ξ) et [Gir01, GM17] pour des
résultats sur π0 (D (V, ξ)); bien sûr, les résultats sur ces deux groupes peuvent être reliés
entre eux via la suite exacte longue ci-dessus.
Plus précisément, dans [GGP04], les auteurs démontrent l’existence d’un élément d’ordre
infini dans le groupe fondamental de l’espace des structures de contact sur les fibrés en
tores sur S1; une preuve indépendante, qui se généralise au cas du tore de dimension 5,
est donnée dans [Bou06], en utilisant l’homologie de contact. [GK14] démontre que le
groupe fondamental est en effet isomorphe à Z dans le cas de la variété T3 et point base
la structure de contact standard. Ceci a été ensuite généralisé dans [GM17] (voir aussi
[Gir01]), où il est démontré que, pour tout fibré V en S1 sur une surface fermée Σ et
toute structure de contact ξ pour laquelle les fibres sont legendriennes, π1 (Ξ (V ) , ξ) est
cyclique infini et ker(j∗|π0

) est cyclique fini. Dans [Gom98], l’auteur observe que S2×S1,
avec son unique (à isotopie près) structure de contact tendue ξstd, admet une mapping
class de contact d’ordre infini; ceci réapparaît dans [DG10], où c’est aussi utilisé pour
démontrer que ker(j∗|π0

) et π1(Ξ
(
S2 × S1

)
, ξstd) sont isomorphes à Z.

La situation en grandes dimensions est moins comprise, à cause du manque de résul-
tats de classification. Les seuls résultats connus à ce moment sont dans [Bou06, MN16,
LZ18]. Dans le premier papier, Bourgeois donne des résultats sur quelques groupes
d’homotopie πk (Ξ (V ) , ξ), pour des variétés de contact (V, ξ) spécifiques, en utilisant
des outils d’homologie de contact. Dans [MN16], Massot et Niederkrüger donnent des
exemples de variétés de contact (V, ξ) pour lesquelles ker (π0 (D (V, ξ)) → π0 (D (V )))
n’est pas trivial; ces exemples utilisent des constructions dans [MNW13], qu’on utilisera
aussi dans la suite. Le papier [LZ18], qui porte sur le cas non compact, contient des
exemples de plongements de groupes de tresses dans le groupe des contactomorphismes
des contactisations de quelques variétés symplectiques non compactes.

Tous les exemples rappelés jusqu’ici sont des variétés de contact tendues. On remar-
que aussi que quelques uns de ces résultats montrent que la rigidité, qui caractérise la
classe des structures tendues pour le problème des déformations des structures de con-
tact, entraîne, dans certains cas, de la rigidité aussi pour le problème des déformations
des contactomorphismes.

Pour ce qui concerne la classe des structures vrillées, le seul résultat connu à ce
moment en dimension 3 est la classification des composantes connexes de l’espace des
contactmorphismes pour toutes les structures vrillées sur la 3-sphère. Ce résultat, sans
preuve publiée jusqu’à récemment, est attribué à Chekanov dans [EF09, Remark 4.16].
Vogel donne une preuve complète de cette classification dans [Vog18], où il prouve aussi,
en utilisant des techniques de topologie de contact en dimension 3, que l’espace des
plongements des disques vrillées est non connexe par arcs pour une des structures vril-
lées sur S3. Ceci donne en particulier le premier exemple connu de contactomorphisme
d’une 3-variété de contact vrillée qui est isotope à l’identité lissement mais pas parmi
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1.1. LA TOPOLOGIE DU GROUPE DES CONTACTOMORPHISMES

les contactomorphismes; on rappelle que, d’après [Cer68], chaque difféomorphisme de la
3-sphère qui respecte l’orientation est lissement isotope à l’identité.

Dans Chapitre 3, on s’intéresse au problème de l’existence de sous-groupes cycliques
infinis dans ker(j∗|π0), dans le cas tendu. Comme remarqué ci dessus, le seul exemple
connu de ce phénomène est donné dans [Gom98, DG10] pour le cas de l’unique (à isotopie
près) structure de contact tendue sur S1 × S2. On généralise ici leur résultat au cas de
la structure tendue standard sur S1 × S2n et, plus généralement, au cas des structures
tendues standard sur le produit DW ×S1, où DW est le double W ∪∂W W d’un domaine
de Liouville (W 2n, λ). Plus précisément, on travaille dans le cadre suivant.

Soit (F 2n−2, ωF , ZF , ψF ) un domaine de Weinstein et on considère sa stabilisation
(F × C, ωF ⊕ ω0, ZF + Z0, ψF + |.|2

C
), où ω0 = rdr ∧ dϕ et Z0 = 1

2r∂r, avec coordonnées

z = reiϕ ∈ C. On suppose que c > minψF est une valeur régulière de ψ := ψF + |.|2
C
,

et soit W le domain compact ψ−1((−∞, c]). On suppose aussi qu’il y a une structure
presque complexe JF sur F entamée par ωF et telle que (TF, JF ) est trivial en tant que
fibré complexe sur F .
On considère alors le domaine de Weinstein (F ×C×R× S1, ω′, Z ′, ψ′), où, en utilisant
des coordonnées (s, θ) ∈ R× S1, ω′ = ωF +ω0 +2ds∧ dθ, Z ′ = Z + s∂s et ψ′(p, z, s, θ) =
ψ(p, z) + s2. La préimage (ψ′)−1(c), qui est difféomorphe au produit du double DW :=
W ∪∂W W de W et de S1, est naturellement munie de la structure de contact ξ = kerα,
où α = (ιZ′ω′)|DW×S1 . De plus, le difféomorphisme de F × C × R × S1 donné par
(q, z, s, θ) 7→ (q, eiθz, s, θ) se restreint à un difféomorphisme bien défini Ψ de DW × S1.
Dans ce contexte, on prouve le résultat suivant :

Théorème I.A. Le difféomorphisme Ψ de DW × S1 est lissement isotope à un contac-
tomorphisme Ψc de (DW × S1, ξ) tel que, pour tout entier k 6= 0, sa k-ème itérée n’est
pas contacto-isotope à l’identité.

Une application directe du Théorème I.A avec F = Cn−1, ωF = 2
∑n−1
i=1 ridri ∧

dϕi, ZF = 1
2

∑n−1
i=1 ri∂ri , ψF (z1, . . . , zn−1) = r21 + . . . r2n−1 et c = 1, où on utilise des

coordonnées polaires (z1 = r1e
iϕ1 , . . . , zn−1 = rn−1e

iϕn−1) sur F = Cn−1, donne la
généralisation suivante de [Gom98, DG10] à toutes dimensions :

Corollaire I.B. Soient (x1, y1, . . . , xn, yn, z, θ) des coordonnées sur la variété R2n+1×S1

et ξ la structure de contact tendue sur V := S2n × S1 définie par la restriction de λ =∑n
i=1 (xidyi − yidxi) + 2zdθ sur R2n+1 × S1 à S2n × S1 = {z2 +∑n

i=1

(
x2i + y2i

)
= 1}.

On considère le difféomorphisme Ψ de S2n × S1 donné par la restriction de

R2n+1 × S1 → R2n+1 × S1

(xi, yi, z, θ) 7→ (ϕθ(xi, yi, z), θ)

où, pour tout θ ∈ S1, ϕθ : R2n+1 → R2n+1 est l’application linéaire qui se restreint à
la rotation d’angle θ sur le sous-espace R2 engendré par (xn, yn) et fixe les coordonnées
(x1, y1, . . . , xn−1, yn−1, z).
Alors, Ψ est lissement isotope à un contactomorphisme Ψc de (V, ξ) tel que [Ψ2

c ] engendre
un sous-groupe cyclique infini de ker (π0D (V, ξ) → π0D (V )).

On remarque que tout itérée d’ordre pair de Ψc dans Corollaire I.B est effectivement
lissement isotope à l’identité : puisque le groupe fondamentale de SO(m) est isomorphe
à Z2 pour tout entier m ≥ 3, il y a, pour tout k ∈ N, une isotopie lisse de S2n × S1,
préservant (globalement) chaque sous-variété S2n × {pt}, qui relie Ψ2k à l’identité; en
particulier, Ψ2k

c est aussi lissement isotope à l’identité.
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CHAPTER 1. INTRODUCTION GÉNÉRALE

De façon analogue au Corollaire I.B, une application du Théorème I.A dans le cas
F = T ∗Tn, ωF =

∑n
i=1 dpi ∧ dqi, ZF = 1

2

∑n
i=1 pi∂pi et ψF (qi, pi) =

∑n
i=1 p

2
i donne,

pour tout entier n ≥ 1, un autre exemple explicite de (V 2n+1, ξ) tendue telle que
ker (π0D (V, ξ) → π0D (V )) admet un sous-groupe cyclique d’ordre infini.
En fait, dans ce cas aussi, chaque itérée d’ordre pair de Ψ est lissement isotope à l’identité.
Ceci suit des faits que T ∗Tn ≃ Tn × Rn, que DW × S1 ≃ Tn × Sn+2 × S1 et que, pour
tout θ ∈ S1, Ψ: Tn × Sn+2 × S1 → Tn × Sn+2 × S1 agit trivialement sur le premier et
troisième facteurs et comme une rotation d’angle θ autour d’un axe donné sur chaque
{pt}× Sn+2 ×{θ}; puisque π1(SO(m)) ≃ Z2 pour tout m ≥ 3, on peut conclure, comme
déjà fait dans le cas du Corollaire I.B, que Ψ2k

c est lissement isotope à l’identité, pour
tout k 6= 1.
On remarque aussi que le fait que ψF sur T ∗Tn ci-dessus n’est pas Morse n’est pas im-
portant : en fait, la condition de Morse pour ψF ne joue aucun rôle dans la preuve du
Théorème I.A.

Dans le Chapitre 4, on étudie la présence d’éléments non-triviaux dans le noyau
de l’application π0 (D (V, ξ)) → π0 (D (V )) pour quelques variétés de contact vrillées
explicites en grandes dimensions, en généralisant le résultat dans [MN16] au cas vrillé.
Plus précisément, on commence par démontrer le résultat suivant:

Théorème I.C. On considère une variété lisse W de dimension 2n ≥ 2 et une structure
de contact ξ sur la variété V := S1 ×W . On suppose que la première classe de Chern
c1(ξ) ∈ H2(V ;Z) est toroidale et que, pour tout entier k ≥ 2, la tirée en arrière π∗

kξ de ξ
via le revêtement à k-feuilles πk : S1×W → S1×W donné par πk(s, p) = (ks, p) satisfait
c1(π

∗
kξ) = k · c1(ξ) modulo le sous-module H2

ator(V ;Z) des classes atoroidales.
Alors, la transformation de contact f : (S1×W,π∗

kξ) → (S1×W,π∗
kξ) définie par f(s, p) =

(s+ 2π
k , p) est isotope à l’identité lissement mais pas parmi les contactomorphismes.

On rappelle qu’une classe c ∈ H2(V ;Z) est dite toroidale s’il existe f : T2 → V telle
que f∗c 6= 0 ∈ H2(T2;Z), et atoroidale sinon.

Remarque. Le Théorème I.C est aussi vrai (avec preuve similaire) si on remplace

(∗) c1(ξ) est toroidale et, pour tout k ≥ 2, c1(π∗
kξ) = k · c1(ξ) mod H2

ator(V ;Z),

par la condition

(∗′) c1(ξ) n’est pas de torsion et, pour tout k ≥ 2, c1(π∗
kξ) = k · c1(ξ).

On remarque que a ∈ H2(V ;Z) est toroidal si et seulement si [a] ∈ H2(V ;Z)�H2
ator(V ;Z)

n’est pas torsion, puisque H2(T2;Z) ≃ Z. En particulier, (∗) est equivalent à “c1(ξ) n’est
pas torsion modulo H2

ator(V ;Z) et c1(π∗
kξ) = k · c1(ξ) mod H2

ator(V ;Z)”, donc elle est
seulement une variation modulo H2

ator(V ;Z) de (∗′) (et elle n’est pas plus forte ni plus
faible que la (∗′)).
On remarque aussi que les structures de contact données par les Propositions I.D et I.F
(ainsi que la Proposition I.E.i.) ci-dessous satisfont les Conditions (∗) et (∗′) en même
temps; d’autre part, travailler modulo H2

ator(V ;Z), i.e. avec (∗), est nécessaire pour la
Proposition I.E.ii.
On a donc décidé de tout formuler en termes de (∗), même si (∗′) donnerait (partout
sauf dans Proposition I.E.ii.) des preuves un peu plus directes.

On donne ensuite, pour tout n ≥ 1, un nombre infini de variétés de contact (S1 ×
W 2n, ξ) explicites qui satisfont les hypothèses du Théorème I.C :

5



1.1. LA TOPOLOGIE DU GROUPE DES CONTACTOMORPHISMES
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Figure 1.1: Découpage, en rouge, sur le tore {θ0} × T2
(t,s).

Proposition I.D. Soit (M2n−1, α+, α−) une des paires de Liouville construites (en
nombre infini) dans [MNW13]. On considère la structure de contact

η = ker

(
1 + cos (s)

2
α+ +

1− cos (s)

2
α− + sin (s) dt

)

sur V := T2
(s,t) ×M (ici, la notation T2

(s,t) dénote le choix de coordonnées (s, t) sur T2)
et soit ξ la structure de contact vrillée obtenue par η via un demi twist de Lutz-Mori le
long de {(0, 0)} ×M , comme défini dans [MNW13].
Alors, c1(ξ) ∈ H2(V ;Z) est toroidale et, pour tout entier k ≥ 2, on a c1(π∗

kξ) = k · c1(ξ)
mod H2

ator(V ;Z), où πk : T2
(s,t) ×M → T2

(s,t) ×M est donné par πk(s, t, q) = (ks, t, q).

Exemple. Si n = 3, (M,α±) = (S1,±dθ). De plus, si k = 2, la structure de contact
π∗
2ξ sur V := T2 ×M est l’unique structure de contact qui est invariante par l’action à

gauche par multiplication de M = S1 sur V , invariant par f(s, t, θ) = (s+π, t, θ), et telle
que chaque tore T2

(s,t) × {θ0} est convexe avec découpage comme dans la Figure 1.1. La
Proposition I.D et le Théorème I.C entraînent alors que f n’est pas contacto-isotope à
l’identité. On remarque que, même dans ce cas très simple, ce résultat n’était pas présent
dans la littérature.

Si le seul but est celui de donner des exemples, en chaque dimension impaire, d’éléments
non triviaux dans le noyau de l’application π0 (D (V, ξ)) → π0 (D (V )), sans vouloir force-
ment que la variété de contact vrillée sous-jacente (V, ξ) soit très explicite, comme dans
le cas de la Proposition I.D, le résultat suivant peut aussi être démontré en utilisant
l’existence, démontrée dans [Gir01], des décompositions en livres ouverts qui supportent
les structures de contact :

Proposition I.E. Soit (V := S1 ×W 2n, η) une variété de contact vrillée telle que c1(η)
est toroidale et telle que, pour tout k ≥ 2, la tirée en arrière ξ via le revêtement à k-
feuilles πk : S1s ×W → S1s ×W , donné par πk(s, p) = (ks, p), satisfait c1(π∗

kη) = k · c1(η)
mod H2

ator(V ;Z). Alors, on a que :

i. La première classe de Chern de chaque structure de contact ξ sur V × T2 obtenue
via la construction de Bourgeois [Bou02] sur (V, η) satisfait aussi les conditions
ci-dessus, par rapport au revêtement µk := (πk, Id) : V × T2 → V × T2.

ii. Soit ν : V × Σg → V × T2 induite par un recouvrement Σg → T2 qui est ramifié
au dessus de deux points (ici, Σg est une surface fermée de genre g ≥ 2). Alors, la

6
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première classe de Chern de chaque revêtement ramifié ξg de ξ sur V ×Σg satisfait
aussi les conditions ci-dessus, par rapport au revêtement µgk := (πk, Id) : V ×Σg →
V × Σg. De plus, si η est vrillée et g est assez grand, ξg est aussi vrillé.

Un recouvrement ramifié Σg → T2 comme dans le point ii. ci dessus peut être obtenu,
par exemple, en regardant la surface Σg comme la 2-sphère avec g anses attachées de
façon symétrique par rapport à une rotation de 2π/g autour de l’axe qui passe par les
pôles nord et sud.
Par induction sur la dimension, la Proposition I.E donne, pour tout entier n ≥ 2, des
exemples de (S1×W 2n, ξ) ayant première classe de Chern qui vérifie les propriétés voulue.
Concernant le point ii., le lecteur peut consulter [Gei97b] pour une construction des
revêtements ramifiés de contact, et Section 5.2 pour une définition. On remarque aussi
que l’entier g optimal pour garantir le fait que la structure ηg est vrillée est 2, selon une
observation due à Niederkrüger (voir l’Observation 9.10).

En utilisant le h-principe de [BEM15], une classe d’exemples (non explicites) encore
plus grande peut être obtenue ainsi :

Proposition I.F. On considère une variété lisse W de dimension 2n qui est presque
complexe, spin et satisfait H1(W ;Z) 6= {0}. Alors, il y a une structure de contact vrillée
ξ sur V := S1 × W telle que c1(ξ) ∈ H2(V ;Z) est toroidale et c1(π∗

kξ) = k · c1(ξ)
mod H2

ator(V ;Z), où πk : S1s × W → S1s × W est le revêtement à k-feuilles πk(s, p) =
(ks, p).

Organisation de la Partie I

Le Chapitre 3 est organisé comme suit. Dans la Section 3.1, on décrit une variété de
Liouville explicite qui admet DW×S1 comme bord convexe, où DW est le double W ∪∂W
W d’un domaine de Liouville W (ici, W dénote W avec orientation opposée). On décrit
aussi une façon naturelle de construire des contactomorphismes stricts du bord convexe.

La Section 3.2 introduit la notion de famille de bases Lagrangiennes et décrit comment
elles donnent un invariant calculable de (classes d’isotopie de contact de) contactomor-
phismes dans le cas des structures de contact qui sont stablement triviales.

Enfin, la Section 3.3 contient la preuve du Théorème I.A.

Le Chapitre 4 est organisé ainsi. La Section 4.1 contient une preuve par l’absurde
du Théorème I.C. En supposant par l’absurde que f est contacto-isotope à l’identité, on
construit un contactomorphisme entre deux structures de contact ξ1 et ξ2; d’autre côté,
l’hypothèse sur la première classe de Chern de ξ entraîne que ξ1 et ξ2 ne sont même pas
isomorphes en tant que structures presque de contact.

La Section 4.2 montre comment obtenir des exemples de variétés de contact (S1 ×
W 2n, ξ) qui satisfont les hypothèses de Théorème I.C en utilisant les constructions dans
[MNW13]. Plus précisément, on rappelle la définition de demi twist de Lutz-Mori et les
constructions explicites de paires de Liouville dans [MNW13]. Ensuite, en utilisant une
interprétation géométrique des classes de Chern, qu’on rappelle dans l’Appendice A, on
décrit les effets d’un demi twist de Lutz-Mori sur les classes de Chern dans ce contexte,
et on démontre la Proposition I.D.

Dans la Section 4.3 on décrit comment obtenir des exemples de contactomorphismes
qui sont isotopes à l’identité lissement mais pas parmi les contactomorphismes en utilisant
l’existence des décompositions adaptés en livres ouverts due à [Gir02] et l’h-principe dans
[BEM15]; on prouve en particulier les Propositions I.E et I.F.
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1.2 Quelques constructions de variétés de contact re-

visitées

Les articles [Gei97b] par Geiges et [Bou02] par Bourgeois donnent quelques constructions
explicites de structures de contact sur des variétés de grandes dimensions.
Plus précisément, dans le premier papier, en développant des idées dans [Gro86], l’auteur
transpose quelques constructions du monde symplectique au cadre de contact, en constru-
isant en particulier les revêtements ramifiés de contact et les sommes fibrées de contact;
les réductions de contact sont aussi traitées, mais on ne s’intéressera pas à cette con-
struction dans la suite. (Le lecteur intéressé peut aussi consulter [Gon87] pour le cas
des revêtements ramifiés de contact dans le cas de la dimension 3.) Dans le deuxième
papier, en prenant inspiration de [Lut79], l’auteur demontre que, étant donné une variété
de contact (M2n−1, ξ) et un livre ouvert (B,ϕ) de M qui porte ξ, il y a une structure
de contact η sur M × T2 qui est invariant sous l’action naturelle de T2, qui se restreint
à ξ sur chaque sous-variété M ×{pt} et qui se déforme naturellement sur la distribution
d’hyperplans ξ⊕TT2 sur M×T2. On remarque que le livre ouvert (B,ϕ) existe toujours
d’après [Gir02].

La motivation principale derrière [Gei97b, Bou02] était le problème de l’existence des
structures de contact, i.e. la question de quelles variétés en grandes dimensions admettent
des structures de contact. Ce (grand) problème en géométrie de contact a été résolu par
[BEM15], et, comme déjà remarqué dans l’introduction générale ci dessus, on s’intéresse
maintenant au problème de trouver des exemples “interessants” de structures de contact.

Les papiers [Gei97b, Bou02] s’inscrivent bien dans cette perspective, parce qu’ils
donnent des variétés de contact plutôt explicites, qu’on peut étudier en détail et qui,
sous certains hypothèses, manifestent des propriétés intéressantes, i.e. sont tendues,
remplissables, vrillées, etc.
Par exemple, ces deux papiers donnent les premiers procèdures explicites pour construire
des variétés de contact en grands dimensions qui sont PS-vrillées (donc vrillées, d’après
le travaux postérieurs [CMP15, Hua17]). Le lecteur peut consulter [Pre07] pour le cas
de la construction dans [Bou02], [NP10, page 724] pour le cas des revetements ramifiés
de contact et [Nie13, Theorem I.5.1], attribué à Presas, pour le cas des sommes fibrées
de contact (comparer aussi avec l’Observation 9.10 dans la Section 9.1.2).

Le but de la Partie II est alors de construire des variétés de contact avec des propriétés
spécifiques en utilisant [Gei97b, Bou02]. Pour cela, on passe des constructions donnés
par Geiges et Bourgeois à des définitions; ensuite, on peut étudier les propriétés de ces
structures de contact, indépendamment des choix auxiliaires faites dans leur construc-
tions explicites dans [Gei97b, Bou02].

Concernant les revêtements ramifiés et les sommes fibrées de contact, on remarque
que le problème de leur unicité, i.e. la question si les structures de contact obtenues sont
indépendantes des choix auxiliaires faites dans leur construction, n’est pas explicitement
traité dans [Gei97b]. On propose donc dans cette thèse une définition de revêtements
ramifiés et sommes fibrées de contact, qui permet d’obtenir naturellement un énoncé
d’unicité (à isotopie près).

On remarque que dans la littérature il y a déjà une définition de revêtement ram-
ifié de contact qui va dans cette direction. Plus précisément, dans [NO07] les auteurs
définissent cette notion en termes de déformations en structures de contact qui satisfont
une condition additionnelle le long du lieu de ramification. On retire ici cette hypothèse
additionnelle et on prouve :
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Proposition II.A. Soit (V 2n−1, η) une variété de contact et π : V̂ → V un revêtement
ramifié avec lieu de ramification (en bas) M . On suppose que η ∩ TM est une structure
de contact sur M . Alors :

1. il y a une famille, indexée par [0, 1], de distributions d’hyperplans η̂t sur V̂ telle
que η̂0 = π∗η et η̂t est une structure de contact pour tout t ∈ (0, 1];

2. si η̂t et η̂′t sont comme dans le point 1, alors η̂r est isotope à η̂′s pour tout r, s ∈ (0, 1].

De plus, dans le point 1, η̂t peut être choisie invariant par les automorphismes (locales)
du revêtement π, pour tout t ∈ (0, 1]; de façon analogue, l’isotopie du point 2 peut être
choisie parmi les structures de contact invariant par les automorphismes (locales) de
revêtement, si η̂t et η̂′t le sont aussi.

On appelle alors revêtement ramifié de contact une structure de contact η̂ sur V̂ qui
est le point d’arrivée d’un chemin η̂t comme ci dessus; la Proposition II.A dit exactement
que cet objet existe et est bien défini à isotopie près.

À ce point, on peut donner des énoncés précis concernant les propriétés des revête-
ments ramifiés de contact. Par exemple, on prouve le résultat suivant :

Théorème II.B. On considère un revêtement ramifié π : V̂ → V et une structure de
contact ξ sur V , et soit η̂ un revêtement ramifié de contact de η. On suppose que (V, η)
est faiblement rempli par (W,Ω), de sorte que le lieu de ramification en bas M de π est
rempli par une sous-variété symplectique X de (W,Ω). On suppose aussi que π s’étend
à un revêtement ramifié π̂ : Ŵ → W , avec lieu de ramification en bas X. Alors, il y a
une structure symplectique Ω̂ sur Ŵ qui remplit faiblement η̂ sur V̂ = ∂Ŵ .

On analyse ensuite la construction de Bourgeois sous différents points de vue.
Premierment, on étudie en détail les liens entre [Bou02] et le papier [Lut79] par Lutz,

duquel le premier prends inspiration. En particulier, on rappelle une partie du travail de
Lutz dans [Lut79], où il définit une application





structures de contact
T2-invariants sur

le fibré M × T2 →M



→



(ξ, B, ϕ)

∣∣∣∣∣∣

ξ champ singulier d’hyperplans
sur M et (B,ϕ) décomposition

en livre ouvert sur M





Ensuite, on remarque que, en utilisant la notion de décomposition en livres ouverts
porteurs due à Giroux, les calculs dans [Lut79] montrent (modulo un lemme sur les livres
ouverts porteurs par Giroux) que l’image (ξη, Bη, ϕη) de η via l’application ci dessus est
telle que (Bη, ϕη) porte ξη, si cette dernière est une structure de contact sur M .
En utilisant ce point de vue des structures de contact T2-invariant sur le fibré en tores
M ×T2 →M , on montrera ensuite que, si on part d’une variété de contact (M, ξ) munie
d’une décomposition en livre ouvert porteur (B,ϕ), la composition de la construction de
Lutz après celle de Bourgeois redonne la donnée initiale de (M, ξ) et (B,ϕ).
On analyse aussi la concaténation opposée des deux constructions, et on prouve que, sous
certains hypothèses additionnelles, cela donne aussi les données initiales.

Dans une deuxième partie on adopte une perspective qui est, en un certain sens,
“orthogonale” à celle ci dessus, en regardant la projection M × T2 → T2 au lieu de
M × T2 → M . Grâce à la notion de fibré de contact introduite par Lerman dans
[Ler04], on peut en fait voir les structures de contact construites par Bourgeois comme
des structures de fibrés de contact sur les fibré M × T2 → T2, qui admet une connexion
plate naturelle. On remarque que cette structure de fibré de contact des exemples dans
[Bou02] a déjà été utilisée avec succès dans [Pre07, KN07, NP10] pour obtenir des variétés
de contact avec des propriétés remarquables en grandes dimensions.
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Dans cette thèse on utilise donc la théorie des fibrés de contact dans [Ler04] pour
généraliser la construction de Bourgeois et définir la notion de structure de contact de
Bourgeois. Plus précisément, sur un fibré π : V 2n+1 → Σ2 muni d’une structure de fibré
de contact η0 de référence, chaque fibré de contact η admet un potentiel A par rapport
à η0, avec une forme de courbature RA; dans le cas où le fibré de contact de référence
η0 est plat, on appelle structure de contact de Bourgeois chaque structure de fibré de
contact sur π : V → Σ qui est aussi une structure de contact sur V et satisfait 1

ǫRǫA → 0
pour ǫ→ 0.

En plus de la nécessité de passer de la procédure de construction dans [Bou02] à une
définition, une autre motivation pour l’introduction de cette notion est la suivante : la
condition sur la courbure est, d’un côté, suffisamment faible pour être satisfaite par une
classe de structures de contact qui contient strictement les résultats de la construction
dans [Bou02] et, de l’autre côté, suffisamment forte pour assurer, par exemple, des bonnes
propriétés du point de vue des remplissages faibles et des décompositions en livre ouvert
porteur.
Concernant la remplissabilité faible, on prouve le résultat suivant :

Proposition II.C. Soit (M2n−1, ξ) une variété de contact et η une structure de Bour-
geois sur le fibré trivial M × T2 → T2, qui se restreint à ξ sur M × {pt} = M . Si
(M, ξ) est faiblement rempli par (X2n, ω), alors (M × T2, η) est faiblement rempli par
(X × T2, ω + ωT2), où ωT2 est une forme volume sur T2.

On remarque que le résultat est déjà connu dans le cas de la construction de Bourgeois
[Bou02] : l’énoncé et l’idée principale de la preuve sont présentés dans [MNW13, Example
1.1]; voir aussi [LMN18, Theorem A.a] pour une preuve explicite.

Du point de vue des livres ouverts porteurs, les structures de Bourgeois ont implicite-
ment de l’information sur des décompositions en livres ouverts qui portent les structures
de contact sur chaque fibre :

Proposition II.D. Soit η une structure de contact de Bourgeois sur π : V → Σ. Il existe
une application ψη qui associe à chaque point b ∈ Σ une classe d’isotopie de livres ouverts
porteurs sur (Mb, ξb) :=

(
π−1 (b) , η ∩ T

(
π−1 (b)

))
. De plus, si γ(t), avec t ∈ (−ǫ, ǫ), est

un chemin dans un ensemble ouvert U de Σ sur lequel π est trivialisée , i.e. sur lequel π
devient la projection sur le premier facteur prU : U ×M → U , alors le chemin de classes
d’isotopies ψη ◦ γ(t) vient d’un chemin de livres ouverts (Bt, ϕt) de {γ(t)} ×M tel que
son image via prM : U ×M →M est une isotopie de livres ouverts sur M .
Dans le cas des exemples dans [Bou02], via la projection globale prM : M × T2 → M ,
l’application ψη donne la classe d’isotopie du livre ouvert (B,ϕ) utilisé dans la construc-
tion.

Autrement dit, si d’un côté la construction de Lutz donne une inverse à celle de
Bourgeois du point de vue des structures de contact T2-invariantes sur le fibré principal
M×T2 →M , de l’autre côté ce résultat donne une inverse à la construction de Bourgeois
du point de vue des fibrés de contact sur M × T2 → T2.

Pour démontrer la Proposition II.D, on donne une reinterprétation des livres ouverts
porteurs en termes de paires de champs de vecteurs de contact :

Théorème II.E. Sur une variété de contact (M2n−1, ξ), chaque paire de champs de
vecteurs de contact X,Y , telle que [X,Y ] est partout transverse à ξ, donne un livre
ouvert explicite de M qui porte ξ. Vice versa, un livre ouvert qui porte ξ donne une paire
X,Y comme ci dessus.

La deuxième partie de ce résultat a été énoncé par Giroux dans des exposés pour le
Yashafest de Juin 2007 et pour le AIM workshop de Mai 2012 (voir [Gir12, Claim on
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page 19]). Un énoncé plus détaillée (ainsi qu’une preuve) du Théorème II.E sera donné
dans la Chapter 6. On remarque que ce résultat n’est pas seulement utile à la preuve de
la Proposition II.D mais donne aussi un autre point de vue sur les livres ouverts porteurs,
ce qui a un intérêt en soi.

Ces réinterprétations et généralisations de [Gei97b, Bou02] amènent à quelques ex-
emples de variétés de contact en grandes dimensions avec des propriétés intéressantes,
i.e. qui sont tendues, remplissables ou vrillées. On obtient ainsi deux nouveaux résul-
tats, l’un concernant les variétés tendues virtuellement vrillées et l’autre concernant les
plongements des 3-variétés de contact en codimension 2 avec fibré normal trivial.

Concernant le premier résultat, on rappelle que une structure de contact tendue ξ sur
M est dite virtuellement vrillée si sa tirée en arrière ξ̂ sur un revêtement fini M̂ de M
est vrillée. Dans cette thèse, on demontre le résultat suivant :

Théorème II.F. Les structures virtuellement vrillée existent en toutes dimensions ≥ 3.

La preuve de ce résultat est par induction sur la dimension. Pour ce qui concerne
l’initialisation, l’existence des structures de contact tendues virtuellement vrillées est
connue en dimension 3 depuis [Gom98]; le lecteur peut aussi consulter [Gir00, Hon00],
qui presentent une classification de ce type de structures de contact sur des 3-variétés
particulières. L’étape inductive utilise les Propositions II.C et II.A ci-dessus, i.e. le fait
que la construction dans [Bou02] et les revêtements ramifiés de contact préservent la
remplissabilité faible, et s’appuie sur l’existence des livres ouverts porteurs démontrée
par Giroux [Gir02], sur la construction e Bourgeois [Bou02] et sur le critère des “grandes”
voisinages [CMP15, Theorem 3.1].

L’autre application concerne la question suivante : étant donné une variété de contact
(M, ξ = kerα), existe-t-il un ǫ > 0 tel que

(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
est tendue? Ici, D2

ǫ

est le disque de rayon ǫ et centré à l’origine de R2, et (r, ϕ) sont ses coordonnées polaires.
Ceci est lié au problème de trouver des plongements de contact en codimension 2

avec fibré normal trivial dans des variétés ambiantes tendues. En fait, en codimension
2, le fibré normal est trivial si et seulement si le fibré conforme symplectique normal
l’est. Donc, d’après le théorème des voisinages de contact [Gei08, Theorem 2.5.15], si
(M2n−1, ξ = kerα) se plonge dans (V 2n+1, η) avec fibré normal trivial, alors il admet un
voisinage

(
M ×D2

r0 , ker
(
α+ r2dϕ

))
, pour un certain r0 > 0. En particulier, si (V, η) est

tendue, ce voisinage l’est aussi.
Historiquement, la première motivation pour s’intéresser à cette question sur la “taille”

d’un voisinage d’une sous-variété de contact en codimension 2 est donnée par [NP10], où
il est démontré que des voisinages “larges” de sous-variétés de contact vrillée sont une
obstruction pour la remplissabilité de la variété de contact ambiante. Comme signalé
dans [Nie13], ceci a amené Niederkrüger et Presas à conjecturer que la présence d’un
domaine contactomorphe au produit d’un R3 vrillé et d’un “grand” voisinage dans R2n

avec la structure de Liouville standard aurait pu être la bonne généralisation de la no-
tion de vrillé aux dimensions impaires plus grandes que 3. Après l’introduction dans
[BEM15] d’une définition de structure de contact vrillée en toutes dimensions impaires,
[CMP15] à confirmé cette conjecture, en démontrant que la présence d’un tel domaine
est en fait équivalent à être vrillé. Plus précisément, ceci suit de [CMP15, Theorem
3.1], qui affirme que, si (M, ξ = kerα) est vrillé, alors

(
M ×D2

R, ker
(
α+ r2dϕ

))
l’est

aussi, si R > 0 est suffisamment grand. En particulier, ceci motive la question ci dessus
sur l’existence, pour une variété de contact (M, ξ = kerα) donnée, d’un ǫ > 0 tel que(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
est tendu.

Le problème de trouver des plongements en codimension 2 dans des variétés tendues a

11
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été déjà traité par [CPS16, EF17, EL17]. Plus précisément, [CPS16] démontre que chaque
3-variété de contact fermée vrillée peut être plongée avec fibré normal trivial dans une
5-variété de contact fermée qui admet un remplissage symplectique exact. Dans [EF17],
les auteurs montrent comment plonger plusieurs 3-variétés de contact dans la sphère de
contact standard de dimension 5. Enfin, dans [EL17] il est démontré que chaque 3-variété
de contact peut être plongé dans le (unique) fibré en S3 non trivial sur S2, muni d’une
structure de contact Stein remplissable.
Dans cette thèse, on demontre le résultat suivant :

Théorème II.G. Chaque 3-variété de contact fermée (M, ξ) avec π1 (M) 6= {1} peut
être plongée avec fibré normal trivial dans une 5-variété de contact (V 5, η) fermée (hy-
per)tendue.

Corollaire II.H. Pour tout (M3, ξ = kerα) avec π1 (M) 6= {1}, il existe ǫ > 0 tel que(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
est tendu.

On rappelle qu’une structure de contact est dite hypertendue si elle admet une forme
de contact sans orbites de Reeb fermées contractiles. Toute variété de contact hyper-
tendue est en particulier tendue, d’après [Hof93, AH09, CMP15].

On observe aussi que, d’après la preuve de Perelman de la conjecture de Poincaré,
la condition π1 (M) 6= {1} est équivalente au fait que M n’est pas difféomorphe à S3.
Or, le cas M = S3 est déjà connu. En fait, le cas des 3-sphères vrillées est traité dans
[CPS16, Proposition 11], déjà cité ci dessus, et la 3-sphère tendue standard (qui est
l’unique structure de contact tendue sur S3 à isotopie près d’après [Eli92]), se plonge de
façon naturelle dans la 5-sphère standard avec fibré normal trivial.

Les ingrédients principaux qu’on utilise dans la preuve du Théorème II.G sont l’existence
des livres ouverts porteurs pour les 3-variétés de contact démontrée par Giroux, et une
preuve détaillée de la dynamique du flot de Reeb des formes de contact construites dans
[Bou02].
Plus précisément on montre que, si π1 (M) 6= {1}, chaque livre ouvert (B,ϕ) de M peut
être modifié, via des stabilisations positives, de sorte que chaque composante connexe de
B soit homotopiquement non triviale (dans M). On démontre ensuite que ceci permet
d’obtenir, en utilisant [Bou02], des formes de contact hypertendues sur M × T2. Enfin,
(M, ξ) se plonge naturellement dans la variété de contact construite par Bourgeois comme
une fibre de la fibration M × T2 → T2 donnée par la projection sur le deuxième facteur.

Concernant le Corollaire II.H, on remarque qu’il a été récemment généralisé à toutes
dimensions, avec des techniques complètement différentes, dans [HMP18].

Organisation de la Partie II

Dans le Chapitre 5, on donne les nouveaux approches annoncés aux revêtements ramifiés
de contact et aux sommes fibrées de contact introduites dans [Gei97b], et on démontre
en particulier la Proposition II.A et le Théorème II.B.

Le Chapitre 6 décrit la formulation équivalente, basée sur une idée par Giroux [Gir12],
de décompositions en livres ouverts porteurs en termes de paires de champs de vecteurs
de contact, et contient donc la preuve du Théorème II.E.

Le Chapitre 7 rappelle la construction de Bourgeois dans [Bou02] et décrit l’étude
des structures de contact invariantes sur les fibrés principaux en T2 donné dans [Lut79].

Ensuite, on reformule et généralise dans le Chapitre 8 la construction de Bourgeois en
utilisant la notion de fibré de contact introduite dans [Ler04]. En particulier, on donne
la définition de structure de contact de Bourgeois et on démontre la Proposition II.D.

12
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Le Chapitre 9 contient ensuite deux applications des outils développés du Chapitre 6
jusqu’au 8. Plus précisement, elle contient l’étude de la remplissabilité faible des struc-
tures de contact de Bourgeois, i.e. les preuves de la Proposition II.C et du Théorème II.F,
ainsi qu’une analyse de la dynamique du champ de Reeb des formes de contact [Bou02],
i.e. les preuves du Théorème II.G et du Corollaire II.H.
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Chapter 2

Background

2.1 Basic definitions

In all this section, V denotes a (2n+ 1)-dimensional oriented smooth manifold.

Definition 2.1. A hyperplane field ξ on V is called a contact structure if, for each p ∈ V ,
there is an open neighborhood U of p and α ∈ Ω1(U) such that ξ|U = kerα and dα|ξ|U
is a symplectic structure on ξ|U .

One can easily see that this is equivalent to the definition given at the beginning of
Chapter 1 in terms of the the volume form α∧ dαn; both points of view will be adopted
in this thesis. Moreover, we will actually focus only on cooriented contact structures in
the following, i.e. those for which there is a global defining form α, also called contact
form for the contact structure.

Definition 2.2. Let (V, ξ) and (V ′, ξ′) be two (2n + 1)-dimensional contact manifold.
A diffeomorphism ϕ : V → V ′ is called contactomorphism, and denoted ϕ : (V, ξ) →
(V ′, ξ′), if ϕ∗ξ = ξ (i.e. if ker(ϕ∗α′) = ξ for each contact form α′ for ξ′). Moreover, a
smooth isotopy (ϕt)t∈[0,1] from V to V ′ is called contact isotopy if ϕt is a contactomor-
phism for all t ∈ [0, 1].
Similarly, in the case dim(V ) < dim(V ′), an embedding ϕ : V → V ′ such that ϕ∗ξ′ = ξ
is called contact embedding.

Here’s a fundamental criterion to find contactomorphisms between contact structures,
which will be used many times in this thesis:

Theorem 2.3 (Gray). Let V be a closed manifold and (ξt)t∈[0,1] a smooth family of
contact structures on V , i.e. a family of contact structures defined by a smooth family
(αt)t∈[0,1] of contact forms on V . Then, there is an isotopy ϕt : V → V such that
ϕ∗
t ξt = ξ0.

For the proof of this result we invite the reader to consult [Gei08, Section 2.2]. As
we will use it in the following, we just point out that the isotopy ϕt is generated by
the time-dependent vector field Xt such that Xt ∈ ξt and ιXt

dαt|kerαt
= −( ddtαt)|kerαt

;
notice that this Xt is unique by the contact condition.
We also point out that the hypothesis of V closed is crucial, because Gray’s theorem
does not hold on open manifolds for instance.

We recall that a choice of a particular contact form α on V gives a unique vector field
Rα, called Reeb vector field of α, such that α(Rα) = 1 and ιRα

dα = 0 everywhere on V .
Reeb vector fields are particular cases of the following:
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Definition 2.4. Let ξ be a contact structure on V . A vector field X on V is called
contact vector field if, for a (hence every) α contact form defining ξ, there is f : V → R
positive such that LXα = fα.

For this class of vector fields, we have the following correspondence:

Proposition 2.5. Let α be a contact form on V . Then, contact vector fields for ξ = kerα
are in 1-1 correspondence with functions H : V → R. More precisely, the correspondence
is given by:

• X 7→ HX := α(X);

• H 7→ XH , uniquely defined by the conditions α(XH) = H and ιXH
dα = dH(Rα)α−

dH.

With the name contact Hamiltonians, we will hence refer to a function H : V → R,
seen as generating a contact vector field XH (after having fixed a contact form α). For
a proof of Proposition 2.5, we invite the reader to consult [Gei08, Section 2.3].
As it will be useful for Sections 4.1 and 5.3, we also point out the following link between
time-dependent contact Hamiltonians and contact isotopies:

Proposition 2.6. Let α be a contact form on V . Then, there is a 1-1 correspondence
between time-dependent contact Hamiltonians Ht and contact isotopies ϕt given by:

• Ht 7→ ϕt := ψtXt
, where ψtXt

is the flow at time t of the time dependent contact
vector field Xt := XHt

(given by Proposition 2.5);

• ϕt 7→ Ht := α(Xt), where Xt is the vector field generating the isotopy ϕt.

For a proof of Proposition 2.6, the reader can consult for instance [Gei08, Section
2.2].

2.2 Tight-overtwisted dichotomy

As already mentioned in the short introduction above, in each odd dimension, contact
structures are divided in two different subclasses: tight and overtwisted. The paper [Eli89]
introduces this dichotomy in dimension 3, and it is then generalized to all dimensions in
[BEM15].

We point out that the exact definition of overtwistedness given in [BEM15] is rather
technical, and we will not need it explicitly in this thesis. We hence decided to give here
some equivalent conditions that we will actually use in the rest of this manuscript, namely
in Chapter 4 and Section 9.1. For this, we need to first recall the following definition:

Definition 2.7 ([Nie06]). Let S be a closed smooth manifold of dimension n and λ the
standard Liouville form on T ∗S. Consider also the contact form αot := cos rdz+r sin rdθ
on R3, where we use cylindrical coordinates (r, θ, z), and let D be the disk {z = 0, r ≤ π}
inside (R3, kerα). We call plastikstufe with core S, and denote it PS, the submanifold
D×S ⊂ R3×T ∗S together with the germ of contact structure along it given by ker(α+λ)
on R3 × T ∗S.

We can now recall the two formulations of overtwistedness in high dimensions that
we will need in the following:

Theorem 2.8 ([CMP15, Hua17]). Let (V, ξ) be a (2n+1)-dimensional contact manifold,
and αot := cos rdz+r sin rdϕ on R3, where we use cylindrical coordinates (r, ϕ, z). Then,
the following are equivalent:
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1. (V, ξ) is overtwisted (in the sense of [BEM15]);

2. there is a contact embedding (R3×Cn−1, ker(αot+λstd) →֒ (V, ξ), where λstd is the
standard Liouville form

∑n−1
i=1 r

2
i dϕ on Cn−1;

3. there is a embedding (respecting the germs of contact structures) of a plastikstufe
PS into (V, ξ).

We point out that [CMP15] contains the equivalence between points 1, 2 and 3, with
the additional hypothesis of PS having spherical core and trivial rotation; then, [Hua17]
proves that this additional hypothesis on PS is not needed for the above equivalence.
In Sections 4.3 and 9.1, we will actually use more specifically the following result, which
is used in [CMP15] in order to prove the equivalence between points 1 and 2 above:

Theorem 2.9 ([CMP15, Theorem 3.1]). Let (V 2n+1, ξ = kerα) be overtwisted. Then,
(V × C, ker(α+ λstd)) is overtwisted too.

The interest in the distinction between overtwisted and tight is the fact, already
pointed out above, that the class of overtwisted contact structures satisfy an h-principle
with respect to the problem of constructing contact structures.
In order to give a specific statement, we need to introduce a formal equivalent of contact
structures, which we will need also in Section 4.3:

Definition 2.10. An almost contact structure is a couple (ξ, [ω]), where ξ is a hyperplane
field on V , ω is a symplectic structure on ξ and [ω] is its conformal class.

We recall that the conformal class of ω is defined by the following relation: ω1 ∼ ω2

if there is a smooth positive function f : V → R such that ω2 = fω1.
Notice that, given a contact structure ξ on V and a contact form α defining it, the
conformal class [dα|ξ] does not depend on the choice of α defining ξ; it is hence called
natural conformal symplectic structure on ξ and denoted by CSξ. In particular, we have
a natural inclusion of the space of contact structures in the space of almost contact
structures given by ξ 7→ (ξ,CSξ).

As it will be used in the following chapters, we also point out that each almost contact
structure (ξ, [ω]) admit a complex structure J (i.e. a J ∈ End(ξ) such that J2 = − Id)
which is tamed by [ω] (i.e. [ω] is positive on complex lines). Moreover, the space of such
J is contractible and, in particular, (ξ, [ω]) have well defined Chern classes; this will be
used in Part I.

As anticipated in Chapter 1, overtwisted contact structures satisfy the following h-
principle:

Theorem 2.11 ([Eli89, BEM15]). The natural inclusion of the space of overtwisted
contact structures in the space of almost contact structures induces a bijection at the π0
level.

We point out that [Eli89, BEM15] actually contains a more general parametric h-
principle; though, this will not be needed in the following.

2.3 Different shades of fillability

Among tight structures, one can further recognize a special subclass: the fillable contact
structures.

In the short introduction above, we described the notion of convex boundary of a
symplectic manifold, which, from the contact point of view, gives the notion of (strong)
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symplectic filling. As it will be the case in this thesis, depending on the particular
situation under consideration, it may be more convenient to replace this notion with a
stronger or a weaker one.
On the stronger side of the spectrum, we have the following:

Definition 2.12. A symplectic manifold (W,ω) is called a Liouville manifold if there is
an exhaustion W = ∪+∞

k=0Wk by compact domains and there is a global Liouville vector
field Z for ω which is complete and points outwards along the boundary of each Wk.
Moreover, in the case where W =Wk for a certain k, (W,λ := ιZω) is called a Liouville
(or exact) filling of (V = ∂W, ξ = ker(λ|∂W )).

We point out that the fact that λ|M is a positive contact form on M is equivalent to
the fact that the Liouville vector field Z of (W,λ) is positively transverse to V = ∂W .
Moreover, this notion can also be strengthened further:

Definition 2.13. A Weinstein manifold is the data of (W,ω,Z, ψ), where (W,ω) is a
symplectic 2n-dimensional manifold, ψ is an exhausting (i.e. proper and bounded from
below) Morse function on W and Z is a Liouville vector field for (W,ω) which is gradient-
like for ψ. Given a regular value c for ψ, (M := ψ−1(c), ker(ιZω|M )) is said to admit the
Weinstein filling (ψ−1((−∞, c]), ω, Z, ψ).

The complex counterpart of Weinstein structures are the following:

Definition 2.14. A Stein manifold is the data of (W,J, ψ), where (W,J) is a complex
manifold and ψ : W → R is exhausting and J-convex.

We recall that dCψ := dψ◦J ∈ Ω1(W ), and that ψ is called J-convex if ωψ := −ddCψ
is a symplectic form on W which is compatible with J , i.e. such that gψ(., .) := ωψ(., J.)
is a Riemannian metric on W .

As we will never be interested in the integrability of almost complex structures, we
will actually only need the following weaker notion:

Definition 2.15. An almost Stein manifold is the data of (W,J, ψ), where (W,J) is an
almost complex manifold with boundary, ψ : W → R is J-convex, ∂W is a regular level
set of ψ and J is ωψ compatible, where ωψ := −ddJψ.

Notice that there is a preferred Liouville vector field Zψ for ωψ, given by the symplectic
dual of −dJψ.

In Section 3.3, we will use the following result on Weinstein structures:

Theorem 2.16. Let W be a smooth 2n-dimensional smooth manifold with boundary.
Every Weinstein structure (ω,Z, ψ) on W is homotopic, in the space of Weinstein struc-
tures with fixed exhausting function ψ, to a Weinstein structure (ωψ, Zψ, ψ) coming from
an almost Stein structure (J, ψ).

The above theorem, which can in some sense be considered a “folklore” result in the
field, is a weaker form of [CE12, Theorem 1.1], which gives a genuine Stein structure.

In the rest of the manuscript we will also need another version of the fillability con-
dition, which is weaker than all those recalled above.
Let (V 2n+1, ξ) be a contact manifold and (W 2n+2, ω) a symplectic manifold such that
V = ∂W . Denote by ωξ the restriction of ω to ξ and by CSξ the standard conformal
symplectic structure on ξ, i.e. the conformal class of dα|ξ, for an arbitrary 1-form α
defining ξ. We point out that CSξ is well defined because independent of such a choice
of α.
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Definition 2.17 ([MNW13]). We say that (W,ω) weakly fills (V, ξ), or that ω weakly
dominates ξ, if ωξ is symplectic on ξ and ωξ +CSξ is a ray of symplectic structures on ξ.

Another way to formulate this condition is the following: ω weakly dominates ξ =
kerα if and only if α ∧ (ωξ + τdα)

n
> 0 for all τ ≥ 0. This will be the formulation we

will actually use in the following, as it is more computation-friendly.

2.4 Open books in contact geometry

We recall that an open book decomposition on a manifold V is a pair (B,ϕ), where B
is a codimension 2 submanifold and ϕ : V \ B → S1 is a fibration, such that there is a
neighborhood B × D2 of B in V on which ϕ becomes B ×

(
D2 \ {0}

)
→ S1 given by

(q, r, θ) 7→ θ, where (r, θ) are polar coordinates on D2. Moreover, for each θ ∈ S1, the
closure ϕ−1(θ) is called a page of (B,ϕ).

Notice that an open book decomposition (B,ϕ) of V determines a unique element
of the mapping class group of the page F , called the monodromy of the open book.
Following for instance [Gir17], this can be seen as follows.
Consider X a spinning vector fields for (B,ϕ), i.e. a vector field X on V such that:

• X = 0 along B and dϕ(X) = 1 on V \B;

• X lifts to a smooth vector field on the manifold with boundary obtained from V
by a real oriented blowup along B.

Then, the restriction of the flow of X at time 1 gives a diffeomorphism of the page F ,
relative to B. Moreover, as the set of spinning vector fields for (B,ϕ) is an affine space,
the isotopy class of this diffeomorphism depends only on (B,ϕ). This mapping class is
the monodromy of the open book (B,ϕ).

The link between open book decompositions and contact geometry is captured by the
following notion:

Definition 2.18 ([Gir02]). Let (V, ξ) be a contact manifold. An open book decompo-
sition (B,ϕ) is said to support the contact structure ξ if the following conditions are
satisfied:

1. B is a contact submanifold of (V, ξ);

2. there is a contact form α defining ξ such that, for each θ ∈ S1, dα|ϕ−1(θ) is a positive
symplectic form on the fiber ϕ−1(θ);

3. for each θ ∈ S1, the orientation on B induced by ξ coincides with its orientation as
boundary of the symplectic manifold (ϕ−1(θ), dα|ϕ−1(θ)).

Such a contact form α is said to be adapted to the open book (B,ϕ) of V .

The above definition is interesting due to the following (deep) result:

Theorem 2.19 ([Gir02]). Each contact structure on a closed manifold is supported by
an open book decomposition.

According to [Gir02], such a supporting open book is moreover unique up to stabi-
lization in the case of 3-dimensional contact manifolds; as we will need it in Section 9.2,
we now give a statement for this uniqueness property.
As explained in [GG06], the following result is essentially due to Stallings:
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Theorem 2.20 ([Sta78]). Let Σ be a compact surface with boundary in a manifold M
and δ0 a properly embedded arc in Σ. Let also Σ′ ⊂ M be obtained by plumbing a
positive/negative Hopf band to Σ, i.e. if Σ′ = Σ∪A± where A± is an annulus in M such
that

1. the intersection A± ∩ Σ is a tubular neighborhood of δ0,

2. the core curve of A± bounds a disk in M \Σ and the linking number of the boundary
components is ±1.

If Σ is a page of an open book decomposition (B,ϕ) of M , then Σ′ is also a page of an
open book (B′, ϕ′).

Following [Gir02], an open book (B′, ϕ′) is said to be a stabilization of (B,ϕ) if it is
obtained by (B,ϕ) via a finite sequence of plumbings of positive Hopf bands. Then, we
have the following:

Theorem 2.21 ([Gir02]). On a 3-dimensional closed manifold, two open book decompo-
sitions support the same contact structure if and only if they have isotopic stabilizations.

We point out that, in this manuscript, and more precisely in Section 9.2, we will
actually only need the easier part of this result, i.e. the fact that an open book and all
its stabilizations support the same contact structure.
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Chapter 3

On contact mapping classes of

infinite order

The aim of this chapter is to give a proof of Théorème I.A; we start by recalling its
setting and statement.

Let (F 2n−2, ωF , ZF , ψF ) be a Weinstein manifold and consider its stabilization (F ×
C, ωF ⊕ω0, ZF +Z0, ψF + |.|2

C
), where ω0 = rdr∧dϕ and Z0 = 1

2r∂r if we use coordinates

z = reiϕ ∈ C. Suppose that c > minψF is a regular value of ψ := ψF + |.|2
C

and let W
be the compact domain ψ−1((−∞, c]). We suppose also that there is an almost complex
structure JF on F tamed by ωF and such that (TF, JF ) is trivial as complex bundle over
F .
Consider now the Weinstein manifold (F×C×R×S1, ω′, Z ′, ψ′), where, using coordinates
(s, θ) ∈ R× S1, ω′ = ωF + ω0 + 2ds ∧ dθ, Z ′ = Z + s∂s and ψ′(p, z, s, θ) = ψ(p, z) + s2.
The preimage (ψ′)−1(c), which is diffeomorphic to the product of the double DW :=
W ∪∂W W of W and S1, is naturally equipped with the contact structure ξ = kerα,
where α = ιZ′ω′|DW×S1 . Moreover, the diffeomorphism of F × C × R × S1 given by
(q, z, s, θ) 7→ (q, eiθz, s, θ) restricts to a well defined diffeomorphism Ψ of DW × S1.

Théorème I.A. Le difféomorphisme Ψ de DW × S1 est lissement isotope à un contac-
tomorphisme Ψc de (DW × S1, ξ) tel que, pour tout entier k 6= 0, sa k-ème itérée n’est
pas contacto-isotope à l’identité.

This chapter is organized as follows. Section 3.1 describes how, given a Liouville
domain W , one can naturally construct an explicit Liouville manifold having DW × S1

as convex boundary, as well as contactomorphisms of the latter; this will then be used
in the case of Weinstein domains in the proof of Théorème I.A.
In Section 3.2 we describe a simple invariant, of homotopical nature, for (contact-isotopy
classes of) contactomorphisms, introducing the notion of families of Lagrangian bases.
This invariant will then be used especially in the case of stably trivial contact structures.
Then, in Section 3.3 we prove Théorème I.A recalled above.

3.1 Product of doubled Liouville domains and S1

Let Ŵm be a smooth manifold and f : Ŵ → R be a proper and bounded from below
function which is also a regular equation of a (cooriented) hypersurface Mm−1 ⊂ Ŵ , i.e.
a smooth proper function transverse to 0 and such that M = f−1(0) (with coorientation).
Denote then by Wm the compact submanifold f−1((−∞, 0]) of Ŵ .
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Definition 3.1. We call f -double of W , and denote it by DfW , the smooth manifold
given by {(p, s) ∈ Ŵ × R | s2 + f(p) = 0}.

Notice that this set is indeed a smooth submanifold of W × R because the function
W × R → R given by (p, s) 7→ s2 + f(p) is transverse to 0.
Indeed, one can always find a vector field Z on Ŵ which is boundary-gradient-like for
f , i.e which satisfies df(Z) ≥ 0 everywhere on Ŵ and df(Z) > 0 along M = f−1(0):
there is a vector field Z ′ on a neighborhood U of the (cooriented) hypersurface M such
that df(Z ′) > 0 on U , and we can choose Z to be Z ′ multiplied by a non-negative
cutoff function χ supported in U . Then, d(s2 + f)(s∂s + Z) = 2s2 + df(Z) > 0 along
DfW ⊂ Ŵ × R, which shows that DfW is a regular hypersurface.

Notation 3.2. If f : Ŵ → R, we denote by fD : Ŵ × R → R the function fD(p, s) =
s2 + f(p); in particular, if f is an equation of the hypersurface M ⊂ Ŵ , then fD defines
the hypersurface DW ⊂ Ŵ × R, as shown above.
In a similar way, if Z is a vector field on Ŵ , we denote by ZD the vector field Z + s∂s
on Ŵ × Rs; if Z if boundary-gradient-like for f , then so is ZD for fD.

We have the following uniqueness property of the f -double:

Lemma 3.3. Let f0, f1 : Ŵ → R be two regular equations for M and Z be a vector field
on Ŵ which is boundary-gradient-like for both f0 and f1. For each t ∈ [0, 1], denote by
ft the function tf1 + (1− t)f0. Then the flow of the [0, 1]t-parametric vector field

Xt :=
f1 − f0
dfDt (ZD)

ZD

on Ŵ ×R \ {s = 0, df0(Z) = df1(Z) = 0} gives an isotopy which, at time t = 1, restricts
to a diffeomorphism from Df1W to Df0W .

Lemma 3.3 tells that DfW does not depend on f , up to diffeomorphism. By a slight
abuse of notation, we may hence write DW and simply talk about the double of W .

Proof (Lemma 3.3). Notice that if f0, f1 : Ŵ → R are two regular equations for M
(inducing the same coorientation on it), then so is ft = tf1+(1− t)f0, for each t ∈ [0, 1].
Moreover, if Z is boundary-gradient-like for both f0, f1, then ZD is also boundary-
gradient-like for fDt , for each t ∈ [0, 1].
In particular, the smooth function G : Ŵ×R×[0, 1] → R, given by G(p, s, t) = s2+ft(p),
is transverse to 0: indeed, dG(ZD) > 0 along G−1(0) =

⋃
tDftW × {t}. Then, G−1(0)

is a smooth submanifold of Ŵ ×R× [0, 1], which is moreover contained in Ŵ ×R \ {s =
0, df0(Z) = df1(Z) = 0}. In particular, the (well defined on ImG) vector field −∂t +Xt

is tangent to G−1(0) and the restriction of its flow at time 1 gives a diffeomorphism from

G−1(0)∩
(
Ŵ × R× {1}

)
= Df1W ×{1} to G−1(0)∩

(
Ŵ × R× {0}

)
= Df0W ×{0}, as

wanted.

Let now (Ŵ 2n, λ) be a Liouville manifold and denote by Z its Liouville vector field.
Consider also a smooth proper function f : Ŵ → R, bounded from below and such that
Z is boundary-gradient-like for f ; denote by W the (compact) submanifold f−1((−∞, 0])

of Ŵ . Notice that (M,η = ker(λ|M )) is a contact manifold and that (W,λ) is a Liouville
filling of it.

Consider now the Liouville manifold (Ŵ ×Rs×S1θ, λ+2sdθ), where Rs and S1θ denote
the manifolds R and S1 with coordinates s and θ respectively. Notice that the vector
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field ZD = Z + s∂s and the function can naturally be seen on Ŵ × R × S1. Moreover,
ZD is Liouville for λ+2sdθ and transverse to DfW × S1 = {fD = 0} ⊂ Ŵ ×R× S1; so,
αf := (λ+2sdθ)|DfW×S1 is a contact form on DfW × S1. In analogy with Notation 3.2,

we will also denote the Liouville form λ+ 2sdθ on Ŵ × R× S1 by λD in the following.

Lemma 3.4. Let f0, f1 : Ŵ → R be two regular equations for M such that the Liouville
vector field Z is boundary-gradient-like for both f0, f1 and, for t ∈ [0, 1], denote by ft the
function tf1 + (1− t)f0. Then, the flow of the [0, 1]t-parametric vector field

Xt :=
f1 − f0
dfDt (ZD)

ZD

on Y := Ŵ × R \ {s = 0, df0(Z) = df1(Z) = 0} induces an isotopy of Y × S1 which,
at time t = 1, restricts to a contactomorphism from (Df1W × S1, ker(αf1)) to (Df0W ×
S1, ker(αf0)).

We may hence drop the f in the notation and just denote it (DW × S1, kerα) from
now on.

Proof (Lemma 3.4). According to Lemma 3.3, the only thing to show is that the flow
ψt of Xt on Y × S1 preserves ker(λD). An explicit computation shows that LXt

(λD) =
f1−f0
dfD

t (ZD)
λD, which implies that ψ∗

t λ
D = htλ

D for a certain function ht : Ŵ × R → R>0,
as wanted.

Remark. In [GS10], Geiges and Stipsicz construct, more generally, contact forms on
(W1 ∪M W2) × S1, where (W1, λ1) and (W2, λ2) are Liouville domains with the same
(strict) contact boundary (M,α); the contact structure they obtain in the particular case
where W1 =W2 and λ1 = λ2 (and ∂W1 identified with ∂W2 via the identity) is the same,
up to isotopy, as the contact structure on DW × S1 that we described above.
Even though the construction described here is less general, it has the advantage of in-
volving a natural Liouville filling of the strict contact manifold (DW × S1, α), which will
be useful in Section 3.3; notice, however, that one cannot always expect a presentation
involving a symplectic filling for the construction in [GS10]. For instance, in the case
W1 = D2 and W2 = Σg \D2, where Σg is a closed surface with genus g 6= 0, the theory of
convex surfaces by Giroux tells that the contact structure on (W1 ∪S1 W2)× S1 obtained
as in [GS10] is overtwisted: indeed, it is the unique S1-invariant contact structure on
Σg × S1 such that each Σg × {pt} is a convex surface with dividing set consisting of a
homotopically trivial circle.

We now exhibit an explicit natural way to construct (strict) contactomorphisms of
(DW × S1, ξ := kerα).
Consider an S1-family of diffeomorphisms (ϕθ)θ∈S1 of Ŵ , each of which preserves both λ
and f : Ŵ → R; we do not assume that they are the identity on M = ∂W . Take then the
diffeomorphism Ψ: DW ×S1 → DW ×S1 induced by the restriction of Ψ̂ : Ŵ ×R×S1 →
Ŵ ×R× S1 given by Ψ̂(p, s, θ) = (ϕθ(p), s, θ); notice that this is well defined because ϕθ
preserves f .

Lemma 3.5. The flow ψtY of the vector field

Y =
λ(∂ϕθ

∂θ )

2 dfD(ZD)
(2sZ − df(Z) ∂s)

gives a smooth isotopy Ψ ◦ψtY from Ψ = Ψ ◦ψ0
Y to a contactomorphism Ψc := Ψ ◦ψ1

Y of
(DW × S1, ξ = kerα).
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Notice that Y , given above as a section of the tangent bundle of Ŵ × R× S1 \ {s =
0, df0(Z) = df1(Z) = 0} is indeed tangent to (the DW factor of) DW × S1.

Proof (Lemma 3.5). For notational ease, in the following we denote by Xθ the vector
field ∂ϕθ

∂θ and by hθ the function λ(Xθ) defined on Ŵ .
We start by noticing that we have the identity dhθ = −ιXθ

dλ: indeed, ϕ∗
θλ = λ for

each θ ∈ S1, so that LXθ
λ = 0, which is equivalent to dhθ = −ιXθ

dλ. In particular, an
evaluation of the above identity on the Liouville vector field Z tells that dhθ(Z) = hθ.

An explicit computation gives that Ψ̂∗λD = λ+(2s+ hθ) dθ, so that Ψ∗ [λD|T (DW×S1)

]
=

[λ+ (2s+ hθ) dθ] |T (DW×S1). Denote then, for all t ∈ [0, 1], by λDt the 1-form λ + (2s +

thθ)dθ on Ŵ × R× S1 and by αt the 1-form λDt |T (DW×S1) on DW × S1.
We then prove that αt is a contact form for each t ∈ [0, 1]; for this, it’s enough to

prove that, for each t ∈ [0, 1], λDt is a Liouville form and that its Liouville vector field
ZD
t is transverse to DW × S1.

We can compute dλDt = dλ+2ds∧dθ+ tdhθ ∧dθ; then, it is easy to see that (dλDt )
n+1 =

2(dλ)n ∧ ds ∧ dθ, so that λDt is indeed a Liouville form on Ŵ × R × S1. Moreover, its
vector field Zt is just ZD: indeed, ιZDdλDt = ιZdλ+ tdhθ(Z)dθ + 2sdθ, which is exactly
equal to λDt , because dhθ(Z) = hθ, as remarked above, and ιZdλ = λ. In particular,
Zt = ZD is transverse to DW × S1, as wanted.

Now, according to (the proof of) Gray’s theorem, the flow of the (a priori time-
dependent) vector field Xt such that αt(Xt) = 0 and ιXt

dαt|kerαt
= −α̇t|kerαt

gives an
isotopy that pulls back kerαt to kerα0. Hence, it’s enough to show that the vector field
Y in the statement satisfies these two conditions.
An explicit computation gives that dfD(Y ) = 0 and λDt (Y ) = 0, i.e. that Y ∈ kerαt =
kerλDt ∩ T (DW × S1). Moreover, we can compute

ιY dλ
D
t =

hθ
2dfD(ZD)

[2sλ+ 2ts dhθ(Z) dθ − 2df(Z)dθ]

(i)
=

hθ
2dfD(ZD)

[
2sλDt − 4s2dθ − 2df(Z)dθ

]

(ii)
=

2shθ
2dfD(ZD)

λDt − d

dt
λDt ,

where for (i) we used that dhθ(Z) = hθ and for (ii) we used that dfD(ZD) = 2s2+df(Z)
and d

dtλ
D
t = hθdθ. In particular ιY dαt|kerαt

= −α̇t|kerαt
, as wanted.

3.2 Families of Lagrangian bases

Let V be a smooth (2n+ 1)-manifold and ξ a contact structure on V . Given a compact
manifold Y m, we call family of Lagrangian bases of ξ indexed by Y , and we denote it
by L, the data of a smooth map γ : Y → V and, for j = 1, . . . , n, of smooth maps
Xj : Y → ξ such that the following diagram commutes

ξ

Y V
γ

Xj

and such that, for each q ∈ Y , the X1(q), . . . , Xn(q) are R-linearly independent and
generate a Lagrangian subspace of (ξp, (CSξ)p). Here, CSξ is the natural conformal
symplectic structure on ξ (see the discussion after Definition 2.10); in particular, (CSξ)p

26



CHAPTER 3. ON CONTACT MAPPING CLASSES OF INFINITE ORDER

is a conformal class of symplectic alternating forms on ξp and, hence, has a well defined
class of (isotropic and) Lagrangian subspaces.

We point out that if f : (V, ξ) → (V, ξ) is a contactomorphism, then f∗L := (f ◦
γ, df(X1), . . . , df(Xn)) is also a Y -family of Lagrangian bases of ξ: indeed, f preserves
the conformal symplectic structure CSξ on ξ.
Moreover, if ft : (V, ξ) → (V, ξ) is a contact-isotopy from f0 = Id to f1 = f , then (ft)∗L
is a path of Y -families of Lagrangian bases of ξ from L to f∗L. In other words, we have
the following obstruction to contact-isotopies:

Lemma 3.6. Let f : (V, ξ) → (V, ξ) be a contactomorphism. If there is a Y -family of
Lagrangian bases L for ξ such that f∗L is not homotopic (among families of Lagrangian
bases) to L, then f is not contact-isotopic to the identity.

Let now J be a complex structure on ξ tamed by CSξ. If L = (γ,X1, . . . , Xn) is a Y -
family of Lagrangian bases for ξ then, for each q ∈ Y , one has ξγ(q) = 〈X1(q), . . . , Xn(q)〉C.
Suppose moreover that (ξ, J) is stably trivial, i.e. that there is a k ∈ N and an isomor-
phism of complex vector bundles Φ: (ξ, J) ⊕ εkV

∼−→ εn+kV over V ; here, εV is the trivial
complex line bundle V × C → V and εmV denotes the direct sum of εV with itself m
times. We point out that the property that (ξ, J) is stably trivial is not dependent on
a specific choice of J : indeed, the space of complex structures on ξ which are tamed by
CSξ is contractible, hence (ξ, J) and (ξ, J ′) are isomorphic as complex vector bundles if
J, J ′ are both tamed by CSξ.
Then, if (e1, . . . , ek) are the sections of εkV which give, at each point p ∈ V , the canonical
bases of the fiber (εkV )p = Ck, the image of Lstab := (γ,X1, . . . , Xn, e1 ◦ γ, . . . , ek ◦ γ) via
Φ gives, pointwisely, a bases of the vector space Cn+k given by the fibers of εn+kV over
each point of the image of γ. In particular, considering the linear endomorphism of Cn+k

obtained by sending the canonical basis to the basis given, pointwisely, by the image of
Lstab via Φ, we then obtain a smooth map M : Y → GLn+k(C).
In the following, we say that the family Lstab is the (e1, . . . , ek)-stabilization of L (some-
times omitting the sections (e1, . . . , ek) of εkV if there is no ambiguity) and denote it
more concisely by L⊕ (e1, . . . , ek). We will also say that the map M is the Y -family of
(invertible) matrices associated (via Φ) to Lstab.

Given a contactomorphism f : (V, ξ) → (V, ξ), the stabilization (f∗L)stab = (f ◦
γ, df(X1), . . . , df(Xn), e1 ◦f ◦γ, . . . , ek ◦f ◦γ) gives, via Φ, another Y -family of invertible
matrices, which we denote f∗M : Y → GLn+k(C). As this can also be done parametri-
cally, analogously to Lemma 3.6 above, we obtain:

Lemma 3.7. Let (V 2n+1, ξ) be a contact manifold and J an almost complex structure
on ξ such that (ξ, J) is stably trivial, via an isomorphism Φ: (ξ, J) ⊕ εkV → εn+kV of
complex vector bundles over V . Let also f : (V, ξ) → (V, ξ) be a contactomorphism and
L = (γ,X1, . . . , Xn) be a Y -family of Lagrangian bases for ξ.
If the Y -family of matrices associated via Φ to the (e1, . . . , ek)-stabilization (f∗L)stab is
not homotopic, as map Y → GLn+k(C), to the Y -family of matrices associated via Φ to
the (e1, . . . , ek)-stabilization Lstab, then f is not contact-isotopic to the identity.

3.3 Examples of infinite order contact mapping classes

The aim of this section is to prove Théorème I.A, recalled in the beginning of the chapter;
in particular, we will use the notations introduced in its statement.

We start by claiming that we can make the following additional assumption: the
Weinstein structure (F, ωF , ZF , ψF ) comes from an almost Stein structure (JF , ψF ) (i.e.
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ωF is equal to −ddCψF and ZF is equal to the vector field ωF -dual to λF := −dCψF ;
see Definition 2.15), such that moreover (TF, JF ) is trivial as complex vector bundle.
We will indeed need this compatibility between the almost complex structure JF which
trivializes TF and the Weinstein structure (ωF , ZF , ψF ) in the proof of Théorème I.A.
Here’s how these additional assumptions can be arranged.
According to Theorem 2.16, there is an almost Stein structure (J ′

F , ψF ) on F such that
the Weinstein structure (−ddCψF , ZF , ψF ) is Weinstein homotopic, with fixed function
ψF , to the Weinstein structure (ωF , ZF , ψF ) in the statement of Théorème I.A. Because
−ddCψF and ωF are homotopic as symplectic structures, (a slight adaptation of the
proof of) the contractibility of the space of almost complex structures tamed by a given
symplectic form also gives that J ′

F is homotopic to JF ; (TF, J ′
F ) is then isomorphic, as

complex bundle, to (TF, JF ) and is, in particular, trivial.
Because the Weinstein structure (ω0, Z0, |.|2) on C already comes from the almost Stein
(actually, Stein) structure (i, |.|2), we can moreover apply the Weinstein homotopy only
on the F -factor of F ×C in order to ensure the same assumption on the manifold F ×C.
Notice that this Weinstein homotopy do not change W , Ψ and (up to isotopy) the con-
tact structure on DW × S1 defined in Théorème I.A, because the homotopy is along the
F -factor and with ψF fixed.

With a little abuse of notation, we will hence denote J ′
F again by JF ; let also J :=

JF⊕i on F×C. Notice that J := JF⊕i can be further extended to JD on F×C×Rs×S1θ
by defining JD(∂s) := ∂θ on T (Rs × S1θ). Notice that (JD, ψD = ψ + s2) is an almost
Stein structure on F ×C×R×S1 such that ωD = dλD, where λD := −dCψD = λ+2sdθ,
and ZD = Z + s∂s is the Liouville vector field of λD.

By the hypothesis of Théorème I.A (and the above assumption), there is an isomor-
phism of complex vector bundles ν : (TF, JF )

∼−→ εn−1
F over F , where εn−1

F is the trivial
complex vector bundle (F×Cn+1, Jstd). Moreover, ν naturally extends to a trivialization

µ :
(
T
(
F × C× R× S1

)
, JD) ∼−→ εn+1

F×C×R×S1
(3.1)

such that, for each (q, z, s, θ) ∈ F × C× R× S1, one has:

• the following diagram commutes

(TqF, JF )
(
T(q,z,s,θ)

(
F × C× R× S1

)
, JD)

(εn−1
F )q = Cn−1

(εn+1
F )q = Cn+1 (εn+1

F×C×R×S1
)(q,z,s,θ) = Cn+1

νq

i

µ(q,z,s,θ)

j

Id

where i and j are the natural inclusions given by TqF = TqF ⊕ {(0, 0, 0)} ⊂
T(q,z,s,θ)

(
F × C× R× S1

)
and Cn−1 = Cn−1 × {(0, 0)} ⊂ Cn+1;

• µ(q,z,s,θ)(∂x) = (0, . . . , 0, 1, 0) ∈ Cn+1, where we use here coordinates (x, y) on the
factor C of F × C× R× S1,

• µ(q,z,s,θ)(∂s) = (0, . . . , 0, 1) ∈ Cn+1, where s is the coordinate on the factor R of
F × C× R× S1.
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Let now a := c−min(ψF )
4 > 0 (the exact value of this parameter will intervene later in

the proof), and consider a non-decreasing smooth cut-off function χ : R → [−1, 1], equal
to 1 on (2a,+∞), equal to −1 on (−∞,−2a), and such that χ(x) = x for x ∈ (−a, a).
Then, the function f : F × C → R defined by f := χ(ψ − c) is a regular equation of
M = f−1(0) = ψ−1(c); in particular, ZD = Z + s∂s on Ŵ × Rs is transverse to DfW
too. Notice also that DfW is essentially a “flattened” version of Dψ−cW , as Figure 3.1
illustrates.

Ŵ

Rs

Dψ−cW

DfW

W−

s = +1

s = −1

ZD

Figure 3.1: DfW and Dψ−cW inside Ŵ ×Rs and the vector field ZD, transverse to both;
W− := DfW ∩ {s = −1} that will appear in Step 1 is also represented.

As we would like to prove Théorème I.A using the equation f instead of ψ − c, we
need the following:

Lemma 3.8. If the conclusion of Théorème I.A holds with the special choice of equation
f for DfW ⊂ F × C× R, then it holds also for Dψ−cW defined by ψ − c (i.e. as in the
statement of Théorème I.A).

Proof. Let f0 := ψ−c and f1 := f = χ(ψ−c). According to Lemma 3.4, the flow ψ1
Xt

of

the vector field Xt =
f1−f0
dfD

t (ZD)
ZD gives a contactomorphism from (Df0W × S1, ker(αf0))

to (Df1W × S1, ker(αf1)).
Hence, in order to prove Lemma 3.8, it’s enough to show that the diffeomorphism ψ1

Xt
◦

Ψ ◦ (ψ1
Xt

)−1 of Df1W is still induced by the diffeomorphism F × C × R × S1 given by
(q, z, s, θ) 7→ (q, eiθz, s, θ). But this is indeed the case, because the flow ψ1

Xt
fixes the

angular component of the C-factor as well as the S1-factor of the product F ×C×R×S1,
and hence commutes with (q, z, s, θ) 7→ (q, eiθz, s, θ).

Let then α, Ψ, Y and Ψc be obtained as in Section 3.1 from the Liouville manifold
(F × C, λ), the regular equation f of M and the family {ϕθ}θ∈S1 of diffeomorphisms of
F × C which is given by (p, z) 7→ (p, eiθz).
We know from Section 3.1 that, inside the Liouville manifold (F × C × Rs × S1θ, λ

D =
λ+2sdθ), the preimage of (−∞, 0] via F ×C×Rs × S1θ → R, (p, s, θ) 7→ s2 + f(p), gives
a Liouville filling of (DfW × S1θ, αf ).
Moreover, as we are under the hypothesis that the Liouville structure on F comes from
an almost Stein structure, the compact manifold {fD ≤ 0} = {s2+ψ ≤ c}, together with
the almost complex structure induced by the ambient almost Stein manifold (F×C×R×
S1, JD), is actually an almost Stein filling of (DfW × S1θ, αf ). In particular, λD is equal
to −dCψD on a neighborhood of {fD = 0} = {s2 + ψ = c}, which guarantees that the
almost complex structure JD on F ×C×R×S1 restricts to a well defined endomorphism
of kerαf along DfW × S1θ; this restriction is then automatically tamed by dαf |kerαf

.
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Remark. If we relax the condition in Théorème I.A of F being a Weinstein manifold to
F being a Liouville manifold, we may not be able to find a JD on F × C × R × S1 that
both restricts to kerαf and splits as JF ⊕ i⊕JD|T (R×S1) at the same time; these are both
conditions we will need in the following.

Recall now that Ψc = Ψ ◦ψ1
Y , with ψtY the flow at time t of Y defined in Lemma 3.5.

Then, in order to show that, for each k 6= 0, Ψkc is not contact isotopic to the identity,
we are going to proceed by steps as follows:

1. Let W− := DfW ∩ {s = −1} ⊂ F ×C×R (see Figure 3.1); notice that it has non-
empty interior by construction of f . We then describe a S1-family of Lagrangian
bases L for ker(αf ) on W− × S1.

2. We remark that, for all t ≥ 0, ψtY (W− × S1) ⊂ W− × S1, and we describe the
behavior of the restriction of Ψc, and its iterates, to W− × S1. This allows us to
describe, for all k ≥ 1, the pushforward (Ψkc )∗L of L via the k-th iterate of Ψc.

3. We describe, for each k ≥ 0, the family of matrices Bk : S1 → GLn+1(C) associated,
via the trivialization µ, to the stabilization (Ψkc )∗L ⊕ ZD. We then show that, if
k ≥ 1, Bk is not homotopically trivial as map S1 → GLn+1(C).

According to Lemma 3.7, this proves that, for all k ≥ 1, the k-th iterate of the contac-
tomorphism Ψc is not contact isotopic to the identity. The space of contactomorphism
being a group, this implies the same conclusion for all k 6= 0.

Step 1 We recall that there is a trivialization ν : (TF, JF ) → (F×Cn−1); let (w1, . . . , wn−1)
be the inverse image of the sections (e1, . . . , en−1) that give, fiber-wisely, the canonical
complex basis for εn−1

F . Then, we have the following:

Lemma 3.9. There are q0 ∈ F and x0 ∈ R>0 ⊂ C such that (q0, x0,−1) ∈ W− ⊂
F × C × R and L :=

(
γ, v1, . . . , vn−1, ∂θ(θ) +

2
x0
∂y(x0)

)
is an S1-family of Lagrangian

bases for ker(αf ), where γ : S1 →W−×S1 is defined by γ(θ) = (q0, x0,−1, θ), vj denotes
wj(q0) ∈ Tq0F for each j = 1, . . . , n − 1, and (x, y) are coordinates on the factor C of
F × C× R× S1.

Proof (Lemma 3.9). Let p0 = (q0, x0) ∈ M = ψ−1(c − 3a) ⊂ F × C, where q0 ∈ F is a
point of (global) minimum for ψF and x0 ∈ R>0 ⊂ C satisfies ψF (q0) + x20 = c− 3a.
Recall that c > min(ψF ) is the regular value for ψ in the statement of Théorème I.A;
also, a = c−min(ψF )

4 was introduced in the choice of regular equation f for M and satisfies
c− 3a > minψF , so that an x0 > 0 as above actually exists.
Because W− = DW ∩ {s = −1} ⊂ F × C × Rs, this proves the existence of γ as in
Lemma 3.9.

We now have to prove that L is an S1-family of Lagrangian bases for ker(αf ).
Because q0 is a (global) minimum of ψF , we have λD = x20dϕ−2dθ at the point γ(θ) (here,
we use coordinates (r, ϕ) for the factor C of F ×C×R× S1). In particular, ker(αf )|γ(θ),
seen as a sub-bundle of Tγ(θ)

(
F × C× R× S1

)
= Tq0F ⊕Tx0C×T−1R×TθS1, is equal to

Tq0F ⊕ SpanC

(
∂θ(θ) +

2
x0
∂y(x0)

)
(recall that ∂ϕ(x0) = x0∂y(x0)). This means exactly

that L is a family of Lagrangian bases for ker(αf ), as wanted.

Step 2 This step consists in the following two lemmas:
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Lemma 3.10. The contactomorphism Ψc of (DW ×S1, kerαf ) satisfies Ψc(W−×S1) ⊂
W− × S1. More precisely, for each k ≥ 0, Ψkc has the following form:

Ψkc : W− × S1 →W− × S1

(q, reiϕ,−1, θ) 7→ (Qk(q, r), Rk(r)e
i(ϕ+kθ),−1, θ)

Lemma 3.11. Let γ, (v1, · · · , vn−1) and L be as in Lemma 3.9 and, for each k ≥
0, Qk and Rk as in Lemma 3.10. Then, for each k ≥ 0, there are a complex ba-
sis (vk1 , . . . , v

k
n−1) of TQk(q0,x0)F and a real number sk such that (Ψkc )∗L is given by(

Ψkc ◦ γ, vk1 , . . . , vkn−1, ∂θ(θ) + sk∂ϕ(rke
ikθ)
)
, where rk := Rk(x0).

Proof (Lemma 3.10). We give a proof by induction on k. The case k = 0 is trivial; notice
that it’s actually enough to show that the lemma holds for k = 1, as the inductive step
would then become immediate.
Indeed, if both Ψc and Ψkc can be written in the form given in the statement of Lemma 3.10,
it is immediate to check that the same is true for Ψk+1

c .
Let’s then analyze the case k = 1. Recall that Ψc = Ψ ◦ψ1

Y , where ψtY : DW × S1 →
DW × S1 is the flow of Y (given by Lemma 3.5) at time 1.
Notice that the function f is constant and s = −1 on W− × S1. Then, Y (which is
tangent to DfW × S1) restricts to − r2

2 ZF (q) − r3

4 ∂r(re
iϕ) on W− × S1; here, we use

polar coordinates z = reiϕ on the factor C.
In particular, the flow ψtY : DW × S1 → DW × S1 of Y at time t ≥ 0 satisfies ψtY (W− ×
S1) ⊂ W− × S1: indeed, Y has no component along ∂s, and its flow preserves the s-
coordinate, hence also W− × S1 = (DfW × S1) ∩ {s = −1}.
More precisely, at time t = 1, the embedding ψ1

Y : W− × S1 → W− × S1 can be written
as ψ1

Y (q, re
iϕ,−1, θ) = (Q(q, r), R(r)eiϕ,−1, θ), for some functions Q : F × C → F and

R : C → R, with Q and R both independent of the angular component ϕ on C.
Recalling that Ψ: F × C × R × S1 → F × C × R × S1 is given by Ψ(q, reiϕ, s, θ) =
(q, rei(ϕ+θ), s, θ), we then obtain an expression for Ψc = Ψ ◦ ψ1

Y which is exactly as in
the statement of Lemma 3.10 (with the choices Q1 = Q and R1 = R).

Proof (Lemma 3.11). We are going to describe who vk1 , . . . , v
k
n−1 and sk in the statement

are. For this, we use the expression for Ψkc given in Lemma 3.10.
Notice that Ψkc ◦ γ is given by θ 7→ (Q(q0, x0), Rk(x0)e

ikθ,−1, θ) ∈ W− × S1 ⊂
F×C×R×S1. An explicit computation also gives dΨk

c◦γ(θ)Ψ
k
c (∂θ(θ)) = ∂θ(θ)+k∂ϕ(rke

ikθ)

and dΨk
c◦γ(θ)Ψ

k
c (∂ϕ(x0)) = ∂ϕ(rke

ikθ), where rk = Rk(x0) as in the statement.
Then, if we choose sk := k + 2

x2
0

and vkj := d(q0,x0)Gk(vj) for each j = 1, . . . , n− 1, we

have that (Ψkc )∗L can indeed be written as in the statement of Lemma 3.11.

Remark 3.12. The informations in both Lemmas 3.10 and 3.11 could be made much
more precise, by computing explicitly the flow ψ1

Y .
For instance, the value of sk given at the end of the proof of Lemma 3.11 is k+ 2

x2
0
. One

can easily see that, in order for ∂θ(θ)+sk∂ϕ(rkeikθ) to be tangent to kerαf (which it has
to be, because image of a tangent vector via the differential of a contactomorphism), one
needs the equality k + 2

x2
0
= 2

r2
k

. An explicit computation of ψ1
Y would have given us an

explicit formula for Rk(r) such that rk = Rk(x0) satisfies this condition.
To improve the readability, we decided not to include these detailed informations, as the
content of the lemmas above is actually all we need for Step 3.

Step 3 The main ingredient of the last step is the following:
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Lemma 3.13. The family of matrices Bk : S1 → GLn+1(C) associated via the trivial-
ization µ (defined in Equation (3.1)) to the stabilization

(Ψkc )∗L⊕ ZD =
(
Ψkc ◦ γ, vk1 , . . . , vkn−1, ∂θ(θ) + sk∂ϕ(Rk(x0)e

ikθ), ZD(Ψkc ◦ γ(θ))
)

is given by matrices of the form

Bk(θ) =




B0,k b0,k b1,k
0 b2,ke

ikθ b3,ke
ikθ

0 b4,k b5,k


 ,

where b0,k, b0,k ∈ Cn−1, b2,k, . . . , b5,k ∈ C and B0,k ∈ GLn−1(C).

Proof (Lemma 3.13). Notice that ∂ϕ(rke
ikθ) = −rk sin(kθ)∂x(rkeikθ) +

rk cos(kθ)∂y(rke
ikθ) = rk(− sin(kθ) + J cos(kθ))∂x(rke

ikθ) and that ∂r(rke
ikθ) =

cos(kθ)∂x(rke
ikθ) + sin(kθ)∂y(rke

ikθ) = (cos(kθ) + J sin(kθ))∂x(rke
ikθ).

Then, Lemma 3.13 immediately follows from the expression for (Ψkc )∗L given in
Lemma 3.11 and from ZD(Ψkc ◦ γ(θ)) = 1

2Rk(x0)∂r(Rk(x0)e
i(ϕ+kθ))− ∂s(−1) .

Lemma 3.13 tells in particular thatBk is homotopically trivial as map S1 → GLn+1(C)
if and only if k = 0. Indeed, B0 is a constant map, and an easy computation tells that
det(Bk(θ)) = bke

ikθ, for a certain bk ∈ C \ {0} (notice that bk 6= 0 necessarily because
Bk(θ) ∈ GLn+1(C)); in particular, θ 7→ det(Bk(θ)) is homotopically non-trivial if k ≥ 1.
This concludes Step 3, hence the proof of Théorème I.A.
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Chapter 4

Contact mapping classes on

overtwisted manifolds

4.1 A general source of non-trivial contact mapping

classes

The aim of this section is to prove Théorème I.C, already stated in Chapter 1:

Théorème I.C. On considère une variété lisse W de dimension 2n ≥ 2 et une structure
de contact ξ sur la variété V := S1 ×W . On suppose que la première classe de Chern
c1(ξ) ∈ H2(V ;Z) est toroidale et que, pour tout entier k ≥ 2, la tirée en arrière π∗

kξ de ξ
via le revêtement à k-feuilles πk : S1×W → S1×W donné par πk(s, p) = (ks, p) satisfait
c1(π

∗
kξ) = k · c1(ξ) modulo le sous-module H2

ator(V ;Z) des classes atoroidales.
Alors, la transformation de contact f : (S1×W,π∗

kξ) → (S1×W,π∗
kξ) définie par f(s, p) =

(s+ 2π
k , p) est isotope à l’identité lissement mais pas parmi les contactomorphismes.

As each contactomorphism gives in particular an isomorphism of the underlying al-
most contact structures, Théorème I.C directly follows from the two following lemmas:

Lemma 4.1. Let (S1 ×W 2n, ξ) be a contact manifold. For each natural k ≥ 2, denote
by πk : S1 ×W → S1 ×W the k-fold cover πk(s, p) = (ks, p) and by f : (S1 ×W,π∗

kξ) →
(S1 ×W,π∗

kξ) the contactomorphism f(s, p) = (s+ 2π
k , p).

If f is contact-isotopic to the identity, then there is a contactomorphism

φ : (S1 ×W,π∗
kNξ)

∼−→ (S1 ×W,π∗
kN+1ξ) .

Lemma 4.2. Let (V := S1 ×W, ξ), πk and f be as in Lemma 4.1. If moreover c1(ξ)
is toroidal and c1(π∗

mξ) = m · c1(ξ) mod H2
ator(V ;Z) for every natural m ≥ 2, then π∗

mξ
and π∗

m+1ξ are not isomorphic as almost contact structures.

We now prove Lemmas 4.1 and 4.2 above.

Proof (Lemma 4.1). In order to find the desired contactomorphism φ, we use an idea
that already appeared in Geiges and Gonzalo Perez [GGP04] and in Marinković and
Pabiniak [MP16], and which consists in cutting off contact Hamiltonians on a particular
cover of the manifold we are working with.
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By hypothesis, the contactomorphism f : (S1 ×W,π∗
kξ) → (S1 ×W,π∗

kξ) defined by
f(s, p) = (s + 2π

k , p) is contact isotopic to the identity. Call (Fr)r∈[0,1] the isotopy, so
that F0 = Id, F1 = f and Fr is a contactomorphism for all r ∈ [0, 1].

Take now the universal cover Rs of the factor S1s of the manifold S1s × W . Then,
pull back π∗

kξ to a contact structure ηk on the covering Rs ×W of S1s ×W and lift the
contact isotopy Fr to a contact isotopy Φr of (Rs ×W, ηk) starting at the identity. Fix
a certain contact form βk for ηk and denote by Hr : Rs ×W → R the path of contact
Hamiltonians βk(Yr) associated to the contact vector field Yr generating the isotopy Φr
(see the discussions following Proposition 2.5).

Now, by compactness of W and [0, 1], there is an N > 0 such that Φ({0}s×W×[0, 1]r)
is contained in (−2 (N − 1)π,+∞)s ×W .

Consider then an ǫ > 0 very small and a smooth function ρ : R → R such that
ρ(x) = 0 for x < −2Nπ + ǫ and ρ(x) = 1 for x > −2 (N − 1)π − ǫ. We can then
construct a new contact Hamiltonian: Kr(s, p) := ρ(s) ·Hr(s, p), for all (s, p) ∈ Rs ×W .

We claim that the contact vector field Zr associated to this new Hamiltonian Kr

can be integrated to a contact isotopy (Ψr)r∈[0,1] of (Rs ×W, ηk) starting at the iden-
tity. Indeed, Zr is zero for s < −2Nπ + ǫ and equal to the contact field Yr for
s > −2 (N − 1)π−ǫ, which means in particular that it is integrable outside of a compact
set of Rs ×W (remark that Yr is trivially integrable, because it comes from a contact
isotopy); this implies integrability on all R ×W . Moreover, Ψr|{0}×W = Φr|{0}×W and
Ψr|{−2Nπ}×W = Id |{−2Nπ}×W for all r ∈ [0, 1].

In particular, Ψ1 maps [−2Nπ, 0]×W contactomorphically to [−2Nπ, 2πk ]×W , where
we consider on the domain and on the codomain the structure ηk.

Now, by the periodicity of ηk, we can identify the two boundary components of
[−2Nπ, 0] ×W so that the restriction of ηk induces a well defined contact structure on
the quotient. More precisely, the quotient contact manifold obtained is (S1s ×W,π∗

kNξ).
The analogous procedure for the codomain [−2Nπ, 2πk ]×W of Ψ1 gives as quotient the
contact manifold (S1s ×W,π∗

kN+1ξ).
Lastly, because Ψ1 : [−2Nπ, 0]×W → [−2Nπ, 2πk ]×W is the identity on a neighbor-

hood of {−2Nπ} ×W and a lift of the translation f on a neighborhood of {0} ×W , it
induces on the quotient contact manifolds a well defined contactomorphism

φ : (S1s ×W,π∗
kNξ)

∼−→ (S1s ×W,π∗
kN+1ξ) .

Proof (Lemma 4.2). Suppose by contradiction that there is an isomorphism of almost
contact structures ψ : (V, π∗

mξ)
∼→
(
V, π∗

m+1ξ
)
; in particular,

ψ∗c1(π
∗
mξ) = c1(π

∗
m+1ξ) . (4.1)

Now, the submodule H2
ator(V ;Z) of atoroidal classes is natural, (i.e. it is preserved

by pullbacks induced by continuous maps V → V ); in particular, ψ∗ induces a well
defined endomorphism, which is moreover an isomorphism, of the quotient of H2(V ;Z)
by H2

ator(V ;Z). We then have ψ∗(π∗
nξ) = nψ∗c1(ξ) mod H2

ator(V ;Z) for each natural
n ≥ 2, so that Equation 4.1 becomes

mψ∗c1(ξ) = (m+ 1)c1(ξ) mod H2
ator(V ;Z) . (4.2)

Notice that N := H2(V ;Z)�H2
ator(V ;Z) is a finitely generated Z-module without torsion.

In particular, the (well defined) divisibility map

d : N \ {0} → N \ {0}
n 7→ { k ∈ N | ∃n′, n = kn′ }

34



CHAPTER 4. CONTACT MAPPING CLASSES ON OVERTWISTED MANIFOLDS

satisfies d(hn) = hd(n) and d(ψ∗n) = d(n), for each n ∈ N \ {0} and h ∈ N \ {0}. Now,
because c1(ξ) is toroidal, we can apply d to both the left and right hand sides of Equation
4.2, thus obtaining the wanted contradiction.

4.2 Examples from Liouville pairs and half Lutz-Mori

twists

In this section we give a proof of Proposition I.D; the main idea is the following. The
contact structure η on the manifold V = S1×W in the statement has trivial Chern classes
(better, it is trivializable as complex bundle). We then apply a semi-local modification
to η and obtain another contact structure ξ; the explicit nature of this modification (as
well as the explicit nature of the original contact manifold (V, η)) allows us to compute
the first Chern class of ξ, and to show that it satisfies the wanted conditions.

More precisely, this section is structured in the following way. We recall in Sections
4.2.1 and 4.2.2, respectively, the notion of half Lutz-Mori twist and the construction
of Liouville pairs, both appearing in Massot, Niederkrüger and Wendl [MNW13]. We
then describe in Section 4.2.3 how half Lutz-Mori twists (along contact submanifolds
belonging to one of the Liouville pairs constructed in [MNW13]) affect the Chern classes
of the underlying almost contact structure. Finally, Section 4.2.4 contains the proof of
Proposition I.D.

4.2.1 The half Lutz-Mori twist

Developing some ideas introduced by Mori in [Mor] in the 5-dimensional case, Massot,
Niederkrüger and Wendl introduce in [MNW13] the notion of Lutz-Mori twist along a
manifold belonging to a Liouville pair as a generalization of the well known 3-dimensional
Lutz twists.
We give here an explicit description of how to perform the half version of the Lutz-Mori
twist in particular coordinates in a neighbourhood of the contact submanifold.

Let (V, ξ) be a contact manifold having as a codimension-2 contact submanifold
(M, ξ+) such that α+ defining ξ+ belongs to a Liouville pair, defined as follows:

Definition 4.3. [MNW13] Let M2m+1 be an oriented manifold. We call Liouville pair
on M a couple of contact forms (α+, α−) such that ±α± ∧ (dα±)

m
> 0 and such that

the form erα+ + e−rα− is a Liouville form on M ×Rr, i.e. its differential is a symplectic
form on M × R.

We point out that the existence of Liouville pairs on closed manifolds is not trivial; at
the moment, the only known examples in high dimension are given by the construction in
[MNW13, Section 8], which is nonetheless a source of infinitely many non-homeomorphic
manifolds with Liouville pairs in each (odd) dimension. In Section 4.2.2 we will recall
the properties of this construction which are needed in order to prove Theorem I.C.

We now want to find particular coordinates near the submanifold (M, ξ+).
For all ε > 0, denote D2

ε the (open) disk of radius ε centered at the origin inside R2.
Consider then a smooth map Ψ : D2

ε \ {0} → S1 × (0, ε), defined by Ψ(r, ϕ) = (ϕ, ψ(r)),
where (r, ϕ) are polar coordinates on D2

ε and ψ : (0, ε) → (0, ε) is smooth, strictly
increasing, equal to r2 on (0, ε3 ) and equal to r on ( 23ε, ε).

Consider now the 1-form α0 = 1+cos(s)
2 α+ + 1−cos(s)

2 α− + sin (s) dt on M × S1t × (0, ε)s.
The fact that (α+, α−) is a Liouville pair implies that α0 is a contact form; see [MNW13,
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Proposition 9.1] for the details. If Ψ′ denotes the map (IdM ,Ψ) : M ×
(
D2
ε \ {0}

)
→

M × S1t × (0, ε)s, then the pull-back (Ψ′)∗ α0 can be written as α+ + r2dϕ + γ, with γ
smooth on M ×

(
D2
ε \ {0}

)
and

γ =
cos
(
r2
)
− 1

2
α+ +

1− cos
(
r2
)

2
α− +

[
sin
(
r2
)
− r2

]
dϕ for r <

ǫ

3
.

Hence, (Ψ′)∗ α0 naturally extends to a (smooth) contact form α on M×D2
ε , which more-

over restricts to α+ on M × {0} ≃M .
Now, each contact submanifold of codimension 2 having topologically trivial normal bun-
dle also has trivial conformal symplectic normal bundle. Hence, by the contact submani-
fold neighbourhood theorem (see Geiges [Gei08, Theorem 2.5.15]), each contact manifold
(V, ξ) containing (M, ξ+) as a codimension 2 contact submanifold with trivial normal
bundle will also contain, for ε > 0 small enough, the above model

(
M ×D2

ε , ξ = ker (α)
)

as a (codimension 0) contact submanifold, in such a way that (M, ξ+) coincides with
(M × {0}, ξ|M×{0}).

We now describe how to modify the contact structure in this particular local coordi-
nates around (M, ξ+) in order to perform the half twist.
Consider another smooth map Φ : D2

ε \{0} → S1×(−π, ε), defined by Φ(r, ϕ) = (ϕ, φ(r)),
where (r, ϕ) are again polar coordinates on D2

ε and φ : (0, ǫ) → (−π, ε) is again smooth,
strictly increasing, equal to r on ( 23ε, ε), but this time equal to r2 − π on (0, ε3 ).

As before, if Φ′ denotes the map (IdM ,Φ) : M ×
(
D2
ε \ {0}

)
→ M × S1t × (−π, ε)s,

then the contact form (Φ′)∗ α0 naturally extends to a contact form α′ on M ×D2
ε , but

this time at M × {0} we have the contact submanifold (M, ξ− = ker (α−)).
We remark though that the contact manifolds (M×D2

ε , ξ = kerα) and (M×D2
ε , ξ

′ =
kerα′) coincide on the subset {r ≥ 5

6ε} of M ×D2
ε . If we denote by D2

δ the closed disk

of radius δ := 11
12ε centered at the origin inside R2, we can thus replace (M ×D2

δ , ξ) with

(M ×D2
δ , ξ

′) inside (M ×D2
ε , ξ) ⊂ (V, ξ); this gives a contact manifold (V, ξ′).

Definition 4.4. [MNW13, Remark 9.6] We say that (V, ξ′) is obtained from (V, ξ) by a
half Lutz-Mori twist along the contact submanifold (M, ξ+ = ker (α+)) belonging to the
Liouville pair (α+, α−).

We point out that performing a half Lutz-Mori twist makes the contact manifold
overtwisted. Indeed, it is explained in Massot, Niederkrüger and Wendl [MNW13, Re-
mark 9.6] that this half twist always gives a PS-overtwisted manifold, which then is also
overtwisted according to [CMP15, Hua17].

4.2.2 Construction of Liouville pairs

We recall here the construction in [MNW13, Section 8], leaving the details that are not
important for our purposes.

Consider the product manifold Rm×Rm+1 with the pair of contact structures ξ+, ξ−
induced by the following pair of contact forms:

α± := ±et1+...+tmdθ0 + e−t1dθ1 + . . .+ e−tmdθm ,

where we use coordinates (t1, . . . , tm) on Rm and (θ0, . . . , θm) on Rm+1. A direct com-
putation shows that (α+, α−) is a Liouville pair on Rm × Rm+1.

We now remark that there are two Lie groups acting explicitly on Rm × Rm+1 by
strict contact transformations for both α+ and α−.
Indeed, the left action of the group Rm+1 on Rm × Rm+1 given by the translations

(ϕ0, . . . , ϕm) · (t1, . . . , tm, θ0, . . . , θm) := (t1, . . . , tm, θ0 + ϕ0, . . . , θm + ϕm) (4.3)
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and the left action of Rm given by the law

(τ1, . . . , τm) · (t1, . . . , tm, θ0, . . . , θm)
:= (t1 + τ1, . . . , tm + τm, e

−τ1+...−τmθ0, e
τ1θ1, . . . , e

τmθm)
(4.4)

are Lie group left-actions on Rm × Rm+1 and they both preserve the contact forms α+

and α−.
Moreover, these two actions allow us to produce a compact contact manifold from

Rm×Rm+1. Indeed, there are lattices Λ,Λ′ of Rm and Rm+1 respectively, such that the
Λ-action on Rm × Rm+1 induced by the action of Rm preserves Rm × Λ′. This implies
that, by first taking the quotient of Rm × Rm+1 by Λ′ and then quotienting it by the
(well defined by the above property) induced action of Λ, we obtain a compact manifold
M .

Finally, this manifold M naturally inherits a Liouville pair, still denoted by (α+, α−),
from the Liouville pair on the covering Rm × Rm+1, because Rm and Rm+1 act on
Rm × Rm+1 by strict contactomorphisms for both α+ and α−.

We point out that this construction actually gives an infinite number of non home-
omorphic manifolds M , hence an infinite number of non isomorphic Liouville pairs, in
each odd dimension bigger or equal to 3.
Indeed, the existence of the lattices Λ and Λ′ follows from number theory arguments and
the manifold M obtained depends on the choice of a totally real field of real numbers k

with finite dimension over Q. Now, for each dimension ≥ 2 over Q, there are infinitely
such fields k and the corresponding manifolds are non homeomorphic. See [MNW13,
Lemma 8.3] for the details.
As far as Proposition I.D is concerned, this means that we have, in each odd dimension
2n + 1 ≥ 5, a contact structure satisfying the hypothesis of Theorem I.C on infinitely
many different smooth manifolds T2 ×M2n−1; in dimension 3, we obtain one contact
structure on T2 ×M1 = T3. In both cases, Theorem I.C then gives examples of contac-
tomorphisms smoothly isotopic but not contact isotopic to the identity for the countably
many contact structures (π∗

kξ)k≥2 on each T2 ×M .

4.2.3 Topological effects of the half twists

Using the construction of the previous section, we obtain the following result:

Proposition 4.5. Let (V 2m+3, ξ) be a contact manifold containing the (M, ξ+) of Section
4.2.2 as a codimension 2 contact submanifold with trivial normal bundle. Then, if we
denote by ξ′ the contact structure on V obtained by performing a half Lutz-Mori twist
along the submanifold (M, ξ+) (where we consider M with the orientation given by ξ+),
we have the following:

1. for all i = 2, . . . ,m+ 1, ci(ξ′)− ci(ξ) = 0 in H2i(V ;Z);

2. c1(ξ′) − c1(ξ) = −2PD (j∗ [M ]) in H2(V ;Z), where j : M → V is the inclusion,
j∗ : H2m+1(M ;Z) → H2m+1(V ;Z) is the induced map and PD(α) denotes the
Poincaré dual of the homology class α ∈ H∗(V ;Z).

Remark 4.6. This result is not in contradiction with Massot, Niederkrüger and Wendl
[MNW13, Theorem 9.5], where the authors prove that the contact structures before and
after a full Lutz-Mori twist (as defined in [MNW13, Section 9.1]) are homotopic through
almost contact structures, hence have the same Chern classes.
Indeed, the result ξ′′ of a full Lutz-Mori twist can be interpreted as a couple of successive
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half twists. More precisely, we first perform a half twist along a submanifold (M, ξ+) to
obtain ξ′; this changes the core of the tube where we perform the twist from (M, ξ+) to
(M, ξ−). We then perform another half twist, this time along the new core (M, ξ−), to
obtain ξ′′. Hence, applying Proposition 4.5 twice and using the fact that ξ− induces an
orientation that is opposite to that induced by ξ+, we get that ci(ξ′′) = ci(ξ

′) = ci(ξ) for
all i = 2, . . . ,m+ 1 and that c1(ξ′′) = c1(ξ

′)− 2PD (j∗ [−M ]) = c1(ξ)− 2PD (j∗ [M ])−
2PD (j∗ [−M ]) = c1(ξ), as we expected from [MNW13, Theorem 9.5].

Chern classes are global invariants of complex vector bundles E over a manifold V .
In order to prove Proposition 4.5 above, we then have the following problem: it’s not
clear how local modifications (i.e. over an open set U of V ) of the complex vector bundle
E affect its Chern classes. The solution is hence either to use a relative version of Chern
classes or to shift to another point of view more local in nature; we adopt here the second
strategy.
More precisely, following [ACMFA07] we describe in Appendix A how each Chern class
of E can be interpreted as the Poincaré dual of (a desingularised version of) the locus of
points of V where a “generic” set of sections of E is not linearly independent. We point
out that this generalizes the classical fact that the top Chern class of E is the Poincaré
dual of the zero locus of a section of E which is transverse to the zero section (see [BT82,
Property 20.10.6 and Proposition 12.8]).
In particular, we will use the following result, which will be proven in Appendix A, in
order to prove Proposition 4.5 above:

Proposition 4.7. Let E,E′ be two complex vector bundles of complex rang r over the
same smooth oriented manifold V . Suppose also that there exist two open subsets O,U
of V , with O compactly contained in U , such that the following are satisfied:

1. There is an isomorphism of vector bundles ψ : E|Oc → E′|Oc over Oc := V \ O.

2. The vector bundles E|U and E′|U over U admit complex sub-bundles F,L ⊂ E and
F ′, L′ ⊂ E′ such that E|U = F ⊕L and E′|U = F ′⊕L′ and satisfying the following
conditions:

(a) ψ ◦ sj = s′j over U \ O for all j = 1, . . . , r − 1;

(b) L,L′ have complex rank 1, while F, F ′ have complex rank r − 1 and are
trivialized by two ordered sets of everywhere C-linearly independent sections
(s1, . . . , sr−1) and

(
s′1, . . . , s

′
r−1

)
of E|U and E′|U ;

(c) there are two additional sections sr, s′r of E|U and E′|U respectively, with image
contained in L and L′ and such that sr : U → E|U intersects transversely F
and s′r : U → E′|U intersects transversely F ′ (here F and F ′ are seen here as
submanifolds of E|U and E′|U);

(d) Z := s−1
r (F ) and Z ′ := (s′r)

−1
(F ′), which are oriented smooth manifolds of

U by Hypothesis 2c above, are actually compactly contained in O.

Then, we have the following:

1. ck(E′) = ck(E) in H2k(V ;Z) for all 2 ≤ k ≤ r;

2. c1(E′)− c1(E) = PD([Z ′])− PD([Z]) in H2(V ;Z).

We are now ready to give a proof of Proposition 4.5:
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Proof (Proposition 4.5). Consider the manifold M and the Liouville pair (α+, α−) con-
structed in Section 4.2.2 and take a contact manifold (V, ξ) containing (M, ξ+ = ker(α+))
as a contact submanifold of dimension 2.

Denote by (V, ξ′) the result of a half Lutz-Mori twist on (V, ξ) along (M, ξ+). Accord-
ing to Section 4.2.1, we have a tubular neighbourhood M × D2

ǫ of M in which we can
arrange to have contact forms α, α′ for ξ and ξ′ respectively which satisfy the following:
if (r, ϕ) are the polar coordinates on D2

ǫ and ψ, φ are as in Section 4.2.1, then

• α = 1+cos(ψ(r))
2 α+ + 1−cos(ψ(r))

2 α− + sin (ψ (r)) dϕ ,

• α′ = 1+cos(φ(r))
2 α+ + 1−cos(φ(r))

2 α− + sin (φ (r)) dϕ .

Now, we have explicit expressions for α+ and α− on the cover Rm ×Rm+1 of M , i.e.
α± := ±et1+...+tmdθ0 + e−t1dθ1 + . . .+ e−tmdθm. Thus, on the cover Rm ×Rm+1 ×D2

ǫ

of the tubular neighbourhood M × D2
ǫ of M inside V , we can write in a more explicit

form

(i) α = e
∑m

i=1 ti cos (ψ (r)) dθ0 +
∑m
i=1 e

−tidθi + sin (ψ (r)) dϕ ,

(ii) α′ = e
∑m

i=1 ti cos (φ (r)) dθ0 +
∑m
i=1 e

−tidθi + sin (φ (r)) dϕ .

Take now the following 2m R-linearly independent sections of the pullback of ξ and
ξ′ to Rm × Rm+1 ×D2

ǫ : for i = 1, . . . ,m,

• si := ∂ti and ri := e−
∑m

j=1 tj cos (ψ (r)) ∂θ0 − eti∂θi + sin (ψ (r)) ∂ϕ for the pullback
of ξ,

• s′i := ∂ti and r′i := e−
∑m

j=1 tj cos (φ (r)) ∂θ0 − eti∂θi + sin (φ (r)) ∂ϕ for the pullback
of ξ′.

Let’s also consider the following sections:

• sm+1 := r∂r and rm+1 := cos (ψ (r)) ∂ϕ − sin (ψ (r)) e−
∑m

i=1 ti∂θ0 for the pullback
of ξ,

• s′m+1 := r∂r and r′m+1 := cos (φ (r)) ∂ϕ − sin (φ (r)) e−
∑m

i=1 ti∂θ0 for the pullback
of ξ′.

These last two couples of sections are R-linearly independent whenever sm+1 and s′m+1

are non-zero.
Moreover, for i = 1, . . . ,m + 1, si, ri, s′i and r′i are invariant under the left-action

induced on Rm × Rm+1 ×D2
ǫ by the left-actions of of the Lie groups Rm and Rm+1 on

Rm × Rm+1 described in Equations 4.3 and 4.4 of Section 4.2.2. Hence, they induce
well defined sections of ξ and ξ′ on M ×D2

ǫ , which we will still denote using same nota-
tions. We also point out that each section coincide with its “primed version” near M×D2

ǫ .

We remark now that SpanR (sm+1(p), rm+1(p)) and SpanR
(
s′m+1(p), r

′
m+1(p)

)
, a pri-

ori well defined only for p ∈M×
(
D2
ǫ \ {0}

)
, actually extend smoothly also over M×{0}.

Indeed, consider the following couples of sections of ξ and ξ′ respectively:

• S := 1
r (cos (ϕ) sm+1 − sin (ϕ) rm+1), R := 1

r (sin (ϕ) sm+1 + cos (ϕ) rm+1);

• S′ := 1
r

(
cos (ϕ) s′m+1 + sin (ϕ) r′m+1

)
, R′ := 1

r

(
− sin (ϕ) s′m+1 + cos (ϕ) r′m+1

)
.
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These sections, defined on M ×
(
D2
ǫ \ {0}

)
, can be smoothly extended to sections on all

M ×D2
ǫ .

For example, the section S can be rewritten near r = 0 as follows:

S =
1

r
(cos (ϕ) sm+1 − sin (ϕ) rm+1)

= cosϕ∂r − sinϕ cos r2

r
∂ϕ +

sinϕ sin r2

r
e−

∑m
i=1 ti ∂θ0

= ∂x + y
1− cos r2

r2
(−y∂x + x∂y) + y

sin r2

r2
e−

∑m
i=1 ti ∂θ0 ,

and each coefficient extends smoothly to all M×D2
ǫ . Analogous computations show that

also S′, R,R′ extend smoothly to M ×D2
ǫ . We will denote these smooth extensions still

by S,R, S′, R′.
Moreover, we point out that (s1, r1, . . . , sm, rm, S,R) are everywhere R-linear inde-

pendent sections of ξ, which is hence trivialized by them over M ×D2
ǫ ; the analogue is

true for (s′1, r
′
1, . . . , s

′
m, r

′
m, S

′, R′). We remark that, unlike the couples (sm+1, rm+1) and
(s′m+1, r

′
m+1), the (S,R) and (S′, R′) do not coincide near the boundary of M ×D2

ǫ .

Computing the differentials of α and α′ thanks to the above explicit expressions
(i) and (ii) for their pullbacks, we see that dα(si, ri) > 0 and dα′(s′i, r

′
i) > 0 for all

i = 1, . . . ,m and that dα(S,R) > 0 and dα′(S′, R′) > 0.
Then, the identities J(si) := ri and J ′(s′i) := r′i, for all i = 1, . . . ,m, and the identities
J(S) := R, J ′(S′) := R′ give two complex structures J , J ′ on ξ and ξ′ over M × D2

ǫ

which are tamed by dα and dα′. In particular, the sections s1, . . . , sm, S are C-linearly
independent on ξ and the sections s′1, . . . , s

′
m, S

′ are C-linearly independent on ξ′.
We point out that J , J ′ satisfy also the identities J(sm+1) = rm+1 and J ′(s′m+1) =

r′m+1. This shows in particular that J and J ′ coincide over a neighbourhood of the
boundary of M × D2

ǫ : indeed, each section coincide with its primed version near the
boundary of M ×D2

ǫ and the span of (si, ri)
m+1
i=1 and (s′i, r

′
i)
m+1
i=1 are respectively ξ and

ξ′ on M ×
(
D2
ǫ \ {0}

)
.

We can now extend J and J ′ to complex structures on ξ and ξ′ over all V , tamed by
contact forms that extend α and α′, in such a way that they coincide outside M ×D2

ǫ .
We denote such extensions still with J and J ′.

We now claim that we are in the hypothesis of Proposition 4.7 if we choose as open
set O an arbitrary open set compactly contained in U := M × D2

ǫ and containing the
support of the half Lutz-Mori twist.

Indeed, if F, F ′ are the complex span of (s1, . . . , sm), (s′1, . . . , s
′
m) and L,L′ are the

complex lines determined by S, S′, then the Hypothesis 1, 2a and 2b are trivially satisfied
because ξ and ξ′ coincide outside O and because of the choice of s1, . . . , sm and s′1, . . . , s

′
m.

Let’s show that the Hypothesis 2c and 2d are also satisfied in our case.
We claim that sm+1 :M ×D2

ǫ → ξ and s′m+1 :M ×D2
ǫ → ξ′ intersect transversely F ⊂ ξ

and F ′ ⊂ ξ′ in M × {0} and −M × {0} (i.e. M × {0} but with opposite orientation).
Indeed, using the complex trivialization (s1, . . . , sm, S) for ξ on U =M ×D2

ǫ , we can
write sm+1 : U → ξ = U × Cm+1 as sm+1(q) = (q, v1(q), . . . , vm+1(q)), with vi : U → C.
More precisely, recalling that JS = R, that S = 1

r (cos (ϕ) sm+1 − sin (ϕ) rm+1) and
that R = 1

r (sin (ϕ) sm+1 + cos (ϕ) rm+1), for each q = (m,x, y) ∈ U = M × D2
ǫ , with

m ∈ M , we actually have that vi(q) = 0 for all i = 1, . . . ,m and that vm+1(q) = x+ iy,
where (x, y) ∈ D2

ǫ are the Cartesian coordinates. In particular, d(m,0)vm+1(∂x) = ∂x and
d(m,0)vm+1(∂y) = ∂y, i.e.

d(m,0)vm+1|{0m}⊕T0D2
ǫ
: {0m} ⊕ T0D

2
ǫ → T0C

40



CHAPTER 4. CONTACT MAPPING CLASSES ON OVERTWISTED MANIFOLDS

is an orientation preserving isomorphism of vector spaces.
In other words, sm+1 :M ×D2

ǫ → ξ intersects transversely F ⊂ ξ in M ×{0}, considered
as an oriented manifold.

An analogous computation with s′m+1 shows that we can write s′m+1 : U → ξ′ = U ×
Cm+1 as s′m+1(q) =

(
q, 0, . . . , 0, v′m+1(q)

)
, with v′m+1(q) = x− iy for each q = (m,x, y) ∈

U =M ×D2
ǫ . This gives in particular that d(m,0)v′m+1|{0m}⊕T0D2

ǫ
: {0m} ⊕ T0D

2
ǫ → T0C

is an orientation reversing isomorphism of vector spaces hence that s′m+1 :M ×D2
ǫ → ξ′

intersect transversely F ′ ⊂ ξ′ along the oriented submanifold −M × {0}.
At this point, Proposition 4.5 follows from Proposition 4.7.

4.2.4 Explicit examples of non-trivial contact mapping classes

We now prove Proposition I.D, of which we recall the statement:

Proposition I.D. Soit (M2n−1, α+, α−) une des paires de Liouville construites (en
nombre infini) dans [MNW13]. On considère la structure de contact

η = ker

(
1 + cos (s)

2
α+ +

1− cos (s)

2
α− + sin (s) dt

)

sur V := T2
(s,t) ×M (ici, la notation T2

(s,t) dénote le choix de coordonnées (s, t) sur T2)
et soit ξ la structure de contact vrillée obtenue par η via un demi twist de Lutz-Mori le
long de {(0, 0)} ×M , comme défini dans [MNW13].
Alors, c1(ξ) ∈ H2(V ;Z) est toroidale et, pour tout entier k ≥ 2, on a c1(π∗

kξ) = k · c1(ξ)
mod H2

ator(V ;Z), où πk : T2
(s,t) ×M → T2

(s,t) ×M est donné par πk(s, t, q) = (ks, t, q).

Proof (Proposition I.D). The contact structure η on the manifold T2
(s,t) ×M admits a

trivialization as complex vector bundle given by the following sections and choice of J :

1. si := ∂ti for i = 1, . . . ,m,

2. J(si) := e−
∑m

j=1 tj cos (s) ∂θ0 − eti∂θi + sin (s) ∂t, for i = 1, . . . ,m,

where we use locally on M the coordinates (t1, . . . , tm, θ0, . . . , θm) given by the construc-
tion in Section 4.2.2. In particular, all the Chern classes of ξ are zero.
Hence, applying Proposition 4.5 to the couple (ξ, η) we get the following: if we denote
by j : M → T2

(s,t) × M the inclusion j(p) = (0, 0, p) and by j∗ : H2m+1(M ;Z) →
H2m+1(T

2 × M ;Z) the induced map in homology, then c1(ξ) = −2PD (j∗ [M ]) in
H2(T2 ×M ;Z).

We now prove that c1(ξ) is toroidal. Fix a p ∈ M and consider f : T2 → T2 ×
M given by f(θ, ϕ) = (θ, ϕ, p), for every (θ, ϕ) ∈ T2. Because f is transverse to
j(M), we have f∗ PDT2×M (j∗ [M ]) = PDT2

([
f−1(j(M))

])
; here, the notation PDX

means that we are considering the Poincaré duality on the compact manifold X. Now,
PDT2

([
f−1(j(M))

])
= PDT2 ([{(0, 0)}]) generatesH2(T2;Z) ≃ Z; in other words, PD (j∗ [M ])

is toroidal, and the same is true for c1(ξ).
The only thing left to show is that c1(π∗

kξ) = kc1(ξ) mod H2
ator(V ;Z) for each k ≥ 2.

Because η is a trivial complex vector bundle over T2 ×M , the same is true for each π∗
kη;

in particular, each π∗
kη has trivial Chern classes. Notice that π∗

kξ can also be seen as
obtained from π∗

kη by performing a half Lutz-Mori twist along each of the k submanifolds{(
2lπ
m , 0

)}
×M , where l = 0, . . . ,m−1. Then, Proposition 4.5 tells that c1(π∗

kξ) = kc1(ξ);
in particular, c1(π∗

kξ) = kc1(ξ) mod H2
ator(V ;Z) too.
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4.3 Other examples of non-trivial contact mapping classes

In this section, we show how to obtain examples of (S1 ×W, ξ) as in the hypothesis of
Theorem I.C using the existence of adapted open book decompositions due to Giroux
[Gir02] and the h-principle of Borman, Eliashberg and Murphy [BEM15].

4.3.1 Examples from adapted open books

We recall the statement of Proposition I.E:

Proposition I.E. Soit (V := S1 ×W 2n, η) une variété de contact vrillée telle que c1(η)
est toroidale et telle que, pour tout k ≥ 2, la tirée en arrière ξ via le revêtement à k-
feuilles πk : S1s ×W → S1s ×W , donné par πk(s, p) = (ks, p), satisfait c1(π∗

kη) = k · c1(η)
mod H2

ator(V ;Z). Alors, on a que :

i. La première classe de Chern de chaque structure de contact ξ sur V × T2 obtenue
via la construction de Bourgeois [Bou02] sur (V, η) satisfait aussi les conditions
ci-dessus, par rapport au revêtement µk := (πk, Id) : V × T2 → V × T2.

ii. Soit ν : V × Σg → V × T2 induite par un recouvrement Σg → T2 qui est ramifié
au dessus de deux points (ici, Σg est une surface fermée de genre g ≥ 2). Alors, la
première classe de Chern de chaque revêtement ramifié ξg de ξ sur V ×Σg satisfait
aussi les conditions ci-dessus, par rapport au revêtement µgk := (πk, Id) : V ×Σg →
V × Σg. De plus, si η est vrillée et g est assez grand, ξg est aussi vrillé.

In order to give a proof, we need the following lemma which describes the effect of
Bourgeois construction [Bou02] and of its branched coverings at the level of almost con-
tact structures (recall Definition 2.10) as well as a sufficient condition for overtwistedness
in the case of branched covers:

Lemma 4.8. Let (V 2n−1, η) be a contact manifold, (B,ϕ) an open book decomposition
supporting η and α a contact form defining η and adapted to the open book. Then, we
have the following:

1. The Bourgeois construction [Bou02] on (V, η) and (B,ϕ, α) gives a contact struc-
ture ξ on V × T2 which is homotopic, as an almost contact structure, to the pair(
η ⊕ TT2, dα⊕ ωT

)
, where ωT is a volume form on T2.

2. Any contact branched covering ξg of ξ via a branched covering ν : V ×Σg → V ×T2,
induced by a covering Σg → T2 branched over two points, is homotopic, as an almost
contact structure, to (η ⊕ TΣg, dα⊕ ωg), where ωg is a volume form on Σg.

3. Suppose η is overtwisted. Then, if g is large enough, ξg is overtwisted too.

Notice that point 1 above has already been pointed out by Lisi, Marinković and
Niederkrüger [LMN18, Remark 2.1].
We now prove, in the order, Proposition I.E and Lemma 4.8:

Proof (Proposition I.E). Denote also by p : V ×T2 → V , pg : V ×Σg → V and pg : V ×
Σg → Σg the natural projections.
Points 1 and 2 of Lemma 4.8 imply that c1(ξ) = p∗c1(η) and c1(ξg) = p∗gc1(η)+p

∗
gc1(TΣg).

Recall now that every continuous map g : T2 → Σg has degree 0 (here, we use g ≥ 2); in
particular, for each f : T2 → V ×Σg, f∗p∗gc1(TΣg) = (pg ◦ f)∗c1(TΣg) = 0 in H2(T2;Z),
i.e. p∗gc1(TΣg) is atoroidal. We then have that c1(ξ) = p∗c1(η) mod H2

ator(V × T2;Z)
and c1(ξg) = p∗gc1(η) mod H2

ator(V × Σg;Z).
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In order to show that c1(ξ) and c1(ξg) are toroidal, it’s then enough to show that this
is true for both p∗c1(η) and p∗gc1(η).
Because c1(η) is toroidal, there is f : T2 → V with f∗c1(η) 6= 0. Let then h : T2 →
V × T2, h(q) = (f(q), ∗), and hg : T2 → V × Σg, hg(q) = (f(q), ∗). As p ◦ h = f and
pg ◦ hg = f , we have h∗(p∗c1(η)) = (p ◦ h)∗c1(η) = f∗c1(η) 6= 0 in H2(T2;Z) and,
similarly, h∗g(p

∗
gc1(η)) = f∗c1(η) 6= 0, i.e. p∗c1(η) and p∗gc1(η) are both toroidal.

The equalities c1(µ∗
kξ) = kc1(ξ) mod H2

ator(V ×T2;Z) and c1((µ
g
k)

∗ξg) = kc1(ξg) mod
H2

ator(V × Σg;Z) follow directly from πk ◦ p = p ◦ µk, πk ◦ pg = pg ◦ µgk and c1(π
∗
kη) =

kc1(η) mod H2
ator(V ;Z).

Lastly, if η is overtwisted, point 3 of Lemma 4.8 gives the overtwistedness of ξg for g
large enough, thus concluding the proof.

Proof (Lemma 4.8). We start by proving point 1. The Bourgeois construction [Bou02] on
(V, η) and (B,ϕ, α) gives a function Φ = (f, g) : V → R2 defining the open book (B,ϕ)
and such that ξ on V ×T2

(x,y) is defined by β := α+fdx−gdy. Then, an explicit homotopy

of almost contact structures from (ξ, dβ|ξ) to (η ⊕ TT2, dα|η + dx ∧ dy) is given by the
[0, 1]t-family of hyperplane fields ξt given by the kernel of α+(1− t) (fdx− gdy), together
with the symplectic structures given by the restriction of dα+(1−t) [df ∧ dx− dg ∧ dy]+
tdx ∧ dy to ξt.

As far as point 2 is concerned, as explained in [Gei97b], an explicit contact branched
covering ξg on V × Σg is given by the kernel of a differential 1−form ν∗β + ǫh(r)r2dθ;
here, (r, θ) are radial coordinates on the D2-factor of a neighborhood D2 × {p, q} of
the branching locus {p, q} of the branched covering Σg → T2, ǫ > 0 is very small and
h = h(r) is a smooth function with support in D2 × {p, q}, equal to 1 on the branching
locus and strictly decreasing in r. As contact branched coverings are unique up to isotopy
(see Section 5.2), it’s enough to prove that this specific ηg is homotopic to the wanted
almost contact structure.
Now, an explicit computation (analogous to the one in Section 8.5) shows that the wanted
homotopy is given by the [0, 1]t-family of hyperplane fields ξtg defined as the kernel of
ν∗α + (1− t)

[
ν∗ (fdx− gdy) + ǫhr2dθ

]
, together with the symplectic structures given

by the restriction of ν∗dα+ (1− t)
[
ν∗ (df ∧ dx− dg ∧ dy) + ǫd

(
hr2
)
∧ dθ

]
+ tωg to ξtg.

Point 3 will be proven in Section 9.1.2; more precisely, it essentially follows from
the following three facts. Firstly, the contact branched covering ξg can be chosen (up
to isotopy) in such a way that it induces on each fiber of V × Σg → Σg the original
overtwisted contact structure η. Secondly, Niederkrüger and Presas [NP10, page 724]
describe how the “size” of a contact neighborhood of each connected component (V, ξ) of
the branching set of V ×Σg → V ×T2 is diverging to +∞ as the index g of the branched
covering is going to +∞; see also Lemma 9.9. Then, according to Casals, Murphy and
Presas [CMP15, Theorem 3.1], topologically trivial contact neighborhoods of overtwisted
manifolds in codimension 2 are themselves overtwisted, provided they are sufficiently
“large”. This concludes the proof of Lemma 4.8.

4.3.2 Examples from the h-principle

We recall the statement of Proposition I.F:

Proposition I.F. On considère une variété lisse W de dimension 2n qui est presque
complexe, spin et satisfait H1(W ;Z) 6= {0}. Alors, il y a une structure de contact vrillée
ξ sur V := S1 × W telle que c1(ξ) ∈ H2(V ;Z) est toroidale et c1(π∗

kξ) = k · c1(ξ)
mod H2

ator(V ;Z), où πk : S1s × W → S1s × W est le revêtement à k-feuilles πk(s, p) =
(ks, p).
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The proof is structured as follows. We start from a natural almost contact structure
η0 on V := S1 ×W and we modify it to an almost contact structure η with first Chern
class c1(η) satisfying the wanted conditions. Then, the h-principle from [BEM15] tells
that η can be deformed to an overtwisted contact structure ξ on V ; the first Chern class
of such a ξ will then satisfy the wanted properties too.

Before entering in the details of the proof of Proposition I.F, we state a lemma from
algebraic topology, whose proof is postponed:

Lemma 4.9. Let (V 2n+1, η0) be an almost contact manifold. For each class u ∈ H2(V ;Z),
there is an almost contact structure ηu on V such that c1(ηu) = c1(η0) + 2u.

Proof (Proposition I.F). The hyperplane field η0 = {0} ⊕ TW on V = S1 × W is a
(coorientable) almost contact structure thanks to the almost complex structure JW on
W . Moreover, its first Chern class c1(η0) is equal to π∗

W c1(W ), where πW : S1×W →W
is the projection on the second factor.
The hypothesis that W is spin means that the 2nd Stiefel Whitney class w2(W ) ∈
H2(W ;Z2) of W is trivial. Because w2(W ) is the reduction modulo 2 of c1(W ), there is
λ ∈ H2(W ;Z) such that c1(W ) = 2λ. Hence, c1(η0) = π∗

W c1(W ) = 2π∗
Wλ.

Consider then a non-trivial c ∈ H1(W ;Z), that exists by hypothesis, and let v be a
generator of H1(S1;Z). Using Kunneth’s decomposition theorem, we can see H1(S1;Z)⊗
H1(W ;Z) as a submodule of H2(S1 ×W ;Z). An application of Lemma 4.9 with u =
v ⊗ c− π∗

Wλ then gives an almost contact structure η on V with c1(η) = 2v ⊗ c.
Notice that the map π∗

k, induced on H2(S1×W ;Z) by πk, acts as multiplication by k
on the submodule H1(S1;Z)⊗H1(W ;Z) of H2(S1 ×W ;Z). In particular, the fact that
c1(η) = 2v ⊗ c implies that c1(π∗

kη) = kc1(η) mod H2
ator(V ;Z).

We now claim that c1(η) is toroidal. Indeed, according to the universal coefficient the-
orem and the Hurewicz theorem, H1(W ;Z) ≃ HomZ (H1(W ;Z);Z) ≃ HomZ (π1(W );Z).
In particular, there is γ : S1 → W such that γ∗c 6= 0 ∈ H1(S1;Z). If we define
f = (Id, γ) : T2 = S1 × S1 → S1 × W , we then have f∗c1(η) = 2v ⊗ γ∗c 6= 0 in
H1(S1;Z)⊗H1(S1;Z) ⊂ H2(T2;Z), i.e. c1(η) is toroidal, as wanted.

The h-principle from Borman, Eliashberg and Murphy [BEM15] then gives the wanted
contact structure ξ as deformation of η.

We now give a proof of the lemma used above:

Proof (Lemma 4.9). Bowden, Crowley and Stipsicz [BCS14, Lemma 2.17.(1)] states that
if V is a closed connected manifold of dimension 2n+1 and ζ is a stable almost complex
structure on it, then there is an almost contact structure η on V whose stabilization gives
ζ. Recall that a stable almost complex structure on V is the stable isomorphism class of a
complex structure on TV ⊕ εkV , where εV is the trivial real vector bundle of dimension 1
over V , and the stabilization of η is the stable isomorphism class of the complex structure
induced by η on TV ⊕ εV . In particular, in order to prove Lemma 4.9, it’s enough to
find a stable almost complex structure ζu such that c1(ζu) = c1(η0) + 2u.

The existence of such a ζu follows, for instance, from [Gei08, Remark 8.1.4], of which
we recall here the idea.
There is a bijective correspondence, given by the first Chern class, between isomorphism
classes of complex line bundles over V and cohomology classes in H2(V ;Z). Let then Lu
be the complex line bundle over V satisfying c1(Lu) = u. Consider a direct complement of
the dual L∗

u of Lu, i.e. a complex vector bundle Eu over V such that there are m ∈ N>0

and an isomorphism ν : L∗
u ⊕C Eu ≃ (εCV )

m of complex vector bundles over V ; here,
εCV denotes the complexification of εV . We then claim that the complex vector bundle
Fu := η0 ⊕ Lu ⊕ Eu can be used to define the wanted stable complex structure.
The fact that L∗

u ⊕C Eu is a trivial complex vector bundle implies in particular that
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c1(Eu) = −c1(L∗
u) = u; hence, c1(Fu) = c1(η) + u+ u = c1(η) + 2u.

Now, because L∗
u and Lu are isomorphic as real vector bundles, ν induces an isomorphism

of real vector bundles ν′ : Lu ⊕R Eu ≃ ε2mV . Moreover, the choice of a vector field X on
V transverse to η0 gives an isomorphism of real vector bundles Ψ: η0 ⊕ ǫV ≃ TV . We
then have an isomorphism θ of real vector bundles over V given by the composition

Fu = η0 ⊕ Lu ⊕ Eu
Id⊕ν′

≃ η0 ⊕ ε2mV =R (η0 ⊕ εV )⊕ ε2m−1
V

Ψ⊕Id≃ TV ⊕ ε2m−1
V .

In particular, the pushforward θ∗J of the complex structure J on Fu via θ gives the
wanted stable almost complex structure ζu on V .
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Appendix A

Chern classes as Poincaré duals

Chern classes are global invariants of complex vector bundles E over a manifold V . More
precisely, following [ACMFA07] we describe in this appendix how each Chern class of E
can be geometrically interpreted as the Poincaré dual of (almost) the locus of points of
V where a “generic” set of sections of E is not linearly independent.

Consider a complex vector bundle E of complex rank r over an oriented smooth
manifold V . Given k sections s1, . . . , sk of E, take the homomorphism of vector bundles
h : V × Ck → E defined by h(p, u1, . . . , uk) =

∑k
j=1 ujsj(p), where V × Ck is the trivial

complex vector bundle of rank k over V .
If τ : HomC

(
V × Ck, E

)
→ V , is the complex vector bundle over V with fiber over p ∈ V

the vector space HomC

(
Ck, Ep

)
of C-linear maps from Ck to Ep, we can reinterpret the

map h as a section sh of τ given by sh(p)(w) := h(p, w) for all w ∈ Ck.
Take now the complex vector bundle π : HomC

(
V × Ck, E

)
× CPk−1 → V × CPk−1

defined by π(f, d) = (τ(f), d), for every f ∈ HomC

(
V × Ck, E

)
and d ∈ CPk−1, and

consider the section σh : V × CPk−1 → HomC

(
V × Ck, E

)
× CPk−1 given by σh :=

(sh, IdCPk−1).
If φ : V ×CPk−1 → V and φ̂ : HomC

(
V × Ck, E

)
×CPk−1 → HomC

(
V × Ck, E

)
are

the projections on the first factor, we then have the following commutative diagram:

HomC

(
V × Ck, E

)
× CPk−1 HomC

(
V × Ck, E

)

V × CPk−1 V

φ̂

π τ

φ

σh sh

Now, in the total space HomC

(
V × Ck, E

)
×CPk−1 of the bundle π we can consider

the blown-up non-injectivity locus, i.e. the subset

Σ :=
{
(f, d) ∈ HomC

(
V × Ck, E

)
× CPk−1 | d ⊂ ker f

}
.

The adjective blown-up comes from the fact that Σ is a version of the non-injectivity
locus

S :=
{
f ∈ HomC

(
V × Ck, E

)
| ker (f) 6= {0}

}

where we keep track of the complex lines in the kernel.

Proposition A.1. [ACMFA07, Proposition 4, Proposition 6] Σ is a smooth oriented
submanifold of HomC

(
V × Ck, E

)
× CPk−1 , of codimension 2r .
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As we will need it in the following, we give a sketch of proof:

Proof (sketch). Let pr : HomC

(
V × Ck, E

)
× CPk−1 → CPk−1 be the projection on the

second factor and γ the tautological line bundle over CPk−1 ; denote then

ǫ1 := pr∗ γ = { (f, d, v) ∈ HomC

(
V × Ck, E

)
× CPk−1 × Ck | v ∈ d } .

If φ : V × CPk−1 → V is the projection on the first factor, denote also by ǫ2 the vec-
tor bundle π∗φ∗E over HomC

(
V × Ck, E

)
× CPk−1 , where π : HomC

(
V × Ck, E

)
×

CPk−1 → V × CPk−1 is as above.
Consider then the vector bundle Π : HomC (ǫ1, ǫ2) → HomC

(
V × Ck, E

)
× CPk−1 and

take the section Ψ : HomC

(
V × Ck, E

)
× CPk−1 → HomC (ǫ1, ǫ2) of Π defined by

Ψ(f, d) = f |d .

ǫ1 = pr∗ γ

ǫ2 = π∗φ∗E HomC

(
V × Ck, E

)
× CPk−1 HomC(ǫ1, ǫ2)

V × CPk−1

E V

π

Ψ

Π

φ

σh

It can be shown that Ψ is transverse to the zero section 0Π of Π. In particular,
Σ = Ψ−1 (0Π) is a smooth submanifold of HomC

(
V × Ck, E

)
× CPk−1 .

Finally, Σ is oriented according to Convention A.2 below, thanks to the fact that
HomC (ǫ1, ǫ2), HomC

(
V × Ck, E

)
× CPk−1 and 0Π are naturally oriented: indeed, the

first two are complex vector bundles over an oriented base and the third is a section of
a vector bundle over an oriented base.

Convention A.2. Let X,Y, Z be oriented manifolds and consider f : X → Y transverse
to Z ⊂ Y at p ∈ X . Take a basis (v1, . . . , vl) of Tpf−1 (Z), complete it to a positive basis
(v1, . . . , vl, u1, . . . , un) of TpX and consider a positive basis (w1, . . . , wm) of Tf(p)Z .
Then, (v1, . . . , vl) is positive if and only if (w1, . . . , wm, dpf (u1) , . . . , dpf (un)) is a
positive basis of Tf(p)Y .

Define now the set

Z (h) := σ−1
h (Σ) =

{
(p, d) ∈ V × CPk−1 | d ⊂ ker (hp)

}
,

where hp : Ck → Ep is the C-linear map defined by hp(.) := h(p, .).

Proposition A.3. [ACMFA07, Proposition 5] For a generic choice of vector bundles
map h : V × Ck → E , the section σh : V × CPk−1 → HomC

(
V × Ck, E

)
× CPk−1 is

transverse to Σ ⊂ HomC

(
V × Ck, E

)
×CPk−1 . In particular, Z (h) is a closed oriented

submanifold of V × CPk−1 of codimension 2r .

Theorem A.4. [ACMFA07, Theorem 11] If the section σh : V×CPk−1 → HomC

(
V × Ck, E

)
×

CPk−1 is transverse to Σ ⊂ HomC

(
V × Ck, E

)
×CPk−1 , then the Chern class cr−k+1(E)

is equal to the Poincaré dual of φ∗ [Z (h)], where φ : V × CPk−1 → V is the projection
on the first factor.
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Remark A.5. The statement of the theorem shows the advantage of using the blown-up
version Σ of S instead of the non-injectivity locus itself.
Indeed, while Z (h) is a smooth oriented submanifold for a generic choice of h, hence
is has a well defined fundamental class that can be pushed in H∗(V ;Z) via φ∗ , the set
s−1
h (S) is only a Whitney stratified submanifold of V (hence not necessarily smooth) for

a generic choice of h, and in particular there is no natural way to associate an homology
class to s−1

h (S).
We point out though that in the complex analytic setting it is possible to construct a
cohomology class directly from s−1

h (S) using the theory of currents: this is done, for
example, in Griffiths and Harris [GH78, Section 3.3].

As it will be useful later, we remark that there is also a relative version of Proposi-
tion A.3. Indeed, we have the following relative transversality result: if M and N are
smooth manifolds and f :M → N is a smooth map transverse to a submanifold Z ⊂ N
on a neighbourhood of a closed subset C ⊂M , then f can be C∞ -perturbed to a map
f ′ :M → N everywhere transverse to Z and such that f ′|C = f |C .
This can be proven, for example, by introducing a little modification in the proof of
Lee [Lee13, Theorem 6.36], where it is shown that, for k ∈ N big enough, there is a
parametric family of functions F :M ×Rk → N that is everywhere transverse to Z and
such that F (., 0) = f(.). More precisely, the F appearing in the proof of [Lee13, The-
orem 6.36] should be defined in our case as F (p, s) := r (f (p) + χ (p) · e (p) · s), where
χ :M → R≥0 has support C ; the wanted perturbation will then be Fs := F (., s) for an
s given by the parametric transversality theorem (see Lee [Lee13, Theorem 6.35]).
In our setting, using this relative transversality result in the proof of [ACMFA07, Propo-
sition 5] (restated above as Proposition A.3) we can achieve transversality between the
map σh and the submanifold Σ of HomC

(
V × Ck, E

)
× CPk−1 by C∞ -perturbing h

relative to a closed subset C ⊂ V × CPk−1 near which σh is already transverse to Σ.

We are then ready to prove Proposition 4.7, whose statement we now recall:

Proposition 4.7. Let E,E′ be two complex vector bundles of complex rang r over the
same smooth oriented manifold V . Suppose also that there exist two open subsets O,U
of V , with O compactly contained in U , such that the following are satisfied:

1. There is an isomorphism of vector bundles ψ : E|Oc → E′|Oc over Oc := V \ O .

2. The vector bundles E|U and E′|U over U admit complex sub-bundles F,L ⊂ E
and F ′, L′ ⊂ E′ such that E|U = F ⊕ L and E′|U = F ′ ⊕ L′ and satisfying the
following conditions:

(a) ψ ◦ sj = s′j over U \ O for all j = 1, . . . , r − 1;

(b) L,L′ have complex rank 1, while F, F ′ have complex rank r − 1 and are
trivialized by two ordered sets of everywhere C-linearly independent sections
(s1, . . . , sr−1) and

(
s′1, . . . , s

′
r−1

)
of E|U and E′|U ;

(c) there are two additional sections sr, s′r of E|U and E′|U respectively, with im-
age contained in L and L′ and such that sr : U → E|U intersects transversely
F and s′r : U → E′|U intersects transversely F ′ (here F and F ′ are seen here
as submanifolds of E|U and E′|U );

(d) Z := s−1
r (F ) and Z ′ := (s′r)

−1
(F ′), which are oriented smooth manifolds of

U by Hypothesis 2c above, are actually compactly contained in O .

Then, we have the following:

49



1. ck(E′) = ck(E) in H2k(V ;Z) for all 2 ≤ k ≤ r ;

2. c1(E′)− c1(E) = PD([Z ′])− PD([Z]) in H2(V ;Z).

We deduce the above result from Theorem A.4 using the following:

Lemma A.6. Let E be a complex vector bundle of complex rang r over a smooth oriented
manifold V with empty boundary. Let s1, · · · , sr−1 be C-linearly independent sections of
E and denote by F the vector sub-bundle of E generated by them, i.e. the vector bundle
with fiber Fp = SpanC (s1(p), · · · , sr−1(p)) ⊂ Ep over a point p ∈ V . Let also L be a
complex line sub-bundle of E such that E = F ⊕ L and assume that sr : V → E is an
additional section with image contained in L and intersecting transversely F (seen as a
submanifold of E ); denote by M the oriented (by Convention A.2) submanifold s−1

r (F ).
Then, if h : V × Cr → E is defined by h(p, u) =

∑r
i=1 uisi(p) and σh is obtained from

h as above, we have that:

1. σh : V × CPr−1 → HomC (V × Cr, E)× CPr−1 is transverse to the blown-up non-
injectivity locus Σ ⊂ HomC (V × Cr, E) × CPr−1 and, in particular, Z (h) :=
σ−1
h (Σ) is smooth and naturally oriented;

2. the projection on the first factor φ : V ×CPr → V induces an orientation preserving
diffeomorphism φ : Z (h) →M .

Proof (proposition 4.7): Consider another open set V of V , compactly contained in U
and containing the closure of O .
Take the two complex vector bundle homomorphisms hV : V × Cr → E|V and h′V :
V × Cr → E′|V defined by hV (p, u1, . . . , ur) :=

∑r
i=1 uisi (p) and h′V (p, u1, . . . , ur) :=∑r

i=1 uis
′
i (p) for all p ∈ V , (u1, . . . , ur) ∈ Cr and i = 1, . . . , r . Extend then hV and h′V

to two vector bundle homomorphisms h : V × Cr → E and h′ : V × Cr → E in such a
way that ψ (h (p, u)) = h′ (p, u) for all p ∈ Oc , u ∈ Cr and i = 1, . . . , r . Such extensions
exist because ψ ◦ si = s′i on U \ O for all i = 1, . . . , r by Hypothesis 2a.
Given an integer j between 1 and r included, denote respectively by hj and h′j the
restrictions of h and h′ to the sub-bundle V × Cj of V × Cr , where Cj is the vector
subspace of Cr given by the points (u1, . . . , ur) ∈ Cr such that uj+1 = . . . = ur = 0.

Now, σhj
and σh′

j
are transverse to the blown-up non-injectivity locus Σ near the

closed set O , for all j = 1, . . . , r : indeed, this follows directly from Hypothesis 2b for
the case j = 1, . . . , r − 1 and from Hypothesis 2c and Lemma A.6 for the case j = r
(remark that in Lemma A.6 we do not make compactness assumptions, so we can chose
V as base manifold V in the statement of the lemma). Then, using the relative version
of the genericity of the transversality condition, we can perturb hj , h′j to gj , g′j in such
a way that gj = hj , g′j = h′j over O and that σgj ’s and σg′j ’s are everywhere transverse
to Σ. Moreover, because ψ (hj (p, .)) = h′j (p, .) for p ∈ Oc , we can also arrange that
ψ (gj (p, .)) = g′j (p, .) for p ∈ Oc : indeed, we can use the same perturbation for hj
and h′j over Oc because they coincide there. Lastly, if we choose the perturbation C0 -
small, we can arrange to have the submanifolds Z (gj) and Z

(
g′j
)

compactly contained

in O × CPj−1 .
Now, by construction of the gj ’s and the g′j ’s, if we write Z (gj) = ZO (gj) ∪

ZOc (gj) and Z
(
g′j
)
= ZO

(
g′j
)
∪ ZOc

(
g′j
)
, where ZO (gj) , ZO

(
g′j
)
⊂ O × CPj−1 and

ZOc (gj) , ZOc

(
g′j
)
⊂ Oc × CPj−1 , we have that ZOc (gj) = ZOc

(
g′j
)

for all j = 1, . . . , r

and ZO (gj) = ZO
(
g′j
)
= ∅ for j = 1, . . . , r − 1. Moreover, if prjV : V × CPj−1 → V is

the projection on the first factor for all j = 1, . . . , r , by Lemma A.6 φr := prrV |Z(gr) and
φ′r := prrV |Z(g′r)

induce orientation preserving diffeomorphisms between ZO (gr) and Z
and between ZO (g′r) and Z ′ respectively.
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By Theorem A.4 and the identities above, we have that for all j = 1, . . . , r − 1

cr−j+1(E) = PD
(
(φj)∗ [Z (gj)]

)

= PD
(
(φj)∗ [Z (gj) ∩ Oc]

)

= PD
((
φ′j
)
∗
[
Z
(
g′j
)
∩ Oc

])

= PD
(
(φj)∗

[
Z
(
g′j
)])

= cr−j+1(E
′) ,

and that

c1(E) = PD ((φr)∗ [Z (gr)])

= PD ((φr)∗ [Z (gr) ∩ Oc]) + PD ((φr)∗ [Z (gr) ∩ O])

= PD ((φr)∗ [ZOc (gr)]) + PD ([Z]) ,

c1(E
′) = PD ((φr)∗ [Z (g′r)])

= PD ((φr)∗ [Z (g′r) ∩ Oc]) + PD ((φr)∗ [Z (g′r) ∩ O])

= PD ((φr)∗ [ZOc (g′r)]) + PD ([Z ′])

= PD ((φr)∗ [ZOc (gr)]) + PD ([Z ′]) ,

which give c1(E′)− c1(E) = PD ([Z ′])− PD ([Z]).

Proof (lemma A.6). Because the transversality and the orientation preserving conditions
are local, we can restrict our attention to an open set U on which there is an everywhere
non-zero section s of L|U .
In particular, the r -tuple of sections (s1, . . . , sr−1, s) trivializes E|U , i.e. the map U ×
Cr → E|U given by (q, w) 7→∑r−1

i=1 wisi(q)+wrs(q) is an isomorphism of complex vector
bundles.

In this local trivialization, we can rewrite sr as

sr : U → U × Cr

q 7→ (q, 0, . . . , 0︸ ︷︷ ︸
r−1 times

, v(q))

for a certain v : U → C.
Also, the fact that sr is transverse to F at a certain point q ∈ U means that v : U → C is
transverse to {0} ⊂ C at q . Moreover, if we denote by ν : U×Cr → Cr the projection on
the second factor, in the open set U the submanifold M = s−1

r (F ) (oriented according to
Convention A.2) is actually equal to the oriented manifold (ν ◦ sr)−1

(0); in other words,
remarking that ν◦sr = (0, . . . , 0, v), we have that M∩U = v−1 (0) as oriented manifolds.

Now, let’s rewrite σh using the chosen trivialization of E over U .
Firstly, the map h becomes h : U × Cr → U × Cr , h(q, w) = (q,M(q) · w), where

· denotes the matrix product, M : U → Mr (C) is with values in the space Mr (C) of
square matrices r×r with complex coefficients and is defined by

M =

(
Ir−1 0
0 v

)
, (A.1)

with Ir−1 the identity matrix of dimension (r − 1)× (r − 1). In other words, sh : U →
U ×Mr (C) is given by sh(q) = (q,M(q)).
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Moreover, we remark that if (p, d) ∈ U × CPr−1 is such that σh(p, d) ∈ Σ then
d = [0 : · · · : 0 : 1]. We can hence further restrict to the coordinate chart Cr−1 ={
[z1 : . . . : zr−1 : 1] ∈ CPr−1

}
⊂ CPr−1 containing the point [0 : · · · : 0 : 1] and consider

σh as a map

σh : U × Cr−1 → U ×Mr (C)× Cr−1

(q, z) 7→ (q,M (q) , z)

where z = (z1, . . . , zr−1) ∈ Cr−1 .
Now, in order to study the transversality of σh with respect to Σ, we have to come

back at the construction of Σ as preimage of a transverse intersection.
We then consider the vector bundles ǫ1, ǫ2 and the sections Ψ, 0Π of Π as in the (sketch
of the) proof of Proposition A.1 and read them in the given trivialization of E over U
and in the chart Cr−1 ⊂ CPr−1 . We are then in the following situation:

• ǫ1 , which is globally the product of HomC (V × Cr, E) and the tautological line
bundle γ over CPr−1 , becomes the trivial line vector bundle U×Mr (C)×Cr−1×C
over U ×Mr (C)×Cr−1 , and the projection map is just the projection on the first
three factors: indeed, γ admits over the coordinate chart Cr−1 ⊂ CPr−1 the
trivialization Cr−1×C

∼−→ γ given by (z1, . . . , zr−1, λ) 7→ ([z1 : . . . : zr−1 : 1] , λz),
where z := (z1, . . . , zr−1, 1);

• ǫ2 , defined globally as π∗φ∗E , becomes the trivial vector bundle U × Mr (C) ×
Cr−1×Cr over U ×Mr (C)×Cr−1 , again via the projection on the first 3 factors;

• the projection Π : HomC (ǫ1, ǫ2) → HomC (V × Cr, E) × CPk−1 becomes locally
Π : U ×Mr (C)×Cr−1 ×Mr,1 (C) → U ×Mr (C)×Cr−1 , (q, A, z, B) 7→ (q, A, z)
;

• the zero section 0Π of Π is locally the image of the inclusion

U ×Mr (C)× Cr−1 →֒ U ×Mr (C)× Cr−1 ×Mr,1 (C)

(q, A, z) 7→ (q, A, z, 0)

• the section Ψ of Π can be rewritten locally as Ψ : U × Mr (C) × Cr−1 → U ×
Mr (C)×Cr−1×Mr,1 (C) and is given by Ψ(q, A, z) = (q, A, z, A · z), where again
z := (z1, . . . , zr−1, 1) ∈ Cr , if z = (z1, . . . , zr−1).

Then, using the expression in Equation A.1 for the matrix M(q), we get

Ψ ◦ σh : U × Cr−1 → U ×Mr (C)× Cr−1 ×Mr,1 (C)

(q, z) 7→
(
q,

(
Ir−1 0
0 v(q)

)
, z,

(
z
v(q)

))

Now, because Ψ is transverse to 0Π and Σ coincides with the oriented preimage
Ψ−1 (0Π) (see the sketch of proof of Proposition A.1), we actually have that σh is trans-
verse to Σ at (q, 0) ∈ U ×Cr−1 (recall that if σh(q, z) is in Σ then z = 0) if and only if
Ψ ◦ σh is transverse to 0Π at (q, 0). Moreover, if we have transversality at every point,
Z (h) = σ−1

h (Σ) equals (Ψ ◦ σh)−1
(0Π) as oriented manifolds.

If we denote by µ : U ×Mr (C)×Cr−1×Mr,1 (C) → Mr,1 (C) the projection on the
last factor, we also get that Ψ ◦ σh is transverse to 0Π at (q, 0) ∈ U × Cr−1 if and only
if µ ◦Ψ ◦ σh is transverse to {0} ⊂ Mr,1 (C) and that, in case of transversality at every
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point, Z (h) ∩
(
U × Cr−1

)
= (µ ◦Ψ ◦ σh)−1

(0) as oriented manifolds. In other words,
using the fact that

µ ◦Ψ ◦ σh : U × Cr−1 → Mr,1 (C)

(q, z) 7→
(

z
v(q)

)

we get that σh is transverse to Σ at (q, 0) ∈ U×Cr−1 if and only if v : U → C is transverse
to {0} ⊂ C at q and that, if there is transversality everywhere, Z (h) ∩

(
U × Cr−1

)
=

v−1 (0)× {0} ⊂ U × Cr−1 as oriented manifolds.
This concludes the proof of lemma A.6, because v is transverse to 0 ∈ C (as said in

the beginning), hence σh is transverse to Σ over U × Cr−1 , and φ : V × CPr−1 → V
clearly induces an orientation preserving diffeomorphism

φ : Z (h) ∩
(
U × Cr−1

)
= v−1 (0)× {0} ∼−→M ∩ U = v−1(0) .
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Part II

Revisiting some known

constructions of contact

manifolds
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Chapter 5

Contact branched coverings and

fiber sums

The goal of this chapter is to give definitions of contact branched coverings and contact
fiber sums that allow us to naturally obtain uniqueness statements. We will in particular
prove Proposition II.A stated in the introduction. We point out that the proofs in this
section are mainly a reformulation of those in [Gei97b].

5.1 The smooth case

Branched covers

Let Ŵm, Wm be smooth manifolds with (possibly empty) boundary.

Definition 5.1. A map π : Ŵ → W is a branched covering if each point p ∈ W admits
a neighborhood U such that for each connected component Û of π−1(U) we have the
following commutative diagram

D2 × Ω Û

D2 × Ω U

ψ̂

πk π|Û

ψ

where Ω is either Rm−2 or Rm−3× [0,+∞) (depending on whether p ∈W is respectively
in the interior or on the boundary of W ), D2 is the disk of radius 1 and center 0 in R2,
ψ and ψ̂ are diffeomorphisms, with ψ(0, 0) = p, and πk is the map (z, q) 7→ (zk, q) for all
z ∈ D2 and all q ∈ Ω.

If we denote p̂ = ψ̂(0, 0) ∈ Û , then k is called the branching index at the point p̂.
Remark that it is well-defined, i.e. it does not depend on any choice beside p̂. Indeed,
π|Û induces a (unbranched) covering map Û \ ψ̂ ({0} × Ω) → U \ψ ({0} × Ω) and k is its
degree, which is independent of the choice of the trivializations.

We denote X̂m−2, and call it upstairs branching set the codimension 2 submanifold
of Ŵ made of the points p̂ ∈ Ŵ such that the branching index is > 1, i.e. such that the
associated local form πk has a k > 1. We also denote X, and call it downstairs branching
set, the codimension 2 submanifold of W given by the image of X̂ via π.

The following properties follow directly from the definition:
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(a) X̂ and X are proper submanifolds of Ŵ and W respectively, i.e. ∂X̂ ⊂ ∂Ŵ ,
∂X ⊂ ∂W and X̂ ⋔ ∂Ŵ , X ⋔ ∂W ;

(b) π induces regular coverings π|
Ŵ\X̂ : Ŵ \ X̂ →W \X and π|X̂ : X̂ → X;

(c) if we denote V m−1 := ∂W and V̂ m−1 = ∂Ŵ , then π′ := π|∂Ŵ is a branched

covering π′ : V̂ → V with branching set M := ∂X ⊂ V ; we then denote M̂ the set
of points in V̂ where π′ has associated local index k > 1.

Fiber sums

Let V,M be two oriented smooth manifolds of dimensions dimV = m+ 1 and dimM =
m− 1, with M connected. We point out that we do not suppose V connected here.

Let also j1 : M → V and j2 : M → V be two disjoint orientation-preserving em-
beddings such that there is a fiber-orientation-reversing isomorphism Φ over M between
their normal bundles:

N1 := j∗1
(
TV

/
(j1)∗ TM

)
N2 := j∗2

(
TV

/
(j2)∗ TM

)

M

Φ
∼

For notational convenience, denote by j : M → V the disjoint union j1 ⊔ j2.

Definition 5.2. A fiber sum of V along j1, j2 via Φ is the data (W,H,ϕ) of a smooth ori-
ented manifold Wm+1, a cooriented hypersurface H in W and an orientation-preserving
diffeomorphism ϕ : V \ j(M) → W \ H for which there exist (oriented) tubular neigh-
borhoods ρ1 : N1 → V of j1(M), ρ2 : N2 → V of j2(M) and ρ : N → V of H, where
N := TW /TH is the normal bundle of H in W , satisfying the following conditions:

i. ρ1 and ρ2 have disjoint images;

ii. for i = 1, 2 and p ∈ M = 0M ⊂ Ni, the differential dpρi : TpNi → Tji(p)V , which
can be seen as a map dpρi : TpM ⊕ (Ni)p → Tji(p)V if we naturally split TpNi as
Tp0M ⊕ (Ni)p, is such that the composition

Tji(p)V
pr−→ j∗i

(
Tji(p)V

/
(ji)∗ TpM

)
= (Ni)p

dpρi|(Ni)p−−−−−−−→ Tji(p)V

is exactly Id : Tji(p)V → Tji(p)V (here, pr is just the natural projection);

iii. if N ∗
1 ,N ∗

2 and N ∗ denote respectively the bundles N1,N2 and N deprived of their
zero sections, ϕ induces a diffeomorphism between the image of ρ1⊔ρ2 in V \ j(M)
and the image of ρ in W \H, and the composition

f : N ∗
1 ⊔N ∗

2
ρ1⊔ρ2−−−−→ V \ j(M)

ϕ−→ Im (ϕ ◦ (ρ1 ⊔ ρ2)) ρ−1

−−−→ N ∗

is a diffeomorphism which is R>0−equivariant for the natural actions by multipli-
cation of R>0 on N ∗

1 ,N ∗
2 and N ∗, and sends N ∗

1 on the positive part of N ∗ (H is
a cooriented hypersurface, hence N is divided by the zero section in two connected
components, one positive and one negative thanks to the coorientation);
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iv. if σ : N → N is the involution given by σ(v) = −v for each v ∈ N , the composition

g : N ∗
1

f |N∗
1−−−→ N σ−→ N f−1

−−→ N ∗
2

coincides with Φ|N∗
1

Remark 5.3. It is a direct consequence of the above definition that if (W,H,ϕ) is a fiber
sum of V along j1, j2 via Φ, then we have two diffeomorphisms f1 and f2 such that the
following diagram is commutative:

N ∗
1
/
R>0

H

N ∗
2
/
R>0

φ

f1

f2

where the quotients N ∗
1
/
R>0

and N ∗
2
/
R>0

are taken with respect to the natural action
by multiplication by a positive real on N ∗

1 and N ∗
2 respectively and φ is the diffeomorphism

induced by Φ.

The following result shows that the above definition is non-empty:

Proposition 5.4. Fiber sums of V along j1, j2 via Φ exist.

Proof. If we fix an auxiliary Riemannian metric on V , Φ induces an isomorphism

ΦS : SN1 → SN2

v 7→ Φ (v)

‖Φ (v)‖
(5.1)

between the two sub-bundles of N1 and N2 made of the vectors of norm 1.
For i = 1, 2, consider an embedding ρi : Ni → V which identifies the normal bundle Ni

with a regular tubular neighborhood of ji (M) inside V , in such a way that their images
are disjoint. Now, there is a natural isomorphism N ∗

i → SNi × (0,+∞) of oriented
bundles over M , for i = 1, 2. We hence obtain embeddings τi : SNi × (0,+∞) → V
thanks to ρi, for i = 1, 2.

Consider then the set R∗ := R \ {0} and the embedding

SN1 × R∗ Ψ→֒ V \ (j1 (M) ∪ j2 (M))

(v, t) 7→
{
τ1 (t · v) for t > 0
τ2 (−t · ΦS (v)) for t < 0

(5.2)

Let W be the smooth manifold obtained as the quotient of the disjoint union

(V \ j (M))
⊔

SN1 × R

by the relation ∼Ψ defined as follows: p ∼Ψ (v, t) if p ∈ V \ j (M), (v, t) ∈ SN1 × R∗

and p = Ψ(v, t). Define also by H the hypersurface SN1 × {0} ⊂ SN1 × R inside W
and by ϕ the diffeomorhism V \ j(M) → W \ H given by the natural identification
W \H = V \ j(M). Then, (W,H,ϕ) is a fiber sum of V along j(M) via Φ.
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The notion of fiber sum in Definition 5.2 also satisfies the following uniqueness prop-
erty:

Proposition 5.5. If (W,H,ϕ) and (W,H,ϕ) are two fiber sums of V along j1, j2 via
Φ, then there is a diffeomorphism Θ: W →W such that:

i. Θ|H : H
∼−→ H is a coorientation preserving diffeomorphism;

ii. θ := ϕ−1 ◦Θ ◦ ϕ : V \ j(M)
∼−→ V \ j(M) smoothly extends to θ′ : V

∼−→ V that is
isotopic to the identity, via an isotopy fixing j(M) pointwise.

Proposition 5.5 is an immediate consequence of the following:

Lemma 5.6. If (W,H,ϕ) and (W,H,ϕ) are two fiber sums of V along j1, j2 via Φ, then
there is Θ: W

∼−→W , with Θ(H) = H, and an isotopy Ft : V
∼−→ V starting at F0 = IdV ,

fixing j(M) pointwise, and such that the following diagram is commutative:

V \ j(M) W \H

V \ j(M) W \H

ϕ

F1 Θ

ϕ

Proof (Lemma 5.6). Denote by ρ1, ρ2, ρ,N and by ρ1, ρ2, ρ,N the embeddings and nor-
mal bundle given by Definition 5.2 for (W,H,ϕ) and (W,H,ϕ).

According to the uniqueness theorem for tubular neighborhoods (see for instance
[Lan99, Theorem 6.2]), there are vector bundle automorphisms ν1, ν2, of respectively
N1,N2, and an isotopy Ft : V → V starting at F0 = IdV , fixing j(M) pointwise and
such that ρ1 = F1 ◦ ρ1 ◦ ν1 and ρ2 = F1 ◦ ρ2 ◦ ν2. In other words, the following diagram
commutes:

N1 ⊔N2 V

N1 ⊔N2 V

ν1⊔ν2

ρ1⊔ρ2

F1

ρ1⊔ρ2

Notice moreover that, by condition ii. in Definition 5.2, we can chose F1 so that ν1 and
ν2 are actually the identity isomorphisms of N1 and N2 respectively.

Consider now the composition

Θ′ : W \H ϕ−1

−−→ V \ j(M)
F1−→ V \ j(M)

ϕ−→W \H .

At this point, it’s enough to show that such a Θ′ extends on all W to a diffeomorphism
Θ: W →W as in the statement.

Let X := Im (ϕ ◦ (ρ1 ⊔ ρ2)), X := Im (ϕ ◦ (ρ1 ⊔ ρ2)) and µ′ := ρ−1 ◦ Θ′|X ◦ ρ. We
then have the following commutative diagram:

N ∗
1 ⊔N ∗

2 V \ j (M) X N ∗

N ∗
1 ⊔N ∗

2 V \ j (M) X N ∗
Id

ρ1⊔ρ2 ϕ

F1
Θ′|X

ρ−1

µ′

ρ1⊔ρ2 ϕ ρ−1

Now, by Definition 5.2, the upper and the lower rows give two R>0−equivariant
diffeomorphisms. Hence, µ′ is R>0−equivariant too. Because N and N are vector spaces
of real dimension 1 over H and H, this means that µ′ actually extends to a vector bundle
isomorphism µ : N → N .

By the commutativity of the above diagram, this implies that Θ′ can be extended to
a diffeomorphism Θ: W

∼−→W , as wanted.
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5.2 Branched coverings of contact manifolds

Suppose π : V̂ 2n+1 → V 2n+1 is a branched covering map of manifolds without boundary,
branched along the codimension 2 submanifold M2n−1 ⊂ V . We denote, like in the
previous section, M̂2n−1 the locus of points of V̂ with branching index > 1. Be careful,
though, that here V̂ , V , M̂ , M play, respectively, the roles of Ŵ , W , X̂, X of Section 5.1,
and they all have no boundary.

In this section we also suppose that we are dealing with (V, η) and (M, ξ) contact
manifolds, where ξ is the sub−bundle η ∩ TM of TV |M .

The pullback π∗η is a well defined hyperplane field on V̂ , because if we fix a contact
form α for η then π∗α, which defines π∗η, is nowhere vanishing. Though, it is not a
contact form, because at each point p̂ of M̂ we have π∗(α ∧ dαn)|p̂ = 0. We point out

that, nonetheless, the restriction of π∗η to M̂ is a honest contact structure on M̂ . We
then want to show that π∗η gives a “natural” way to construct contact structures on V̂ .

We start by considering a more general setting. Let Y 2n+1 be a smooth manifold,
Z2n−1 a codimension-2 submanifold and η an hyperplane field on Y .

Definition 5.7. We say that η is adjusted to Z if it is a contact structure on the
complement of Z and η ∩ TZ is a contact structure on Z. If that’s the case, we also call
contactization of η a contact structure ξ such that there is a smooth path {ηs}s∈[0,1] of
hyperplane fields, all adjusted to Z, which starts at η0 = η, ends at η1 = ξ and such that
ηs is a contact structure for all s ∈ (0, 1].

We then have the following general result:

Proposition 5.8. Let η be an hyperplane field on Y adjusted to Z. Contactizations of
η exist and are all isotopic.

We recall from [ET98, Section 1.1.6] that a confoliation on a manifold V is an hy-
perplane field ζ = kerα on V that admits a complex structure J : ζ → ζ tamed by dα|ζ ,
i.e. such that dα(X, JX) ≥ 0 for all vector fields X tangent to ζ. In our situation, if
η is an hyperplane field on Y adjusted to a codimension 2 submanifold Z, then η is a
confoliation. Indeed, we have the following:

Fact 5.9. Let (ηn)n∈N be a sequence of contact structures on a manifold Y 2n+1 which
C1−converges to a hyperplane field η on Y . Then, η = kerα admits a complex structure
J tamed by dα|η.

From now on, we will hence talk directly about confoliations adjusted to a certain
codimension 2 submanifold.

Proof (Fact 5.9). A first idea could be to take, for each n ∈ N, a complex structure
Jn on ηn = kerαn tamed by dαn|ηn (which exists because ηn is a contact structure)
and to define J as “the limit” of the sequence (Jn)n∈N. However, such a limit does not
necessarily exist for any choice of Jn. The solution is to assure the orthogonality of each
of the Jn with respect to an auxiliary riemannian metric g using the polar decomposition
of matrices, as follows.

Let ξ = kerβ be a contact structure on Y and fix an auxiliary riemannian metric g on
Y . Then, by the contact condition, dβ induces an isomorphism d̃β : ξ → ξ∗, where ξ∗ is
the vector bundle dual of ξ over M . Now, g also induces an isomorphism g̃ : ξ∗ → ξ. We
can hence consider A : ξ → ξ given by A := g̃ ◦ d̃β; in other words, dβ(X,Y ) = g(AX, Y )
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for each couple of sections (X,Y ) of ξ. Consider then the (left) polar decomposition RJ
of A, i.e. the unique couple of vector bundle-isomorphisms R, J : ξ → ξ with R positive
definite and J orthogonal with respect to g. More explicitly, R is the positive definite
square root of the symmetric and positive definite AA∗, where A∗ is the g−dual of A,
and J is the g−orthogonal endomorphism of ξ given by R−1A. The positive definiteness
of R implies that J is dβ|ξ−tamed. Moreover, by definition, A is skew−symmetric, i.e.
A∗ = −A. This and the fact that J is g−orthogonal imply that J2 = − Id, i.e. that J is
a complex structure on ξ.

This being said, let’s go back to the setting of Fact 5.9. Once fixed a sequence of
1−forms (αn)n∈N

with αn defining ηn and that C1−converges to a 1−form α defining η,
consider an auxiliary riemannian metric g on M . Then, according to what we just said,
we can define a sequence (Jn)n∈N

such that, for all n ∈ N, Jn : ηn → ηn is a complex
structure on ηn and is orthogonal with respect to g. Then, after obtaining from each Jn
an orthogonal Bn : TM → TM that sends the vector of norm 1 positively orthogonal
to ηn to itself, by compactness of the space of orthogonal linear maps TM → TM ,
we get that there is a sequence of naturals (nk)k∈N

diverging to +∞ such that Bnk

converges (in C1−topology) to a limit B : TM → TM . Now, we recall that ηn
C1

−−→ η,
that J2

n = − Id |ηn and that dαn(X, JX) > 0 for each X section of ηn. Hence, B restricts
to a well defined J : η → η such that J2 = − Id |η and dα(X, JX) ≥ 0 for all X section
of η, as wanted.

Proposition 5.8 is a consequence of the following lemma, which deals with the more
general situation of any number of parameters:

Lemma 5.10. Given K a compact set and (ηk)k∈K a smooth K−family of confoliations
on V adjusted to M , there is a smooth family of confoliations (ηsk)s∈[0,1], k∈K such that
(ηsk)s∈[0,1] is contactization of ηk, for each k ∈ K. Moreover, if ηk is contact for all k
in a closed subset H ⊂ K, then ηsk can be chosen so that ηsk = ηk for all k ∈ H and
s ∈ [0, 1].

In the above statement, by a smooth K−family of hyperplane fields we mean the
following. Let X be a closed smooth manifold and K ⊂ X a compact subset. Then,
we say that (ηk)k∈K is a smooth K−family if there is an open set U ⊂ X containing K
and a differential form α ∈ Ω1 (V × U) such, that for all k ∈ K, ηk = ker (i∗kα), where
ik : V → V × U is the inclusion ik(p) = (p, k).

Proof (Proposition 5.8). The existence of contactizations follows directly from Lemma 5.10
with K a point.
Given two contactizations ξ, ξ′ of η, we have by definition two associated paths of ad-
justed confoliations ηt, η′t, with t ∈ [0, 1], such that η0 = η′0 = η, η1 = ξ, η′1 = ξ′ and
ηt, η

′
t contact for t ∈ (0, 1]. Then, the path

t 7→ η̂t :=

{
η1−2t if t ∈ [0, 1/2]

η′2t−1 if t ∈ [1/2, 1]
(5.3)

is a continuous path of adjusted confoliations from η̂0 = ξ to η̂1 = ξ′. Moreover, up to
perturbing it smoothly at t = 1/2, we can suppose that η̂t is smooth in t. Then, applying
Lemma 5.10 to η̂t, with K = [0, 1] and H = {0, 1}, we get a family (η̂st )s∈[0,1], t∈[0,1] of
adjusted confoliations such that η̂s0 = ξ, η̂s1 = ξ′ for all s ∈ [0, 1] and such that η̂st is
contact for s > 0. The subfamily η̂1t is then a path of contact structures from ξ to ξ′,
and it can be turned into an isotopy by Gray’s theorem.
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Proof (Lemma 5.10). This proof follows almost step by step the construction and the
computations made in [Gei97b, Section 2].

Because the contact condition is an open condition in the space of 1−forms (with the
C1−topology), there is an open subset U of K which contains H and such that ξk is
contact for all k ∈ U . We consider then a smooth cut-off function ρ : K → [0, 1], equal
to 0 on H and equal to 1 on the complement of U .

Take now an auxiliary Riemannian metric on V and consider the circle bundle S (NM)
given by the vectors of norm 1 in the normal bundle NM of M inside V . Let γ be a
connection form on S (NM), i.e. a nowhere vanishing 1−form defining an hyperplane
field which is transversal to the fibers of the fibration S (NM) → M . Then, thanks to
the natural retraction R2 \ {0} → S1, γ can also be seen as a 1−form on NM \ M .
Moreover, the form r2γ, where r is the radial coordinate in NM \M , smoothly extends
over the zero section M to all NM .

We consider then a non-increasing cut-off smooth function g = g(r) which is 1 near
r = 0 and vanishes for r > 1 and we identify NM with a neighborhood of M inside V .
If αk is a smooth K-family of 1-forms defining ξk, set

αsk := αk + sǫρ(k)g(r)r2γ .

Here ǫ is a positive real constant which will be chosen very small later. Suppose, without
loss of generality, that ǫ ≤ 1.

Remark that ξsk := αsk is a well defined hyperplane field. Moreover, it is adjusted to
M , for all values of s, k.

We now want to show that, for an ǫ small enough, ξsk is actually a contact structure
on V for all s > 0, k ∈ K.

We can compute

αsk ∧ (dαsk)
n
= αk ∧ (dαk)

n
+

+ nsǫ [rg′ (r) + 2g (r)] ρ (k)αk ∧ (dαk)
n−1 ∧ rdr ∧ γ +

+ sǫr2g (r) ρ (k)h vol

where vol is the Riemannian volume form on V and h is a function of p ∈ V , k ∈ K,
s ∈ [0, 1], ǫ ∈ R>0 and is polynomial in ǫ.

Define now Pk, Qk : V → R by the identities αk∧(dαk)n = Pk vol and n [rg′ (r) + 2g (r)]αk∧
(dαk)

n−1 ∧ rdr ∧ γ = Qk vol.
Also, define Rk(ǫ) := r2g (r)h(ǫ, k). Then,

αsk ∧ (dαsk)
n
= {Pk + sǫρ (k) [Qk +Rk (ǫ)]} · vol .

Now, Qk > 0 and Rk(ǫ) = 0 along M̂ , for all k ∈ K and ǫ ∈ [0, 1] (remark we allow
here ǫ = 0). Hence, by compactness of M̂ and [0, 1], there is an open neighborhood O of
M̂ inside V̂ such that Qk +Rk(ǫ) > 0 on O for all ǫ ∈ [0, 1].

Pk is independent of ǫ, s and is non-negative everywhere on V̂ for all k. Moreover, Pk
is strictly positive on the complement of O for all k ∈ K, and even on all V̂ if k ∈ U ⊂ K
(remember ξk is contact if k ∈ U).
Then, Pk + sǫρ (k) [Qk +Rk (ǫ)] > 0 on O, for all k ∈ K and all ǫ ∈ (0, 1].

Lastly, for ǫ very small, Pk dominates sǫρ(k) [Qk +Rk (ǫ)] wherever it is strictly
positive, because the latter is bounded above in norm (recall we are working with ǫ ≤
1). Hence, by compactness of V̂ \ O, Pk + sǫρ (k) [Qk +Rk (ǫ)] is also positive on the
complement of O for all k ∈ K, for ǫ > 0 small enough.

63



5.3. FIBER SUMS OF CONTACT MANIFOLDS

Coming back to the specific case of branched coverings, the hyperplane field π∗η on
V̂ is adjusted to M̂ (hence is in particular a confoliation).

We can thus redefine branched coverings in contact topology as follows:

Definition 5.11. We say that a contact structure on V̂ is a contact branched covering
of η if it is a contactization of π∗η and it is invariant under all the diffeomorphisms of V̂
lifting the identity of V .

We point out that, by definition of contactization, if η̂ is a contact branched covering
of η, the upstairs branching locus M̂ is naturally a contact submanifold in (V̂ , η̂). Then,
Proposition 5.8 easily implies the following:

Proposition 5.12. Let V̂ → V be a smooth branched covering and η a contact structure
on V . Then, contact branched coverings of η on V̂ exist and are all isotopic (among
contact branched coverings).

We point out that, in order to deduce this result from Proposition 5.8, the contacti-
zation in the statement Proposition 5.8 has to be invariant under deck transformations
of π, as requested in Definition 5.11, and the isotopy has to be among invariant contac-
tizations. From the explicit formula in the proof of Lemma 5.10 above, it’s clear that
both these conditions can be easily arranged.

Let’s now recall and prove Proposition II.A, stated in the introduction:

Proposition II.A. Soit (V 2n−1, η) une variété de contact et π : V̂ → V un revêtement
ramifié avec lieu de ramification (en bas) M . On suppose que η ∩ TM est une structure
de contact sur M . Alors :

1. il y a une famille, indexée par [0, 1], de distributions d’hyperplans η̂t sur V̂ telle
que η̂0 = π∗η et η̂t est une structure de contact pour tout t ∈ (0, 1];

2. si η̂t et η̂′t sont comme dans le point 1, alors η̂r est isotope à η̂′s pour tout r, s ∈ (0, 1].

De plus, dans le point 1, η̂t peut être choisie invariant par les automorphismes (locales)
du revêtement π, pour tout t ∈ (0, 1]; de façon analogue, l’isotopie du point 2 peut être
choisie parmi les structures de contact invariant par les automorphismes (locales) de
revêtement, si η̂t et η̂′t le sont aussi.

Proof (Proposition II.A). This is a simple consequence of Gray’s theorem and the fact
that contact branched coverings exist and are unique up to isotopy. Indeed, the [0, 1]-
families of hyperplane fields in points 1 and 2 in the statement are automatically adjusted
to the upstairs branching locus for small parameters t ≥ 0.

5.3 Fiber sums of contact manifolds

Let’s start here with some general definitions and results.
Let V 2n+1 be a smooth manifold and (M2n−1, ξ) be a contact manifold. Consider now
an oriented circle bundle π : S → M and suppose that there is a smooth embedding
S →֒ V .

Definition 5.13. A smooth hyperplane field η on V is adjusted to S if η is a contact
structure away from S and η ∩ TS = π∗ξ as bundles over S. If that’s the case, we call
contactization of η a smooth path of hyperplane fields (ηs)s∈[0,1] such that η0 = η and
such that ηs is a contact structure for all s ∈ (0, 1].
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As in Section 5.2, we have the following:

Proposition 5.14. Let η be a hyperplane field adjusted to S. Contactizations of η exist
and are all isotopic.

We point out that exactly as remarked in Fact 5.9 for the case of hyperplane fields
adapted to a codimension 2 submanifold, η is automatically a confoliation on V . We will
hence talk directly of confoliation adjusted to S in the following.

In order to prove Proposition 5.14, analogously as in the proof of Proposition 5.8, we
use the following:

Lemma 5.15. Given K a compact set and (ηk)k∈K a smooth family of confoliations on
V adjusted to S, there is a smooth family of adjusted confoliations (ηsk)s∈[0,1], k∈K such

that, for all k ∈ K, η0k = ηk and ηsk is contact for s ∈ (0, 1]. Moreover, if ηk is contact
for all k in a closed subset H ⊂ K, then the ηsk can be chosen so that ηsk = ηk for all
k ∈ H and s ∈ [0, 1].

Proof (Lemma 5.15). Take an open subset U of K which contains H and such that ξk
is contact for all k ∈ U . Consider a smooth cut-off function ρ : K → [0, 1], equal to 0
exactly on H and equal to 1 on the complement of U .

Now take an auxiliary Riemannian metric on V and consider a connection form γ on
the circle bundle π : S → M . The hypothesis of S being an oriented circle bundle (to-
gether with the fact that M,V are oriented by ξ, η respectively) tells that S is orientable
as smooth manifold, and that its normal bundle NS inside V is trivial. In other words,
S has a neighborhood of the form S × R inside V . Denote by r a coordinate on the R
factor.

Take now a non-increasing cut-off smooth function g = g(r) which is 1 near r = 0
and vanishes for r > 1.
Consider then a smooth K-family of 1-forms αk defining ξk and let

αsk := αk + sǫρ(k)g(r)rγ .

Here ǫ is a positive real constant which will be chosen very small later. We can in
particular set once and for all ǫ < 1.

We claim that αsk defines a contact structure ξsk on V for all s > 0. Indeed,

αsk ∧ (dαsk)
n
= αk ∧ (dαk)

n
+

+ nsǫ [rg′ (r) + 2g (r)] ρ (k)αk ∧ (dαk)
n−1 ∧ dr ∧ γ +

+ sǫrg (r) ρ (k)hvol

where vol is the Riemannian volume form on V and h is a function of p ∈ V , k ∈ K,
s ∈ [0, 1], ǫ ∈ R>0, and is polynomial in ǫ.

At this point, the same arguments as in the proof of Lemma 5.10 show that, for ǫ
small enough, the above (2n+ 1)−form is a volume form on all V .

Let’s now consider the case of fiber sums. Exactly as we did in the case of branched
coverings, once showed that there is a natural (in the sense of Definition 5.2) notion of
smooth fiber sum (W,H,ϕ), we want to define on it a natural confoliation adapted to H.

Let (V 2n+1, η), (M2n−1, ξ) be two contact manifolds and consider two contact embed-
dings j1 : (M, ξ) → (V, η) and j2 : (M, ξ) → (V, η) such that there is a fiber-orientation-
reversing isomorphism Φ : N1 → N2 of vector bundles over M between the normal bundle
N1 of j1(M) and the normal bundle N2 of j2(M).
Again, let j := j1 ⊔ j2 for notational convenience.
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Definition 5.16. We call confoliated fiber sum of (V, η) along the contact embeddings
j1, j2 via Φ the data (W,H,ϕ, ζ) of a smooth fiber sum (W,H,ϕ) of V along j1, j2 via Φ
and a smooth hyperplane field ζ on W that coincides with ϕ∗η on W \H and is adjusted
to H.

Here, according to Remark 5.3, H can naturally be seen as the total space of the
circle bundle SN1 →M . Hence, ζ is adjusted to H is in the sense of Definition 5.13. In
particular, η is a confoliation on V , which explains the nomenclature “confoliated” fiber
sum.

Remark 5.17. If such a confoliation ζ exists, it is uniquely determined by ϕ∗η, because
H is a hypersurface in W , hence W \H is dense in W .

The following result guarantees that the above definition is non−empty:

Proposition 5.18. Confoliated fiber sums of (V, η) along contact embeddings j1, j2 via
Φ exist.

Proof (Proposition 5.18). Let α be a contact form defining ξ on M . Denote also by γ2 a
connection form on the bundle SN2 and γ1 the connection −Φ∗

Sγ2 on SN1, where ΦS is
as in Equation (5.1).

Lemma 5.19. There are ǫ > 0 and embeddings ρ1 : N1 →֒ V and ρ2 : N2 →֒ V
with disjoint images and such that ρ∗1 (η) = ker

(
π∗
1α+ ǫ arctan

(
r2
)
γ1
)

and ρ∗2 (η) =

ker
(
π∗
2α+ ǫ arctan

(
r2
)
γ2
)
, where πi : Ni →M is the projection of the vector bundle Ni

onto its base space M .

Proof (Lemma 5.19). This follows directly from the standard neighborhood theorem for
contact submanifolds [Gei08, Theorem 2.5.15], together with the fact that a pair of
codimension 2 embeddings of the same contact submanifold have isomorphic conformal
symplectic normal bundles if and only if they have isomorphic smooth normal bundles.

We now call τi : SNi × (0,+∞) → V the embedding induced by ρi, for i = 1, 2, and
we define and embedding Ψ as follows:

SN1 × R∗ Ψ→֒ V \ j (M)

(v, t) 7→





τ1

(√
tan (t3) · v

)
for t > 0

τ2

(√
tan (−t3) · ΦS (v)

)
for t < 0

(5.4)

We point out that Ψ is an embedding that preserves the orientation (recall N1 is
oriented, hence SN1 too).

Using Lemma 5.19 and the fact that Φ∗
Sγ2 = −γ1, a direct computation gives that

Ψ∗η = ker
(
π∗
1α+ ǫt3γ1

)
on SN1 × R∗.

Now, the 1-form γ := π∗
1α+ ǫt3γ1 on the domain of Ψ naturally extends to a smooth

differential form on SN1 × R, which we will still denote by γ. Moreover, this extension
is clearly positively contact away from the submanifold SN1 ×{0} and defines a smooth
confoliation on all SN1 × R∗.

Then, denote by W the smooth manifold obtained as the quotient of the disjoint
union (V \ j (M)) ⊔ (SN1 × R) by the relation ∼Ψ defined as follows: p ∼Ψ (v, t) if
p ∈ V \ j (M), (v, t) ∈ SN1 × R∗ and p = Ψ(v, t).
Let also H be the hypersurface SN1×{0} ⊂ SN1×R inside W , and ϕ the diffeomorhism
V \ j(M) →W \H given by the identification W \H = V \ j(M).
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Finally, let ζ be the smooth hyperplane (and confoliation) induced by η and ker γ respec-
tively on the subsets V \ j (M) and SN1 × R∗ of W .

Then, (W,H,ϕ, ζ) is a confoliated fiber sum of V along j(M) via Φ.

We also have the following uniqueness property:

Proposition 5.20. If (W,H,ϕ, ζ) and (W,H,ϕ, ζ) are two confoliated fiber sums of V
along the contact embeddings j1, j2 via Φ, then there is a diffeomorphism Θ: W → W
such that:

i. Θ|H : H
∼−→ H is a coorientation preserving diffeomorphism;

ii. θ := ϕ−1 ◦ Θ ◦ ϕ : (V \ j(M), η)
∼−→ (V \ j(M), η) is a contactomorphism ant it

smoothly extends to a contactomorphism θ′ : (V, η)
∼−→ (V, η) that is contact-isotopic

to the identity, via an isotopy fixing j(M) pointwisely;

iii. Θ∗ζ = ζ.

We deduce Proposition 5.20 from the following:

Lemma 5.21. If (W,H,ϕ) and (W,H,ϕ) are two fiber sums of V along j1⊔j2 via Φ, then
there is Θ: W

∼−→W , with Θ(H) = H, and a contact isotopy Ft : (V, η)
∼−→ (V, η) starting

at F0 = IdV , fixing j(M) pointwise, such that the following diagram is commutative:

V \ j(M) W \H,

V \ j(M) W \H

ϕ

F1|V \j(M) Θ|W\H

ϕ

Proof (Proposition 5.20). This follows directly from Lemma 5.21, once noticed that the
commutativity of the square in the lemma tells that

(
Θ|W\H

)
∗ (ϕ∗η) = ϕ∗η and that,

according to Remark 5.17, ζ and ζ are determined, respectively, by ϕ∗η and ϕ∗η.

Proof (Lemma 5.21). As in the proof of Lemma 5.6, denote by ρ1,ρ2,ρ,N and by ρ1,ρ2,ρ,N
the embeddings and normal bundle given by Definition 5.2 for respectively (W,H,ϕ) and
(W,H,ϕ).

Again according to the uniqueness theorem for tubular neighborhoods (see [Lan99,
Theorem 6.2]), there is an isotopy Gt : V → V , with t ∈ [0, 1], starting at G0 = IdV ,
fixing j(M) pointwise and such that ρ1 = G1 ◦ ρ1 and ρ2 = G1 ◦ ρ2. Define then
ρti := Gt ◦ ρi for i = 1, 2 and t ∈ [0, 1], and denote Rt := ρt1 ⊔ ρt2.

Then, as explained in the proof of [Gei08, Theorem 2.6.12], we can find a family
of embeddings Ht : N1 ⊔ N2 → N1 ⊔ N2, defined on N1, N2 neighborhoods of the zero
section in N1,N2 respectively, such that H0 is the inclusion i : N1 ⊔N2 → N1 ⊔ N2 and
(Rt ◦Ht)

∗
η = (Ht)

∗
(R∗

t η) = i∗ (ρ1 ⊔ ρ2)∗ η on N1 ⊔ N2 ⊂ N1 ⊔ N2. More precisely,
such a Ht corresponds in the proof of [Gei08, Theorem 2.6.12] to the ϕt obtained from
φt := Rt.

In particular, Rt ◦Ht : N1 ⊔N2 → V pulls back η to (ρ1 ⊔ ρ2)∗ η and

Rt ◦Ht :
(
N1 ⊔N2, (ρ1 ⊔ ρ2)∗ η

)
→ (V, η)

is a path of contact embeddings starting at R0◦H0 = (ρ1 ⊔ ρ2)◦i and ending at R1◦H1 =
(ρ1 ⊔ ρ2) ◦H1.

Then, using a cut-off of contact Hamiltonians, we can then obtain a contact isotopy
Ft : (V, η) → (V, η) such that, for smaller neighborhoods U1, U2 of the zero section of
N1,N2 compactly contained in N1, N2, the following diagram is commutative:
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U1 ⊔ U2 N1 ⊔N2 V

U1 ⊔ U2 N1 ⊔N2 V

Id

H0=i R0=ρ1⊔ρ2

F1

H1 R1=ρ1⊔ρ2

Now, consider the composition

Θ′ : W \H ϕ−1

−−→ V \ j(M)
F1−→ V \ j(M)

ϕ−→W \H .

It’s enough to show that such a Θ′ extends on all W to a diffeomorphism Θ: W →W
as in the statement.

We have the following commutative diagram:

U∗
1 ⊔ U∗

2 N ∗
1 ⊔N ∗

2 V \ j (M) X ρ−1 (X)

U∗
1 ⊔ U∗

2 N ∗
1 ⊔N ∗

2 V \ j (M) X ρ−1
(
X
)

Id

H0=i ρ1⊔ρ2 ϕ

F1|V \j(M)
Θ′|X

ρ−1

µ′

H1 ρ1⊔ρ2 ϕ ρ−1

where X := Im (ϕ ◦ (ρ1 ⊔ ρ2) ◦ i), X := Im (ϕ ◦ (ρ1 ⊔ ρ2) ◦H1) and µ′ := ρ−1 ◦Θ′|X ◦ ρ
is defined only on the subset ρ−1 (X) of N ∗ and has values in ρ−1

(
X
)
⊂ N ∗

.
Now, by Definition 5.2, the compositions ρ−1 ◦ϕ◦ (ρ1 ⊔ ρ2) and ρ−1 ◦ϕ◦ (ρ1 ⊔ ρ2) are

R>0−equivariant maps. Moreover, we can see from the explicit proof of [Gei08, Theorem
2.6.12], that for i ∈ {1, 2} and all p ∈M ⊂ Ui, dpH1 : Tp (Ni) → Tp (Ni) is of the form

IdTpM ⊕Lp : TpM ⊕Np → TpM ⊕Np ,

where L : N → N is an isomorphism of vector bundles over M . Here, we used the
natural splitting Tp (Ni) = TpM ⊕Np for p ∈M ⊂ Ni.

By commutativity of the above diagrams, this implies that µ′ smoothly extends over
H, in such a way that µ(H) = H.

Hence, Θ′ extends to a diffeomorphism Θ: W → W such that Θ(H) = H, which
concludes the proof of Lemma 5.21.

Once showed that we have a natural (and unique, in the sense of Proposition 5.20)
confoliation ζ adjusted to the hypersurface H on smooth fiber sum (W,H,ϕ), we can
now define the contact fiber sum in terms of deformations of this confoliation:

Definition 5.22. A contact fiber sum on the confoliated fiber sum (W,H,ϕ, ζ) is a
contactization of ζ.

Analogously to Section 5.2, the existence and uniqueness up to isotopy of the contact
fiber sum is a direct consequence of Proposition 5.14.

5.4 Weak fillings of contact branched coverings

Let now π : Ŵ 2n+2 →W 2n+2 be a branched covering of even dimensional manifolds with
non-empty boundaries V̂ 2n+1 = ∂Ŵ and V 2n+1 = ∂W .
We also use the same notations as in Section 5.1. In particular, we denote by X̂2n the
upstairs branching set, by X the downstairs branch set, by M, M̂ the boundaries of X, X̂
respectively and by π′ the restriction π|V̂ : V̂ → V .

Here’s a more detailed version of Théorème II.B from Chapter 1:
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Theorem 5.23. Suppose we are in the following situation:

(a) η is a contact structure on V and ξ := η ∩ TM is contact on M ;

(b) η̂ on V̂ is a contact branched covering of (V, η);

(c) ω on W weakly dominates η on V ;

(d) X is a symplectic submanifold of (W,ω) and it weakly fills (M, ξ).

Then, Ŵ admits a symplectic form ω̂ that weakly dominates η̂ on V̂ .

Notice that, because π′|
M̂
: M̂ →M is a (unbranched) covering map, ξ̂ :=

(
π′|

M̂

)∗
ξ =

η̂ ∩ TM̂ is a contact structure on M̂ .

Proof. Consider the normal bundle of X̂ inside Ŵ and see it as a neighborhood Û of X̂.
Similarly for a neighborhood M̂ of M̂ in V̂ . In particular, we have a norm function on
Û and M̂, and we can denote by Ûr,M̂r the set of vectors of norm less than r.

Fix now an arbitrary smooth function f : Ŵ → R≥0, compactly supported in Û1,
depending only on r, non-increasing in it, and equal to 1 on a neighborhood of X̂. We
also denote by g its restriction to V̂ = ∂Ŵ .
We point out that in particular f ′(r) = 0, hence g′(r) = 0, for r = 0.

Let now δ be a connection 1-form on the circle bundle SÛ given by the vectors of
norm 1 in Û . Denote also by γ the restriction of δ to the sub-bundle SM̂ given by the
vectors of norm 1 in M̂; then, γ is in particular a connection form on SM̂.

The explicit formula in the proof of Lemma 5.10 then shows that, up to isotopy, we
can assume the contact branched covering η̂ to be the kernel of α̂ǫ := π∗α + ǫg(r)r2γ,
for each ǫ smaller than or equal to a certain constant ǫ0 > 0.

As far as the symplectic structure on Ŵ is concerned, consider the closed 2−form
ω̂ǫ := π∗ω + ǫ d

(
f(r)r2δ

)
on Ŵ , where ǫ > 0.

Lemma 5.24. There is ǫ1 > 0 such that ω̂ǫ is symplectic for all 0 < ǫ < ǫ1.

Proof. We compute

ω̂ǫ = π∗ω + ǫ (2f + rf ′) rdr ∧ δ + ǫfr2dδ ,

which gives, once fixed a volume form vol on W ,

ω̂n+1
ǫ =

[
π∗ω + ǫ (2f + rf ′) rdr ∧ δ + ǫfr2dδ

]n+1

= π∗ωn+1 + (n+ 1) ǫ (2f + rf ′)π∗ωn ∧ rdr ∧ δ
+ ǫr2fhvol ,

where h is a smooth function depending on p ∈ Ŵ and on ǫ > 0.
Using the facts that π∗ω is symplectic away from X̂ and that the restriction of ω to X is
symplectic on X, we can now conclude, with arguments analogous to those in the proof
of Lemma 5.10, that ω̂n+1

ǫ > 0 for ǫ small enough.

We then want to show that ω̂ǫ weakly dominates η̂ = ker(α̂ǫ), provided that ǫ > 0 is
small enough (and in particular such that ǫ < ǫ := min (ǫ0, ǫ1)).
By (the discussion following) Definition 2.17, we need to check that

α̂ǫ ∧ (ω̂ǫ,V + τdα̂ǫ)
n
> 0 , ∀τ ≥ 0 ,
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where ω̂ǫ,V denotes the pullback of ω̂ǫ via the inclusion V̂ →֒ Ŵ , i.e.

ω̂ǫ,V = π∗ωV + ǫd
(
gr2γ

)
= π∗ωV + ǫ (2g + rg′) rdr ∧ γ + ǫgr2dγ .

Once fixed a volume form vol on V̂ , using the fact that

dα̂ǫ = π∗α+ ǫ (2g + rg′) rdr ∧ γ + ǫr2gdγ ,

we can explicitly compute

α̂ǫ∧ (ω̂V + τdα̂ǫ)
n

=
(
π∗α+ ǫgr2γ

)
∧ [π∗ωV + τπ∗dα

+ ǫ (1 + τ) (rg′ + 2g) rdr ∧ γ + ǫ (1 + τ) gr2dγ
]n

= π∗ [α ∧ (ωV + τdα)
n
]

+ nǫ (1 + τ) (rg′ + 2g)π∗
[
α ∧ (ωV + τdα)

n−1
]
∧ rdr ∧ γ

+ ǫgr2hvol ,

where h is a smooth function of p̂ ∈ V̂ , ǫ and τ , which is moreover polynomial in ǫ and
in τ , with degτ h ≤ n.

Denote now by P0(τ) and P1(τ) the polynomials in τ , with coefficients in the ring of
functions V̂ → R, defined respectively by the identities

P0(τ) · vol = π∗ [α ∧ (ωV + τdα)
n
] ,

P1(τ) · vol = n (1 + τ) (rg′ + 2g)π∗
[
α ∧ (ωV + τdα)

n−1
]
∧ rdr ∧ γ .

Similarly, denote by P2(τ, ǫ) the polynomial in τ and ǫ given by P2(τ, ǫ) = gr2h.
We then have the followings:

Lemma 5.25. For all τ ≥ 0, P0(τ) is non-negative everywhere on V̂ and strictly positive
away from M̂ .

Proof (Lemma 5.25). This simply follows from the fact that (W,ω) is a weak filling of
(V, η) and that π|V̂ is a branched covering with (upstairs) branching locus M̂ .

Lemma 5.26. There are constants 0 < ǫ′0 < ǫ and r0 > 0, such that P1(τ)+P2(τ, ǫ) > 0
on Mr0 for all 0 ≤ ǫ < ǫ′0 and all τ ≥ 0.

This lemma will be proven after the end of the proof of Theorem 5.23. Notice that
we allow ǫ = 0 in the statement of Lemma 5.26.

Now, according to Lemmas 5.25 and 5.26, we have that α̂ǫ∧(ω̂V + τdα̂ǫ)
n is a positive

volume form on Mr0 for all 0 < ǫ < ǫ′0 and all τ ≥ 0. Remark that here ǫ has to be
strictly positive.

At this point, we have the following result, whose proof is also postponed:

Lemma 5.27. There is 0 < ǫ′1 < ǫ′0 such that P0(τ) + ǫ [P1 (τ) + P2 (τ, ǫ)] > 0 on the
complement of Mr0/2, for all 0 ≤ ǫ < ǫ′1 and all τ ≥ 0.

This concludes the proof of Theorem 5.23.

We now give a proof of Lemmas 5.26 and 5.27 above. They are corollaries of the
following:
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Lemma 5.28. Consider a smooth manifold S and a continuous function p : S×R≥0 → R
such that, for each s ∈ S, ps : R≥0 → R defined by ps(τ) := p(s, τ) is polynomial in τ .
Suppose there is s0 ∈ S and a neighborhood U of s0 such that for all s ∈ U the followings
are satisfied:

1. degτ (ps0) ≥ degτ (ps);

2. the leading coefficient of ps0 is positive.

Then, there is a neighborhood O of s0 contained in U such that, for all s ∈ O, the
minimum ms of ps exists and, moreover, depends continuously on s.
In particular, if moreover ms0 > 0, then ms > 0 for s sufficiently near to s0.

Proof (Lemma 5.28). Hypothesis 1 tells us that ps is of fixed degree n := degτ (ps0) for
all s ∈ U . In particular, the leading coefficient asn of ps converges to the positive leading
coefficient as0n of ps0 for s → s0. Hence, there is a neighborhood O ⊂ U of s0 such that,
for all s ∈ O, asn > as0n /2 > 0. Then, for s ∈ O, ps(τ) → +∞ for τ → +∞. Hence, by the
continuity of ps in τ , ps admits a global minimum ms for s ∈ O.

Notice that, up to shrinking O, we can suppose moreover that it has compact closure.
For the dependence of the global minimumms on the variable s, we recall the following

fact: if X,Y are topological spaces with Y compact, f : X × Y → R is continuous
and fx(.) := f(x, .) : Y → R admits global minimum mx for all x ∈ X, then m is
continuous in x ∈ X. Indeed, for each sequence xn in X converging to x, there is a
subsequence xnk

such that m(xnk
) → m(x), because, if yn ∈ Y denotes a sequence such

that m(xn) = f(xn, yn), by compactness of Y there is a subsequence ynk
converging to

a certain y ∈ Y , hence m(xnk
) = f(xnk

, ynk
)
C0

−−→ f(x, y), by continuity of f , and f(x, y)
is exactly the global minimum m(x) of fx.

Going back to the case of Lemma 5.28, in order to apply this discussion we need to
show that, for each s ∈ O, the τs realizing the identity p(s, τs) = ms can be chosen in a
compact subset K of R≥0 which is independent of s ∈ O.
To prove this, we write ps(τ) = asnτ

n +
∑
i<n a

s
i τ
i and we compute, for s ∈ O,

ps(τ)
(a)

≥ asnτ
n −M

n−1∑

i=1

τ i

(b)

≥ as0n
2
τn −M

n−1∑

i=1

τ i

(c)

≥ 2as00
(d)

≥ as0 ,

where M := maxs∈O,i<n (|asi |) (recall that O is compact). Here, (a) comes from the
triangular inequality and the fact that asn > 0 for s ∈ O, (b) comes from the fact that
asn > as0n /2 for s ∈ O, (c) is true for all τ ∈ [τ ,+∞), for a certain τ > 0 depending only
on s0, and (d) is true up to shrinking O, because as0 converges to as00 for s→ s0.
The above inequality tells that ps(τ) > as0 = ps(0) for all s ∈ O and τ ∈ [τ ,+∞). In
other words, a τs realizing ms = ps(τs) has to be in the compact subset K := [0, τ ], for
all s ∈ O. This is exactly what we needed to prove in order to show that ms is continuous
in s ∈ O, according to the above discussion.

The last part of the statement is now obvious.

Proof (Lemma 5.26). We would like to use Lemma 5.28, with S := V̂ × [0, ǫ) and P :=
P1 + P2 : S × R≥0 → R, i.e. Pq,ǫ(τ) is given by [P1 (τ) + P2 (τ, ǫ)] (q) for (q, ǫ) ∈ S =
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V̂ × [0, ǫ). Notice that we allow ǫ = 0 here.
Consider the compact set K := M̂ × {0} in S. If (q, 0) ∈ K, then

P(q,0) · vol(q,0) =
[
P1 (τ)q + P2 (τ, 0)q

]
· vol(q,0)

= P1 (τ)q · vol(q,0)

= 2n (1 + τ)
{
π∗
[
α ∧ (ωV + τdα)

n−1
]
∧ rdr ∧ γ

}
q

,

which is positive because the restriction of ω to X weakly dominates ξ on M = ∂X. In
particular, for (q, 0) ∈ K, P(q,0) has positive leading coefficient and m(q,0) > 0.

Moreover, for each (q, 0) ∈ K, degτ
(
P(q,0)

)
= n ≥ degτ (Ps) for all s ∈ S = V̂ × [0, ǫ).

We are then in the hypothesis of Lemma 5.28, which then tells us, by compactness
of K, that there is a neighborhood U of K in S such that ms exists and is positive for
all s ∈ U . This is exactly what we wanted because U contains an open set of the form
{r < r0, ǫ < ǫ′0} ⊂ S = V̂ × [0, ǫ).

Proof (Lemma 5.27). We use again Lemma 5.28. Here, S := Mc
r0/2 × [0, ǫ′0), where

Mc
r0/2 is the complement of Mr0/2 in V̂ and r0, ǫ

′
0 are given by Lemma 5.26. Also,

P : S × R≥0 → R is here defined as P(p,ǫ)(τ) = P0(τ)|p + ǫ [P1 (τ) + P2 (τ, ǫ)] (p) for
(p, ǫ) ∈ S. Notice that once again we allow ǫ = 0.

Then, if K := Mc
r0/2 × {0}, Pq,0 = P1(τ)q for all (q, 0) ∈ K, hence it is positive by

Lemma 5.25. In particular, Pq,0 has positive leading coefficient and positive minimum
m(q,0) for all (q, 0) ∈ K. Moreover, degτ

(
P(q,0)

)
= n ≥ degτ (Pp,ǫ), for all q, p ∈ Mc

r0/2

and ǫ ∈ [0, ǫ′0).
We are then again in the hypothesis of Lemma 5.28, so that, by compactness of K, we

can conclude that P(p,ǫ) admits minimum m(p,ǫ), and that it is positive in a neighborhood
of K, which is exactly what we wanted.
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Chapter 6

Open books and contact vector

fields

We describe here a reinterpretation of adapted open book decompositions in terms of
contact vector fields:

Théorème II.E. Sur une variété de contact (M2n−1, ξ), chaque paire de champs de
vecteurs de contact X,Y , telle que [X,Y ] est partout transverse à ξ, donne un livre
ouvert explicite de M qui porte ξ. Vice versa, un livre ouvert qui porte ξ donne une paire
X,Y comme ci dessus.

A part of this result (i.e. how to go from adapted open books to contact vector fields)
has been stated by Giroux during the Yashafest in June 2007 and the AIM workshop in
May 2012 (see [Gir12, Claim on page 19]).

The whole chapter is devoted to the proof of Théorème II.E, already stated in Sec-
tion 1.2. More precisely, in Section 6.1 we describe how to recover the data of an open
book decomposition adapted to a certain contact structure ξ from the data of two contact
vector fields with Lie bracket everywhere transverse to ξ. In Section 6.2, we show that
it is also possible to recover such a couple of contact vector fields from an adapted open
book, as claimed in [Gir12].

6.1 From contact vector fields to open books

Proposition 6.1. Let (M2n−1, ξ) be a closed contact manifold. Suppose X, Y are two
contact vector fields with Lie bracket [X,Y ] everywhere negatively transverse to ξ. Then,
if we denote Xθ := cos θ ·X+sin θ ·Y and Yθ := Xθ+π/2 for θ ∈ S1, we have the following:

(a) The set Σθ := {Xθ ∈ ξ} is a non-empty regular hypersurface, which is moreover
ξ−convex.

(b) For θ 6= θ′ mod π, Σθ and Σθ′ intersect transversely along a non-empty contact
submanifold K of M (independent of the couple (θ, θ′)).

(c) For each θ ∈ S1, consider the set

Fθ := { p ∈ Σθ |Yθ(p) is positively transverse to ξp } ,

and define ϕ : M \K → S1 as ϕ(p) := θ if p ∈ F−θ. Then, (K,ϕ) is an open book
decomposition of M and is adapted to ξ.
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The rest of Section 6.1 is devoted to the proof of the above result, which is a more
detailed version of the first part of Théorème II.E. To improve the readability, each lemma
in this section will be proved right after the conclusion of the part of the proof in which
it is used.

We fix for convenience a contact form α for ξ and we denote by f, g : M → R the
smooth functions given by LXα = fα and LY α = gα respectively: these functions exist
because X and Y are contact vector fields. Of course, for the proof of point (c) we will
need to change this α conveniently.

We also point out the following:

Remark 6.2. For all θ ∈ S1, Xθ, Yθ are contact vector fields and satisfy the identity
[Xθ, Yθ] = [X,Y ].

Proof (Remark 6.2). This follows from the fact that LXθ
α = cos θ · LXα+ sin θ · LY α =

[f cos θ + g sin θ]α and from the fact that the Lie bracket is anti-symmetric and bilinear.

We may now proceed to prove Proposition 6.1.

Proof of point (a). This proof consists of the following two lemmas.

Lemma 6.3. α (Xθ) is somewhere zero.

Lemma 6.4. d (α (Xθ)) (Yθ) = −α ([X,Y ]) along Σθ.

The first one means exactly that Σθ = {α (Xθ) = 0} is non-empty.
The second one tells that α (Xθ) : M → R is transverse to {0} ⊂ R, hence Σθ is a

smooth hypersurface, and that, more precisely, the contact vector field Yθ is transverse
to Σθ, i.e. the latter is ξ−convex.

We now prove Lemmas 6.3 and 6.4.

Proof (Lemma 6.3). Suppose by contradiction this is not the case, i.e. α (Xθ) > 0 with-
out loss of generality. If we define β := 1

α(Xθ)
· α, then Xθ = Rβ .

By Remark 6.2, we have β ([Xθ, Yθ]) = β ([X,Y ]) < 0. On the other hand, we also
have [Xθ, Yθ] = [Rβ , Yθ], so that

β ([Xθ, Yθ]) = β([Rβ , Yθ])

(i)
= [−dβ(Rβ , Yθ) + d (β (Yθ)) (Rβ) − d (β (Rβ)) (Yθ)]

(ii)
= d (β (Yθ)) (Rβ) .

Here, for the equality (i) we used the fact that β([Rβ , Yθ]) = −dβ(Rβ , Yθ)+ d (β (Yθ)) (Rβ)−
d (β (Rβ)) (Yθ) by the formula for the exterior derivative of differential forms, and for the
equality (ii), we used that dβ(Rβ , .) = 0 and β(Rβ) = 1.

Now, β (Yθ) is a function defined on a closed manifold, hence it has at least one critical
point. This contradicts the fact that β ([Xθ, Yθ]) is everywhere negative.

Proof (Lemma 6.4). Using the formula for the exterior derivative, we compute

dα (Xθ, Yθ) = d (α (Yθ)) (Xθ)− d (α (Xθ)) (Yθ)− α ([Xθ, Yθ]) . (6.1)

Also, by Remark 6.2 there are fθ, gθ : M → R such that

fθ α = LXθ
α = dιXθ

α+ ιXθ
dα and gθ α = LYθ

α = dιYθ
α+ ιYθ

dα . (6.2)

74



CHAPTER 6. OPEN BOOKS AND CONTACT VECTOR FIELDS

Now, evaluating these last two equations respectively on Yθ and Xθ gives

d (α (Xθ)) (Yθ) = fθ α (Yθ)− dα (Xθ, Yθ) ,

d (α (Yθ)) (Xθ) = gθ α (Xθ) + dα (Xθ, Yθ) .
(6.3)

Substituting inside Equation (6.1), we get dα (Xθ, Yθ) = gθ α (Xθ)+dα (Xθ, Yθ)−fθ α (Yθ)+
dα (Xθ, Yθ)− α ([Xθ, Yθ]), which, using α (Xθ) = 0 (we are interested at points p ∈ Σθ),
gives −dα (Xθ, Yθ) + fθ α (Yθ) = −α ([Xθ, Yθ]). Replacing this identity inside Equa-
tion (6.3) gives d (α (Xθ)) (Yθ) = −α ([Xθ, Yθ]).

As remarked earlier, [Xθ, Yθ] = [X,Y ], so that d (α (Xθ)) (Yθ) = −α ([Xθ, Yθ]) =
−α ([X,Y ]).

We point out a direct consequence of Lemma 6.4 and another lemma, which we will
both need later:

Corollary 6.5. d (α (Yθ)) (Xθ) = α ([X,Y ]) on all Σθ+π/2 = {α(Yθ) = 0}.
In particular, along Σθ∩Σθ+π/2 (which we will show below to be independent of θ and de-
note by K), we have both d (α (Xθ)) (Yθ) = −α ([X,Y ]) and d (α (Yθ)) (Xθ) = α ([X,Y ]),
which implies also dα(Xθ, Yθ) = α ([X,Y ]) < 0.

Lemma 6.6. Xθ is tangent to Σθ. Moreover, it is transverse to ∂Fθ = Σθ ∩Σθ+π/2 and
points outwards from Fθ.

Proof (Lemma 6.6). Xθ is tangent to Σθ because d (α (Xθ)) (Xθ) = 0; this last identity
comes from the evaluation of the left identity in Equation (6.2) on Xθ, at points p ∈ Σθ.
The second part of the statement follows from the fact that α (Yθ) = 0 along ∂Fθ = Σθ ∩
Σθ+π/2 (by definition of Σθ+π/2), and that d (α (Yθ)) (Xθ) < 0 along ∂Fθ by Corollary 6.5.
Indeed, this means that Xθ points in the region where α (Yθ) < 0 along ∂Fθ, being
always tangent to Σθ, i.e., by definition of Fθ, that it points outwards from Fθ along its
boundary.

Proof of point (b). We start by proving that the intersection Σθ ∩ Σ′
θ is independent of

θ, θ′, provided that θ 6= θ′ mod π; for this, we will prove that this intersection coincides
with ν−1(0), where ν := (α (X) , α (Y )) : Σθ ∩ Σθ′ → R2.
By definition, Σθ ∩ Σθ′ = {α (Xθ) = 0, α (Xθ′) = 0}. Now, the equations α (Xθ) =
cos (θ) α (X) + sin (θ) α (Y ) and α (Xθ′) = cos (θ′) α (X) + sin (θ′) α (Y ) immediately
imply that ν−1(0) ⊂ Σθ ∩ Σθ′ . On the other hand, if p ∈ Σθ ∩ Σθ′ , then, evaluating the
same two equations at p, we deduce that ν(p) has to be proportional to (− sin (θ) , cos (θ) )
and to (− sin (θ′) , cos (θ′) ); because θ 6= θ′ mod π, this means that ν(p) = 0. In other
words, Σθ ∩ Σθ′ ⊂ ν−1(0) too.
We can then denote Σθ ∩ Σθ′ by K in the following.

We now prove that K = Σθ∩Σθ+π/2 is non-empty. Recall that Σθ+π/2 = {α(Yθ) = 0}
and that Yθ is a contact vector field transverse to Σθ; in particular, K = {α(Yθ) =
0} ∩ Σθ ⊂ Σθ is a dividing set for the characteristic foliation Σθ(ξ). Now, according to
[Gir91], dividing sets are non-empty 2-codimensional contact submanifolds.

Proof of point (c). Consider φ : M → R2 given by φ(p) =
(
α (X)p ,−α (Y )p

)
. Let also

ϕ : M \ φ−1(0) → S1 be defined by ϕ := φ/‖φ‖.

Lemma 6.7. φ is transverse to the origin of R2 and φ−1(0) = K as subsets of M .
Also, ϕ is a submersion and ϕ−1(θ) = F−θ−π/2 as subsets of M . Moreover, ϕ−1(θ) is
cooriented by the vector Y−θ−π/2 and φ−1(0), naturally oriented as boundary of ϕ−1(θ)
by definition of ϕ, is also cooriented by the ordered couple of vectors (Y,X).
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The proof of this lemma is postponed.
We now want to show that the couple (K,ϕ), which is an open book decomposition

of M according to Lemma 6.7, is moreover adapted to ξ. Notice that this is enough in
order to prove point (c) of Proposition 6.1, because the ϕ in point (c) is just obtained
from the ϕ of Lemma 6.7 by post-composing with the rotation S1 → S1 of angle −π

2 :
they hence have the same set of pages.

Consider on K,Fθ the orientations such that φ−1(0) = K, ϕ−1(θ) = F−θ−π/2 as
oriented manifolds. To show that (K,ϕ) is adapted to ξ, we then need to verify that
ξ ∩ TK is a positive contact structure on K and that there is a contact form defining
ξ whose differential is a positive symplectic form on each Fθ. To prove this, we use the
following result, whose proof is postponed:

Lemma 6.8 (Giroux). Let (M2n−1, ξ) be a contact manifold. Suppose there are an open
book decomposition (K,ϕ) of M (in particular, K is oriented as boundary of ϕ−1 (θ)),
a tubular neighborhood N = K ×D2 of K (here D2 is the open unit disk in R2) and a
contact form α defining ξ such that:

(i) ϕ restricted to N \K is the angular coordinate of the projection on the second factor
N = K ×D2 → D2;

(ii) ξ induces a positive contact structure on each submanifold Kz := K × {z} of N
(notice each Kz is oriented because K is);

(iii) dα induces a positive symplectic form on each fiber of ϕ|M\N .

Then, the open book decomposition (K,ϕ) is compatible with the contact structure ξ.

Thanks to the above result, the fact that (K,ϕ) supports ξ follows from the following
two lemmas:

Lemma 6.9. Let Ψ be the map defined by

Ψ :K ×D2
δ → M

(p, x, y) 7→ ψ1
y·X+x·Y (p)

,

where ψ1
Z denotes the time-1 flow of the vector field Z on M and D2

δ is the 2-disk of
radius δ in R2. Then for δ > 0 sufficiently small, we have the followings:

(i) Ψ is a diffeomorphism onto its image;

(ii) if we denote N := Ψ(K ×D2
δ), then we have the following commutative diagram,

where ν is the composition of the projection on D2
δ \ {0} and the natural angle

function D2
δ \ {0} → S1:

K ×
(
D2
δ \ {0}

)
M \K

S1

Ψ

ν
ϕ

(iii) each Kz := Ψ(K × {z}) is a positive contact submanifold of (M, ξ).

Lemma 6.10. Let N be the neighborhood of K given by Lemma 6.9. Then there is a
contact form α defining ξ such that:

(i) α induces a positive contact structure on each submanifold Kz of N ;
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(ii) dα is a positive symplectic form on the fibers of ϕ|M\N .

This concludes the proof of point (c).

We now proceed to prove the lemmas used in the above proof.

Proof (Lemma 6.7). Clearly, φ−1(0) = Σ0 ∩ Σπ/2 = K as subsets of M .
Moreover, we can compute dφ(X) = d (α (X)) (X)∂x−d (α (Y )) (X)∂y alongK. Now,

by Lemma 6.6 and Corollary 6.5, d (α (X)) (X) = 0 and d (α (Y )) (X) = α ([X,Y ]) along
K, hence dφ(X) = −α ([X,Y ]) ∂y. Similarly, we can compute dφ(Y ) = −α ([X,Y ]) ∂x
along K. In other words, φ is transverse to the origin of R2 and the oriented couple
(Y,X) gives the positive coorientation of φ−1(0), hence (Yθ, Xθ) too.

To study ϕ−1(θ), we do the following. Suppose ϕ(p) = θ and write φ(p) ∈ R2 in polar
coordinates as ‖φ(p)‖ · (cos θ, sin θ). Then, we can compute

α
(
X−θ−π/2

)
= α (X) sin θ + α (Y ) cos θ

= φ1(p) sin θ − φ2 cos θ

= ‖φ(p)‖ · (cos θ sin θ − sin θ cos θ)

= 0 ,

i.e. we have that p ∈ Σ−θ−π/2.
Hence, to show that p ∈ F−θ−π/2, we need to check that Y−θ−π/2 is positively transverse
to ξ at p, i.e. that α

(
Y−θ−π/2

)
|p > 0. This follows from the following computation:

α
(
Y−θ−π/2

)
|p = α (X) |p cos θ − α (Y ) |p sin θ = φ1(p) cos θ + φ2 sin θ

= ‖φ‖ (p)
(
cos2 θ + sin2 θ

)
= ‖φ‖ (p) > 0 .

We now check that ϕ−1(θ) is positively cooriented by Y−θ−π/2. For this, we need to
check that dϕ

(
Y−θ−π/2

)
|p is positive. We can compute

‖φ‖ dϕ
(
Y−θ−π/2

)
|p = (cos θ dφ2 − sin θ dφ1)

(
Y−θ−π/2

)
|p

= [− cos θ d (α (Y ))− sin θ d (α (X))]
(
Y−θ−π/2

)
|p

= d
(
α
(
X−θ−π/2

)) (
Y−θ−π/2

)
|p

(∗)
= −α ([X,Y ]) |p > 0 ,

where (∗) comes from Lemma 6.4. This concludes the proof of Lemma 6.7.

Proof (Lemma 6.8). Let α be a contact form for ξ as in the statement. We notice that
Hypothesis (iii) actually means that there is a very small ǫ > 0 such that dα is a sym-
plectic form on each fiber of the restriction of ϕ to M \ K ×D2

1−ǫ, where D2
1−ǫ is the

disk of radius 1− ǫ in R2.
The aim is to find a function f : M → R>0 such that fα satisfies the conditions of

being compatible with the open book decomposition (K,ϕ). In other words, we want that
fα induces a positive contact form on K (which is trivially satisfied because it induces
the same contact structure as α) and such that d (fα) is a positive volume form on the
pages. We search such a function f of the following form: f is a smooth function that
depends only on the radius coordinate r on D2 inside N , non−increasing in r, which is
equal to 1 on M \K × D2

1−ǫ/2 and equal to 1 + e−kr
2

on K × D2
1−ǫ, where k > 0 is a
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constant yet to determine.
We can then compute

dϕ ∧ d (fα)n−1
= dϕ ∧ ( df ∧ α + fdα )

n−1

= fn−1dϕ ∧ dαn−1 + (n− 1)fn−2dϕ ∧ ∂f

∂r
dr ∧ α ∧ dαn−2

= fn−2

[
fdϕ ∧ dαn−1 − (n− 1)

∂f

∂r
dr ∧ dϕ ∧ α ∧ dαn−2

]
.

Now, on M \K ×D2
1−ǫ/2 we have that fα = α, hence dϕ∧ d(fα)n−1 > 0 as wanted. We

then need to control the situation in K ×D2
1−ǫ/2.

Let’s start by analyzing what happens on K ×D2
1−ǫ. Here, ∂f∂r = −2kre−kr

2

, so that

fdϕ ∧ dαn−1 − (n− 1)
∂f

∂r
dr ∧ dϕ ∧ α ∧ dαn−2 =

= e−kr
2 [
dϕ ∧ dαn−1 + 2 (n− 1) krdr ∧ dϕ ∧ α ∧ dαn−2

]
.

By Hypothesis (ii), the form rdr ∧ dϕ ∧ α ∧ dαn−2 is strictly positive on N , hence on
K ×D2

1−ǫ/2, and dϕ ∧ dαn−1 is bounded above in norm, even if we don’t know its exact
sign. This means that for k > 0 big enough, the second form will dominate the first, i.e.
their sum will still be positive.

It then remains to study the sign on the open set K ×
(
D2

1−ǫ/2 \D2
1−ǫ

)
. Here, the

situation is easy because dϕ ∧ dαn−1 is strictly positive and −∂f
∂r dr ∧ dϕ ∧ α ∧ dαn−2 is

non−negative (remember f is a non−increasing function of r in this set), so their sum
is also strictly positive.

Proof (Lemma 6.9). We start with point (i). We can explicitly evaluate the differential
dΨ at points of the form (p, 0, 0). OnK×{0}, we simply have that dΨ(∂x) = Y , dΨ(∂y) =
X and that dΨ(V ) = V for all vector fields V which are tangent to K ×{0}. This shows
that Ψ is a local diffeomorphism at each point (p, 0, 0). Hence, by compactness, Ψ is also
a diffeomophism from K ×D2

δ onto its image, provided δ is small enough.
We now prove point (ii). For θ ∈ S1, consider the function Hθ : K × [0, δ) → M

defined as Hθ(p, r) = Ψ(p, r cos θ, r sin θ). We then have to show that ϕ(Hθ(p, r)) = θ.
Noticing that Y−θ = sin θ·X+cos θ·Y , we can rewrite more explicitly Hθ(p, r) = ψrY−θ

(p),
i.e. Hθ(., r) is the flow of Y−θ at time r. By Lemma 6.6, Y−θ = −X−θ−π/2 is tangent to
Σ−θ−π/2 and entering in F−θ−π/2; in particular, for r > 0 we have ψrY−θ

(p) ∈ F−θ−π/2.
Now, by Lemma 6.7, ϕ−1 (θ) = F−θ−π

2
, which implies ϕ(Hθ(p, r)) = θ, as wanted.

We can now finish with point (iii). Because the contact condition is open, up to
shrinking δ, it is enough to prove that K0 = Ψ(K × {0}) is a positive contact subman-
ifold. This actually follows from general results from [Gir91]: indeed, Xθ defines the
characteristic foliation of Σθ, and K is transverse to it. For completeness’ sake, we prove
it here also with an explicit computation.
We showed in point (b) of Proposition 6.1 that Y is transverse to K. Due to the sym-
metry of the situation, the same is true for the contact vector field X. If we consider an
arbitrary point p ∈ K and denote (Ki)i=1,...,2n−3 a local base of TK in a neighborhood
N of p in K, we then know that

[
ιY ιX

(
α ∧ dαn−1

)]
(K1, . . . ,K2n−3) = α ∧ dαn−1 (X,Y,K1, . . . ,K2n−3) 6= 0 ,
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because (X,Y,K1, . . . ,K2n−3) is a basis for TM over N . We can also compute

ιY ιX
(
α ∧ dαn−1

) (i)
= −(n− 1) ιY

[
α ∧ (ιXdα) ∧ dαn−2

]

(ii)
= (n− 1) dα (X,Y )α ∧ dαn−2 +

− (n− 1)(n− 2)α ∧ dα (X, .) ∧ dα (Y , .) ∧ dαn−3

(6.4)

where equalities (i) and (ii) come from the graded Leibniz rule for the interior product
(i.e. the formula ιZ (µ ∧ ν) = ιZµ ∧ ν + (−1)

deg µ
µ ∧ ιZν for all differential forms µ, ν

and vector fields Z) and from the fact that α (X) = 0 and α (Y ) = 0 along K.
Now, dα (X,Y ) = α ([X,Y ]) 6= 0 along K by Corollary 6.5, so if we manage to prove
that the last term in the second line of Equation (6.4) is zero when evaluated on (Ki)i,
we will get that α ∧ dαn−2 (K1, . . . ,K2n−3) 6= 0 too, which is exactly what we wanted.
From Equation (6.2), with θ = 0, we deduce that, for a certain µ ∈ Ω1(M),

dα (X , . ) ∧ dα (Y , . ) = d (α (X)) ∧ d (α (Y )) + α ∧ µ .

Replacing this in the last summand of the second right hand side of Equation (6.4), we
get

α ∧ dα (X , . ) ∧ dα (Y , . ) ∧ dαn−3 = α ∧ d (α (X)) ∧ d (α (Y )) ∧ dαn−3 .

Now, evaluating this on (K1, . . . ,K2n−3) gives zero, becauseKi ∈ TK and both d (α (X))p
and d (α (Y ))p are zero on TpK = TpΣ0 ∩ TpΣπ/2 , for every p ∈ K. Then, by Corol-
lary 6.5, the orientation induced on K by the contact structure ξ on M is the one such
that the ordered couple of vector fields (Y,X) induces a positive orientation of the normal
bundle of K in M . But, according to the computation of dφ in the proof of Lemma 6.7,
this is exactly the case also for Ψ(K × {0}) (oriented as image of K = φ−1(0)). This
means that K0 is a positive contact submanifold, as wanted.

Proof (Lemma 6.10). We search a function f such that α̃ := fα satisfies dϕ∧dα̃n−1 > 0
on M \ Int(N ).
We can compute

dϕ ∧ dα̃n−1 = fn−1dϕ ∧ dαn−1 + (n− 1)fn−2dϕ ∧ df ∧ α ∧ dαn−2

= fn−2
[
fdϕ ∧ dαn−1 − (n− 1) df ∧ dϕ ∧ α ∧ dαn−2

]
.

Let now ǫ > 0 be such that {‖φ‖ < 2ǫ} ⊂ N and chose f to be a smooth function,
depending only on ‖φ‖ and non−increasing in it, equal to 1/ǫ on the set {‖φ‖ < ǫ} and
equal to 1/‖φ‖ on the set M \ {‖φ‖ < 2ǫ}.

Let’s now analyze dϕ ∧ dα̃ on N c. Here, we have f = 1/‖φ‖ and df = −d ‖φ‖/‖φ‖2, so
that

‖φ‖n+1
dϕ ∧ dα̃n−1 = ‖φ‖2 dϕ ∧ dαn−1 + (n− 1) ‖φ‖ d ‖φ‖ ∧ dϕ ∧ α ∧ dαn−2 .

Moreover, recalling that φ = (α (X) ,−α (Y )), we also have that ‖φ‖2 dϕ = φ1dφ2 −
φ2dφ1 = −α (X) d (α (Y ))+α (Y ) d (α (X)) and ‖φ‖ d ‖φ‖∧dϕ = dφ1∧dφ2 = −d (α (X))∧
d (α (Y )), so that

‖φ‖n+1
dϕ ∧ dα̃n−1 = [−α (X) d (α (Y )) + α (Y ) d (α (X))] ∧ dαn−1

− (n− 1) d (α (X)) ∧ d (α (Y )) ∧ α ∧ dαn−2 . (6.5)
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Notice now that α ∧ d (α (Y )) ∧ dαn−1 = 0 on M , because dimM = 2n − 1. Hence,
ιX
[
α ∧ d (α (Y )) ∧ dαn−1

]
= 0 too. In other words, according to the graded Leibniz rule

for the interior product,

α(X) · d (α (Y )) ∧ dαn−1 − d (α (Y )) (X) · α ∧ dαn−1

+ (n− 1)α ∧ d (α (Y )) ∧ dα(X, .) ∧ dαn−2 = 0 ,

i.e.

α(X) · d (α (Y )) ∧ dαn−1 = d (α (Y )) (X) · α ∧ dαn−1

− (n− 1)α ∧ d (α (Y )) ∧ dα(X, .) ∧ dαn−2 . (6.6)

Exchanging the roles of X and Y in the above computations, we also get

α(Y ) · d (α (X)) ∧ dαn−1 = d (α (X)) (Y ) · α ∧ dαn−1

− (n− 1)α ∧ d (α (X)) ∧ dα(Y, .) ∧ dαn−2 . (6.7)

Now, recall thatX,Y are contact vector fields for ξ, i.e. there are functions f, g : M →
R such that

d (α (X)) = fα− dα(X, .) ,

d (α (Y )) = gα− dα(Y, .) .
(6.8)

Then, Equations (6.5) to (6.8), together with the fact that α ∧ α = 0, tell that

‖φ‖n+1
dϕ ∧ dα̃n−1 = − d (α (Y )) (X) · α ∧ dαn−1

+ d (α (X)) (Y ) · α ∧ dαn−1

+ (n− 1)α ∧ dα(X, .) ∧ dα(Y, .) ∧ dαn−2 .

(6.9)

Now, again for dimensional reasons, we have dαn = 0 on M , so that ιXιY dαn = 0 too
on M . This gives

(n− 1)dα(X, .) ∧ dα(Y, .) ∧ dαn−2 = dα(X,Y ) · dαn−1 ,

so that Equation (6.9) finally becomes

‖φ‖n+1
dϕ ∧ dα̃n−1 = − d (α (Y )) (X) · α ∧ dαn−1

+ d (α (X)) (Y ) · α ∧ dαn−1

+ dα(X,Y ) · α ∧ dαn−1

= − α ([X,Y ]) · α ∧ dαn−1 ,

because dα(X,Y ) = d (α (Y )) (X)− d (α (X)) (Y )− α ([X,Y ]) according to the exterior
derivative formula.

Now, [X,Y ] is negatively transverse to ξ by hypothesis, so that the above equation
implies that dα̃ is symplectic on the fibers of ϕ|M\N , as wanted.

6.2 From open books to contact vector fields

We start by recalling another point of view on open book decompositions in terms of
functions with values in R2. This is presented, for instance, in [Lut79, Page 289] and
[Gir17, Page 11].

Consider the standard open book decomposition OB of R2, i.e. the one with the
origin as binding and with radii starting from the origin as pages.
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Definition 6.11. A smooth function Ψ :M → R2 is transverse to OB if it is transverse
to the binding and to the pages of OB .

Let K := Ψ−1(0) and ϕ := Ψ/ ‖Ψ‖ : M \K → S1. Notice that if Ψ is transverse to
OB then (K,ϕ) is an open book decomposition of M . Then, we say that Ψ defines the
open book (K,ϕ).

Moreover, given two functions Ψ,Ψ′ : M → R2 transverse to OB , we call them
equivalent, and write Ψ ∼ Ψ′, if there is a smooth positive function f :M → R such that
Ψ′ = fΨ.

As already stated for instance in [Lut79, Page 289], open book decompositions are
then equivalent to functions transverse to OB up to equivalence:

Proposition 6.12. We have a bijection
{

Ψ :M → R2

transverse to OB

}
/∼ ∼−→

{
open book decompositions

(K,ϕ) on M

}
.

[Ψ] −→ (Ψ−1(0),
Ψ

‖Ψ‖ )

Proof. The map in the statement is well defined because two functions M → R2 trans-
verse to OB in the same equivalence class clearly define the same open book on M .

Let’s show that the map is surjective. Fix a Riemannian metric on M . Then, given
an open book decomposition (K,ϕ), consider the distance function ρ to the submanifold
K. Then, (K,ϕ) is the image of the class of Ψ = (ρ cosϕ, ρ sinϕ).

Lastly, we show that the map in the statement is injective, i.e. that if Ψ and Ψ′ define
the same open book (K,ϕ), then they are equivalent.
Because Ψ/ ‖Ψ‖ = ϕ = Ψ′/ ‖Ψ′‖, a function f such that Ψ′ = fΨ has to be equal to
‖Ψ′‖ / ‖Ψ‖ on the complement of K. We then have to check that it smoothly extends at
each point p ∈ K.
Now, K admits a neighborhood K × D2 and local coordinates (p, r, θ), with p ∈ K,
r ∈ [0, 1), θ ∈ S1 such that ϕ|K×D2(p, r, θ) = θ for r > 0. This implies that Ψ(p, r, θ) =
λ(p, r, θ)(cos θ, sin θ) and Ψ′(p, r, θ) = λ′(p, r, θ)(cos θ, sin θ), where λ, λ′ : K × D2 → R
are non-negative functions, strictly positive away from K × {0}. Then, f = λ′/λ as
functions K ×

(
D2 \ {0}

)
→ R.

Because Ψ,Ψ′ are transverse to 0 ∈ R2, the limits of dλ/dr and dλ′/dr for r → 0 exist,
are both non-zero for all p ∈ K, θ ∈ S1 and do not depend on θ.
Hence, the function K → R defined by dλ/dr · (dλ′/dr)−1 smoothly extends f = λ′/λ
over K × {0}.

Going back to the contact setting, we have the following converse to Proposition 6.1,
which is also a more precise version of the second part of Théorème II.E:

Proposition 6.13 (stated in [Gir12]). Suppose that (B,ϕ) an open book decomposition
of M supporting ξ. Denote by α a contact form defining ξ and such that dα is symplectic
on the fibers of ϕ. Then, there is a smooth function φ : M → R2 defining (B,ϕ) and
such that the contact vector fields X and Y , associated via α respectively to the contact
Hamiltonians φ1 and −φ2, have Lie bracket [X,Y ] negatively transverse to ξ.

Proof. This proof is strongly inspired from the computations in [Bou02], which will be
recalled in detail in Section 7.2.

Let φ = (φ1, φ2) : M → R2 be a smooth function defining (B,ϕ).
Consider then ǫ > 0 such that α ∧ dαn−2 ∧ dφ1 ∧ dφ2 is positive on {

∥∥φ
∥∥ < ǫ}. Such an

ǫ exists because α induces a contact form on B = φ−1(0).
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Define now χ : R≥0 → R≥0 as follows: χ(x) is non−increasing in x, is equal to x for
x < ǫ/2 and equal to 1 for x ≥ ǫ. Denote then f := χ(‖φ‖)/‖φ‖ : M → R>0 and define
φ := fφ : M → R2; then, φ defines (B,ϕ) too. Let also ρ := ‖φ‖ and θ := φ/ρ : M \B →
S1. Notice that θ = ϕ.

Then, we claim that

Ω := nρ2dθ ∧ dαn−1 + n(n− 1)ρdρ ∧ dθ ∧ α ∧ dαn−2

is a volume form on M . Indeed, the first term is non-negative everywhere and positive
away from B, because dα is symplectic on the fibers of θ = ϕ, and the second term is
positive along B and non−negative everywhere, by construction of f .

This being said, we now denote by X,Y the contact vector fields associated, respec-
tively, to the contact Hamiltonians φ1,−φ2 via the contact form α given in the statement.

Because ρdθ = φ1dφ2 − φ2dφ1 and ρdρ ∧ dθ = dφ1 ∧ dφ2, we can then write

Ω = n [−α (X) d (α (Y )) + α (Y ) d (α (X))] ∧ dαn−1

− n(n− 1)d (α (X)) ∧ d (α (Y )) ∧ α ∧ dαn−2 .

Notice then that the right hand side is exactly the same (up to a factor n) as the
one of Equation (6.5) in the proof of Lemma 6.10. Hence, the exact same computations
made in that proof tell us that

Ω = −nα ([X,Y ]) · α ∧ dαn−1 .

This shows that [X,Y ] is negatively transverse to ξ, because Ω is a volume form on M
and α is a positive contact form.
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Chapter 7

Lutz’ study and Bourgeois’

construction of invariant contact

manifolds

The aim of this chapter is twofold: we want to reinterpret a part of Lutz’ study from
[Lut79] using the language of adapted open books introduced in [Gir02] by Giroux, and
we want to describe the links between Lutz’ work and the Bourgeois construction from
[Bou02]. In order to do this, we proceed as follows.

Section 7.1 describes the study from [Lut79] of T2-invariant contact structures on the
total space of a principal T2-bundle π : V 2n+1 →M2n−1. In this context, we recall how
Lutz recovers an open book decomposition (B,ϕ) and a differential 1−form β on the
base manifold M such that its restriction to B is a contact form and, in the case of a
flat principal bundle π : V → M , its differential is symplectic on the fibers of ϕ. In this
part, we recall (and complete the missing details) of the proofs from [Lut79].
Finally, we conclude Section 7.1 by showing, using a lemma on adapted open book
decompositions due to Giroux (already stated as Lemma 6.8), that if the induced β
happens to be contact on M (which is not always the case), this open book (B,ϕ)
supports the contact structure ξ = kerβ, at least in the case of flat bundles.

In Section 7.2 we recall the construction presented in [Bou02], where, starting from
a contact manifold (M, ξ) and an open book decomposition on M supporting ξ, Bour-
geois gives an explicit T2−invariant contact structure on the particular flat principal
T2−bundle M × T2. We will also show that this can be interpreted as a converse of the
construction by Lutz recalled in Section 7.1.

7.1 Lutz’s study revisited

Let π : V → M be a principal T2−bundle and η be a contact structure on V invariant
under the T2-action χ : T2 × V → V on V . Assume that V,M are oriented, that the
T2-action preserves the orientation and that η is positive on V . We then want to give
a detailed statement that summarizes some of Lutz’ results from [Lut79] in this context
their reinterpretation in terms of adapted open books, as introduced by Giroux in [Gir02].
In order to do this, we first need to introduce some notations.

For each g ∈ T2, denote by χg : V → V the diffeomorphism given by the action of g
on the total space V . If we denote by t the Lie algebra of the Lie group T2, we can then
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define, for each v ∈ t, a vector field Xv such that

Xv(p) =
d

dt

∣∣∣∣
t=0

χγv(t)(p) for each p ∈ V ,

where γv : (−ǫ, ǫ) → T2 is a curve passing through Id ∈ T2 and with velocity v ∈ t =
TIdT

2 at t = 0.
Notice that B̃ := {p ∈ V | ∀v ∈ t, Xv ∈ η} is a T2−invariant subset of V ; denote then by
B its image in M via the bundle projection π : V →M .

Now, up to taking an average using a Haar measure on T2, we can also write η = kerα
with α ∈ Ω1 (V ) invariant under the action of T2. For the rest of the section we will
work with this contact form, but at each step we will remark that all the constructions
are actually independent of this particular choice of invariant form and dependent only
on η.

Denote by t∗ the dual of t and by St∗ its spherization, i.e. the quotient of t∗ \ {0} by
the natural R>0−action.
Consider now, for each p ∈ V , the element Lp of t∗ given by v 7→ αp(Xv(p)). Notice
moreover that, by definition of B̃, Lp is non−zero for all p ∈ V \ B̃. Denote then by
[Lp] its class in St∗; we point out that [Lp] doesn’t depend on the choice of T2−invariant
contact form α for η.

Define then ϕ̃ : V \ B̃ → St∗ by ϕ̃(p) := [Lp]. Notice that ϕ̃ factors through the
projection π : V \ B̃ →M \B to a well defined map ϕ : M \B → St∗.

Suppose now that the principal T2−bundle π : V →M admits a principal Ehresmann
connection F , i.e. a codimension 2 distribution on V which is T2−invariant and transverse
to each T2−orbit. Suppose moreover that F is a codimension 2 foliation on V .

Lastly, notice that F∩η is T2−invariant, because it is the intersection of T2−invariant
distributions. We point out though that it is a priori only a singular distribution on V ,
i.e. it has codimension 2 at each point p ∈ V such that Fp ⊂ ηp and codimension 3 at
each point p ∈ V such that ηp ⋔ Fp.
Denote then by ξ the projection of F ∩ η to M via the differential of π; this projection
is well defined because F ∩ η is T2−invariant.

Remark 7.1. [Lut79, Page 301] gives an explicit example where F ∩ η fails to be a
distribution.
Consider on the principal T2−bundle π : S2n−1 × T2 → S2n−1 the invariant form

α = i∗x1dθ1 + i∗x2dθ2 + i∗ (x3dx4 − x4dx3 + . . .+ x2n−1dx2n − x2ndx2n−1) ,

where (θ1, θ2) are coordinates on T2, i : S2n−1 → R2n is the natural inclusion and
(x1, . . . , x2n) are coordinates on R2n. Then, via the natural flat connection F = TS2n−1⊕
{0}, kerα induces on S2n−1 the kernel of

β := i∗ (x3dx4 − x4dx3 + . . .+ x2n−1dx2n − x2ndx2n−1) .

This form β is zero on the subset
{
(x1, x2, 0, . . . , 0) ∈ S2n

}
⊂ S2n, hence doesn’t define

an hyperplane field on S2n.

Then Lutz’ work, reinterpreted using the language of adapted open books introduced
by Giroux, gives the following:

Theorem 7.2. In the situation described above, we have the following:

a. (B,ϕ) defined above is an open book decomposition of M .
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b. ξ = π∗ (F ∩ η) is a contact structure on M if and only if (F ,F ∩ η) is a 2-
codimensional contact foliation on V .

c. Let B be B with opposite orientation and ϕ be the composition of ϕ with an arbitrary
orientation−reversing diffeomorphism St∗ → St∗. Then, if the conditions in point
b. are satisfied, ξ is supported by (B,ϕ).

We recall that a q-codimensional contact foliation on a manifold Y 2n+1+q is a couple
(F2n+1, ζ2n) of a codimension q foliation F on Y and a codimension q + 1 distribution ζ
on Y such that, for each leaf L of F, (L, ζ ∩ TL) is a contact manifold.
We also point out that the particular choice of ϕ in point c. of Theorem 7.2 is not
important, because if ϕ′ : M \ B → St∗ is obtained from ϕ by composing with an
orientation−preserving diffeomorphism St∗ → St∗, then the set of fibers of ϕ and the set
of fibers of ϕ′ coincide.

The rest of Section 7.1 is devoted to the proof of the above theorem.

Proof (Theorem 7.2). We start by showing point a., i.e. that (B,ϕ) is an open book
decomposition of M ; this is the content of [Lut79, Lemme Fondamental (page 286)].

For computational convenience, we denote by X1, X2 the pair of infinitesimal gen-
erators of the T2− action associated to a choice of coordinates (θ1, θ2) on T2. In other
words, for i = 1, 2, Xi := X ∂

∂θi

, with the notation Xv for v ∈ t introduced above.

Consider then, for i = 1, 2, φ̃i : V → R defined by φ̃i := α (Xi).
Notice that, for i = 1, 2, φ̃i is constant along the fibers of π : V →M , because α and Xi

are T2−invariant. Hence, for i = 1, 2, φ̃i induces a smooth map φi : M → R such that
φ̃i = φi ◦ π. Denote then φ := (φ1, φ2) : M → R2.

Lemma 7.3. On all V , we have the following:

i. dφ̃i = −ιXi
dα, for i = 1, 2;

ii. dφ̃j (Xi) = 0, for {i, j} = {1, 2};

iii. dα (X1, X2) = 0.

Proof (Lemma 7.3). By the T2−invariance of α, we have LXi
α = 0, for i = 1, 2. In

particular, point i. simply follows from the facts that LXi
α = dιXi

α + ιXi
dα and that

φ̃i = ιXi
α.

Points ii. and iii. follow directly from point i., from the formula for exterior derivative of
differential forms, stating that dα(X,Y ) = X ·(α(Y ))−Y ·(α(X))−α ([X,Y ]) for all vector
fields X,Y on V , and from the fact that [X1, X2] = 0, because T2 is commutative.

Let now ρ : M → R≥0 be given by ρ := ‖φ‖. Then, we have B = ρ−1(0).
Moreover, ϕ : M \ B → St∗ ≃ S1 defined above is just given by ϕ := φ/ρ. Here, the
identification St∗ ≃ S1 is made through the coordinates (θ1, θ2) on T2.

Let’s then prove that φ is transverse to the origin of R2 and that the linear map
dpϕ : Tp (M \B) → Tϕ(p)S

1 has rank 1 for each p ∈ M \ B. This will show that (B,ϕ)
is an open book decomposition of M .

Suppose by contradiction that dpφ : TpM → Tφ(p)R
2 has rank ≤ 1, for a certain

p ∈ B = φ−1(0). Then, there is θ ∈ S1 such that, for all v ∈ TpM , dpφ1(v)∂x+dpφ2(v)∂y
is parallel to (cos θ, sin θ).
We then get that − sin θ dpφ1 + cos θ dpφ2 = 0 as map TpM → R. Consider now the
everywhere non-zero vector field Z := − sin θX1 + cos θX2 on V . We have α(Z)|p =
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0, because φ(p) = 0, and dα(Z, .)|p = 0 by Lemma 7.3 and because − sin θ dpφ1 +
cos θ dpφ2 = 0. By the contact condition, this implies Zp = 0, giving a contradiction.

Take now p ∈M \B, with φ1(p) 6= 0 let’s say. Then, to show that dpϕ : Tp (M \B) →
Tϕ(p)S

1 has rank 1, it’s enough to show that the differential of

Ψ2 :=
φ2
ρ

: M \B ϕ−→ S1
πy|S1−−−→ R

has rank 1 at p. Here, πy : R2 → R is the projection on the y−axis.
Because

dρ =
1

2ρ
d
(
ρ2
)
=

1

ρ
(φ1dφ1 + φ2dφ2) ,

we can write

dΨ2 =
dφ2
ρ

− φ2
ρ2
dρ =

dφ2
ρ

− φ2
ρ3

(φ1dφ1 + φ2dφ2) . (7.1)

For notational convenience, let ρ̃, Ψ̃2 denote respectively the compositions ρ ◦ π and
Ψ2 ◦ π.

Suppose now by contradiction that dΨ2 = 0 and consider the vector field

Z :=
Ψ̃2

(
φ̃1X1 + φ̃2X2

)

ρ̃
−X2

defined on V \ B̃.
Then, an easy computation shows that α(Z) = 0 on all V \ B̃. Moreover, Equa-

tion (7.1) and the hypothesis dpΨ2 = 0 imply that dα (Z, .)|p = 0. By the contact
condition, we get Z(p) = 0. In particular, the coefficient multiplying X1(p) in Z(p) has
to be zero, i.e. Ψ̃2(p)φ̃1(p) = 0. Because φ̃1(p) is non-zero by assumption, Ψ̃2(p) has to
be zero. But this implies Z(p) = −X2(p), which contradicts the fact that Z(p) = 0.
This concludes the proof of the fact that (B,ϕ) is an open book decomposition of M .

We then proceed to the proof of points b. and c. of Theorem 7.2. We start by
showing that, thanks to the T2−invariant contact form α and a choice of connection
form ω defining F , we can induce an explicit 1−form β on M whose kernel is exactly
π∗ (η ∩ F). This is also explained in [Lut79, Section I.3.6].

We recall that the connection form ω ∈ Ω1 (V, t) defining F can be written as as
ω = ω1 ⊗ e1 + ω2 ⊗ e2, with ω1, ω2 ∈ Ω1 (V ) such that kerω1 ∩ kerω2 = F and (e1, e2)
the basis of the vector space t = R2 associated to the choice of coordinates (θ1, θ2).

Moreover, the fact that F is a foliation gives, by Frobenius’ theorem, the flatness of
ω, i.e. tells that its curvature is zero. We recall that the curvature form Ω of ω is the
2−form on M with values in t defined by dω+ 1

2 [ω, ω]. More explicitly, for each couple of
vector fields U, V on M and each p ∈M , Ωp(Up, Vp) := dωq(Xq, Yq)+

1
2 [ωq(Xq), ωq(Yq)],

where X,Y are lifts of U, V horizontal for kerω = F and q ∈ π−1(p). This is indeed
well defined because the right-hand side is independent of the choice of X,Y, q as above.
Notice moreover that [ω, ω] = 0, because T2 is abelian, so that Ω = dω.
Hence, in our case, the flatness of ω means that dω = dω1 ⊗ e1 + dω2 ⊗ e2 = 0.

Now, the 1−form γ := α− φ̃1ω1− φ̃2ω2 on V is T2−invariant and such that γ(X1) =
γ(X2) = 0. Hence, there is a 1−form β on M such that γ = π∗β, i.e. such that
α = φ̃1ω1 + φ̃2ω2 + π∗β.

Then, we have the following result, whose proof is postponed:

Lemma 7.4 ([Lut79, Proposition (page 296)]). α is a positive contact form on V if and
only if the two following conditions are satisfied:
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i. β induces a negative contact form on B;

ii. for each θ ∈ S1, d
(
β
ρ

)
+ φ1

ρ Ω1+
φ2

ρ Ω2 induces a negative symplectic form on ϕ−1(θ).

This tells in particular that, if there is a flat connection ω for π : V → M , the β
obtained on M via ω induces a contact structure on B and the differential of β/ρ is
symplectic on the fibers of ϕ.

Let’s suppose, for the moment, that β defines a contact structure on all M .
Then, we want to show point c., i.e. that ξ = kerβ is supported by the open book
(B,ϕ), where B is B with orientation inversed and ϕ is ϕ composed with the orientation
reversing diffeomorphism S1 → S1 given by the restriction of the complex conjugation to
S1 ⊂ C. We recall from what said after the statement of Theorem 7.2 that the particular
choice of reversing diffeomorphism S1 → S1 is not important, hence we can choose an
arbitrary one.

In order to prove this, we need again Lemma 6.8, already used in Section 6.1. We
recall here the statement, adapting the notations to this situation:

Lemma 6.8 (Giroux). Let (M2n−1, ξ) be a contact manifold. Suppose there are an open
book decomposition (K, θ) of M (in particular, B is oriented as the boundary of each fiber
of θ), a tubular neighborhood N = K ×D2 of K (here D2 is the open unit disk in R2)
and a contact form γ defining ξ such that:

(i) θ restricted to N \K is the angular coordinate of the projection on the second factor
N = K ×D2 → D2;

(ii) ξ induces a positive contact structure on each submanifold Kz := K × {z} of N
(notice each Kz is oriented because K is);

(iii) dγ induces a positive symplectic form on each fiber of θ|M\N .

Then, the open book decomposition (K, θ) supports the contact structure ξ.

Choose now an ǫ > 0 very small and replace β by β := χβ, with χ : M → R a
positive function equal to 1/ρ on the complement of {ρ ≥ 2ǫ} ⊂ M and equal to 1/ǫ on
B. Then, according to Lemma 7.4, (B,ϕ), N = {ρ < 2ǫ} and β satisfy the hypothesis
of Lemma 6.8, provided that ǫ is small enough. Hence, we get that (B,ϕ) supports ξ, as
wanted.

The only thing left in order to finish the proof of Theorem 7.2 is then to show point
b., i.e. that ξ = π∗η ∩ F is a contact structure on M if and only if (F , η ∩ F) is a
codimension 2 contact foliation on V .

This actually follows from the fact that

β ∧ dβn−1 > 0 on M ⇐⇒ π∗ [β ∧ dβn−1
]∣∣

F > 0 ⇐⇒ α ∧ dαn−1
∣∣
F > 0 ,

where we used the facts that the differential dpπ is an isomorphism between Fp and
Tπ(p)M and that the connection ω is zero on F . This concludes the proof of Theorem 7.2.

We now prove Lemma 7.4 used above.

Proof (Lemma 7.4). The form α is a positive contact form on V if and only if ιX2
ιX1

α∧
dαn induces a positive section of the vector bundle Λ2n−1 (F∗) over V , where F∗ is the
dual of F . Indeed, F is a complement of the vector sub-bundle spanned by X1 and X2

in TV .
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Now, because ιX2ιX1α∧dαn is T2−invariant and becomes zero after contraction with
X1 or X2, it can be written as pullback via π of a differential form δ of maximal degree
on M . Hence, ιX2

ιX1
α ∧ dαn is a positive section of Λ2n−1 (F∗) if and only if δ is a

volume form on M . Then, what we need to do is find this form δ.
We start by computing

ιX2ιX1α ∧ dαn (a)
= ιX2

[
φ̃1dα

n − nα ∧ ιX1dα ∧ dαn−1
]

(b)
=nφ̃1ιX2dα ∧ dαn−1 − nφ̃2ιX1dα ∧ dαn−1

+ ndα (X1, X2)α ∧ dαn−1 − n(n− 1)α ∧ ιX1
dα ∧ ιX2

dα ∧ dαn−2

(c)
= − ndαn−1 ∧ π∗ (φ1dφ2 − φ2dφ1)

− n(n− 1)α ∧ dαn−2 ∧ π∗ (dφ1 ∧ dφ2)
(d)
= − ndαn−1 ∧ π∗ (ρ2dϕ

)
− n(n− 1)α ∧ dαn−2 ∧ π∗ (ρdρ ∧ dϕ) .

(7.2)

Here, the equalities (a) and (b) come from the graded Leibniz rule for the interior product
(i.e. the formula ιZ (µ ∧ ν) = ιZµ∧ν+(−1)

deg µ
µ∧ ιZν for all differential forms µ, ν and

vector fields Z) and from the facts that ιX1
α = φ̃1 and ιX2

α = φ̃2. Also, the equality
(c) comes from Lemma 7.3 and the (d) follows from the fact that φ1dφ2 − φ2dφ1 = ρ2dϕ
and dφ1 ∧ dφ2 = ρdρ ∧ dϕ by definition of ρ and ϕ.

Now, along B̃ = π−1(B) we have that

ιX2
ιX1

α ∧ dαn|B̃
(a)
= − n(n− 1)α ∧ dαn−2 ∧ π∗ (ρdρ ∧ dϕ) |B̃

(b)
= −n(n− 1)

(
π|B̃
)∗ [

β ∧ dβn−2 ∧ ρdρ ∧ dϕ|B
] (7.3)

Here, the equality (a) comes from the fact that ρ2dϕ = 0 on B = φ−1(0) (by definition)
and the (b) from the fact that, for well chosen differential forms µ1, µ2, ν1, ν2, we can
write

α ∧ dαn−2 = π∗ (β ∧ dβn−2
)
+ φ̃1µ1 + φ̃2µ2

+ dφ̃1 ∧ ν1 + dφ̃2 ∧ ν2 ,

so that the only non-zero contribution along B̃ after wedging with the form π∗ (dφ1 ∧ dφ2)
is given by the term π∗ (β ∧ dβn−1

)
.

We now analyze the situation on the complement of B̃.
Let ϕ̃ := ϕ ◦ π and recall that we already introduced the notation ρ̃ = ρ ◦ π. Then, away
from B̃, we compute

ρ̃

[
d

(
α

ρ̃

)]n−1

∧ dϕ̃ = ρ̃

(−dρ̃ ∧ α+ ρ̃dα

ρ̃2

)n−1

∧ dϕ̃

= ρ̃
ρ̃n−1dαn−1 − (n− 1)ρ̃n−2dρ̃ ∧ α ∧ dαn−2

ρ̃2n−2
∧ dϕ̃

=
1

ρ̃n
[
ρ̃2dϕ̃ ∧ dαn−1 + (n− 1)α ∧ dαn−2ρ̃ ∧ (dρ̃ ∧ dϕ̃)

]
.

Hence, from Equation (7.2) we get

ρ̃

[
d

(
α

ρ̃

)]n−1

∧ dϕ̃ = − 1

nρ̃n
(ιX2ιX1α ∧ dαn) . (7.4)
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Now, we point out that on the horizontal space F of the connection ω we have

α = π∗β ,

dα = φ̃1dω1 + φ̃2dω2 + π∗dβ.
(7.5)

Indeed, the terms ω1, ω2 in α and dφ̃1 ∧ ω1 and dφ̃2 ∧ ω2 in dα are zero on F .
Then, on F we also have

ρ̃

[
d

(
α

ρ̃

)]n−1

∧ dϕ̃ = ρ̃

(−dρ̃ ∧ α+ ρ̃dα

ρ̃2

)n−1

∧ dϕ̃

(a)
= ρ̃

(
−dρ̃ ∧ π∗β + ρ̃π∗dβ

ρ̃2
+
φ̃1
ρ̃
dω1 +

φ̃2
ρ̃
dω2

)n−1

∧ dϕ̃

(b)
= π∗

{
ρ

[
d

(
β

ρ

)
+
φ1
ρ
Ω1 +

φ2
ρ
Ω2

]n−1

∧ dϕ
}

.

(7.6)

Then, Equation (7.3) together with Equations (7.4) and (7.6) tell us that ιX2ιX1α ∧
dαn is a positive section of Λ2n−1 (F∗) over V if and only if

• the form β ∧ dβn−2 ∧ ρdρ ∧ dϕ on B is a negative volume form along B,

• the form ρ
[
d
(
β
ρ

)
+ φ1

ρ Ω1 +
φ2

ρ Ω2

]n−1

∧ dϕ is a negative volume form away from

B,

i.e. if and only if

• β induces a negative contact form on B,

• for each θ ∈ S1, d
(
β
ρ

)
+ φ1

ρ Ω1+
φ2

ρ Ω2 induces a negative symplectic form on ϕ−1(θ).

This concludes the proof of Lemma 7.4.

7.2 The Bourgeois construction

Bourgeois gives in [Bou02] a construction that goes in the opposite direction with respect
to that in [Lut79] recalled above. Indeed, using the notion of open book decompositions
for contact manifolds (M2n−1, ξ) from [Gir02], he constructs explicit contact structures
on the total space of the principal T2-bundle π : M ×T2 →M . More precisely, he proves
the following:

Theorem 7.5 (Bourgeois). Let (M2n−1, ξ) be a contact manifold and (B,ϕ) an open
book decomposition of M supporting ξ.

a. There is a smooth map φ = (φ1, φ2) : M → R2 defining the open book (B,ϕ) and
such that γ ∧ dγn−2 ∧ dφ1 ∧ dφ2 ≥ 0 on M , where γ is any contact form defining ξ.

b. If φ is as in point a., then for any choice of coordinates (θ1, θ2) coordinates on T2

and for any contact form β defining ξ and adapted to the open book (B,ϕ), the
1−form α := β + φ1dθ1 − φ2dθ2 is a contact form on M × T2.
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We point out that the condition γ∧dγn−2∧dφ1∧dφ2 ≥ 0 in point a. of Theorem 7.5
is independent of the choice of form γ defining ξ: indeed, it is equivalent to the fact
that ξ induces by restriction a contact structure on φ−1(z), for each regular value z of φ.
Moreover, the contact form α in point b. is clearly invariant under the natural T2-action
on the principal T2-bundle π : M × T2 →M .

We now recall the proof of Theorem 7.5 in [Bou02], because it will be useful in the
proof of Proposition 7.7.

Proof (Theorem 7.5). Let’s start by proving point a.. Chose an auxiliary Riemannian
metric on M and fix a tubular neighborhood B × D2 via the exponential map on the
normal bundle of B (recall that the binding has trivial normal bundle by definition of open
book decomposition). Up to rescaling the metric, we can suppose that each {pt}×D2 is
a geodesic disk of radius 1.

Consider now a map ρ̃ : B×D2 → R≥0 which is smooth away from B×{0}, equal to r
for r ∈ (0, δ/2), strictly increasing with respect to the radial coordinate for r ∈ (0, δ) and
equal to 1 on r ∈ [δ, 1]. Here, δ > 0 is so small that all B×{pt} in B×D2

δ , equipped with
the hyperplane field given by the restriction of ξ, are contact submanifolds of (M, ξ).
Take then the natural extension ρ : M → R≥0 of ρ̃ given by the constant function 1
defined outside of B ×D2.

Considering the fibration ϕ : M \ B → S1 as a map with values in S1 ⊂ C, we can
now obtain a map φ :M → C as φ := ρ · ϕ and write φ(p) = (φ1(p), φ2(p)) ∈ C = R2 for
each p ∈M .

Then, we claim that φ is as in the statement of Theorem 7.5. Indeed, if we denote
N := B×D2

δ , then ‖φ‖ is 1 on M \N and each B×{pt} in N is a fiber of φ and a contact
submanifold of (M, ξ), so that γ ∧ dγn−2 ∧ dφ1 ∧ dφ2, with γ defining ξ, is non−negative
everywhere on M , as wanted.

We now prove point b. of Theorem 7.5. Let α = β+φ1dθ1−φ2dθ2 as in the statement.
Then, we can compute dα = dβ + dφ1 ∧ dθ1 − dφ2 ∧ dθ2, which gives

(dα)
n
=n (dβ)

n−1 ∧ (dφ1 ∧ dθ1 − dφ2 ∧ dθ2) +
−n (n− 1) (dβ)

n−2 ∧ dφ1 ∧ dθ1 ∧ dφ2 ∧ dθ2 ,

all the other terms being zero because they contain as a factor dφ1 ∧ dφ1 or dφ2 ∧ dφ2.
We then get

α ∧ (dα)
n
=n (dβ)

n−1 ∧ (φ1dφ2 − φ2dφ1) ∧ dθ1 ∧ dθ2 +
+n (n− 1)β ∧ (dβ)

n−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 =

=n (dβ)
n−1 ∧

(
ρ2dϕ

)
∧ dθ1 ∧ dθ2 +

+n (n− 1)β ∧ (dβ)
n−2 ∧ (ρdρ ∧ dϕ) ∧ dθ1 ∧ dθ2 .

Here, we can conclude with the same argument already used in the proof of Proposi-
tion 6.13. Indeed, the first summand is everywhere non-negative and strictly positive
away from B × T2, because dβ is a symplectic form on the pages of the open book
decomposition chosen (inducing the same orientation as φ). The second summand is
everywhere non-negative by hypothesis, and it is strictly positive on B × T2, because B
is a contact submanifold of M (with same orientation as that induced by φ). This means
that α is a positive contact form on M × T2.

Remark 7.6. If φ = (φ1, φ2) satisfies point a. of Theorem 7.5, then, for all ǫ > 0, the
same is true for ǫφ = (ǫφ1, ǫφ2). In particular, the 1-forms αǫ := β + ǫφ1dθ1 − ǫφ2dθ2
always define positive contact structures by point b. of Theorem 7.5, which are moreover
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all isotopic by Gray’s theorem. Notice that α0 = β defines the hyperplane field ξ ⊕ TT2,
which is not a contact structure on M × T2. Nonetheless, in Chapter 8 we will call it
contact fiber bundle on M×T2 and show that it plays an important role in understanding
the properties of the construction in Theorem 7.5.

We are now interested in studying in detail the relations between the Bourgeois con-
struction and Lutz’ one, already recalled in Section 7.1.

First of all, we point out that the application of Lutz’ procedure after the Bourgeois
construction gives back the original data.
More precisely, if we start from (M2n−1, ξ) and (B,ϕ) supporting ξ, we can apply Theo-
rem 7.5 to obtain the contact manifold (M×T2, η := kerα), with α = β+φ1dθ1−φ2dθ2.
Then, if ω ∈ Ω1(M × T2, t) denotes the natural flat connection form dθ1 ⊗ e1 + dθ2 ⊗ e2
on M ×T2, the construction of open book preceding the statement of Theorem 7.2 gives
back the original open book (B,ϕ) and contact structure ξ on M .

Vice versa, we now study the other possible composition, i.e. the application of the
Bourgeois construction after the Lutz’ one. We then have the following:

Proposition 7.7. Let η be a T2-invariant contact structure on the principal bundle
π : M × T2 → M such that the couple (F ,F ∩ η), where F := TM ⊕ {0}, is a contact
foliation on M × T2. Let (B,ϕ) and ξ be, respectively, the open book and the contact
structure on M given by Theorem 7.2. Then, for any choice of coordinates (θ1, θ2) on
T2, there is a couple (β, φ) as in the statement of Theorem 7.5 such that η = ker(α),
where α = β + φ1dθ1 − φ2dθ2 on M × T2, with φ = (φ1, φ2).

In other words, provided the T2-invariant contact structure η we start with satisfies
the fact that the push-forward of η∩(TM × {0}) via dπ is a contact structure ξ on M , we
can apply the Bourgeois construction after the Lutz’ one to get back the initial structure
η.

Proof (Proposition 7.7). According to Theorem 7.5, it’s enough to show that there are
a contact form β defining ξ, a neighborhood N = B ×D2 of the binding B in M and a
map φ = (φ1, φ2) : M → R2 such that

i. β is adapted to (B,ϕ),

ii. φ defines (B,ϕ) and β ∧ dβn−2 ∧ dφ1 ∧ dφ2 ≥ 0 on M ,

iii. η = ker (β + φ1dθ1 − φ2dθ2).

As already done in the proof of point a. of Theorem 7.5, we point out that for the
point ii. above it’s enough to find a map φ = (φ1, φ2) and a neighborhood N = B ×D2

of B in M such that φ defines (B,ϕ), ‖φ‖ is constant on M \ N and each B × {pt} in
N = B ×D2 is a fiber of φ and a contact submanifold of (M, ξ).

Let’s start by writing η = ker (α′), with α′ = β′ + φ′1dx− φ′2dy, where β′ is a contact
form on M and φ′ := (φ′1, φ

′
2) : M → R2 defines (B,ϕ). This can be done as in the

proof of Theorem 7.2, using here the natural flat connection dθ1 ⊗ e1 + dθ2 ⊗ e2 on
π : M × T2 →M .

Consider now a small normal neighborhood N = B ×D2 of B in M such that each
B × {pt} is a fiber of φ′ and a contact submanifold of (M, ξ). Such N exists because φ′

defines the open book (B,ϕ) adapted to ξ.
Then, we claim that there are a contact form β′′ for ξ on M and a map φ′′ :=

(φ′′1 , φ
′′
2) : M → R2 such that α′′ := β′′ + φ′′1dx − φ′′2dy still defines η, dβ′′ is symplectic

on the fibers of ϕ|M\N , and each B × {pt} in N is a fiber of φ′′.

Indeed, let ǫ > 0 be such that {‖φ′‖ < 2ǫ} ⊂ N and chose f to be a smooth function,
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depending only on ‖φ′‖, non-increasing in ‖φ′‖, equal to 1/ǫ on the set {‖φ′‖ < ǫ} and
equal to 1/‖φ′‖ on the set M \ {‖φ′‖ < 2ǫ}. Now, define β′′ := fβ′ , φ′′1 := fφ′1 and
φ′′2 := fφ′2. Then, α′′ = fα′, i.e. η = ker (α′′), and B × {pt} ⊂ N are fibers of φ′′.
Moreover, we have ‖φ′′‖ = 1 on all M \ N . The computation

α′′ ∧ (dα′′)
n
=n (dβ′′)

n−1 ∧
(
‖φ′′‖2 dϕ

)
∧ dx ∧ dy+

+n (n− 1)β′′ ∧ (dβ′′)
n−2 ∧ [‖φ′′‖ d (‖φ′′‖) ∧ dϕ] ∧ dx ∧ dy ,

analogous to the one recalled in the proof of Theorem 7.5, then tells us that dβ′′ has to
be symplectic on the fibers of ϕ|M\N , because α′′ is a contact form and ‖φ′′‖ is constant
on M \ N .

Now, Lemma 6.8 tells us that there is g : M → R such that β := gβ′′, which obviously
still defines ξ = ker (β′′), is adapted to the open book (B,ϕ). Moreover, from the explicit
proof of Lemma 6.8, we see that g can be chosen to be equal to 1 on the complement of
N and depending only on ‖φ′′‖.

Define then φ1 := gφ′′1 , φ2 := gφ′′2 , α := β + φ1dx − φ2dy and φ := (φ1, φ2). Then,
noticing that α = fgα′ and that each B × {pt} is also a fiber of φ, it is clear that the
properties i. to iii. above are satisfied. This concludes the proof of Proposition 7.7.
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Chapter 8

Bourgeois’ construction revisited

In Section 7.2, we presented the construction in [Bou02] in terms of invariant structures
on the principal T2-bundle M × T2 → M . Though, the following “orthogonal” point of
view can also be adopted: the examples by Bourgeois are contact fiber bundle structures
on the fiber bundle M × T2 → T2.

This change of perspective is motivated by [Pre07, KN07, NP10], where the contact
fiber bundle structure of the examples from [Bou02] was used to give other important
constructions of high dimensional contact manifolds. Actually, the contact fiber bundle
structure, together with the existence of a flat connection, is what remains in the higher
genus case, for example taking contact branched coverings of the constructions in [Bou02],
as already proposed in [Bou02, Corollary 3].

The aim of this chapter is then to reinterpret and generalize the construction from
Bourgeois using the notion of contact fiber bundles, as introduced in [Ler04], under the
hypothesis of the existence of a flat connection.

More precisely, in Section 8.1 we recall the definitions and the main properties of
contact fiber bundles.
Then, we use this notion to generalize the construction from [Bou02] recalled in Sec-
tion 7.2. In particular, in Section 8.2 we take a general fibration admitting a flat contact
connection and we consider on it two non-trivial subclasses of all its contact connections.
The first subclass, described in Section 8.3, is characterized in terms of deformations to
the flat contact connection, in a flavor similar to the notion of contactizations introduced
in Definitions 5.11 and 5.22. The second subclass, included in the first, is a direct gen-
eralization of the examples from [Bou02] in the setting of contact fiber bundles and is
presented in Section 8.4, where Proposition II.D from the introduction is also proven.
Lastly, in Section 8.5 we study the stability of the first class under the operation of
contact branched covering.

8.1 Generalities

Let B2m, M2n−1 and V 2m+2n−1 be smooth manifolds and π : V → B a smooth fiber
bundle with fiber M . Denote by Mb the fiber of π over b ∈ B.

Suppose now that V,B are oriented, and give to each fiber Mb the natural orientation
as preimage π−1(b).

Definition 8.1. [Ler04] A contact fiber bundle is a cooriented hyperplane field η on V
such that for each fiber Mb of π the intersection ξb := η ∩ TMb is a positive contact
structure on Mb.
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For simplicity, in the following we will also denote the data of a contact fiber bundle
by (V,B,M, η).

Lemma 8.2. [Ler04, Lemma 2.3] Let (V,B,M, η) be a contact fiber bundle and α a
1-form on V defining η. The distribution H defined as the dα|η-orthogonal of ξb in
η is an Ehresmann connection on the bundle (M,V,B) and, at each point p ∈ V , we
have η(p) = ξπ(p)(p) ⊕ H(p). Moreover, its holonomy over a path γ : [0, 1] → B is a
contactomorphism between ξγ(0) and ξγ(1).

In order to avoid issues about the completeness of the parallel transport, we will
always assume M compact here.

We point out that the data of ξb for all b ∈ B and H also allows to restore the hy-
perplane field η. Hence, we will call contact fiber bundle the data (V,B,M, η) as well as
the data (V,B,M, {ξb}b∈B ,H), without any distinction. Also, if v is a vector of TbB, we
denote by v#(p) its horizontal lift to H(p), for all p ∈ π−1(b).

For the rest of Chapter 8, we actually focus on the case of B an oriented smooth
surface Σ, as this will be setting for our future considerations.

Moreover, we remark that in Definition 8.1 we do not require η to be necessarily
a contact structure on V . On the other hand, this will be the case we are interested
in, hence we need a criterion that establishes when this is the case. In order to give a
statement, we point out the following.
For a couple (X,Y ) of vector fields on Σ, the vector field [X#, Y #] − [X,Y ]

# on V is
actually tangent to the fibers. Indeed, it is mapped to zero via the differential dπ because
dπ commutes with the Lie bracket and dπ(Z#) = Z for every vector field Z on Σ.
What’s more, the restriction of [X#, Y #] − [X,Y ]

# on Mb depends only on X(b) and
Y (b): this can easily be seen with the tensoriality criterion (which is stated precisely in
[KMS93, Lemma 7.3] for instance). Hence, for every oriented basis (u, v) of TbΣ, we have
a well-defined vector field [u#, v#]− [u, v]

# on Mp. Then, we have the following:

Proposition 8.3 ([Ler04, Proposition 3.1]). Let (V,Σ,M, η) a contact fiber bundle over
an oriented surface Σ. The hyperplane field η is a positive contact structure on V if
and only if for every p ∈ Σ and every oriented basis (u, v) of TpΣ, the vector field
[u#, v#]− [u, v]

# on Mp is a negative contact vector field for ξp.

Recall that a contact vector field is called negative if it is negatively transverse ev-
erywhere to the contact structure.
We also remark that [Ler04, Proposition 3.1] is actually more general, because the base
space B is not assumed to be a surface but can have dimension 2n ≥ 2.

8.2 Fibrations with a flat contact connection

In this section we give an adaptation of [Ler04, Remark 3.2 and Theorem 3.6] to the case
of flat contact connections. For the reader interested in the details, [Ler04, Section 3.2]
deals with the case of principal G−bundles using the notion of contact moment map,
under the implicit assumption of the Lie group G having dimension at least 1. The case
of flat contact connection that follows corresponds then to the case of G = π1(Σ) of
dimension 0, where Σ is the surface which is base of the contact fiber bundle. For this
reason, we try to keep our description as self contained as possible.

In the following, we call fiber bundle with contact fibers, and denote it (V,Σ,Mξ), the
data of a fiber bundle (V,Σ,M) and a collection of a contact structure ξp on each fiber
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Mp, depending smoothly on p ∈ Σ. In particular, on a fiber bundle with contact fibers
(V,Σ,Mξ), the structure of a contact fiber bundle, with the prescribed contact structures
on the fibers, is equivalent to the data of a contact connection.

We focus in this section on those fiber bundles with contact fibers (V,Σ,Mξ) admit-
ting a structure of contact fiber bundle (V,Σ,M, η0) with flat connection, i.e. such that
the associated connection H0 has zero curvature.
We recall that the curvature of an Ehresmann connection H on a fiber bundle (V,Σ,M)
is defined as follows. Via H, each vector field Z on V can be uniquely decomposed as
Z = Zh + Zv, where Zh is horizontal, i.e. everywhere tangent to H, and Zv is vertical,
i.e. tangent everywhere to the fibers of the fibration. The curvature R of H is then the
2-form on V with values in TV , i.e. R ∈ Ω2 (V, TV ), defined by R (Z,W ) = [Zh,Wh]v
for all vector fields Z,W on V . Frobenius’ theorem gives the following equivalence: R is
everywhere zero if and only if the connection H is a foliation on V .

The flatness of H0 allows us to give a nice presentation of (V,Σ,M, η0).
Indeed, once fixed a certain fiber (M, ξ) of (V,Σ,M, η0), we can define a representa-
tion ρ : π1 (Σ) → Diff(M, ξ), where Diff(M, ξ) is the space of contactomorphisms of
(M, ξ): for each class c ∈ π1 (Σ), we consider the monodromy of the connection H0 over
a (smooth immersed) representative of c. This gives a well defined ρ: indeed, the mon-
odromy doesn’t depend on the representative chosen, because H0 is a foliation, and it is
a contactomorphism of the fibers, by Lemma 8.2.

If we denote by πΣ : Σ̃ → Σ the universal cover of Σ, we get a well defined homomor-
phism F : Σ̃×M → V of fibrations over Σ given simply by F (c, q) := ρc(q). Moreover,
the differential of F sends the connection T Σ̃⊕{0} of Σ̃×M → Σ̃ to the connection H0

of π : V → Σ, and the contact structure {0} ⊕ ξ on the fiber of Σ̃×M over p̂ ∈ Σ̃ to the
contact structure ξp of the fiber Mp of V over p = πΣ(p̂).

Also, if we denote by ρ̃ the diagonal action of π1 (Σ) on Σ̃×M induced by the natural
action on the first factor and by the action ρ on the second factor, F induces an isomor-
phism f : Σ×ρ̃M → V of fiber bundles over Σ, where Σ×ρ̃M is the quotient of Σ̃×M
by ρ̃. Moreover, f sends the tangent space of Σ to H0 and the contact structure {0} ⊕ ξ
on the fiber of Σ×ρ̃M over p exactly to the contact structure ξp of the fiberMp of V over p.

On this fiber bundle with contact fibers (Σ×ρ̃M,Σ,Mξ), we can moreover explicitly
describe all the contact fiber bundles giving the prescribed contact structure on the
fibers. For this, we introduce the notion of potential of a connection. With a little abuse
of notation and thanks to the isomorphism of contact vector bundles found above, we
will write V = Σ×ρ̃M in the following.

Let’s consider a contact connection H on (V = Σ×ρ̃M,Σ,Mξ) and take the 1-form
A, with values in the space Xfib (V ) of vector fields on a fiber, which is defined on Σ as
follows: take a point p ∈ Σ, a vector v ∈ TpΣ and define Av := v# − v̂, where v# is the
lift of v to H and v̂ is the lift of v to H0. This differential form A is called potential of
H relative to H0. We point out that it clearly allows to recover H from H0.
Moreover, A has actually values in the space Xcontfib (V ) of contact vector fields on a fiber:
more precisely, for each v ∈ TpΣ the vector field Av on the fiber Mp is a contact vector
field for the contact manifold (Mp, ξp).

Vice versa, each differential form A ∈ Ω1(Σ;Xcontfib (V )), such that for each v ∈ TpΣ
the vector field Av is contact for (Mp, ξp), actually defines, together with the flat contact
connection H0, a contact connection H, hence a contact bundle η on the fibration with
contact fibers (V,Σ,Mξ).

Now, between all these contact fiber bundles, we are interested in particular in those
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that define a contact structure on the total space V . To describe this subclass in terms
of the potential, we have to introduce another two tensors.
The first one is the exterior derivative d0A ∈ Ω2(Σ,Xcontfib (V )) of A, which is defined as

follows: for all p ∈ Σ and u, v ∈ TpΣ, d0A(u, v) := [X̂, AY ] − [Ŷ , AX ] − A[X,Y ], where
X,Y are vector fields tangent to Σ defined near p and such that X(p) = u and Y (p) = v.
We remark that this is indeed well defined because the quantity on the right hand side
depends only on u and v: this can easily be checked using the tensoriality criterion.
The second tensor which we will need is the Lie bracket of A with itself, [A,A] ∈
Ω2(Σ,Xcontfib (V )), given by [A,A](u, v) := [AX , AY ], where u, v,X, Y are as in the defini-
tion of d0A above. Again, the right hand side depends only on u, v, hence this is a well
defined tensor.

We can now characterize the potentials that define contact structures:

Proposition 8.4. On a flat contact fiber bundle (V,Σ,M, {ξp}p∈Σ,H0) with Σ surface,
a contact connection H with vector potential A gives a contact structure η on the total
space if and only if, for all p in Σ and all oriented basis (u, v) of TpΣ, the vector field
d0A(u, v) + [Au, Av] on Mb is a negative contact vector field for (Mp, ξp).

Proof. This is a direct consequence of Proposition 8.3 and of the following computation:
for all X,Y vector fields on Σ such that X(p) = u and Y (p) = v,

[u#, v#]− [u, v]
#
= [X̂ +AX , Ŷ +AY ]−

(
[̂X,Y ] +A[X,Y ]

)

= [X̂, AY ]− [Ŷ , AX ]−A[X,Y ] + [AX , AY ] + [X̂, Ŷ ]− [̂X,Y ]

(∗)
= d0A(u, v) + [A,A](u, v) ,

where (∗) comes from the definition of d0A, [A,A] and from the fact that H0 flat means

[X̂, Ŷ ] = [̂X,Y ] for all X,Y vector fields on Σ.

8.3 Contact deformations of flat contact bundles

Fix for all this section a flat contact fiber bundle (V,Σ,M, η0).

Definition 8.5. We say that a contact fiber bundle η defining a contact structure on
the total space of the fiber bundle (V,Σ,M) is a contact deformation of the flat bundle
(V,Σ,M, η0) if there is a smooth family of contact fiber bundles (ηs)s∈[0,1] starting at η0,
ending at η1 := η and satisfying the followings:

1. for all p ∈ Σ and all s ∈ [0, 1], ηs defines the same ξp on the fiber Mp;

2. ηs defines a contact structure on V for all s > 0.

Thanks to Hypothesis 1, we could also rephrase the above notion in terms of a path
of contact connections Hs interpolating between H0 and H.

We point out that this definition is “non-empty”, i.e. given a flat contact fiber bundle
(V,Σ,M, η0), not all the contact fiber bundles for the same underlying fibration struc-
ture (V,Σ,M) and inducing the same contact structures ξp on each fiber Mp, are contact
deformations of η0.
For instance consider the contact fiber bundle structure on T3 = S1 × T3 which is
given by the kernel η of α = dθ + cos(θ)dx − sin(θ)dy, where θ ∈ S1 and (x, y) are
coordinates on T2. This contact fiber bundle structure is a contact deformation of the
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flat contact fiber bundle structure given by η0 = ker (dθ): the deformation is given by
αt := dθ + t cos(θ)dx− t sin(θ)dy, with t ∈ [0, 1].
We point out that, by [Gir99, Lemma 10], η admits prelagrangian tori only in the isotopy
class of {pt} × T2. Take now a diffeomorphism ψ of T3 sending (θ, x, y) to (θ + x, x, y).
Then, ψ∗η is still transverse to the S1 factor, hence it still is a contact fiber bundle on
the chosen fibration, and obviously it still defines a contact structure on the total space.
However, it has prelagrangian tori in an isotopy class which is different from that of
the prelagrangian tori of η. According to [Vog16, Proposition 9.9], this implies that φ∗η
cannot be a contact deformation of η0 = TT2 ⊕ {0} ⊂ T

(
T2 × S1

)
.

We also remark that, even though the above definition is of a very similar flavor to
Definitions 5.11 and 5.22, the objects they define behave differently. For instance, there
is no uniqueness up to isotopy for contact deformations.
Indeed, if we take again the fiber bundle T3 = T2 × S1 → T2 where we see the fibers
as contact manifolds

(
S1, ker (dθ)

)
, then the flat contact bundle defined by η0 = ker(dθ)

actually admits as contact deformations every contact structure on T3 defined by αn :=
dθ + cos(nθ)dx − sin(nθ)dy. Though, these are not isotopic one to the other as contact
fiber bundles defining contact structures on the total space, because they are not even
isomorphic as contact structures on T3 due to different Giroux torsion (see [Gir99]).

8.4 Bourgeois’ contact structures

The aim here is to use what we defined in the previous sections to generalize the con-
struction by Bourgeois recalled in Section 7.2. Let’s start by reformulating it with this
new terminology.

We start from the trivial fiber bundle M ×T2 → T2 with fixed contact fiber (M, ξ =
ker(α)), and we consider the flat contact fiber bundle structure ξ ⊕ TT2 on the total
space of the fibration. Once fixed an open book decomposition (B,ϕ) adapted to ξ
on M and a particular contact form β with differential symplectic on the pages of ϕ,
consider a function φ = (φ1, φ2) : M → R2 as in the statement of Theorem 7.5. Now
take the contact vector fields X and Y on (M, ξ) associated, respectively, to the contact
hamiltonians φ1 and −φ2 via the contact form β, and define A := −X ⊗ dx − Y ⊗ dy,
where (x, y) is a choice of coordinates for T2. A direct computation shows that the
contact fiber bundle associated to this potential is exactly the kernel of the contact form
α = β + φ1dθ1 − φ2dθ2 given by Theorem 7.5. We also remark that, because X and Y
are independent from the point of T2 in the product M × T2, the 2-form d0A is zero
everywhere. Because α is a contact form, Proposition 8.4 then tells us that [A,A] takes
values in the space of negative contact vector fields of the fibers (M, ξ). In particular,
[X,Y ] is a negative contact vector field.

We can then generalize the construction by Bourgeois via the following:

Definition 8.6. Let (V,Σ,M, η0) be a flat contact fiber bundle with associated connec-
tion H0. We call Bourgeois contact structure each contact structure on the total space
V given by a contact fiber bundle structure η on V → Σ with potential A such that
d0A = 0.

We remark that the curvature R of the connection H determined by η0 and A (i.e.
the contact connection of η) is just d0A + [A,A]. In particular, this curvature has two
terms which behave differently under rescaling A 7→ ǫA, for ǫ > 0: the term d0A is
rescaling linearly in ǫ, whereas [A,A] is rescaling quadratically in it. Then, if we denote
by Rǫ the curvature associated to the connection Hǫ of potential ǫA with respect to η0,
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the condition d0A = 0 is equivalent to the fact that 1
ǫRǫ → 0 for ǫ → 0, which was the

condition used to introduce Bourgeois contact structures in Chapter 1.

We now point out that Definition 8.6 is a non-trivial generalization of Bourgeois’ con-
struction, i.e. the class of Bourgeois contact structures is not exhausted by the examples
on M × T2 from [Bou02]:

Proposition 8.7. There is a flat contact fiber bundle (V,T2,M, η0) that admits a Bour-
geois contact structure and is non trivial, i.e. not isomorphic (as flat contact fiber bundle)
to (M × T2,T2,M, ξM ⊕ TT2).

We deduce Proposition 8.7 from the following:

Lemma 8.8. Let (M, ξ) be a contact manifold, G a subgroup of the group of contacto-
morphisms of (M, ξ), and ρ : π1(T

2) → G a group homomorphism. Suppose that there
is a G-invariant function φ = (φ1, φ2) : M → R2 defining a (G−invariant) open book
(B,ϕ) on M supporting ξ.
Let’s also denote by β a G-invariant contact form for ξ on M such that dβ is symplectic
on the fibers of ϕ, and by η0 the flat contact bundle induced on M ×ρ̃ T2 → Σ by the flat
contact bundle ξ ⊕ TR2 on M × R2 → Σ. Here, ρ̃ is the action of π1(T2) on M × R2

given by ρ on the first factor and by the natural action on the universal cover R2 → T2

on the second factor.
Then, the hyperplane field η on M ×ρ̃ T2, induced by ker(β+φ1dθ1−φ2dθ2) on M ×R2,
is a Bourgeois contact structure on the flat contact bundle (M ×ρ̃ T2,T2,M, η0).

Once noticed that the form β+φ1dθ1−φ2dθ2 on M×R2 is invariant under the action
ρ̃, the above lemma can be shown exactly as Theorem 7.5; the proof is hence omitted.

Proof (Proposition 8.7). We recall that van Koert and Niederkrüger exhibited in [KN05]
a particular open book decomposition for each Brieskorn manifold W 2n−1

k ⊂ Cn+1, with
supporting form αk. In particular, the adapted open book decomposition is defined by
a map φ : W 2n−1

k → R2 which is invariant under the action of a subgroup SO(n) of
strict contactomorphisms for the strict contact manifold (W 2n−1

k , αk). More precisely, if
(z0, . . . , zn) are the coordinates of Cn+1, SO(n) is just the subgroup of linear transfor-
mations of Cn+1 fixing the first coordinate z0 and acting on the sub−vector (z1, . . . , zn)
made of the other n coordinates by matrix multiplication; see [KN05] for the details. For
simplicity, we denote the couple (W 2n−1

k , αk) by (M,β).
Let now ρ : π1

(
T2
)
→ SO(n) be defined by ρ(a, b) = a · f for each (a, b) ∈ Z2 =

π1
(
T2
)
, where f is any element of SO(n) of order 2. Then, Lemma 8.8 tells us that the

η on M ×ρ̃ T2, induced by ker(β + φ1dθ1 − φ2dθ2) on M × R2, is a Bourgeois contact
structure on the flat contact bundle (M ×ρ̃ T2,T2,M, η0). Here, η0 is the flat contact
bundle induced by ξ ⊕ TR2 on M × R2 → R2.

A direct computation shows also that the potential Ã associated to the kernel of α :=
β+φ1dx−φ2dy on M ×R2 with respect to the trivial flat contact bundle η̃0 := ξ⊕TR2

is given by Ã = −X ⊗ dx− Y ⊗ dy, where X,Y are respectively the contact vector fields
on (M, ξ) such that β(X) = φ1 and β(Y ) = −φ2. In particular, it satisfies d0Ã = 0.
Hence, the potential A of η = ker(β) on V (with respect to the flat connection η0 on V
induced by η̃0 on M × R2) will also satisfy d0A = 0. In other words, this is an example
of Bourgeois contact structure on the flat contact fiber bundle (V,T2,M, η0), as wanted.

The only thing left to show is that (V,T2,M, η0) is not isomorphic to the trivial flat
contact bundle (M × T2,T2,M, ξ ⊕ TT2).
Recall that flat connections define foliations, according to Frobenius’ theorem. In par-
ticular, the connection H0 associated to η0 defines a foliation F0 by tori T2 on the total
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space V , which is also transverse to the fibers of π : V → T2. Moreover, because of our
particular choice of ρ : π1(T2) → SO(n), each leaf L of F0 intersects every fiber twice.
Now, the connection TT2 on the trivial bundle p : M×T2 → T2 gives a foliation F1 with
leaves {pt} × T2, which only intersects each fiber once. In particular, no isomorphism Ψ
of fiber bundles (equipped with connections) over T2 can exist between (V,T2,M,H0)
and (M × T2,T2,M, {0} ⊕ TT2): indeed it should send F0 to F1, which is not possible
because their leaves intersects the fibers (of respectively π and p) a different number of
times.

We point out that the motivation behind Definition 8.6 doesn’t only consist in Propo-
sition 8.7 above. Indeed, we now show that the condition d0A = 0 above, while being
general enough to be satisfied by a class of contact structures strictly larger than those
given by the construction in [Bou02], is also strong enough to ensure some nice properties
from the points of view of contact deformations, weak fillability and adapted open book
decompositions.

We start by noticing that each Bourgeois contact structure η is in particular a contact
deformation of the underlying flat contact bundle η0.
Indeed, we have the natural path of contact bundle structures (ηt)t∈[0,1] that is given by
the potential At := t · A with respect to H0, where A is the potential of η. This has
the wanted starting point and ending point and gives a contact structure ηt for t > 0,
according to Proposition 8.4, because d0At = t · d0A is zero and [At, At] = t2[A,A] is
negatively transverse to ξ = η ∩ TM for t > 0.
This property is a direct generalization of the fact that the examples in [Bou02] are
actually all contact deformations of the trivial flat contact bundle on M × T2 (see Re-
mark 7.6).

The study of weak fillability of Bourgeois contact structures is postponed to Sec-
tion 9.1.1, where Proposition 9.1 states that if (M, ξ) is weakly fillable then a Bourgeois
contact structure η on the flat contact bundle (M ×T2,T2,M, ξ⊕TT2) is weakly fillable
too (see also [MNW13, Example 1.1] and [LMN18, Theorem A.a], that both deal with
the particular case of the contact structures obtained as in [Bou02]). This stability of
weak fillability is also true in a more general case, as stated in Proposition 9.5.

As far as adapted open book decompositions are concerned, we have the following
property: given a Bourgeois contact structure η on the flat contact bundle (V,Σ,M, η0),
we can “naturally” associate to each point b of Σ an open book decomposition of the
fiber Mb supporting the contact structure ξb. In order to give a precise statement, let’s
introduce some notations.
Consider a smooth contact bundle η on X → Y , where X is not assumed to be closed.
Denote by Λ the space of maps Φ: X → R2 such that, for each y ∈ Y :

i. the restriction φy := Φ|π−1(y) : π
−1(y) → R2 is transverse to {0} ⊂ R2,

ii. the map φy

‖φy‖ : π
−1(y) \ φ−1

y (0) → S1 is a fibration,

iii. (φ−1
y (0),

φy

‖φy‖ ), which is an open book decomposition of π−1(y) according to points
i., ii. above and to Lemma 6.7, is moreover adapted to the contact structure
η ∩ T

(
π−1(y)

)
.

Notice that this space Λ comes endowed with a natural C∞−topology induced by that
on the space of functions X → R2 in which it is contained. Consider then the quotient
Λ/∼ of Λ by the relation ∼ defined as follows: Φ1,Φ2 ∈ Λ are equivalent via ∼ if there is
a positive function f : X → R such that Φ2 = fΦ1. Notice that Λ/∼ inherits a natural
topology as quotient of the topological space Λ. We then call smooth Y−family of open
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books in X (adjusted to η) each element of Λ/∼.
Remark also that if we have a contact bundle η on a smooth fiber bundle π : X → Y
and f : Z → Y is a smooth map, we can define the pullback contact bundle f∗η on the
pullback bundle

f∗X := {(z, x) ∈ Z ×X| f(z) = π(x)} X
prX

as the vector sub-bundle {W ∈ T (f∗X)| d(prX)(W ) ∈ η} of T (f∗X), where prX : Z ×
X → X is the projections on the second factor. This is indeed a contact bundle on
f∗X → Z because its trace on each fiber (prZ)

−1(z) ∩ f∗X = {z} × π−1
f(z) of f∗X → Z

is exactly {0} ⊕ ηf(z); here, prZ : Z ×X → Z is the projections on the first factor.
We now go back to the specific case of Bourgeois contact structure η on a flat contact
bundle (V,Σ,M, η0). Denote, for all b ∈ Σ, (Mb, ξb) the contact fiber over b, i.e. Mb :=
π−1(b) and ξb := η0 ∩ TMb, where π : V → M is the given fiber bundle. We then say
that a couple (K,ϕ) is a fiber adapted open book if there is a point b ∈ Σ such that (K,ϕ)
is an open book decomposition of Mb supporting ξb.
Denote lastly by pr: FΣ → Σ the frame tangent bundle of Σ, i.e. the (principal) bundle
over Σ with fiber over b ∈ Σ given by the set of all oriented basis of TbΣ. Then, we can
state the following result:

Proposition 8.9. Given a Bourgeois contact structure η on the flat contact bundle
(V,Σ,M, η0), there is a map

Ψη : FΣ → {fiber adapted open book}
satisfying the following properties:

i. Ψη sends, for all b ∈ Σ, each positive basis of TbΣ to an open book decomposition
of Mb adapted to ξb;

ii. for each smooth path γ : [0, 1] → FΣ, the composition

Ψη ◦ γ : [0, 1] → {fiber adapted open books}
describes a smooth [0, 1]−family of open books in γ∗ pr∗ V adjusted to γ∗ pr∗ η.

(γ∗ pr∗ V, γ∗ pr∗ η) (pr∗ V, pr∗ η) (V, η)

I FΣ Σ

π

γ pr

From the above result, we can deduce a more precise version of Proposition II.D
stated in Section 1.2:

Corollary 8.10. The map Ψη in Proposition 8.9 induces a well defined

ψη : Σ → {fiber adapted open books} /∼ ,

where (K0, ϕ0) ∼ (K1, ϕ1) if they are both adapted open books on a same fiber (Mb, ξb) and
there is an isotopy (ft)t∈[0,1] of the fiber Mb, starting at φ0 = Id, such that K1 = f1(K0),
ϕ1 = ϕ0 ◦ f−1

1 and
(
ft (K0) , ϕ0 ◦ f−1

t

)
is an open book of Mb adapted to ξb. In other

words, η uniquely determines an isotopy class of adapted open book decompositions for
each fiber (Mb, ξb) of (V,Σ,M, η0).
Moreover, if η = kerα is the Bourgeois contact structure on (M×T2,T2,M, ξ⊕TT2) given
by Theorem 7.5 starting from an open book (B,ϕ) for (M, ξ), then the corresponding map
ψη sends each b ∈ T2 to an isotopy class of adapted open books on (Mb, ξb) that (via the
natural identification (Mb, ξb) ≃ (M, ξ) given by the projection M×T2 →M) corresponds
to the isotopy class of the original open book (B,ϕ) on (M, ξ).
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Proof (Corollary 8.10). Given b ∈ Σ, consider an ordered basis (u, v) of TbΣ and define
ψη(b) as the class of Ψη(u, v) under the relation ∼. We then need to show that this is
well defined.
Suppose (u′, v′) is another ordered basis of TbΣ; we want to show that Ψη(u, v) ∼
Ψη(u

′, v′). Choose a curve γ : [0, 1] → FΣ with image contained in the fiber pr−1(b)
of pr: FΣ → Σ and such that γ(0) = (u, v) and γ(1) = (u′, v′). Then, according to
point ii. of Proposition 8.9, Ψη ◦γ gives a smooth [0, 1]−family of open books in γ∗ pr∗ V
adjusted to γ∗ pr∗ η. Now, γ∗ pr∗ V = [0, 1]×Mb and γ∗ pr∗ η = T ([0, 1])⊕ ξb, so that we
actually have, via the natural projection [0, 1]×Mb →Mb, a smooth family of open books
(Kt, ϕt)t∈[0,1] on Mb supporting ξb. Because a smooth path of open book decompositions
comes from an isotopy as described in the statement, this actually means that (K0, ϕ0)
is isotopic to (K1, ϕ1); in other words, Ψη(u, v) ∼ Ψη(u

′, v′) as wanted.
The last statement about the construction by Bourgeois follows directly from the

definition of Ψη and from point (c) of Proposition 6.1. Indeed, let η = ker(β + φ1dθ2 −
φ2dθ2) be the Bourgeois contact structure on the flat contact bundle (M ×T2,T2,M, ξ⊕
TT2) given by Theorem 7.5 starting from open book (B,ϕ) of M adapted to ξ. As
already observed in the beginning of Section 8.4, we can compute that A∂θ1 and A∂θ2 are
respectively the contact vector fields on (M, ξ) of contact hamiltonians −φ1 and φ2 (via
β), with φ = (φ1, φ2) defining (B,ϕ). Then, we can see that point (c) of Proposition 6.1
with X := A∂θ1 and Y = A∂θ2 gives exactly the open book (B,ϕ′), where ϕ′ is obtained
from ϕ by composition with the antipodal map S1 → S1.
In other words, for all b ∈ T2, if (∂θ1 , ∂θ2) is the oriented base of TbT2 coming from the
choice of coordinates (θ1, θ2) ∈ T2 as in the statement of Theorem 7.5, then Ψη(∂θ1 , ∂θ2) =
(B,ϕ′). In particular, ψη(b) is the isotopy class of (B,ϕ′), which coincides with that of
(B,ϕ).

We now derive Proposition 8.9 as a consequence of Proposition 6.1:

Proof (Proposition 8.9). Let’s start by defining Ψη. Let A be the potential for η relative
to the flat contact connection H0 of η0. Then, for each b ∈ Σ and each positive basis
(u, v) of TbΣ, Au and Av are two vector fields on Mb which are contact for ξb. Moreover,
according to Proposition 8.4 (and by definition of Bourgeois contact structure), [Au, Av]
is negatively transverse to ξb; then, Proposition 6.1 gives an open book decomposition
OBD(u,v) for Mb supporting ξb. Because OBD(u,v) is also a fiber adapted open book, we
can define Ψη(u, v) := OBD(u,v). In particular, it is clear that point i. of Proposition 8.9
is satisfied.

Let’s now prove point ii.. Consider b ∈ Σ and a basis (u, v) of TbΣ. Let α be a
1−form defining η on V and denote αb its restriction to the fiber Mb of V → Σ. From
the explicit proof of point (c) of Proposition 6.1, we can see that Ψη(u, v) is the open
book defined by the smooth function φ(u,v) := (αb (Au) ,−αb (Av)) : Mb → R2.
By definition of pullback smooth bundle and pullback contact bundle, Ψη ◦ γ describes
then the smooth [0, 1]−family of open books in γ∗ pr∗ V adjusted to γ∗ pr∗ η which is
given by the conformal class of Ψγ : γ∗ pr∗ V → R2 defined, for all (t, p) ∈ γ∗ pr∗ V =
{(t, p) ∈ [0, 1]× V | pr ◦γ(t) = π(p)}, by

Ψγ(t, p) :=
(
(µ∗α)(t,p)

(
Aγ1(t)(p)

)
, (µ∗α)(t,p)

(
Aγ2(t)(p)

))
,

where, for each t ∈ [0, 1], γ1(t) and γ2(t) are the two vectors of the (ordered) basis γ(t) ∈
FΣ and where µ : γ∗ pr∗ V → V is just the restriction of the projection prV : [0, 1]×V →
V to γ∗ pr∗ V . Notice that Aγ1(t)(p) and Aγ2(t)(p) are well defined because (t, p) ∈
γ∗ pr∗ V . This concludes the proof of point ii. of Proposition 8.9.
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We lastly point out another property of Bourgeois contact structures in the case of
trivial flat contact bundle: on the flat contact bundle (M ×T2,T2,M, ξ⊕ TT2), where ξ
is contact on M , Bourgeois contact structures can also be studied from the point of view
of the natural T2-action on the principal bundle, in the spirit of Chapter 7. Let’s give
some precise statements.

We start by noticing that the potential A of a contact bundle η, with respect to the
natural flat connection {0} ⊕ TT2 ⊂ T

(
M × T2

)
on π : M × T2 → T2, can actually be

seen as a 1-form defined on T2 and with values in the contact vector fields of (M, ξ),
thanks to the canonical identification of each fiber of π with M . Then, we have a natural
inclusion map

i :





T2 − invariant contact bundles
on (M × T2,T2,M, ξ ⊕ TT2), defining

a contact structure on M × T2



→

{
Bourgeois

contact structures

}
.

Indeed, a direct computation shows that each T2-invariant contact bundle η has
potential A invariant under the T2-action, which hence satisfies d0A = 0.

The other way around, we have the following:

Proposition 8.11. Let η be a Bourgeois contact structure on the flat contact bundle
(M×T2,T2,M, ξ⊕TT2) and denote by A its potential. The average A of A, taken under
the natural T2-action, is the potential of a T2-invariant Bourgeois contact structure η on
(M × T2,T2,M, ξ ⊕ TT2).

In particular, taking the average of the potential gives a well defined map

F :

{
Bourgeois

contact structures

}
→





T2 − invariant contact bundles
on (M × T2,T2,M, ξ ⊕ TT2), defining

a contact structure on M × T2



 ,

which satisfies F ◦ i = Id.

Proof (Proposition 8.11). It is clear that the average A satisfies d0A = 0, because it
is invariant under the T2-action. By Proposition 8.4, what we need to show is then
that [A,A] is with values in the negative contact vector fields for (M, ξ). Let’s start by
analyzing this condition more explicitly.
Write A = −X ⊗ dx − Y ⊗ dy, with (x, y) coordinates on T2 = (R/2πZ)

2 and X,Y a
T2-family of vector fields on M parametrized smoothly by (x, y). Then, we know that
[X,Y ] is negatively transverse to ξ everywhere on M , for all (x, y) ∈ T2, and we want
to show that their averages X,Y are such that [X,Y ] is also negatively transverse to ξ
everywhere on M .

Notice that, if Z,W are T2-parametric vector fields on M , it is not true in general
that the T2-average of [Z,W ] is equal to the Lie bracket of the averages of Z and W .
This being said, what we want to show here is that this is actually true for X,Y , thanks
to the additional condition d0A = 0.

Now, X,Y can be seen as smooth functions from T2 to the space of vector field on
M , which has a natural structure of vector space over R. As such, they both admit a
complex Fourier series expansion

X =
∑

m,n∈Z

ei(mx+ny)Xm,n and Y =
∑

h,k∈Z

ei(hx+ky)Yh,k , (8.1)

where, for all m,n, h, k ∈ Z, Xm,n, Yh,k are complex vector fields on M , i.e. sections of
the complexified tangent bundle TM ⊗R C → M . Because X,Y are actually real, we
have the following condition on the coefficients:

Xm,n = X−m,−n and Yh,k = Y−h,−k , for all m,n, h, k ∈ Z, (8.2)
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where Xm,n denotes here the conjugated of Xm,n and similarly for Yh,k.
What’s more, the condition d0A = 0 also gives some information on the Fourier

coefficients. We have indeed the following:

Claim 8.12. d0A = 0 if and only if − ∂
∂xY + ∂

∂yX = 0

Proof (Claim 8.12). We can explicitly compute

d0A (∂x, ∂y) =
[
∂̂x, A∂y

]
−
[
∂̂y, A∂x

]
−A[∂x,∂y ]

(i)
= −

[
∂̂x, Y

]
+
[
∂̂y, X

]

(ii)
= − ∂

∂x
Y +

∂

∂y
X ,

where (i) comes from the fact that ∂x and ∂y commute and (ii) follows from the expression
in coordinates of the Lie bracket.

A straightforward computation shows that Claim 8.12 is equivalent to the following
condition:

mYm,n = nXm,n for all m,n ∈ Z . (8.3)

Notice now that the averages of X and Y are, respectively, X0,0 and Y0,0, which are
then in particular real vector fields on M . To avoid confusion with the conjugation, we
will hence drop the notation X and Y for the averages and just denote them by X0,0 and
Y0,0 instead.

Let [. , .]C be the Lie bracket induced on the complex vector space of the sections of
TM ⊗ C → M by the Lie bracket [. , .] on the space of tangent vector fields on M . We
can then compute:

[X,Y ] =


 ∑

m,n∈Z

ei(mx+ny)Xm,n ,
∑

h,k∈Z

ei(hx+ky)Yh,k



C

(a)
=

∑

m,n∈Z

∑

h,k∈Z

ei[(m+h)x+(n+k)y] [Xm,n, Yh,k]C

(b)
=
∑

r,s∈Z

ei(rx+sy)


 ∑

m,n∈Z

[Xm,n, Yr−m,s−n]C


 ,

where the equality (a) comes from the fact that the Lie bracket is C−bilinear and is
taken on each fiber M × {pt} of M × T2 → T2 (where the exponentials are constant),
and the equality (b) comes from replacing r = m+ h and s = n+ k.

The above computation shows that [X,Y ] has Fourier coefficients

[X,Y ]r,s =
∑

m,n∈Z

[Xm,n, Yr−m,s−n]C (8.4)

for r, s ∈ Z.
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In particular, its average is given by

[X,Y ]0,0 =
∑

m,n∈Z

[Xm,n, Y−m,−n]C

(a)
= [X0,0, Y0,0] +

∑

m,n∈Z\{0}
[Xm,n, Y−m,−n]C

(b)
= [X0,0, Y0,0] +

∑

m,n∈Z\{0}

m

n

[
Ym,n, Ym,n

]
C

(c)
= [X0,0, Y0,0]− 2i

∑

m,n∈Z\{0}

m

n
[ℜYm,n,ℑYm,n]

(d)
= [X0,0, Y0,0] ,

where ℜYm,n and ℑYm,n denote respectively the real and imaginary part of Ym,n. More-
over, (a) comes from the fact that Xm,n is zero if m = 0, n 6= 0 and Y−m,−n is zero if
n = 0,m 6= 0 by Equation (8.3), (b) comes from Equations (8.2) and (8.3), (c) comes
from the C−bilinearity of [. , .]C and the anti-symmetry of [. , .] and, finally, (d) comes
from the fact that [X,Y ]0,0 is a (real) tangent vector field, because average of [X,Y ],
hence has zero imaginary part.

Because [X,Y ] is negatively transverse to ξ everywhere on M for all (x, y) ∈ T2, its
average [X,Y ]0,0 = [X0,0, Y0,0] is also negatively transverse to ξ everywhere on M .

Now, notice that the average A of A is exactly A = −X0,0 ⊗ dx − Y0,0 ⊗ dy. Then,
the fact that [X0,0, Y0,0] is everywhere negatively transverse to ξ means that [A,A] is a
1−form on T2 with values in the negative contact vector fields for (M, ξ). This concludes
the proof of Proposition 8.11.

Remark 8.13. In analogy with the case of Bourgeois contact structures, we could have
also considered, on a flat contact fiber bundle (V,Σ,M, η0), the class of contact structures
η on V given by a contact fiber bundle structures having potential A with [A,A] = 0.

For such an η, Proposition 8.4 tells us that d0A is with values in the negative contact
vector fields of the fibers. Such a condition, though, is not compatible with the fact that
the surface Σ is closed.
Indeed, by explicit computations (analogous to those in the proof of Lemma 9.2 in the
following) it can be proved that this condition on d0A implies the existence of an exact
volume form on Σ. Now, the latter can’t exist if Σ is closed, according to Stoke’s theorem.

Moreover, even if we allow Σ to have boundary, we do not recover all the informations
on the fiber that we have with a Bourgeois contact structure. More precisely, we can’t
recover in general an (isotopy class of) open book decomposition supporting the contact
structure on the fiber.
For instance, consider on the flat contact bundle (M×Σ,Σ,M, ξM⊕TΣ) the contact fiber
bundle structure η = ker (α+ λ), with ξM = kerα and dλ symplectic on Σ (that hence
has non−empty boundary). Then, an explicit computation shows that A = −Rα ⊗ λ,
where Rα is the Reeb vector field of α. In particular, [A,A] = 0 and d0A = −Rα ⊗ dλ,
and we do not have any way to recover an (isotopy class of) open book decomposition on
M from A.

8.5 Branched coverings as contact deformations

We show in this section that the class of contact fiber bundles that are contact defor-
mations of a flat contact fiber bundle is stable under the operation of contact branched
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coverings. More precisely we have the following:

Proposition 8.14. Let (V,Σ,M, η0) be a flat contact fiber bundle and p : Σ̂ → Σ a
branched covering map that lifts to a branched covering map p̂ : V̂ → V . Consider now
the pull-back flat contact fiber bundle (V̂ , Σ̂,M, η̂0) induced by p, i.e. η̂0 := p̂ ∗η0. If η is
a contact deformation of η0, then there is a contact branched covering η̂ of η to V̂ that
is a contact deformation of η̂0.

Proof. This follows essentially from the explicit formula for the contact branched covering
in the proof of Lemma 5.10.

More precisely, take a smooth family of 1-forms (αt)t∈[0,1] on V defining the family ηt
which, by definition of contact deformation, interpolates between η = ker(α1) and η0 =
ker(α0) in such a way that ηt is contact for t > 0 and for all t the fibers of the fibration
π : V → Σ are contact submanifolds, with induced contact structure independent of t.

According to the proof of Lemma 5.10, we can chose η̂ on V̂ to be the kernel of
α̂ = p̂ ∗α1 + ǫg(r)r2dθ, with the same notations as in that proof, using the particular
choice of closed form γ = dθ as connection on the trivial unit normal bundle of M in V .
Define now (α̂t)t∈[0,1] by α̂t = p̂ ∗αt + tǫg(r)r2dθ. We remark that ker(α̂1) = η̂ and that
ker(α̂0) = η̂0.

We then want to show that this path of 1-forms α̂t is the path giving η̂ as contact
deformation of η̂0.

Now, α̂t gives on each fiber a contact structure independent of t, hence the only thing
left to show is that α̂t actually defines a contact structure for t > 0. We can explicitly
compute

α̂t ∧ dα̂nt = Cn+1p̂ ∗ (αt ∧ dαnt ) +
+ Cn t (rg′ (r) + 2g (r)) p̂ ∗ (αt ∧ dαn−1

t

)
∧ rdr ∧ dθ

+ Cn t g(r) r2dθ ∧ p̂ ∗dαnt .

Notice that

p̂ ∗ (αt ∧ dαn−1
t

)
∧ rdr ∧ dθ = p̂ ∗ (α1 ∧ dαn−1

1

)
∧ rdr ∧ dθ ,

because αt and α1 induce the same contact form on each fiber. In particular, p̂ ∗ (αt ∧ dαn−1
t

)
∧

rdr ∧ dθ is bounded below by a positive volume form independent of t.
We can now use the same argument as in the proof of Lemma 5.10 to conclude that

the whole sum is positive everywhere for every t > 0.
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Chapter 9

Applications

9.1 Virtually overtwisted contact structures in high di-

mensions

In Section 9.1.1, we prove Proposition II.C from Chapter 1, stating that a Bourgeois
contact structure on a fiber bundle with total space M × T2 is weakly fillable provided
that the same is true for the fiber (M, ξ). Then, Section 9.1.2 contains the proof of
Théorème II.F, also stated in Chapter 1, about the existence of virtually overtwisted
manifolds in all odd dimensions.

9.1.1 Bourgeois contact structures and weak fillability

Consider (M2n−1, ξ) a contact manifold and take the flat contact bundle (M×T2,T2,M, η0),
where η0 = ξ ⊕ TT2 and the fibration map M × T2 → T2 is just the projection on the
second factor.

Proposition 9.1. Let η be a Bourgeois contact structure on (M × T2,T2,M, η0). If
(M,2n−1 ξ) is weakly filled by (X2n, ω), then (M ×T2, η) is weakly filled by (X ×T2, ω+
ωT2), where ωT2 is an area form on T2.

We point out that the result is already known in the case of η obtained by Bour-
geois’ construction [Bou02]: the statement and the idea of the proof in that case already
appeared in [MNW13, Example 1.1]; see also [LMN18, Theorem A.a] for an explicit
proof.

Proof (Proposition 9.1). We start by choosing a convenient contact form for η.
If β is a form on M defining ξ, we claim that we can write η = ker (α), where α :=
β + φ1dθ1 − φ2dθ2, with φ1, φ2 : M × T2 → R and (θ1, θ2) coordinates on T2. Indeed, η
can be written as ker (γ + fdθ1 + gdθ2), with f, g : M × T2 → R and γ ∈ Ω1

(
M × T2

)

that is zero on {0} ⊕ TT2 ⊂ T
(
M × T2

)
. Now, because η induces ξ on each fiber, there

is a positive function h : M ×T2 → R>0 such that γ = hβ. Then, the division by h gives
a contact form for η of the announced form.
Moreover, we recall from Section 8.4 that if A denotes the potential of η with respect to
η0 then, for each ǫ > 0, the family of potentials Aǫ := ǫA define a family ηǫ of Bourgeois
contact structure that are all isotopic between Bourgeois contact structures (hence in
particular between contact structures).
We then claim that ηǫ is just the kernel of αǫ = β + ǫφ1dθ1 − ǫφ2dθ2. Indeed, ǫφ1 and
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−ǫφ2 are the contact Hamiltonians associated, respectively, to − (Aǫ)∂x = −ǫA∂x and
− (Aǫ)∂y = −ǫA∂y .

Hence, up to isotopy we have that η = ker(αǫ), with ǫ > 0 that will be chosen very
small in the following.

According to the weak fillability hypothesis for M (and the discussion after Defini-
tion 2.17), we have

β ∧ (ωM + τdβ)n−1 > 0 for all τ ≥ 0 on M ,

where ωM denotes the restriction of ω to M = ∂X. We want to verify that, for ǫ > 0
small enough, we also have

αǫ ∧ (ωM + ωT2 + τdαǫ)
n > 0 for all τ ≥ 0 on M × T2 .

Lemma 9.2. Let Ω be an arbitrary volume form on M × T2. We then have

αǫ ∧ (ωM + ωT2 + τdαǫ)
n = nβ ∧ (ωM + τdβ)n−1 ∧ ωT2 +

+ ǫ2τnα1 ∧ dαn1 + ǫ2hΩ ,

where h is independent of ǫ and polynomial in τ , with degτ (h) ≤ n− 1.

The proof of this lemma is postponed.

Denote now f and g the functions defined by the equalities f Ω = nβ∧(ωM+τdβ)n−1∧
ωT2 , gΩ = τnα1 ∧ dαn1 . Then, what we want to show is that f + ǫ2(g + h) > 0 on all
M × T2.

We remark that for each p ∈ M × T2, f(p), g(p) and h(p) are polynomials in τ , by
explicit computation in the case of f and g, and by Lemma 9.2 in the case of h. Moreover,
we have the following properties: for each p ∈M × T2,

(a) f(p) > 0, because (X,ω) weakly fills (M, ξ);

(b) g(p) > 0, because α1 is a contact form for the Bourgeois contact structure η;

(c) h(p) has degree in τ strictly less than g(p), by Lemma 9.2.

We now use the following lemma, whose proof is easy (and omitted):

Lemma 9.3. Let P1, P2 ∈ R [τ ] of degree n, with P1(τ) > 0 ∀ τ ≥ 0 and with P2 with
positive leading coefficient. Then ∃ ǫ0 > 0 such that ∀ 0 < ǫ < ǫ0, P1 + ǫ2P2 > 0 on R≥0.

Now, for each p ∈ M × T2, if we define P1 = f(p) and P2 = g(p) + h(p), Lemma 9.3
gives an ǫp > 0 such that f(p) + ǫp(g + h)(p) > 0. Then, the compactness of M × T2

guarantees that there is ǫ > 0 independent of p such that f+ǫ(g+h) > 0, as wanted.

We now prove Lemma 9.2 used above:

Proof (Lemma 9.2). We can compute

dαǫ = dβ + ǫdφ1 ∧ dθ1 − ǫdφ2 ∧ dθ2 −
(
∂φ1
∂θ2

+
∂φ2
∂θ1

)
dθ1 ∧ dθ2 . (9.1)

Claim 9.4. d0A = 0 if and only if ∂φ1

∂θ2
+ ∂φ2

∂θ1
= 0 .
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Proof (Claim 9.4). We have A = −X⊗dθ1−Y ⊗dθ2, with X,Y the contact vector fields
on (M, ξ) with contact Hamiltonians φ1,−φ2 via β, respectively.

By Claim 8.12, we have that d0A = 0 if and only if − ∂
∂θ1

Y + ∂
∂θ2

X.

Now, because − ∂
∂θ1

Y + ∂
∂θ2

X is a contact vector field on each fiber (M, ξ), it is zero
if and only if its contact Hamiltonian via β is zero, i.e. if and only if

0 = − ∂

∂θ1
β (Y ) +

∂

∂θ2
β (X) =

∂

∂θ1
φ2 +

∂

∂θ2
φ1 .

Because η is a Bourgeois contact structure, Equation (9.1) becomes just

dαǫ = dβ + ǫdφ1 ∧ dθ1 − ǫdφ2 ∧ dθ2 .

For dimensional reasons, we now get
(
ω|TM

+ ωT2 +τdαǫ)
n

=

= n
(
ω|TM

+ τdβ
)n−1 ∧ (ωT2 + τǫdφ1 ∧ dθ1 − τǫdφ2 ∧ dθ2)+

+ τ2ǫ2n(n− 1)
(
ω|TM

+ τdβ
)n−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 .

Hence, we compute

αǫ ∧ (ω|TM
+ ωT2 + τdαǫ)

n =

= n(β + ǫφ1dθ1 − ǫφ2dθ2) ∧ (ωM + τdβ)n−1∧
∧ (ωT2 + τǫdφ1 ∧ dθ1 − τǫdφ2 ∧ dθ2)+

+ τ2ǫ2n(n− 1) (β + ǫφ1dθ1 − ǫφ2dθ2) ∧
(
ω|TM

+ τdβ
)n−2 ∧

∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 =

= nβ ∧ (ωM + τdβ)n−1 ∧ ωT2

+ nτǫ2(φ1dφ2 − φ2dφ1) ∧ (ωM + τdβ)n−1 ∧ dθ1 ∧ dθ2
+ τ2ǫ2n(n − 1)β ∧

(
ω|TM

+ τdβ
)n−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 . (9.2)

Now, a similar explicit computation (using again Claim 9.4) shows that

α1 ∧ dαn1 = n (φ1dφ2 − φ2dφ1) ∧ dβn−1 ∧ dθ1 ∧ dθ2 +
+ n(n− 1)β ∧ dβn−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 ,

so that the second and third term in the right hand side of the last equality in Equa-
tion (9.2) give ǫ2τnα1 ∧ dαn−1

1 + ǫ2hΩ, where h is as in the statement. This conclude
the proof of Lemma 9.2.

Even if we will not use it in the following, we remark that the local nature of the
condition d0A = 0 and of all the computations in the above proof actually gives the
following more general result:

Proposition 9.5. Let (M2n−1, ξ) be a contact manifold weakly filled by (X2n, ω). Sup-
pose that a representation ρ̃ of π1(Σg) in the group of symplectomorphisms of (X,ω)
gives, by restriction to the boundary, a representation ρ of π1(Σg) in the group of con-
tactomorphisms of (M, ξ). Let also η be a Bourgeois contact structure on the flat contact
bundle (M ×ρ Σg,Σg,M, η0) (as constructed in Section 8.2). Then, there is a symplectic
form Ω on X ×ρ̃ Σg that weakly fills η on M ×ρ Σg.
More precisely, if R2 → Σg denotes the universal covering map, Ω can be chosen to be the
symplectic form on X×ρ̃Σg induced by ω+ωg

R2 on X×R2 and where ωg
R2 is a symplectic

form on R2 invariant by the action of π1(Σg) on R2 by deck transformations.
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We also point out another result in a similar vein from [LMN18], that deals more
precisely with the specific construction from [Bou02]:

Proposition 9.6 ([LMN18, Theorem A.b]). Let (M, ξ) be a contact manifold admitting a
supporting open book (B,ϕ) with monodromy Id and Stein pages. Then, for a convenient
choice of the smooth function φ : M → R2 defining (B,ϕ), Theorem 7.5 (i.e. Bourgeois’
construction) gives a Stein fillable contact structure on M × T2.

Remark that having a supporting open book with monodromy Id and Stein pages is
equivalent to being subcritically Stein fillable. Indeed, from such an open book we can
easily construct a subcritical Stein filling; the converse is proven by Cieliebak in [Cie02].

Let’s now come back to the results we need in order to exhibit examples of virtually
overtwisted manifolds in all odd dimensions. Theorem 5.23 and Proposition 9.1 have
then the following immediate corollary:

Proposition 9.7. Consider a branched covering Σg → T2, where Σg is the closed genus
g ≥ 2 surface, and the naturally induced branched covering M × Σg → M × T2. Let ηg
on M ×Σg be a contact branched covering of a Bourgeois contact structure η on the the
contact bundle (M × T2,T2,M, ξ ⊕ TT2), where ξ is a contact structure on the fiber M .
Then, if (M, ξ) admits a weak filling (X,ω), there is a symplectic form Ω on X × Σg
weakly dominating ηg on M × Σg = ∂X × Σg.

We point out that the explicit proof of Theorem 5.23 actually shows that, up to
isotopy, Ω can be chosen to be of the form ω + ωg, for a certain area form ωg on Σg.

9.1.2 High dimensional virtually overtwisted manifolds

Let π : Σg → T2 be a covering map and suppose here that it is branched along two points.
Let also (Id, π) : M ×Σg →M ×T2 be the induced branched covering. We remark that
g equals here the branching index along each of the two connected components of the
upstairs branching locus of (Id, π).

Proposition 9.8. Let η be a Bourgeois contact structure on the flat contact bundle
(M×T2,T2,M, η0) and consider a contact branched covering ηg of η on M×Σg. If (M, ξ)
is weakly fillable and virtually overtwisted, then, for g ≥ 2 big enough, (M × Σg, ηg) is
weakly fillable and virtually overtwisted.

Then, starting for example from the base case of a holomorphically fillable virtually
overtwisted contact structure on lens spaces, that exist by [Gom98, Proposition 5.1] (see
also [Gir00, Theorem 1.1]), and using the construction in [Bou02], a proof by induction
on the dimension 2n − 1 of M easily shows that Proposition 9.8 implies the following
result, already stated in Section 1.2:

Théorème II.F. Les structures virtuellement vrillée existent en toutes dimensions ≥ 3.

Proof (Proposition 9.8). Proposition 9.7 tells us that (M × Σg, ηg) is weakly fillable for
all g ≥ 2. We then have to show that, for g sufficiently big, this contact manifold admits
a finite cover which is overtwisted.

By hypothesis, there is a finite cover p : M → M such that (M, ξ := p∗ξ) is over-
twisted. Consider then the following commutative diagram of smooth maps:

M × Σg M × Σg

M × T2 M × T2

(p,Id)

(Id,π) (Id,π)

(p,Id)
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Consider now η := (p, Id)∗η on M ×T2 and ζg := (p, Id)∗ηg on M ×Σg. Notice that
the restriction of ζg to the upstairs branching locus of (Id, π) : M × Σg → M × T2 is
exactly ξ.

We claim moreover that (M ×Σg, ζg) is a branched contact covering of (M × T2, η).
Indeed, we can easily see that ζg is a contact deformation of the confoliation (Id, π)∗η on
M×Σg as follows. If (ηtg)t∈[0,1] is a path of confoliations adapted to the upstairs branching
locus of (Id, π) : M × Σg → M × T2 starting at η0g = (Id, π)∗η, ending at η1g = ηg and
such that ηtg is contact for t ∈ (0, 1], then (p, Id)∗ηtg is the path of confoliations on M×Σg
which shows that ζg is a contact deformation of (Id, π)∗η.

We now use the following result, whose proof is postponed:

Lemma 9.9 ([NP10]). For k ∈ N>1, let πk : V̂k → V 2n+1 be a branched covering map of
branching index k. Suppose that all πk’s have same downstairs branching locus M and
that the upstairs branching locus M̂k of πk is connected (in particular, πk|M̂k

induces a

diffeomorphism between M̂k and M). Suppose also that there is a tubular neighborhood
N := M ×D2 (where D is the 2−disk centered at 0 and of radius 1) of the downstairs
branching locus M over which all the πk’s are trivialized at the same time, i.e. such that
πk : M ×D2 →M ×D2 is just (p, z) 7→ (p, zk).
Let now η be a contact structure on V inducing a contact structure ξ on M and consider
a contact branched covering η̂k of η on the total space of V̂k.

Then, there is ǫ > 0 such that, for all k ≥ 2, the upstairs branching locus (M̂k, ξ̂k =

kerπ∗
kα)

πk≃ (M, ξ = kerα) has a neighborhood of the form
(
M ×D2√

kǫ
, ker

(
α+ r2dϕ

))

inside (V̂k, η̂k) (here, by D2
r we denote the open disk centered in 0 and of radius r inside

R2).

In our situation, we have a sequence of branched coverings M × Σg of M × T2,
together with contact branched coverings ζg of η, as in the hypothesis of Lemma 9.9.
Then, a direct application of such lemma tells that each of the fibers (M, ξ = ker(α))
that belong to the (upstairs) branching set has a contact neighborhood of the form(
M ×D2

Rg
, ker

(
α+ r2dθ

))
, with Rg → +∞ for g → +∞. Because ξ on M is over-

twisted, this implies, according to [CMP15, Theorem 3.1], that if g is big enough then
the upstairs branching set has an overtwisted neighborhood, so that (M × Σg, ζ) is also
overtwisted. In other words, we just proved that, for g big enough, (M × Σg, ηg) has a
finite cover which is overtwisted.

Let’s now prove Lemma 9.9 used above:

Proof (Lemma 9.9). This result is a rephrasing of the discussion made by Niederkrüger
and Presas in [NP10, page 724], using our definition of contact branched coverings. Here’s
a detailed proof.

We start by remarking that, by the uniqueness of the branched contact coverings up
to isotopy (Proposition 5.8), it is enough to show that the result is true for a particular
choice of contact branched coverings η̂′k’s. Indeed, if η̂′k contains a contact neighborhood
of the upstairs branching locus (M, ξ = kerα) as in the statement, so does any contact
structure isotopic to it via an isotopy fixing M .
Suppose for the moment that we are in the case where η = ker

(
α+ r2dϕ

)
on a sub-

neighborhood M ×D2
ǫ of N = M ×D2. Then, π∗

kη = ker
(
α+ kr2kdϕ

)
on a neighbor-

hood M ×D2
k
√
ǫ

of the upstairs branching locus M̂ =M inside V̂ .

Let now fk : (0, k
√
ǫ) → (0, ǫ) be a smooth strictly increasing function such that fk(r) = r

near 0 and fk(r) = rk near k
√
ǫ. Then, we can construct a contact branched cover-

ing η̂′k of η by replacing π∗
kη = ker

(
α+ kr2kdϕ

)
on the neighborhood M × D2

k
√
ǫ

with
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ker
(
α+ kf2k (r)dϕ

)
.

Notice that we have the following contactomorphism:
(
M ×D2

k
√
ǫ, ker

(
α+ kf2k (r)dϕ

)) ∼−→
(
M ×D2√

kǫ
, ker

(
α+ r2dϕ

))

(p, r, ϕ) 7→ (p,
√
kfk(r), ϕ)

This means that (M̂k, ker(π
∗
kα))

πk≃ (M, ξ) has a contact neighborhood of the form(
M ×D2√

kǫ
, ker

(
α+ r2ϕ

))
inside (V̂k, η̂

′
k), as wanted.

It only remains to show that we can reduce to the case where η has the wanted form
ker
(
α+ r2dϕ

)
on a sub−neighborhood M × D2

ǫ of N = M × D2, for a certain ǫ > 0
independent of k.
The neighborhood N = M × D2 induces (via the choice of a basis of T0D2) a normal
framing of M inside V . Now, the conformal symplectic normal bundle of the downstairs
branching locus (M, ξ) in (V, η) is trivial as symplectic bundle (because M has a trivial
normal bundle inside V ) and admits moreover a trivialization (as a symplectic bundle)
that induces a normal framing of M inside V which is homotopic to that induced by
N . The contact neighborhood theorem [Gei08, Theorem 2.5.15] gives then a contact
neighborhood

(
M ×D2

δ , ker
(
α+ r2dϕ

))
that induces (via the choice of a basis of T0D2

δ)
a normal framing of M inside V that is also homotopic to that induced by N .
Hence, by the uniqueness (up to isotopy) of smooth tubular neighborhoods inducing a
fixed homotopy class of normal framing (see for instance [Lan99, Theorem 6.2]), there is
an isotopy of V that fixesM pointwise and puts η in the wanted normal form ker(α+r2dϕ)
on a sub−neighborhood M×D2

ǫ of N =M×D2, for a certain 0 < ǫ < δ; notice that this
ǫ does not depend on k (indeed, it depends only on N , which does not depend on k). In
other words, we have a smooth family of contact structures (ηt)t∈[0,1], starting at η0 = η,
ending at a certain η1 that has the wanted normal form on M×D2

ǫ , and such that each ηt
restricts to η = kerα on M =M ×{0}. Then, by Lemma 5.10 (with K = [0, 1]), we have
a smooth family of contactizations η̂′k,t of π∗

kηt. Now, the above discussion shows that,

for each k ≥ 2, the upstairs branching locus (M̂k, ker(π
∗
kα))

πk= (M, ξ) has a neighborhood(
M ×D2√

kǫ
, ker

(
α+ r2ϕ

))
inside (V̂k, η̂

′
k,1). Then, because η̂′k,0 and η̂′k,1 are isotopic,

the same is true inside (V̂k, η̂
′
k,0), as wanted.

We point out that taking g = 1 in the statement of Proposition 9.8, i.e. working di-
rectly on M ×T2 without taking a branched covering, is in general not enough to ensure
the same conclusion.
For instance, this follows from Section 9.2, where we will show that for each contact man-
ifold (M3, ξ), with π1(M) 6= {1}, there is an open book decomposition of M supporting
ξ such that the construction in [Bou02] yields a hypertight contact form α on M × T2.
In particular, even if (M, ξ) is virtually overtwisted, with (M, ξ) an overtwisted finite
cover, the pullback α of α to M ×T2 will still define a tight contact structure η = kerα.
Indeed, if by contradiction η is overtwisted, according to [CMP15] and [AH09], α admits
a contractible Reeb orbit in M ×T2, which then projects to a contractible Reeb orbit of
α in M × T2, contradicting the hypertightness of α.

Notice also that we preferred to take a very big g in Proposition 9.8 in order not
to enter too much in technical details and to keep the construction simple, but actually
g = 2 is already enough:

Observation 9.10 (Niederkrüger). If (M, ξ) is overtwisted, the contact manifold (M ×
Σg, ηg) is overtwisted already for g = 2.
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Proof (sketch). Take an arc γ on T2 going from one (downstairs) branching point of the
cover Σ2 → T2 to the other, and such that it is radial in the local model (given by
Definition 5.1) around the two branching points, in such a way that its double cover δ
in Σ2 is a smooth closed curve. Denote also p ∈ Σ2 one of the two upstairs branching
points, and see δ as a loop based at p.

Then, the monodromy of the contact fiber bundle M × Σ2 → Σ2 over δ is trivial.
Indeed, as the proof of Lemma 5.10 shows, the contact branched covering η2 of a Bour-
geois contact structure (M × T2,T2,M, η = kerβ) can be chosen to be defined by a
form β̂ on M × Σ2 which is invariant under deck transformations of the branched cov-
ering π : M × Σ2 → M × T2 and C∞-close to π∗β. Then, it can be shown that the
monodromy of (M × Σ2,Σ2,M, η̂2) over δ is obtained as the concatenation of the mon-
odromy fγ of

(
M × T2,T2,M, η = ker (β)

)
over γ plus a C∞−little perturbation h, and

the monodromy (fγ)
−1 over −γ plus the inverse h−1 of the same perturbation.

Then, using the techniques from [Pre07], we can find an embedded plastikstufe inside
M × δ ⊂ M × T2. In practice, this PS is obtained by “moving around” an overtwisted
disk in M×{p} ≃M via the monodromy of (M × Σ2,Σ2,M, η̂2) along δ. This procedure
actually gives an embedded PS because the monodromy along the loop δ is the identity
as map M × {p} → M × {p}. At this point, [Hua17] tells us that each PS-overtwisted
manifold is also overtwisted.

9.2 Bourgeois construction and Reeb dynamics

The main aim of this section is to give a proof of Théorème II.G stated in Chapter 1.
Let’s recall the statement:

Théorème II.G. Chaque 3-variété de contact fermée (M, ξ) avec π1 (M) 6= {1} peut
être plongée avec fibré normal trivial dans une 5-variété de contact (V 5, η) fermée (hy-
per)tendue.

In order to give a proof, in Section 9.2.1 we consider, starting from a contact manifold
(M2n−1, ξ) and an open book (B,ϕ) adapted to ξ, a Bourgeois contact structure η on the
flat contact bundle (M ×T2,T2,M, ξ⊕TT2), with fibers (M, ξ), which admits a contact
form α with very controlled Reeb vector field. This η is actually one of the examples
described in [Bou02]. We then show that the Reeb dynamics of α on M × T2 is strictly
related to the Reeb dynamics on the binding B of the open book (B,ϕ). This will give
a criterion for the existence of closed contractible Reeb orbits of α on M × T2.

Then, we show in Section 9.2.2 how to deduce Théorème II.G as a corollary of this
study in the case of 3−dimensional M .

9.2.1 Bourgeois contact structures and contractible Reeb orbits

Proposition 9.11. Let (M, ξ) be a (2n−1)−dimensional contact manifold and consider
an open book decomposition (B,ϕ) on M supporting ξ. Then, there are a contact form β
on M , adapted to the open book (B,ϕ), and a Bourgeois contact structure η on the flat
contact bundle (M × T2,T2,M, ξ ⊕ TT2) which admits a contact form α with associated
Reeb vector field of the form

Rα = Z + f ∂x − g ∂y ,

where:

a. Z is a smooth vector field on M such that:
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i. on M \B, it is tangent to the fibers of ϕ,

ii. on the binding B, it is equal, up to a non-zero constant factor, to the Reeb
vector field RB of the restriction of β to B;

b. f, g : M → R are smooth functions such that f = g = 0 on B and such that
(f, g) : M → R2 is positively proportional to (cosϕ, sinϕ) on M \B.

Proof (Proposition 9.11). We start by finding the adapted form β in the statement as
well as a particular normal neighborhood N of the binding and a particular smooth map
φ : M → R2 defining (B,ϕ).

For this, we use the following result, whose proof can be found, for example, in
[DGZ14, Section 3]:

Lemma 9.12 (Giroux). Let D2 ⊂ R2 be the disk centered at the origin with radius 1
and β be a contact form on B ×D2 with the following properties:

1. βB := β|TB is a contact form on B = B × {0}.

2. For each ϕ ∈ S1, dβ|TΣϕ
is a symplectic form on Σϕ \B, where

Σϕ = { (p, r, ϕ) ∈ B ×D2 | p ∈ B, 0 ≤ r ≤ 1 } .

3. With the orientations of B and Σϕ induced, respectively, by βB and dβ|TΣϕ
, B is

oriented as the boundary of Σϕ.

Then, for a sufficiently small δ > 0, if we denote by D2
δ ⊂ R2 the disk centered at the

origin and of radius δ > 0, there is an embedding B×D2
δ → B×D2 which preserves the

angular coordinate ϕ on the second factor, which is the identity on B × {0} and which
pulls back a convenient isotopic modification β′ of β (with an isotopy between contact
forms that satisfy Hypothesis 1, 2 and 3 above) to a 1-form h1(r) · βB + h2(r) · dϕ, such
that:

i. h1(0) > 0 and h1(r) = h1(0) +O(r2) for r → 0,

ii. h2(r) ∼ r2 for r → 0,

iii. if H := hn−1
1 · (h1h′2 − h2h

′
1), then H

r > 0 ∀r ≥ 0 (contact condition);

iv. h′1(r) < 0 for r > 0, (symplectic condition on Σϕ).

Then, we choose β, N and φ as follows.
Take a normal neighborhood B × D2 of the binding B in M such that ϕ : B ×(

D2 \ {0}
)
→ S1 becomes the angular coordinate of D2 \ {0}: such neighborhood exists

by definition of open book decomposition. Also, take a contact form β0 which defines ξ
and is adapted to the open book (B,ϕ) on M .
Then, Lemma 9.12 gives an isotopic modification β of β0, still adapted to the same open
book, and of the form h1βB + h2dϕ in the neighborhood N := B ×D2

δ ⊂ B ×D2.
To define φ : M → R2, consider a function ρ :M → R which is smooth away from B,

equal to the radial coordinate r of D2
δ on the neighborhood {r ≤ δ/3} of B × {0} inside

N = B ×D2
δ , equal to 1 on the complement in M of the open set {r < 2δ/3} ⊂ N , and

depending only on r and strictly increasing in it on the set δ/3 < r < 2δ/3.
Then, we define φ := ρ · (cosϕ, sinϕ). Remark that such a φ is indeed well defined

and smooth on all M , and defines the open book (B,ϕ).
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We now define two functions λ, µ : M → R as follows:

λ =

{
ρ′

ρ′h1−ρh′
1

inside N
0 outside N

and µ =

{ −h′
1

ρ′h1−ρh′
1

inside N
1 outside N

.

We point out that they are well defined smooth functions on all M × T2. Indeed, ρ′

smoothly extends as 1 at r = 0, h′1 = O(r) near r = 0 (by point i. of Lemma 9.12) and
the denominator ρ′h1− ρh′1 is positive for r > 0 and smoothly extends as h1(0) at r = 0.

Consider then Z := λRB and (f, g) := µ(cosϕ, sinϕ). Here, RB is seen as as a vector
field on N = B ×D2

δ tangent to the first factor and λ has support contained inside N ,
hence λRB is well defined on all M . Similarly, f, g are well defined because µ is zero on
B.

It is now easy to check that such Z, f, g satisfy points a. and b. of Proposition 9.11.

Lastly, we have to choose a contact form α defining a Bourgeois contact structure η on
the flat contact bundle (M×T2,T2,M, ξ⊕TT2), as in the statement of Proposition 9.11.
Let α := β + φ1dx− φ2dy, i.e. the one obtained from Theorem 7.5 with the choices of φ
and N made above.
We already know that the contact structures obtained from Theorem 7.5 are particular
cases of Bourgeois structures. The only thing left to check is that the Reeb vector field
of this contact form α can be written as in the statement of Proposition 9.11.

Claim 9.13. The Reeb vector field for α on (M \ N )× T2 is

Rα = cosϕ∂x − sinϕ∂y .

Claim 9.14. The Reeb vector field for α on N × T2 is

Rα =
1

ρ′h1 − ρh′1

(
ρ′RB − h′1 cosϕ∂x + h′1 sinϕ∂y

)
.

By the definition of Z, f and g, this concludes the proof of Proposition 9.11.

We now prove the identities used above:

Proof (Claim 9.13). In this region we simply have α = β + cosϕdx− sinϕdy and dα =
dβ−sinϕdϕ∧dx−cosϕdϕ∧dy. This easily gives α(Rα) = 1 and ιRα

dα = cosϕ sinϕdϕ−
sinϕ cosϕdϕ = 0.

Proof (Claim 9.14). Here, we have α = h1 βB + h2 dϕ + ρ cosϕdx − ρ sinϕdy, so that

dα = h1 dβB + h′1 dr ∧ βB + h′2 dr ∧ dϕ + ρ′ cosϕdr ∧ dx
− ρ sinϕdϕ ∧ dx − ρ′ sinϕdr ∧ dy − ρ cosϕdϕ ∧ dy .

If we denote V := ρ′RB − h′1 cosϕ∂x + h′1 sinϕ∂y, we then have α(V ) = h1 ρ
′ − h′1 ρ,

hence β(Rα) = 1. Moreover, we can compute

ιV dα = −h′1 ρ′ dr + h′1
[
ρ′ cos2 ϕdr − ρ sinϕ cosϕdϕ

]

+ h′1
[
ρ′ sin2 ϕdr + ρ cosϕ sinϕdϕ

]
= 0 ,

hence ιRα
dα = 0.

We then have the following result on the Reeb dynamics:
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Corollary 9.15. Let α on M × T2 be the contact structure given by Proposition 9.11.
Then, the closed contractible orbits of Rα in M × T2 are of the form OB

q0 × {(x0, y0)},
where (x0, y0) ∈ T2 and OB

q0 is a closed orbit of RB in B which is contractible in M .

We remark that even if the orbits are contained in B, we are interested here in their
homotopy class as loops in M .

Proof (Corollary 9.15). We start by remarking that if p0 ∈ B × T2 ⊂ M × T2 is of the
form (q0, x0, y0), with q0 ∈ B and (x0, y0) ∈ T2 then Op0 = OB

q0 ×{(x0, y0)}, where OB
q0 is

the orbit of q0 under the flow of RB on B. Indeed, along B×T2, Rα is just proportional
(via a non zero constant) to RB on the B factor of B × T2, so that the orbit of p0 is
tangent to B × {(x0, y0)} and actually coincides with OB

q0 × {(x0, y0)}.
It’s then enough to show that, for each p0 ∈ (M \B)× T2, if Op0 is closed then it is

not contractible.
Now, B × T2 is (globally) invariant under the flow of Rα. Hence, its complement
(M \B)×T2 is (globally) invariant too; in particular, Op0 is contained in (M \B)×T2.
Moreover, the function ϕ is invariant under the restriction of the flow φt of Rα to
(M \ B) × T2, because Z is tangent to the fibers of ϕ on M \ B, according to Proposi-
tion 9.11. In particular, if we write p0 = (q0, x0, y0), where q0 ∈ M \ B, with let’s say
ϕ(q0) = ϕ0, and (x0, y0) ∈ T2, then ϕ(Op0) = ϕ0.
Finally, the component of Rα tangent to the T2−factor is f∂x − g∂y, which is non−zero
along all M \ B, because (f, g) is positively proportional to (cosϕ, sinϕ) there. In par-
ticular, the projection (xt, yt) of φt(p0) via π : M × T2 → T2 has velocity (ẋt, ẏt) posi-
tively proportional to (cosϕ0,− sinϕ0). Hence, in order for Op0 to be closed, the angle
ϕ0 ∈ [0, 2π[ has to be a rational multiple of π and {(xt, yt) ∈ T2|t ∈ R} has to be the circle
on T2 = R

2/Z2 passing through (x0, y0) and with slope (cosϕ0,− sinϕ0). But this means
that Op0 can’t be contractible, because it has a homotopically non trivial projection on
T2.

9.2.2 Contact embeddings of 3-manifolds

We start with a proposition on (topological) open book decomposition of 3-manifolds:

Proposition 9.16. Let M be a 3-manifold with non-trivial π1(M). Then, every open
book decomposition (K,ϕ) of M can be transformed, by a sequence of positive stabi-
lizations, to an open book decomposition (K ′, ϕ′) with binding K ′ having at most two
connected components, each of which is not contractible in M .

According to Perelman’s proof of Poincaré’s conjecture (see for instance [Mor05] for
a summary), M has trivial fundamental group if and only if it is diffeomorphic to S3.

Proof. We start by applying a sequence of stabilizations to reduce the number of con-
nected components of the boundary of the pages to one. We can thus suppose that the
open book decomposition (K,ϕ) has connected binding K. Denote by Σ the page of
(K,ϕ).
Let p ∈ K. Notice that if c := [K] ∈ π1 (M,p) is non-trivial, then we have nothing to
prove. We can hence suppose that it is trivial.

We now need a presentation of π1 (M,p) in terms of the fundamental group of the
page and the monodromy of (K,ϕ). Such a presentation can be found using Van-Kampen
theorem as described, for example, in [EO08].
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If F〈S〉 denotes the free group generated by a set S and 〈R〉N denotes its normal sub-
group generated by the set of relations R, according to [EO08, Section 2.1] π1 (M,p) is
isomorphic to

F〈ai, bi, c〉gi=1

/
〈 c∏g

i=1[ai, bi], aiφ∗(a
−1
i ), biφ∗(b

−1
i ) | i = 1, . . . , g 〉N . (9.3)

Here, φ : Σ → Σ is the monodromy of the open book decomposition and the ai’s and bi’s
are the generators of π1 (Σ, p) given by the classes of the curves αi’s and βi’s depicted in
Figure 9.1.
We point out that the hypothesis c trivial in π1 (M,p) means that it belongs to the
normal subgroup in the above presentation. Hence, we can present π1(M,p) also as

F〈ai, bi, c〉gi=1

/
〈 c∏g

i=1[ai, bi], aiφ∗(a
−1
i ), biφ∗(b

−1
i ), c | i = 1, . . . , g 〉N . (9.4)

p K

Σ
β1 βg

α1 αg

Figure 9.1: Curves on a page Σ of (K,ϕ) which give the generators of the presentation
in Equation (9.3).

Now, by the hypothesis that π1 (M) is not trivial, at least one of the generators ai, bi
of π1 (M,p) is non-trivial, let’s say bg. Make then a plumbing of a positive Hopf band,
as defined in Theorem 2.20, along a properly embedded arc δ0 which is in the same class
as βg in π1(Σ, ∂Σ), as shown in Figure 9.2.

Σ

p K

βg

αg
δ0

Figure 9.2: Stabilization arc δ0. Only a part of the surface is shown.

We then obtain an open book decomposition (K ′, ϕ′) for M , which still supports
the original contact structure, according to Theorem 2.21. Notice that the page Σ′ is
obtained, as embedded surface, from Σ and δ0 by plumbing a positive Hopf band to Σ.
We recall that this means that Σ′ = Σ ∪A where A is an annulus in M such that

1. the intersection A ∩ Σ is a tubular neighborhood of δ0,
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2. the core curve of A bounds a disk in M \Σ and the linking number of the boundary
components is 1.

In particular, we know that the core of the annulus A bounds a disk in M \Σ. Now, the
null-homotopy defined by this disk gives a homotopy between one of the two boundary
components of Σ′, which we can call K ′

1, and βg (seen as a curve on Σ′ via the natural
inclusion Σ ⊂ Σ′ as surfaces embedded in M). Hence, K ′

1 is homotopically non-trivial,
because bg = [βg] is non-zero.
Similarly, the fact that the core of A bounds a disk implies that the other connected
component of ∂Σ′, which we can call K ′

2, is homotopic to K ∗ β−1
g . Here, ∗ is the

concatenation of paths and .−1 is the inverse of a path. In particular, K ′
2 is homotopically

non-trivial, because K is trivial and βg is not.

Consider now a 3-dimensional contact manifold (M, ξ) and an open book decompo-
sition (Σ, ϕ) supporting ξ. Corollary 9.15 and Proposition 9.16 have the following direct
consequence:

Proposition 9.17. If π1(M) 6= {1}, there exists an open book (Σ′, ϕ′) supporting ξ,
obtained from (Σ, ϕ) by a sequence of positive stabilizations, such that Proposition 9.11
gives a hypertight Bourgeois contact structure on M × T2.

Let’s denote by D2
R the ball of radius R > 0 centered at the origin in R2 and by (r, ϕ)

the polar coordinates on it.
At this point, we can deduce from Proposition 9.17 the following result, which consists
of Théorème II.G and Corollaire II.H stated in Section 1.2:

Theorem 9.18. Every closed 3-dimensional contact manifold (M, ξ), with π1(M) non-
trivial, can be embedded, with trivial conformal symplectic normal bundle, in a hypertight
closed 5-dimensional contact manifold (N, η).
In particular, for each contact form α defining ξ on M , there is an ǫ > 0 such that(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
is tight.

As already remarked in the introduction, we point out that the recent paper [HMP18]
deals with the higher dimensional case; more precisely, it contains a generalization of the
second part of this result, as well as an analogue (with no control on the codimension)
of the first part of it.

Proof. Consider an arbitrary contact 3-manifold (M, ξ) and take one of the hypertight
contact manifolds (M × T2, η) given by Proposition 9.17.
Each (M × {pt}, η ∩ T (M × {pt}))) is then exactly (M, ξ) and it has topologically trivial
normal bundle, hence trivial conformal symplectic normal bundle. Indeed, a symplectic
vector bundle of rank 2 is symplectically trivial if and only if it is topologically trivial.

As far as the second part of the statement is concerned, according to the standard
neighborhood theorem for contact submanifolds [Gei08, Theorem 2.5.15], the contact sub-
manifold (M, ξ = ker(α)) = (M × {pt}, η ∩ T (M × {pt}))) of (M × T2, η) has a contact
neighborhood of the form

(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
, for a certain real ǫ > 0. Moreover,

each hypertight high dimensional contact manifold is in particular tight, according to
[AH09, CMP15]; in particular, (M × T2, η) is tight. Then,

(
M ×D2

ǫ , ker
(
α+ r2dϕ

))
is

tight too, because it embeds (in codimension 0) in a tight contact manifold.

118



Bibliography

[ACMFA07] Marcelo Aguilar, José Luis Cisneros-Molina, and Martín Eduardo Frías-
Armenta. Characteristic classes and transversality. Topology Appl.,
154(7):1220–1235, 2007.

[AH09] Peter Albers and Helmut Hofer. On the Weinstein conjecture in higher
dimensions. Comment. Math. Helv., 84(2):429–436, 2009.

[BCS14] Jonathan Bowden, Diarmuid Crowley, and András Stipsicz. Contact struc-
tures on M × S2. Math. Ann., 358(1-2):351–359, 2014.

[BEM15] Matthew Strom Borman, Yakov Eliashberg, and Emmy Murphy. Existence
and classification of overtwisted contact structures in all dimensions. Acta
Math., 215(2):281–361, 2015.

[Bou02] Frédéric Bourgeois. Odd dimensional tori are contact manifolds. Int. Math.
Res. Not., (30):1571–1574, 2002.

[Bou06] Frédéric Bourgeois. Contact homology and homotopy groups of the space
of contact structures. Math. Res. Lett., 13(1):71–85, 2006.

[BT82] Raoul Bott and Loring Tu. Differential forms in algebraic topology, vol-
ume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York-
Berlin, 1982.

[CE12] Kai Cieliebak and Yakov Eliashberg. From Stein to Weinstein and back, vol-
ume 59 of American Mathematical Society Colloquium Publications. Amer-
ican Mathematical Society, Providence, RI, 2012. Symplectic geometry of
affine complex manifolds.

[Cer68] Jean Cerf. Sur les difféomorphismes de la sphère de dimension trois (Γ4 =
0). Lecture Notes in Mathematics, No. 53. Springer-Verlag, Berlin-New
York, 1968.

[Cie02] Kai Cieliebak. Subcritical Stein manifolds are split. ArXiv Mathematics
e-prints, April 2002, math/0204351.

[CMP15] Roger Casals, Emmy Murphy, and Francisco Presas. Geometric criteria for
overtwistedness. ArXiv e-prints, March 2015, 1503.06221.

[CPP15] Roger Casals, Dishant M. Pancholi, and Francisco Presas. Almost contact
5-manifolds are contact. Ann. of Math. (2), 182(2):429–490, 2015.

[CPS16] Roger Casals, Francisco Presas, and Sheila Sandon. Small positive loops on
overtwisted manifolds. J. Symplectic Geom., 14(4):1013–1031, 2016.

119



BIBLIOGRAPHY

[DG10] Fan Ding and Hansjörg Geiges. The diffeotopy group of S1×S2 via contact
topology. Compos. Math., 146(4):1096–1112, 2010.

[DGZ14] Max Dörner, Hansjörg Geiges, and Kai Zehmisch. Open books and the
weinstein conjecture. The Quarterly Journal of Mathematics, 65(3):869,
2014.

[EF09] Yakov Eliashberg and Maia Fraser. Topologically trivial Legendrian knots.
J. Symplectic Geom., 7(2):77–127, 2009.

[EF17] John Etnyre and Ryo Furukawa. Braided embeddings of contact 3-manifolds
in the standard contact 5-sphere. J. Topol., 10(2):412–446, 2017.

[EL17] John Etnyre and Yankı Lekili. Embedding all contact 3-manifolds in a fixed
contact 5-manifold. ArXiv e-prints, December 2017, 1712.09642.

[Eli89] Yakov Eliashberg. Classification of overtwisted contact structures on 3-
manifolds. Invent. Math., 98(3):623–637, 1989.

[Eli90] Yakov Eliashberg. Filling by holomorphic discs and its applications. In
Geometry of low-dimensional manifolds, 2 (Durham, 1989), volume 151 of
London Math. Soc. Lecture Note Ser., pages 45–67. Cambridge Univ. Press,
Cambridge, 1990.

[Eli92] Yakov Eliashberg. Contact 3-manifolds twenty years since J. Martinet’s
work. Ann. Inst. Fourier (Grenoble), 42(1-2):165–192, 1992.

[EO08] John Etnyre and Burak Ozbagci. Invariants of contact structures from open
books. Trans. Amer. Math. Soc., 360(6):3133–3151, 2008.

[ET98] Yakov Eliashberg and William Thurston. Confoliations, volume 13 of Uni-
versity Lecture Series. American Mathematical Society, Providence, RI,
1998.

[Etn12] John Etnyre. Contact structures on 5-manifolds, 2012, arXiv:1210.5208.

[Gei91] Hansjörg Geiges. Contact structures on 1-connected 5-manifolds. Mathe-
matika, 38(2):303–311 (1992), 1991.

[Gei97a] Hansjörg Geiges. Applications of contact surgery. Topology, 36(6):1193–
1220, 1997.

[Gei97b] Hansjörg Geiges. Constructions of contact manifolds. Math. Proc. Cam-
bridge Philos. Soc., 121(3):455–464, 1997.

[Gei08] Hansjörg Geiges. An introduction to contact topology, volume 109 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2008.

[GG06] Emmanuel Giroux and Noah Goodman. On the stable equivalence of open
books in three-manifolds. Geom. Topol., 10:97–114, 2006.

[GGP04] Hansjörg Geiges and Jesús Gonzalo Pérez. On the topology of the space of
contact structures on torus bundles. Bull. London Math. Soc., 36(5):640–
646, 2004.

120



BIBLIOGRAPHY

[GH78] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley-
Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Math-
ematics.

[Gir91] Emmanuel Giroux. Convexité en topologie de contact. Comment. Math.
Helv., 66(4):637–677, 1991.

[Gir99] Emmanuel Giroux. Une infinité de structures de contact tendues sur une
infinité de variétés. Invent. Math., 135(3):789–802, 1999.

[Gir00] Emmanuel Giroux. Structures de contact en dimension trois et bifurcations
des feuilletages de surfaces. Invent. Math., 141(3):615–689, 2000.

[Gir01] Emmanuel Giroux. Sur les transformations de contact au-dessus des sur-
faces. In Essays on geometry and related topics, Vol. 1, 2, volume 38
of Monogr. Enseign. Math., pages 329–350. Enseignement Math., Geneva,
2001.

[Gir02] Emmanuel Giroux. Géométrie de contact: de la dimension trois vers les
dimensions supérieures. In Proceedings of the International Congress of
Mathematicians, Vol. II (Beijing, 2002), pages 405–414. Higher Ed. Press,
Beijing, 2002.

[Gir12] Emmanuel Giroux. The existence problem, contact geometry in high dimen-
sions. http://www.aimath.org/WWN/contacttop/aim12-giroux.pdf, May
2012.

[Gir17] Emmanuel Giroux. Ideal Liouville Domains - a cool gadget. ArXiv e-prints,
August 2017, 1708.08855.

[GK14] Hansjörg Geiges and Mirko Klukas. The fundamental group of the space of
contact structures on the 3-torus. Math. Res. Lett., 21(6):1257–1262, 2014.

[GM17] Emmanuel Giroux and Patrick Massot. On the contact mapping class group
of Legendrian circle bundles. Compos. Math., 153(2):294–312, 2017.

[Gom98] Robert Gompf. Handlebody construction of Stein surfaces. Ann. of Math.
(2), 148(2):619–693, 1998.

[Gon87] Jesús Gonzalo. Branched covers and contact structures. Proc. Amer. Math.
Soc., 101(2):347–352, 1987.

[Gro85] Mikhail Gromov. Pseudo holomorphic curves in symplectic manifolds. In-
vent. Math., 82(2):307–347, 1985.

[Gro86] Mikhail Gromov. Partial differential relations, volume 9 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)]. Springer-Verlag, Berlin, 1986.

[GS10] Hansjörg Geiges and András Stipsicz. Contact structures on product five-
manifolds and fibre sums along circles. Math. Ann., 348(1):195–210, 2010.

[GT98] Hansjörg Geiges and Charles Thomas. Contact topology and the structure
of 5-manifolds with π1 = Z2. Ann. Inst. Fourier (Grenoble), 48(4):1167–
1188, 1998.

121



BIBLIOGRAPHY

[GT01] Hansjörg Geiges and Charles Thomas. Contact structures, equivariant spin
bordism, and periodic fundamental groups. Math. Ann., 320(4):685–708,
2001.

[HMP18] L. Hernández-Corbato, L. Martín-Merchán, and F. Presas. Tight neighbor-
hoods of contact submanifolds. ArXiv e-prints, February 2018, 1802.07006.

[Hof93] Helmut Hofer. Pseudoholomorphic curves in symplectizations with appli-
cations to the Weinstein conjecture in dimension three. Invent. Math.,
114(3):515–563, 1993.

[Hon00] Ko Honda. On the classification of tight contact structures. I. Geom. Topol.,
4:309–368, 2000.

[Hua17] Yang Huang. On plastikstufe, bordered Legendrian open book and over-
twisted contact structures. J. Topol., 10(3):720–743, 2017.

[KMS93] Ivan Kolář, Peter Michor, and Jan Slovák. Natural operations in differential
geometry. Springer-Verlag, Berlin, 1993.

[KN05] Otto van Koert and Klaus Niederkrüger. Open book decompositions
for contact structures on Brieskorn manifolds. Proc. Amer. Math. Soc.,
133(12):3679–3686, 2005.

[KN07] Otto van Koert and Klaus Niederkrüger. Every contact manifolds can be
given a nonfillable contact structure. Int. Math. Res. Not. IMRN, (23):Art.
ID rnm115, 22, 2007.

[Lan99] Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1999.

[Laz] Oleg Lazarev. Contact manifolds with flexible fillings.
http://arxiv.org/abs/1610.04837.

[Lee13] John Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts
in Mathematics. Springer, New York, second edition, 2013.

[Ler04] Eugene Lerman. Contact fiber bundles. J. Geom. Phys., 49(1):52–66, 2004.

[LMN18] Samuel Lisi, Aleksandra Marinković, and Klaus Niederkrüger. Some prop-
erties of the Bourgeois contact structures. ArXiv e-prints, January 2018,
1801.00869.

[Lut79] Robert Lutz. Sur la géométrie des structures de contact invariantes. Ann.
Inst. Fourier (Grenoble), 29(1):xvii, 283–306, 1979.

[LZ18] Sergei Lanzat and Frol Zapolsky. On the contact mapping class group of
the contactization of the Am-Milnor fiber. Ann. Math. Qué., 42(1):79–94,
2018.

[Mas15] Patrick Massot. Natural fibrations in contact topology, June 2015. [Online;
posted 3 June 2015].

[Mey76] Mark Meyerson. Representing homology classes of closed orientable sur-
faces. Proc. Amer. Math. Soc., 61(1):181–182 (1977), 1976.

122



BIBLIOGRAPHY

[MN16] Patrick Massot and Klaus Niederkrüger. Examples of non-trivial contact
mapping classes in all dimensions. Int. Math. Res. Not. IMRN, (15):4784–
4806, 2016.

[MNW13] Patrick Massot, Klaus Niederkrüger, and Chris Wendl. Weak and strong fil-
lability of higher dimensional contact manifolds. Invent. Math., 192(2):287–
373, 2013.

[Mor] Atsuhide Mori. Reeb foliations on S5 and contact 5-manifolds violating the
Thurston-Bennequin inequality. http://arxiv.org/abs/0906.3237v3.

[Mor05] John Morgan. Recent progress on the Poincaré conjecture and the classifi-
cation of 3-manifolds. Bull. Amer. Math. Soc. (N.S.), 42(1):57–78, 2005.

[MP16] Aleksandra Marinković and Milena Pabiniak. On displaceability of pre-
Lagrangian toric fibers in contact toric manifolds. Internat. J. Math.,
27(14):1650113, 32, 2016.

[Nie06] Klaus Niederkrüger. The plastikstufe—a generalization of the overtwisted
disk to higher dimensions. Algebr. Geom. Topol., 6:2473–2508, 2006.

[Nie13] Klaus Niederkrüger. On fillability of contact manifolds. Mémoire
d’habilitation à diriger des recherches, Université Paul Sabatier, Decembre
2013. https://tel.archives-ouvertes.fr/tel-00922320.

[NO07] Klaus Niederkrüger and Ferit Öztürk. Brieskorn manifolds as contact
branched covers of spheres. Period. Math. Hungar., 54(1):85–97, 2007.

[NP10] Klaus Niederkrüger and Francisco Presas. Some remarks on the size of
tubular neighborhoods in contact topology and fillability. Geom. Topol.,
14(2):719–754, 2010.

[Pre07] Francisco Presas. A class of non-fillable contact structures. Geom. Topol.,
11:2203–2225, 2007.

[Sta78] John Stallings. Constructions of fibred knots and links. In Algebraic and
geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, pages 55–60.
Amer. Math. Soc., Providence, R.I., 1978.

[Vog16] Thomas Vogel. On the uniqueness of the contact structure approximating
a foliation. Geom. Topol., 20(5):2439–2573, 2016.

[Vog18] Thomas Vogel. Non-loose unknots, overtwisted discs, and the contact map-
ping class group of S3. Geom. Funct. Anal., 28(1):228–288, 2018.

[Zeh03] Kai Zehmisch. The Gromov-Eliashberg tightness-theorem. Master’s thesis,
Universität Leipzig, 2003.

123





Titre : Sur quelques constructions de variétés de contact

Mots clés : variété de contact, structure de contact, construction

Résumé : Cette thèse est subdivisée en deux par-

ties.

La première partie porte sur l’étude de la topo-

logie de l’espace des contactomorphismes pour

quelques exemples explicites de variétés de contact

en grandes dimensions. Plus précisément, en utili-

sant des constructions et résultats dus à Massot, Nie-

derkrüger et Wendl, on construit, en chaque dimen-

sion impaire, une infinité d’exemples de contactomor-

phismes de variétés de contact vrillées fermées qui

sont lissement isotopes mais pas contact-isotopes

à l’identité. On donne aussi, en toutes dimensions

impaires, des exemples de variétés de contact ten-

dues fermées qui admettent un contactomorphisme

tel que tous ses itérées sont lissement isotopes mais

pas contacto-isotopes à l’identité; ceci generalise un

résultat en dimension 3 dû à Ding et Geiges.

Dans la deuxième partie, on construit des exemples

de variétés de contact fermées en grandes dimen-

sions avec des propriétés particulières. Ceci nous

amène à l’existence de structures tendues virtuelle-

ment vrillées en toutes dimensions impaires, et au

fait que chaque variété de contact fermée de dimen-

sion 3 se plonge dans une variété de contact tendue

fermée de dimension 5 avec fibré normal trivial. Pour

cela, on utilise des constructions dues à Bourgeois

(sur des produits avec des tores) et à Geiges (sur

des revêtements ramifiés). On passe de ces construc-

tions à des définitions; ceci permet de prouver un

résultat d’unicité dans le cas des revêtements ramifiés

de contact, et d’étudier leurs propriétés globales, en

montrant qu’elles ne dépendent d’aucun choix auxi-

liaire fait dans les procédures. Un deuxième but per-

mis par ces définitions est l’étude des relations entre

ces constructions et les notions de livre ouvert por-

teur, due à Giroux, et de fibré de contact, due à Ler-

man. Par exemple, on donne une définition de struc-

ture de contact de Bourgeois qui est locale, inclue

(strictement) les résultats de la construction de Bour-

geois et permet de récupérer une classe d’isotopie

de livres ouverts porteurs sur les fibres; ceci suit

d’une réinterprétation, inspirée par une idée de Gi-

roux, des livres ouverts porteurs en termes de paires

de champs de vecteurs de contact.

Title : On some constructions of contact manifolds

Keywords : contact manifold, contact structure, construction

Abstract : This thesis is divided in two parts.

The first part focuses on the study of the topology

of the contactomorphism group of some explicit high

dimensional contact manifolds. More precisely, using

constructions and results by Massot, Niederkrüger

and Wendl, we construct (infinitely many) examples in

all dimensions of contactomorphisms of closed overt-

wisted contact manifolds that are smoothly isotopic

but not contact-isotopic to the identity. We also give

examples of tight high dimensional contact manifolds

admitting a contactomorphism whose powers are all

smoothly isotopic but not contact-isotopic to the iden-

tity; this is a generalization of a result in dimension 3

by Ding and Geiges.

In the second part, we construct examples of higher

dimensional contact manifolds with specific proper-

ties. This leads us to the existence of tight virtually

overtwisted closed contact manifolds in all dimensions

and to the fact that every closed contact 3-manifold

embeds with trivial normal bundle inside a tight clo-

sed contact 5-manifold. This uses known construction

procedures by Bourgeois (on products with tori) and

Geiges (on branched covering spaces). We pass from

these procedures to definitions; this allows to prove

a uniqueness statement in the case of contact bran-

ched coverings, and to study the global properties

(such as tightness and fillability) of the results of both

constructions without relying on any auxiliary choice

in the procedures. A second goal allowed by these de-

finitions is to study relations between these construc-

tions and the notions of supporting open book, due

to Giroux, and of contact fiber bundle, due to Lerman.

For instance, we give a definition of Bourgeois contact

structures on flat contact fiber bundles which is local,

(strictly) includes the results of Bourgeois’ construc-

tion, and allows to recover an isotopy class of sup-

porting open books on the fibers. This last point relies

on a reinterpretation, inspired by an idea by Giroux,

of supporting open books in terms of pairs of contact

vector fields.
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