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Abstract

The scope of the thesis is to estimate the parameters of continuous-time models
used within control and communication from sampled data with high accuracy and
in a computationally efficient way. In the thesis, continuous-time models of systems
controlled in a networked environment, errors-in-variables systems, stochastic closed-
loop systems, and wireless channels are considered. The parameters of a transfer
function based model for the process in a networked control system are estimated by
a covariance function based approach relying upon the second order statistical proper-
ties of input and output signals. Some other approaches for estimating the parameters
of continuous-time models for processes in networked environments are also con-
sidered. The multiple input multiple output errors-in-variables problem is solved by
means of a covariance matching algorithm. An analysis of a covariance matching
method for single input single output errors-in-variables system identification is also
presented. The parameters of continuous-time autoregressive exogenous models are
estimated from closed-loop filtered data, where the controllers in the closed-loop are
of proportional and proportional integral type, and where the closed-loop also contains
a time-delay. A stochastic differential equation is derived for Jakes’s wireless channel
model, describing the dynamics of a scattered electric field with the moving receiver
incorporating a Doppler shift.
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i System identification and parameter estimation
System identification is about finding mathematical models of systems that are in-
tended for a certain purpose such as control and communication. Within system iden-
tification, discrete-time models are most common, although the natural description of
physical systems existing in physical world is in terms of continuous-time models.
Continuous-time models give natural mathematical descriptions of physical systems.
Examples of mathematical models of the physical systems in continuous-time exist in
almost all fields of science and technology. The mathematical models help to explain
the physical systems, to predict their behaviors, to gain a better understanding of the
functions of physical systems.

The thesis is on parameter estimation in continuous-time stochastic models used
within control and communication. The thesis consist of five parts along with six
contributions. Part I of thesis, is an introduction to the subject. Part II of the the-
sis, with contribution 1 and 2, is on the application of estimation theory to the field
of networked control systems. In contribution 1, identification of system in the net-
worked environment is considered by a covariance function based method that relies
on the second order statistical properties of the output signals. In contribution 2, some
estimation concepts are applied to networked control systems. Part III of the thesis,
with contribution 3 and 4, is on continuous-time errors-in-variables identification . In
contribution 3, the continuous-time multiple input multiple output errors-in-variables
systems identification problem is solved by means of covariance matching and in con-
tribution 4, an analysis of a covariance matching method for continuous-time errors-
in-variables system identification is made. Part IV of the thesis, with contribution 5,
is on the application of continuous-time modeling to the field of wireless channel, in
which a wireless channel is modeled based on stochastic differential equations. Part V
of the thesis, with contribution 6, is on closed-loop system identification, in which
parameter estimation is made for a system in a time-delayed stochastic closed-loop
which is controlled by proportional (P) and proportional integral (PI) controller.

This part of the thesis is an introduction to parameter estimation in continuous-
time descriptions along with an introduction to network control systems, errors-in-
variables systems, wireless channel modeling, and closed-loop identification. Finally,
this part also has an outline of the six contributions.

i.i Continuous-time parameter estimation
The thesis is about estimation of parameters in continuous-time models used within
control and communication. In parameter estimation, algorithms are proposed and
mathematical models of the systems are fitted to the available discrete-time data cor-
rupted by stochastic disturbances. A description of parameter estimation is given by
block diagram presented in Figure 1. In parameter estimation, the physical systems
are described in terms of appropriate mathematical models with unknown parame-
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ter and the parameter of mathematical models are estimated from discrete-time data
in the form of input and output signals by simulating proposed algorithms. The pro-
posed algorithms are analyzed under rigorous simulation by changing different param-
eter within proposed algorithms and by changing different parameter of the physical
system and results are presented. The continuous-time models of networked con-
trol systems, errors-in-variables systems, wireless channel modeling, and closed-loop
stochastic system are considered in this work.

i.ii Historical background

The field of system identification has grown in size and diversity over several decades
and is now a matured field. Åström and Eykhoff in [1] presented a survey mainly
focused on system identification in discrete-time. A first significant development in
the field of continuous-time system identification is a survey report by Young in [2],
which is a review on the progress of research on parameter estimation of dynamic
systems in continuous-time. Subsequently, rapid developments were made in this
subject, which is described in a survey on continuous-time system identification by
Unbehauen and Rao in [3]. Furthermore, several books [4–6] and publications [7–10,
10–18] are found on the subject, which is widely discussed in the recent proceedings
[2, 19–22].

The field of system identification has been largely on discrete-time models for the
description of dynamic systems as input and output signals are observed in discrete-
time. The description of dynamic systems in continuous-time has several advantages
over the description of dynamic systems in discrete-time. The continuous-time de-
scriptions of the dynamic systems is a natural basis of our understanding because all
basic physical laws are in continuous-time and they provide a good description of
the dynamic systems. In the digital age stretched over nearly more than half century,
higher sampling rates is one of the emerging requirements. Discrete-time descrip-
tions of dynamic models at higher sampling rates is not desirable. The discretization
of continuous-time descriptions to discrete-time descriptions at higher sampling rates
cluster the poles of the discrete-time descriptions close to unity, which is an undesir-
able situation as it gives rise to sensitivity problems.

Two natural approaches for identification of continuous-time systems are the indi-
rect approach and the direct approach [10, 11, 23].

• The indirect approach in which identification of the parameters is made in
discrete-time and a transformation of parameter is made to the continuous-
time [24]. The discrete-time parameters has a linear relation with the discrete-
time regularly sampled models and are easy to estimate by using standard tech-
nique. On the other hand identification of the parameters from the irregularly
sampled models are obviously not appropriate by the indirect approach as the
discrete-time models are time-varying.
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(Mathematical model)
Original Parameters!

Parameter Estimation

(Computer)
Proposed Algorithm ! Analysis!

Estimated parameters

"
Input

"
Output
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#

"

Figure 1: Description of a parameter estimation by block diagram in a computer based simu-
lation scenario. The system parameters are described by an appropriate mathematical models
with unknown parameters. Data from the system in the form of discrete-time samples are col-
lected for the parameter estimation. Algorithms are proposed for the estimation of parameter
and simulated for available discrete-time input and output signals. Results are presented in
the form of analysis of estimated parameter by comparing them with original parameter of the
system.

• The direct approach in which a direct identification of the continuous-time pa-
rameters is made and in which some approximation of the differential operator
is required. The estimation of the parameters by the direct approach may give
rise to biased estimates, due to the approximation involved in the description of
differential operator in discrete-time. An example of the description is presented
in Section i.vi.

i.iii Approximation of derivative operator

In the mathematical description of dynamic systems, the derivative is used for the de-
scription of the response of a system to its inputs. In graphical representation, the
derivative at a point for a real valued mathematical description is equal to the slope
of tangent line. The process of derivation is described by derivative operator. Ap-
proximation of derivative operator in the description of continuous-time models has
been an important milestone in the history of the parameters estimation in continuous-
time. Many different algorithms have been proposed and in use for approximation of
derivative operator. An overview of a few algorithms is described in this section.

The modulating function algorithm was first proposed by Shinbrot in [25,26]. The
description of modulating function algorithm as in [26] is given next.
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Consider a first order differential equation

a
dy(t)

dt
+ y(t) = bu(t). (1)

Assume that the input and the output signals are available for time interval {0, t0} and
define a set of modulating functions

ϕn(t), n = 1, 2, . . . , t ∈ {0, tn}, (2)
ϕn(0) = ϕn(t0) = 0. (3)

Multiply the differential equation (1) with ϕn(t) and integrate over {0, t0}

a

∫ t0

0
ϕn(t)

dy(t)

dt
dt+

∫ t0

0
ϕn(t)y(t) dt = b

∫ t0

0
ϕn(t)u(t) dt. (4)

Integrate first term by parts
∫ t0

0
ϕn(t)y(t) dt− a

∫ t0

0

dϕn(t)

dt
y(t) dt = b

∫ t0

0
ϕn(t)u(t) dt, (5)

where the terminal conditions are used. Further that, the Fourier transform method or
the Laplace transformation method can be applied at (5) to estimate the parameter by
using the least squares solution. The algorithm is successfully implemented in many
applications see for example [27–30]. In [27], the algorithm is applied to parameter
estimation of a multivariable system. In [28], the algorithm is applied to recursive
parameter estimation of continuous-time systems. In [29], time-varying system iden-
tification is made for the application prospective to a bio process that is fermentation
process, and in [30], a parameter estimation for an aerodynamic system is made.

The Poisson moment function is another algorithm, which is widely used, for ex-
ample in [31–33]. The description of the algorithm is given in [33], and repeated in
Figure 2, where a chain filtration of the signals is made with a filtration process de-
scribed by 1/s. A linear continuous-time system described by the differential equation
is considered as

N
∑

i=0

aip
iy(t) =

M
∑

j=0

bjp
ju(t), (6)

where y(t) is the output signal and u(t) is the excitation signal with piy(0) and pju(0)
being initial conditions and ai and bj being the system parameter. A Laplace transform
of (6) is made as

N
∑

i=0

ais
iY (s) =

M
∑

j=0

bjs
jU(s), (7)

and the chain filtration process is implemented as described in Figure 2, where the
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System
U(t) Y (t) δ(t)

! ! !
1
s

1
s

1
s

! ! !Q1(t) P1(t) R1(t)

...
...

...

! ! !
1
s

1
s

1
s

Qn(t) Pn(t) Rn(t)

Figure 2: Description of the Poisson moment function for system identification as in [33].

maximum value of N − 1 is used for the filtration chain. An inverse transform of the
filtered signals is made and the model is re-arranged in terms of system parameter. The
parameters are estimated by the least squares method. Similarly, in [31] the algorithm
is used to identify a linear time-varying dynamic processes and in [32], the algorithm
is used to identify a continuous-time systems.

The performance of repeated integration in the original differential equation is
another algorithm, which removes all the derivatives. The algorithm has been applied
successfully in parameter estimation algorithms, which was initially used in [34–36].
An illustration of the algorithm as in [34] is given as.

Consider the system

b1
dy(t)

dt
+ y(t) = ku(t), (8)

with transfer function
H(s) =

R(s)

F (s)
=

K

b1s+ 1
. (9)

The parameters to be estimated are K and b1, where u(t) is for the input signal and
y(t) is the output signal. The system described by (8) is integrated from 0 to t1 and
from 0 to t2

b1

∫ t1

0
y(t) dt+

∫ t1

0

∫ t1

0
y(t) dt2 = K

∫ t1

0

∫ t1

0
u(t) dt2, (10)

b1

∫ t2

0
y(t) dt+

∫ t2

0

∫ t2

0
y(t) dt2 = K

∫ t2

0

∫ t2

0
u(t) dt2. (11)
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A least squares estimator can be formed from (10) and (11) for the unknown param-
eters. Major developments were made towards sampled signals and digital filters by
using this algorithm. Moreover the problems of bias compensation were studied as
in [37–39].

Another important development is the orthogonal function algorithm used for re-
peated integrals, in which the process is represented by a series of orthogonal functions
{%i(t), i = 1, 2, . . . ,∞}. The description of the algorithm as in [15] is given next.

Consider the orthogonal function expansion to the first two components of the
output signal y(t) and the input signal u(t) involved in system description

y(t) $ y1%1(t) + y2%2(t), (12)
u(t) $ u1%1(t) + u2%2(t), (13)

and insert this in the description of the system

Y (s) =
b

(1 + as)
U(s), (14)

to get following results

ay(t)− ay(0)s(t) +

∫ t

0
y(τ)dτ = b

∫ t

0
u(τ)dτ, 0 ! t ! t0, (15)

where s(t) is the description of unit step at t = 0, having spectral components of s1
and s2. Let

∫ t

0
%1(τ)dτ $ e11%1(t) + e12%2(t), (16)

∫ t

0
%2(τ)dτ $ e21%1(t) + e22%2(t). (17)

The integrals equation (16) and (17) are transformed to algebraic form to get the mea-
surement matrix

[

y(0)s1 − y1 u1e11 + u2e21
y(0)s2 − y2 u1e12 + u2e22

]

, (18)

and the output measurement vector is represented as
[

y1e11 + y2e21
y1e12 + y2e22

]

. (19)

Themajor developments of the approach of orthogonal function are given in the survey
[40] and the approach spurred a considerable interest [14, 41].

The derivative approximation in the presence of noise has important applications
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in many field of engineering and applied mathematics. Many approaches have been
proposed on the derivative approximation in the presence of noise [42–46]. Some
other approaches for the derivative approximation and hence for the identification of
continuous-time system also exist, for example the subspace method [12,13]. The ap-
proach based on replacing the differential operator p. In [47] , plf(tk) is approximated
with a finite difference operatorDl

k. The approximation is described as

Dl
kf(tk) = plf(tk) +O(hs), (20)

for a smooth function f(tk), where the weights cl,k,u must be chosen so that

Dl
kf(tk) =

µ2
∑

µ=µ1

cl,k,uf(tk+µ). (21)

An example for (21) with l = 2, µ1 = 0, µ3 = 3, and s = 2 is given as,

D2
kf(tk) = c2,k,0f(tk) + c2,k,1f(tk+1) + c2,k,2f(tk+2) + c2,k,3f(tk+3), (22)

where the weights {c2,k,µ}3µ=0 for the sampling interval ζk(µ) = tk+µ−tk are chosen
as the solution to









1 1 1 1
ζk(0) ζk(1) ζk(2) ζk(3)
ζ2k(0) ζ2k(1) ζ2k(2) ζ2k(3)
ζ3k(0) ζ3k(1) ζ3k(2) ζ3k(3)

















c2,k,0
c2,k,1
c2,k,2
c2,k,3









=









0
0
2
0









. (23)

i.iv Models of continuous-time systems

Generally, the application of the specific identification method is associated with the
specific structure of the continuous-time systems. An overview of the structures of the
continuous-time systems investigated in later parts is presented here. The continuous-
time systems can be categorized into two main branches; deterministic systems and
stochastic systems [48].

A dynamic system in which the relationship between the states and the events
can be precisely measured and where given input always produces the same output is
defined as a deterministic system. The model

A(p)y(t) = B(p)u(t), (24)

gives a general description of a continuous-time deterministic systems, where

A(p) =
n
∑

i=0

aip
n−i, B(p) =

m
∑

i=1

bip
m−i, (25)
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and where p denotes the differentiation operator, a0 = 1, and m ! n, with n and m
known. The parameter vector for the model (24) is

θ0 =
[

a1 · · · an b1 · · · bm
]T

. (26)

A continuous-time system can also be described by a state-space model. The state-
space representation corresponding to the model (24) is

ẋ(t) = Ax(t) +Bu(t), (27)
y(t) = Cx(t), (28)

where A, B, and C are the matrices of appropriate sizes. See, for example, [49] for
further material on deterministic continuous-time systems.

A dynamic system having non-deterministic behavior in which the relationship
between the states and the events can not be precisely determined, where the state is
determined both by the predictable actions and by a random element is defined as a
stochastic system. One general description of such a system is the continuous-time
autoregressive-moving-average-exogenous (ARMAX) process

A(p)y(t) = B(p)u(t) + C(p)w(t), (29)

where

A(p) =
n
∑

i=0

aip
n−i, B(p) =

m
∑

i=1

bip
m−i, C(p) =

r
∑

i=1

cip
r−i, (30)

with a0 = 1, where p denotes the differentiation operator and w(t) a continuous-time
white noise source with incremental covariance Σdt. The state-space representation
corresponding to the continuous-time ARMAX model (29) is the stochastic differen-
tial equation

dx(t) = Ax(t) dt+Bu(t) + dw(t), (31)
y(t) = Cx(t), (32)

whereA,B, andC are matrices of appropriate sizes.

Continuous-time stochastic systems are treated thoroughly in, for example, [50–
52]. Note that the model (29) is described as a continuous-time ARMA model for
B(p) = 0. The parameter vector for the model (29) is

θ0 =
[

a1 · · · an b1 · · · bm c1 · · · cr
]T

. (33)
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In a general continuous-time model

ẋ(t) =
dx(t)

dt
= αx(t) + βe(t), (34)

where e(t) is a continuous-timewhite noise process with zero mean and constant spec-
trum. This white noise process has no physical existence due to infinite variance and
mathematically relies on generalized functions. Therefore, the stochastic differential
equation

dx(t) = αx(t) dt+ β dW (t), (35)

withW (t) representing a Wiener process [53], is more formally used.

i.v Sampling of continuous-time model

The physical systems are observed in the discrete-time where these are obviously diffi-
cult to observe in the continuous-time. The process of describing the continuous-time
models in terms of the discrete-time models is known as sampling, which gives the
description of the observations at the discrete-time instances [10, 51, 52].

An example for the discrete-time description of the continuous-time ARMAX
model (29) with the state space description in (31) and (32) is given as

x(tk+1) =Fx(tk) +

∫ tk+1

tk

eA(tk+1−s)Bu(s) ds+ v(tk), (36)

by assuming the input u(t) and the output y(t) from the continuous-time system ob-
served at time instance t1, t2, · · · , tN , where

F = eAhk , (37)

with hk = tk+1 − tk, and where v(tk) is representing discrete-time white noise with
zero mean and covariance matrix

R(hk) =

∫ hk

0
eAsΣeA

T s ds. (38)

i.vi A direct approach for parameter estimation

A description of a direct approach is given for the parameter estimation, in which a
linear regression in formed and the parameters are estimated by using the least squares
method. Consider, the model (24) which can be described in the linear regression form

y(t) = ϕT (t)θ, (39)
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where the parameter vector θ is defined in (26) and the regression vector ϕ(t) is
described as

ϕT (t) =





























−pn−1y(t)
−pn−2y(t)

...
−y(t)
pmu(t)

pm−1u(t)
...

u(t)





























. (40)

Here, an approximation of the differential operator p is required for the discrete-time
sampled data. One possible approximation is given by the difference operator Dl

k in
(21). The parameter vector θ can be estimated by the least squares method described
in Section i.vii. Note that, this approach can be implemented on-line [24, 54, 55] as

θ̂(tk) = θ̂(tk−1) +K(tk)
(

y(tk)−ϕT (tk)θ̂(tk−1)
)

, (41)

where θ̂(tk) is the estimate of θ at time tk,

K(tk) = P (tk−1)ϕ(tk)
(

λ+ϕT (tk)P (tk−1)ϕ(tk)
)

, (42)

and

P (tk) =
P (tk−1)− P (tk−1)ϕ(tk)ϕT (tk)P (tk−1)

(

λ+ϕ(tk)TP (tk−1)ϕ(tk)
)−1

λ
,

(43)
where λ is a forgetting factor.

i.vii Minimization by the least squares method

The least squares method also known as the curve fitting method. In least squares
method the estimate of the parameter vector θ is determined by minimizing the sum of
the squares for the prediction error e(tk, θ) [56–58]. The prediction error is described
as

e(tk, θ) = ŷ(tk)− y(tk), (44)

for the prediction
ŷ(tk) = ϕT (tk)θ, (45)

which depends upon the unknown parameter θ for the past data Zk , where

ZN = {u(1), y(1), · · · , u(N), y(N)}. (46)
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The minimization of the sum of the norms is made as

θ̂ = argmax
θ

V (θ,ZN ), (47)

where

V (θ0,Z
N ) =

1

N

N
∑

t=1

e2(tk, θ), (48)

and where ŷ(tk), is linear in θ and the V (θ,ZN ) is quadratic. The minimization
problem (47) can be minimized analytically to get the least squares estimate

θ̂LS =

[

N
∑

k=1

ϕ(tk)ϕ
T (tk)

]−1 N
∑

k=1

ϕ(tk)y(tk). (49)

provided the inverse exist.

ii Networked control systems

Revolutionary achievements have been made in the fields of wireless communica-
tion, the internet, and the microelectronics over the past decades. Many devices
have been developed that can communicate with each other, can sense, compute and
control many features internally and externally within integrated systems, see litera-
ture [59–63]. For example, wireless sensors and actuator networks (WSANs) refer
to a group of sensors and actuators linked by a wireless medium. Networked control
systems are flourishing recently [64] and are used in many applications. In military
applications, the wireless networks are integral part of military command, control,
communication, computing, intelligence, surveillance, reconnaissance and targeting
(C4ISRT) systems. In environmental protection networked control systems are used
for forest fire detection [65], bio-complexity mapping [66] and flood detection [67].
In healthcare, networked control systems are used for telemonitoring of human phys-
iological data [68] and drug administration in hospitals [69]. In home applications
networked control systems are used for home automation to interact between home
appliances such as vacuum cleaner, VCR, refrigerator and other appliances [70]. Net-
worked control systems are used for smart environment in which the server, sensors
and nodes can be integrated with room appliances to become self organized, self reg-
ulated and adaptive based on the control system [71]. Numerous examples of applica-
tions of networked control systems are found in the literature, see for example [62,72]
and the references therein. Major challenges in this field are communication con-
straints, packets losses and random time-delays in the wireless communication [72].
Stability of networked control systems is another challenge, which has been thor-
oughly studied, see for example [73,74]. An important advantage of using networked

13



control systems in different applications is reduction in cost of designing, implemen-
tation and modification [60].

In networked control systems the sensors and the actuators communicate with
remotely placed controller over the network, and improved techniques are needed for
the state estimation to get the closed-loop stability. Some early results were given by
Shannon on the maximum bit rate that a channel can carry with reliability [75, 76].
A significant research has been made to the problem of determining the minimum bit
rate to get a stabilized networked control system, for example, [77–79] are on stability
of linear systems and [80, 81] are on stability of non linear systems through feedback
over a network.

The parameter estimation problem in different networked configurations has not
been studied extensively in the literature but [82–86] are examples of papers partly
or completely devoted to identification. System identification for networked control
is considered and different estimation concepts are applied to networked control sys-
tems.

ii.i An overview
The functionality of a networked control systems is based on the following four basis
elements.

• Sensor. A sensor act as a converter which measures a physical quantity for any
dynamic process and converts it to a signal readable by an electronic instrument.

• Controller. A controller is used to provide decisions and commands. In net-
worked control systems, a controller is used for monitoring a dynamic system
and for changing the operating conditions of the dynamic system.

• Actuator. An actuator is used to perform the control and decision commands
received from the controller at the dynamic system.

• Communication channel. The communication channel is used for exchange of
information from the sensor to the controller and from controller to the actuator.

A typical single-loop configuration of a networked control system in which the struc-
ture is composed of a controller, a remote plant containing a dynamic system, a sensor
and an actuator, is schematically shown in Figure 3. The controller and the plant are
considered physically located at different locations and linked by a communication
channel for a remote closed-loop control. The control signal is considered encapsu-
lated in a packet or a frame which is sent to the plant by using the communication
network.

The actuator in a typical single loop networked control system as depicted in Fig-
ure 3, can be described by a decoder block and a hold block where the decoder is
also known as de-quantizer. Similarly, the sensor can also be described by an en-
coder or by a quantizer. A continuous-time system in a networked environment can be
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Figure 3: A networked control system.

described by (27) and (28). The discretization of a continuous-time system in a net-
worked environment can be made with unform sampling h and with zero-order hold.
The discrete-time equivalent of the system in the networked environment is given as

x(kh+ h) = eAhx(kh) +

∫ h

0
eAσ dσBuk, (50)

y(kh) = Cx(kh), (51)

where quantization effects are neglected.

ii.ii Major issues
In recent years many technological advantages of networked controlled systems that
result in decreased cost and size, have promoted the use of cost effective intercon-
nected systems with increasing computational, sensing, monitoring and adaptive ca-
pabilities [60]. However, the communication over a network environment also has its
problems of affecting the stability of the control system or affecting the performance
of a networked control system [72]. Some major issues affecting the performance of
a networked control system are given next [87, 88]:

• Time-delays. The communication network generally causes random time-delays
for the transmission of data. These delays are composed of transmission delays,
queuing delays, propagation delays and computational delays [88].

• Fading. Fading is a common problem in wireless communication. In [89] fad-
ing is modeled by multiplicative uncertainty and addressed by robust control
technique.

• Packet drops. The problem with packet drops in which data packets are lost in
the communication network is of main concern. The main reasons for the packet
drops are congestion due to high bit rate in the networked environment, detec-
tion error or delayed arrival at the receiver, and unavailability of the network for
a long time for the data transition.
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• Limited bit rate. The capacity of a networked control system is consumed by
different agents connected to networks, thus impose restriction of low bit allo-
cation to the system.

The most significant problems for the parameter estimation are the time-varying de-
lays and the packets losses in the networked control system.

iii Errors-in-variables systems
In statistics, regression analysis is a technique used for the physical systems to esti-
mate the relationship between different variables. The standard forms of the regres-
sion analysis either are all those models having exact measured signals or are all those
models having measurement errors. The case of the regressor analysis having mea-
surement errors are described by errors-in-variables systems. In errors-in-variables
systems the parameter estimation made under standard form without considering the
measurement noises can lead to inconsistent results. The description of theory, appli-
cations, the latest research and advances in the field is given in the book [90]. The
background motivation and examples in system identification with detailed overview
of errors-in-variables problem in which the input signal samples and the output sig-
nal samples are corrupted by noise is given in [91]. Some analysis, algorithms and
applications in engineering for errors-in-variables systems are found in [92].

Many algorithms for estimation of parameter have been proposed for this problem.
The estimation of a causal linear dynamic system is made in [93] where the system
is excited by noise of unknown spectrum. The set membership errors-in-variables
identification problem is considered in [94], where the input and the output are cor-
rupted by bounded noise. A subspace identification algorithm is given in [95] for
errors-in-variables problem and recursive algorithms are considered towards errors-
in-variables problem in [96]. Moreover, the extension of the Frisch scheme is made
towards errors-in-variables problem in [97]. The eigenvector analysis of joint covari-
ance matrix of the observations is used in [98] to estimate the parameters of multiple
input multiple output systems and the parameters of linear multiple input the multi-
ple output errors-in-variables problems are estimated in [99] by change point in the
data. Errors-in-variables system identification has an important application in aircraft
flutter parameter identification, where improved accuracy of model parameter estima-
tion is required while dealing with noisy data. Many different methods are proposed
for analysis of aircraft flutter, for example the numerically robust frequency domain
estimator in [100] and least squares estimator with vector orthogonal polynomials
in [101]. Errors-in-variables problems has its applications in many other fields, for
example, biomedicine, finance, chemical engineering, image systems, econometrics,
mechanical and electrical engineering, geoscience, and time series analysis. The co-
variance matching method in which parameters are estimated by means of second
order properties by matching covariance and cross-covariance functions and in which
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an expression is derived for the asymptotic covariancematrix is proposed in [102,103]
and [104].

Errors-in-variables system identification has been widely discussed in the past
and also considered in recent proceedings [105–107]. In [105], the model order
of errors-in-variables estimation problem is determined by using four different ap-
proaches along with a discussion for the comparison of these approaches. In [106],
errors-in-variables problem with mutually correlated input and output noises is con-
sidered, where the criterion relies on a high order Yule-Walker equation. In [107], an
estimation algorithm is proposed using incomplete data for errors-in-variables systems
represented by a transfer function. A comparison of the proposed technique with fre-
quency domain system identification techniques applied to errors-in-variables systems
is made.

The continuous-time errors-in-variables system identification problem is less stud-
ied in the literature, but [102, 104, 108–113] are examples of papers dealing with
this problem. In [108], four different methods are considered; a method of parallel
input-output modeling, a Shinbrot moment functionals method, a covariance match-
ing method, and a prediction error method. An analysis of a covariance matching
approach is made in [102], assuming the noise-free input signal as a continuous-time
ARMA process, whose parameter is estimated together with the system parameter. A
more general expression is proposed for covariance matching for estimation of errors-
in-variables system parameters in [104], in which the continuous-time parameters of
the single input single output errors-in-variables system are estimated in [104]. A di-
rect approach is taken in [109] and noise effects on the state-variable filter outputs
are analyzed, resulting in a suggestion of consistent parameter estimators. Maximum
likelihood estimation in the frequency domain is considered in [110]. Third-order cu-
mulants based methods are presented in [111], and a covariance matching method in
which the input signal is not explicitly modelled is suggested in [112] and analyzed
in [113].

iii.i An overview

A description of the errors-in-variables problem is depicted in Figure 4, in which
available input and output signals corrupted by additive noises. Evaluation of errors-
in-variables problem is based on noise corrupted available signals. The system of
errors-in-variables problem can be described as

A(p)y0(t) = B(p)u0(t), (52)

where y0(t) is the noise free output and u0(t) is the noise free input and where A(p)
and B(p) are described in (25). The observations from the system are corrupted by
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additive noises ỹ(t) and ũ(t), and measured as

y(t) = y0(t) + ỹ(t), (53)
u(t) = u0(t) + ũ(t). (54)

In errors-in-variables system identification, the assumptions on the system, the mea-
sured input, the measured output and the noise properties are important. Assumptions
in errors-in-variables system identification are made to get the consistency of the esti-
mates from different realizations. In classical deterministic problems where the inputs
and the outputs are measured without error. The assumptions on the noise generally
have negligible effect on the consistency of the estimates, but can affect the accuracy
of the results. On the other hand the assumption on noise in the errors-in-variables
problem can have significant consequences on the estimated parameters. A general
set of assumptions for errors-in-variables problem are described as:

• The dynamic system is assumed asymptotically stable.

• The noise process ỹ(t) and ũ(t) are mutually uncorrelated and these are uncor-
related with the noise free output y0(t) and the input u0(t) signals.

• Assumptions on the first and the second order statistical properties of the noise
process ỹ(t) and ũ(t) are made in terms of the mean and the variance of noise
processes.

In general, some difficulties arises in errors-in-variables system identification due
to noise processes ỹ(t) and ũ(t). The traditional methods used for identification of
errors-in-variables problem may completely fail or give non-consistent and biased re-
sults, since they consider only the output noise. Errors-in-variables system identifi-
cation can be made by introducing extra assumptions on the output y0(t), the input
u0(t), the process ỹ(t), ũ(t) and the system. For example, known mean and variance
of the noise, and known order of the system model. Generally, some assumption of
the poles and zeros are also introduced that is, they are not shared by different transfer
function [114].

The statistical efficiency of a parameters estimator in errors-in-variables problem
can be accessed by the Cramér-Rao lower bound (CRB), which is the lower bound for
the covariance matrix of the estimates of the parameters [115, 116]. The description
of CRB is given as

cov(θ̂ − θ0) " CRB = J−1, (55)

where

J = E
(

∂LogL(θ)
∂θ

)T (∂LogL(θ)
∂θ

)

, (56)

where matrix J is described as the Fisher information matrix and L(θ) is the likeli-
hood function. The result is applicable to any unbiased parameters estimator in system
identification.
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Figure 4: A description of an errors-in-variables system as in [91]. The noise free input to the
system is u0(t) and the noise free output from the system is y0(t). The available signals are
the input u(t) and the output y(t) and these signals are corrupted by unknown additive noises,
respectively given as ũ(t) and ỹ(t).

In [116], three main classification of parameters estimation techniques are de-
scribed for errors-in-variables problems. First classification is based on using covari-
ance matrix in which instrument variables, bias-eliminating least squares, the Frisch
scheme, and total least squares are included. In this classification all approaches are
based on the covariance elements r̂u(τ), r̂y(τ), and r̂yu(τ). Second classification,
is based on the spectrum of the input and the output signals and frequency domain
data. See [117] for a general description of frequency domain estimators for errors-
in-variables problems. Third classification, is based on time-series data, in which
prediction error and maximum likelihood techniques are included.

iv Wireless channel modeling

The description of the dynamics of a scattered electric field is historically given by
a well-known Clarke’s model [118], in which the phases are assumed to be con-
stant throughout the multi-path received component of the wireless channel. The
modeling, estimation and identification of mobile-to-mobile communication channels
by stochastic differential equations is an important research field in current decade
[119, 120]. A description of a wireless channel is depicted in Figure 5, where an
electromagnetic signal is injected to the environment by a transmitter and is remotely
received at the receiver. The multiple nonstationary objects in the environment around
the transmitter and the receiver create multi-paths effect in the wireless channel. A
change in carrier frequency of the electromagnetic signal is observed in the form of a
Doppler frequency by the observer that is, when the receiver is moving relative to the
transmitter.
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Figure 5: A description of a wireless channel in which an electromagnetic signal is injected to
the environment by a transmitter and remotely received at the receiver. The presence of multiple
stationary or nonstationary objects in the environment around the transmitter and the receiver
create multi-paths.

The received signal r(t) at a moving receiver is described as [121]

r(t) = Re

{

P
∑

k=1

Ake
i(2πfkt+2πfc(t−τk))

}

, (57)

where P is the number of signal paths, fc is the carrier frequency of the baseband
signal, and τk, fk and Ak are the corresponding time-delay, the Doppler frequency
and the strength, respectively, for path k. The received signal becomes

r(t) = Re
{

E(t)ei2πfct
}

= EI(t) cos(2πfct)− EQ(t) sin(2πfct), (58)

where EI(t) and EQ(t) are the in-phase and quadrature components given by

EI(t) =
P
∑

k=1

Ak cos (2πfkt− 2πfcτk), (59)

EQ(t) =
P
∑

k=1

Ak sin (2πfkt− 2πfcτk). (60)

The covariance function of EI(t) and EQ(t) gives a description of a zeroth order
Bessel function [122], which is described as

J0(x) =
1

π

∫ π

0
cos(x sin(τ)) dτ. (61)

In [123], Clarke’s model is extended for the time-varying nature of the wireless chan-
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Figure 6: A basic description of a plant in a closed-loop.

nel by introducing Wiener processes to represent the time-varying phases. In [124],
a wireless channel is modeled based on a stochastic differential equation for the case
of a fixed Doppler shift. Moreover, in [125], the time-varying nature of the wire-
less channel is described by Wiener processes for a statistical analysis of an extended
Clarke’s model.

v Closed-loop identification
Historically, the problem of identification of a plant in a closed-loop is of consid-
erable interest. One of the earliest contributions in this field is by Akaike [126], in
which varies aspects of this problem has been studied. Subject of closed-loop sys-
tem identification has been actively pursued in the seventies, and is summarized in
the survey paper [127]. The problem has been discussed in [127–129], where dif-
ferent approaches have been used for the identification of a plant in a closed-loop.
In the survey paper [130], many results are given. The subject of identification of
the plant in a closed-loop is partially or completely discussed in the recent proceed-
ings [21, 22, 131, 132]. In [131], the problem of closed-loop system identification is
considered in the presence of bounded noise. In [132], the input to the closed-loop is
designed while considering the cost minimization for identification while meeting the
desired specifications on the quality of the identified model. In [22], off-line output
error identification algorithms are presented for linear continuous-time systems with
unknown time-delay from sampled data operating in open-loop and in closed-loop.
In [21], a continuous-time model identification of closed-loop Hammerstein-Wiener
system with unknown controller is made, different noise situations are studied and
an identification algorithm is proposed which is based on the instrumental variable
method.

The structure of a closed-loop system is described by a controller, a plant, a feed-
back loop, the input signal and the output signal. History of control theory has im-
portant implication on the history of closed-loop system and many concepts related
to control theory are found in [49]. The era between 1930’s to 1960’s is known as
classical control period. Theories by Nyqvist and Bode played important role for the
design and the control of systems in terms of stability and robustness of systems with
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the single input and the single output. The control theory was based on the frequency
domain interpretation and many methods were graphical for the description of control
systems, for example, Bode Plots, Nyqvist plots, Nichols charts and root locus plots.
The Gain margins and the phase margins were used to analyze the robustness of the
control system design. The controllers were of PI and PID type. A description of a
PID controller is given next

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)
dt

(62)

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain
and e(t) is the instantaneous error.

Kalman’s contribution on state-space models during late 1950’s to early 1960’s
gave birth to a new era in control theory referred to as optimal control period. New
concepts, for example, optimal state feedback, optimal state estimation, controllability
and observability were introduced. Moreover, the concepts of linear quadratic control
and certainty equivalence control were introduced. In the beginning of the 1980’sH∞

method was introduced to model the uncertainties in the controller design, which gave
rise to modern control or the robust control era. The concepts of robust stability and
the robust performance were introduced in the modern robust control methods. More-
over, in parallel to these methods the adaptive control methods were also introduced
in the field of control theory.

In closed-loop system identification, the parameters of the plant are estimated,
where the plant is controlled in a closed-loop. A simple configuration of a closed-
loop system is depicted in Figure 6. The plant in the closed-loop is controlled by the
controller, where the controller is in the feed-forward loop. The output signal and the
feedback signal is also corrupted by the noise signal. Many different configurations
of closed-loop systems exist, depending upon the location of the plant, the controller
and the noise signal within the closed-loop system.

vi Outline of different parts

vi.i Outline of Part II
A study on following topics is presented in this part:

A. Covariance function based approach.

B. Study of some estimation approaches.

A - Covariance function based approach
A covariance function based approach to the networked control system parameter es-
timation problem is presented in this contribution.
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Figure 7: A networked control system with clock sampling.

A complete description of a networked control system is given in Figure 7. The
networked control system is assumed having randomly distributed time-delays in the
wireless links [60–63]. The time-delay from the sensor to the controller is described
by τsc,k and the time-delay from the controller to the actuator is described by τca,k.
The total time-delay from the sensor to the controller and then to the actuator is τk =
τsc,k + τca,k.

A continuous-time description for the process of the networked control system is
chosen since the random time-delays make it difficult to work with a discrete-time
model; a time-varying model would be required to describe the discrete-time system.
The process is described in transfer function form in continuous-time as

y(t) =
B(p)

A(p)
u(t), (63)

where

A(p) =
n
∑

i=0

aip
n−i =

n
∏

i=1

(p− αi), (64)

B(p) =
m
∑

i=1

bip
m−i, (65)

where p denotes the differentiation operator, a0 = 1, and m ! n, with n and m
known. The process can also be described in state-space form (27)–(28).

The continuous-timemodel (63) for the process of the networked control system is
discretized at the sensor by the sampling interval h, as illustrated in Figure 7. In [86]
and [133] complete details on the discretization of a system in a networked environ-
ment with the clock sampling interval are given, where the discretization for small
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time-delays τk ! h is described by

x(kh+ h) = eAhx(kh) +

∫ h−τk

0
eAσdσBuk +

∫ h

h−τk

eAσdσBuk−1. (66)

The number of equations for the description of the discrete-time model is increased
to five for 0 ! τk ! 2h. An expression of the discrete-time model for a networked
control system for 0 ! τk ! 3h based on generalized expression [86, 133, 134] is
given as

x(kh+ h) = Fx(kh) +

(

∫ h−tk,1

0
eAσB dσ

)

uk +

(

∫ 2h−tk,2

h−tk,1

eAσB dσ

)

uk−1

+

(

∫ 3h−tk,3

2h−tk,2

eAσB dσ

)

uk−2 +

(

∫ h

3h−tk,3

eAσB dσ

)

uk−3, (67)

where

tk,j = min







max{0, τk+j−l + (j − l)h},
max{0, τk+j−l+1 + (j − l + 1)h}, . . . ,
max{0, τk−l − lh}, h







for j ∈ {1, 2, 3}, where l = τmin/h and l = τmax/h are positive integers.
Depending upon the different sizes of the time-delays, i.e., the sizes of τk, τk−1,

and τk−2, the integrals in (67) change their structure, where each specific set of time-
delays of specific sizes form an equation for the discretized model. These specific
sets of time-delays of specific sizes are segregated into different regions to formulate
the total number of equations for the time-delays 0 ! τk ! 3h. The equations are
dependent upon the values of τmax and τmin for different segregated regions of spe-
cific time-delays of specific sizes, where τmax is the maximum time-delay and τmin

is the minimum time-delay in any region. A criterion to find these segregated regions
of specific time-delays of specific sizes is described for a general case, followed by an
illustration.

The choice of fictitious white noise samples as an input signal is made. An analysis
of the noise samples sent from the controller and the noise samples received at the
actuator is made. The degree of whiteness of the fictitious white noise samples sent
from the controller is affected by the random time-delays. A statistical analysis of the
fictitious input signal samples corresponding to the clock sampling instants is made. It
turns out that this non-whiteness is related to the time-delays which can be described
as a second-order moving-average MA(2) process for τk ! 3h. The sampled output
signal is characterized by a standard ARMA(n, n + l − 1) model, where l is related
to the size of the time-delays. The MA part of the sampled output signal depends
in a complicated way on the system parameter and the statistical properties of the
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time-delays.
The proposed algorithm for estimation of parameters consists of two parts. In the

first part, a discrete-time Yule-Walker equation is used to estimate the denominator
polynomial parameter of the transfer function of the networked controlled system. In
the second part, an equation relating the covariance function of the output signal and
derivatives of the covariance function of the filtered input signal are used to estimate
the numerator polynomial parameters of the system is the networked environment.
The covariance function based approach is an appropriate choice for the estimation
of parameters due to irregularities in the networked environment in the form for time-
delays, as it relies on second order statistical properties, where the input signal samples
are from a discrete-time white noise sequence. In particular, the method does not need
to know the actual irregular time instants when new input signal levels are applied at
the actuator.

B - Study of some estimation approaches
The contribution is on some estimation approaches for the system in the networked
environment. The configuration of networked control system is given in Figure 7 for
clock-sampling case. A continuous-time description for the system of networked con-
trol system is considered as in (63), since the discrete-time description is time-varying
due to random time-delays. The discretization of the networked control system is
proposed by two criteria described as:

• A commonly used clock sampling criteria, as described in (66) for small time-
delays τk ! h.

• An irregular sampling criterion, which is described as follows

x(Λk+1) = eAτkx(Λk) +

∫ τk

0
eAσdσBu(Λk−1), (68)

where
Λk = Σk−1

i=1 τi, (69)

and

τsc,k = h+ τ sc, (70)
τca,k = h+ τ ca, (71)

where τsc,k = h+ τsc and τca,k = h+ τ ca give τk. Furthermore, the stochastic
variables τsc and τ ca are in the respective intervals τ sc ∈ [0, hh] and τ ca ∈
[0, hh], defined by h and h.

A comparison study of three estimation approaches is presented and an overview of
these estimation concepts is depicted in Figure 8. Two strategies, clock sampling
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Figure 8: An overview of the estimation concepts and in which situations they are considered.
All estimation concepts are considered for off-line and on-line situations.

and irregular sampling are considered for the discretization and two scenarios, open-
loop and closed-loop are considered for how the system is studied. For the open-loop
scenario, two parameter estimation concepts are applied whereas a third parameter
estimation concept is applied for the closed-loop scenario. In the first estimation con-
cept, the open-loop description of the networked control system is considered. The
situation of the input acting at the actuator and the output received at the sensor is
described as the open-loop description. The algorithm for the first estimation concept
is exactly same as the algorithm described in the Section i.vi. In the estimation sec-
ond concept, which is based on the model transformation where a reformulation of
the transfer function by considering a casual and stable linear operator as in [135] is
made to estimated the parameters. In the third concept, a closed-loop description of
the networked control system is considered. The situation of the networked control
system from the sensor to the controller and then to the actuator by including the time-
delay is described by the closed-loop description. The time-delay in the closed-loop is
approximated by a Padé approximation, a linear regression is formed and the param-
eters are estimated by least squares. Off-line as well as on-line implementations of
all the parameter estimation concepts are considered. On-line implementation for the
estimation of parameters is given in (42), which is respectively modified for the other
approaches. The discretization strategies, observation scenarios and the parameter es-
timation concepts are relevant in different industrial applications involving networked
control systems. Comprehensive simulation studies are presented.
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vi.ii Outline of Part III
A study on following topics is presented in this part:

A. Estimation of errors-in-variables problem.

B. Accuracy of errors-in-variables estimation problem.

A - Estimation of errors-in-variables problem
In this contribution the continuous-timemultiple input multiple output errors-in-variables
systems identification problem is solved by means of covariance matching. A right
matrix fraction description is considered for the transfer function, which is given as

y0(t) = B(p)A−1(p)u0(t), (72)

where y0(t) ∈ Rny×1, u0(t) ∈ Rnu×1, and where A(p) ∈ Rnu×nu and B(p) ∈
Rny×nu form ! n are given as

A(p) = Inup
n +A1p

n−1 + · · ·+An, (73)
B(p) = B1p

m−1 + · · ·+Bm, (74)

where Inu is the identity matrix of size nu.
Introduce

z0(t) = A−1(p)u0(t). (75)

to form some covariance expression in terms of the unknown parameters. A derivation
of generalized description is made for some covariance expression, which is expressed
as

vR(τ) = G(θ)vRz0
(τ), (76)

where

vR(τ) =









vec(Ry0
(τ))

vec(Ru0
(τ))

vec(Ry0u0
(τ))

vec(Ru0y0
(τ))









, (77)

vRz0
(τ) =











vec(Rz0(τ))
vec(pRz0(τ))

...
vec(p2nRz0(τ))











, (78)
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G(θ) =









G1,1 · · · G1,2m−1 0n2
y×n2

u(2n−2m+2)

G2,1 · · · · · · G2,2n+1

G3,1 · · · G3,m+n 0nuny×n2
u(n−m+1)

G4,1 · · · G4,m+n 0nuny×n2
u(n−m+1)









, (79)

with vR(τ) ∈ R
(n2

y+n2
u+2nynu)×1, vRz0

(τ) ∈ R(2n+1)n2
u×1,

G(θ) ∈ R
(n2

y+n2
u+2nynu)×(2n+1)n2

u , and 0 being null matrix of specified dimension,
where

{G1,k}2m−1
k=1 =







m
∑

i=1

m
∑

j=1

(−1)m−j (Bj ⊗Bi) , ∀ i+ j = 2m+ 1− k







2m−1

k=1

,

(80)

{G2,k}2n+1
k=1 =







n
∑

i=0

n
∑

j=0

(−1)n−j (Aj ⊗Ai) , ∀ i+ j = 2n+ 1− k







2n+1

k=1

,

(81)

{G3,k}m+n
k=1 =







m
∑

i=1

n
∑

j=0

(−1)n−j (Aj ⊗Bi) , ∀ i+ j = m+ n+ 1− k







m+n

k=1

,

(82)

{G4,k}m+n
k=1 =







n
∑

i=0

m
∑

j=1

(−1)m−j (Bj ⊗Ai) , ∀ i+ j = m+ n+ 1− k







m+n

k=1

.

(83)
The system of equations in (76) contains n2

un+ nunym unknowns in θ, (2n+ 1)n2
u

unknowns in vRz0
(τ), and n2

y+n2
u+2nynu equations. Since the number of equations

must be at least as large as the number of unknowns, the condition

3nn2
u + (m− 2)nynu − n2

y ! 0 (84)

must be fulfilled. With the exception of very few cases, the system of equations in (76)
is underdetermined. Two known exceptions are nu = 1, ny = 2, n = 1, m = 1 and
nu = 1, ny = 2, n = 2,m = 1. Just as in [112], the system of equations (76) is made
overdetermined by first considering derivatives of both sides, and then by considering
these extended equations for several different lags. The description of the estimator is
given as

{θ̂, Λ̂} = argmin
θ,Λ

J(θ,Λ), (85)

J(θ,Λ) = ‖Γ̂(θ, s, τ)−G(θ, s, τ)Λ(θ, s, τ)‖2Q (86)
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where Γ̂(θ, s, τ) is an estimate of (3.36) and Q is a symmetric and positive definite
weighting matrix. Some properties of the proposedmethod are illustrated numerically.

B - Accuracy of errors-in-variables identification
This contribution is on the accuracy of a covariance matching method for continuous-
time errors-in-variables identification. The purpose of the manuscript is to perform an
accuracy analysis of a covariance matching method presented to solve the continuous-
time errors-in-variables system identification problem. The continuous-time errors-
in-variables system identification problem is described for the single input and the
single output case. The assumptions needed for the covariance matching method and
its analysis is presented. Just as in [104], the continuous-time errors-in-variables sys-
tem identification problem is formulated as a nonlinear least squares problems with
auxiliary unknowns as

{θ̂, ζ̂} = argmin
θ,ζ

‖ r̂− F(θ)ζ ‖2Q, (87)

where r̂ is a vector of covariances formed from the data and is an estimate of the
true quantity r0, F(θ) is a matrix whose elements are quadratic in the elements of
the vector θ, ζ is a vector of auxiliary parameter, Q is a positive definite weighting
matrix, and θ̂ and ζ̂ are the respective estimates of the true quantities θ0 and ζ0. The
analysis involves the evaluation of the asymptotic normalized covariance matrix, valid
for a large number of data and a small sampling interval.

The asymptotic normalized covariance matrixC of the estimate θ̂ in (87) is given
as

C = lim
N→∞

Ncov(θ̂)

=
(

STPS
)−1

STPR(h)PS
(

STPS
)−1

,
(88)

where

R(h) = lim
N→∞

Ncov(r̂)

= lim
N→∞

NE{(r̂− r0)(r̂ − r0)
T }, (89)

P = Q−QF
(

FTQF
)−1

FTQ, (90)
S =

[

s1 . . . sn+m

]

,

sj = Fjζ0,

Fj =
∂F(θ0)

∂θj
,

with F = F(θ0) in (90).
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Knowledge of the covariance matrix (88) not only makes it possible to assess the
quality of the estimated parameter vector for a certain case, but also to study the effect
of the user-chosen parameters of the method. The computation R(h) in (89) is the
most difficult task for which following result is used.

G = lim
N→∞

NE

{(

1

N

∑

t

x1(t)x2(t)− rx0
1x

0
2

)

×
(

1

N

∑

s

x3(s)x4(s)− rx0
3x

0
4

)}

,

=
∞
∑

τ=−∞

{rx1x3
(τ)rx2x4

(τ) + rx1x4
(τ)rx2x3

(τ)},

(91)

where

xj(t) = x0
j (t) + x̃j(t),

for j = 1, . . . , 4, with x̃j(t) being independent discrete-time white noise.

The approximate covariance matrix for largeN and small h is given as

cov (r̂) ≈
1

Nh
T ≈

1

Nh
M+

1

N
Γ,

where

T =







T 00 . . . T 0S
...

...
T S0 . . . T SS






, (92)

M =







M00 . . . M0S
...

...
MS0 . . . MSS






= lim

h→0
lim

N→∞
hNcov (r̂) , (93)

Γ =







Γ00 . . . Γ0S
...

...
ΓS0 . . . ΓSS






. (94)

The description of the resulting expressionsM is derived and an example for the
elements (Mµν)11 given as

(Mµν)11 = E
{(

pνG2H2e0(t)
) (

pµG2H2e0(t)
)}

+ E
{(

G2H2e0(t)
) (

pµ+νG2H2e0(t)
)}
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Similarly, a general expression for the k,-element of Γµν derived, which is expressed
as

(Γµν)k% = h
∞
∑

i=−∞

6
∑

ς=1

γς(i) (95)

for k, , = 1, . . . , 4, where

γ1(i) = rpµx0
1,p

νx0
3
(ih)β2(i),

γ2(i) = rx0
2,x

0
4
(ih)β1,µ,ν(i),

γ3(i) = β1,µ,νβ2(i),

γ4(i) = rpµx0
1,x

0
4

(

(i+ j)h
)

β4,ν(i),

γ5(i) = rx0
2,p

νx0
3

(

(i− j)h
)

β3,µ(i),

γ6(i) = β3,µβ4,ν(i),

and where

β1,µ,ν(i) = E{pµx̃1(t+ jh+ ih)pν x̃3(t+ jh)}, (96)
β2(i) = E{x̃2(t+ ih)x̃4(t)}, (97)

β3,µ(i) = E{pµx̃1(t+ jh+ ih)x̃4(t)}, (98)
β4,ν(i) = E{x̃2(t+ ih)pνx̃3(t+ jh)}, (99)

vi.iii Outline of Part IV
Wireless channel modeling
In this contribution the dynamics of a scattered electric field at a moving receiver for
a wireless channel is described by stochastic differential equations. In radio mobile
communication, the transmitter is fixed and the receiver is generally moving. The
multi-path components are available at the receiver due to reflections from the envi-
ronment. The signal received at the receiver is described by Jakes’s model as

r(t) = Re

{

P
∑

k=1

Ake
i(2πfkt−2πfcτk)ei(2πfct)

}

,= Re
{

E(t)ei(2πfct)
}

, (100)

where

E(t) =
P
∑

k=1

Ake
i(ωkt+φk(t)), (101)

r(t) is the received signal at a moving receiver, P is the number of paths, and fc is
the carrier frequency of the baseband signal. Moreover, τk , fk, and Ak are the corre-
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sponding time-delay, the Doppler frequency, and the strength, respectively, for path k.
The random phase offset or the random phase shift−2πfcτk is associated with the de-
lay through the multi-path reception and may be represented by φk(t). Furthermore,
E(t) represents the scattered electric field for the multi-path fading wireless channel
and ωk is the Doppler frequency in radians. The received signal can be decomposed
as

r(t) = Re[E(t)ei(2πfc(t))] = EI(t) cos(2πfct)− EQ(t) sin(2πfct), (102)

where EI(t) and EQ(t) are the in-phase and quadrature components described as

EI(t) =
P
∑

k=1

cos (ωkt+ φk(t)), EQ(t) =
P
∑

k=1

sin (ωkt+ φk(t)). (103)

Two situations for the Doppler shift are considered. The first situation is with a
received signal with negligible variations in the received Doppler frequency. Just as
in [123], due to the random nature of the phases in (101), the increment dφk(t) of the
phase φk(t) is modeled as

dφk(t) =
√
CdWk(t), (104)

where C is a constant and dWk(t) is the increment of the Wiener processWk(t). It is
assumed that the Wiener processes {Wk(t)}Pk=1 are independent.

Using Ito’s formula [136, 137] for (101),

dE
(

t,W(t)
)

=

(

∂E
(

t,W(t)
)

∂t
+

1

2

P
∑

k=1

∂2E
(

t,W(t)
)

∂W 2
k (t)

)

dt

+
P
∑

k=1

∂E
(

t,W(t)
)

∂Wk(t)
dWk(t),

(105)

and results from [123, Appendix C], the approximate model in terms of stochastic
differential equations is found

de(t) ≈
(

iω̄ −
C

2

)

e(t)dt+
√
CσdΓ(t), (106)

by using an approximation of ∂e(t)∂t ≈ iω̄e(t).

The second situation is with a received signal with large variations in the received
Doppler frequency. Multiple non-stationary objects in the path of the wireless channel
explain this situation well, where each moving object incorporates its Doppler. A
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Figure 9: The closed-loop system configuration.

model for the random nature of the Doppler phase shift Φk(t) is proposed as

dΦk(t) = ωdt+ dϕkt, (107)

where ω = 2πf is constant and dϕk(t) =
√
DdBk(t), with Bk(t) a Wiener process.

This gives a modified Jakes’s model. The Ito’s formula is used as an intermediate step
for the derivation of stochastic differential equation and the final description is given
as

dξ(t) =

(

iω −
(C +D)

2

)

ξ(t)dt+
√
CσdΓ1(t) +

√
DσdΓ2(t), (108)

with dΓ1(t) and dΓ2(t) being complex valued Wiener processes. The stochastic dif-
ferential equation, whose parameters can be interpreted physically, facilitates efficient
simulations as only one complex valued signals for the first situation, and two com-
plex valued signals for the the second situation (108) are required. A comparison
between the derived stochastic differential equations and the Jakes’s model describing
the scattered electric field is made, which is based on the comparison of the second
order statistical properties.

vi.iv Outline of Part V

Closed-loop identification

The contribution deals with estimation of the parameters of a system in a closed-
loop from irregularly sampled data, which is described in Figure 9. The model of
the system in closed-loop is described by G(p) = B(p)/A(p), which is controlled
by F (p) = F1(p)

F2(p)
, a proportional (P) or a proportional integral (PI) controller where

the controller parameters are assumed known. The closed-loop contains a time-delay,
approximated as e−sT ≈ ∆(s) = ∆1(s)

∆2(s)
, where ∆(s) is a rational transfer function.
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The closed-loop system is described by a continuous-time ARMAX process

y(t) = Gry(p)r(t) +Gey(p)e(t), (109)

where r(t) is the reference signal and

Gry(p) =
∆1(p)B(p)F1(p)

∆2(p)A(p)F2(p) +∆1(p)B(p)F1(p)
, (110)

Gey(p) =
∆2(p)F2(p)

∆2(p)A(p)F2(p) +∆1(p)B(p)F1(p)
, (111)

whose parameters are difficult to estimate due to the structure of Gey(p). However,
by introducing a filtration approach, (109) can be written as

ȳ(t) = Gry(p)r̄(t) + Ḡey(p)e(t), (112)

where ȳ(t) = (1/∆2(p)F2(p))y(t), r̄(t) = (1/∆2(p)F2(p))r(t), and

Ḡey(p) =
1

∆2(p)A(p)F2(p) +∆1(p)B(p)F1(p)
. (113)

Moreover, let Gry(p) = B̄(p)/Ā(p), and Ḡey(p) = 1/Ā(p), where Ā(p) = pm +
α1pm−1 + . . .+ αm, B̄(p) = β1pm−1 + . . .+ βm, and express (112) as

Ā(p)ȳ(t) = B̄(p)r̄(t) + e(t). (114)

This means that (114) can be written in the linear regression form as

ρ(tk) = ϕ
T (tk)ψ + ε(tk), (115)

with ε(tk) being an equation error. The parameters θ0 = [a1, · · · , an, b1, · · · , bm]T

can now be estimated using the approach in [138, 139]. Finally, a mapping of the
estimate ψ̂ onto estimates θ̂ and T̂ must be made.
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On some continuous-time modeling and 
estimation problems for control and  
communication

The scope of the thesis is to estimate the parameters of continuous-time  
models used within control and communication from sampled data with high 
accuracy and in a computationally efficient way. In the thesis, continuous-time 
models of systems controlled in a networked environment, errors-in-variables 
systems, stochastic closed-loop systems, and wireless channels are considered. 
The parameters of a transfer function based model for the process in a networked  
control system are estimated by a covariance function based approach relying upon 
the second order statistical properties of input and output signals. Some other  
approaches for estimating the parameters of continuous-time models for process-
es in networked environments are also considered. The multiple input multiple 
output errors-in-variables problem is solved by means of a covariance matching 
algorithm. An analysis of a covariance matching method for single input single 
output errors-in-variables system identification is also presented. The parameters 
of continuous-time autoregressive exogenous models are estimated from closed-
loop filtered data, where the controllers in the closed-loop are of proportional 
and proportional integral type, and where the closed-loop also contains a time-
delay. A stochastic differential equation is derived for Jakes’s wireless channel 
model, describing the dynamics of a scattered electric field with the moving 
receiver incorporating a Doppler shift.
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