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It is well known that there exist continuous funetions whose Lagrange in
polation polynomials taken at the roots of the Tehebychefl polynomials Ta
diverge everywhere in (—1, + 1).'  On the other hand a few years ago S, Be
stein proved the following result®: Let f(z) be any continuous funetion; then
every ¢ > () there exiats a sequence of polvnomials . () where e. () is of dej
n — 1 and it eoineides with f(z) at, at least n — en roots of T'.(z) and qén{-fl_f")_--"f,
Fir} uniformly m (—1, 4+ 1).

Fejér proved the following theorem®;: Let the fundamental points of the inter-
polation be a normal' peint group
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then for every continuous flx) there exists a sequence of polynomials e.(a) of
degree = 20 — 1 such that geu{m,g'”} 2= _,f'l{:cf;”},-i = 1,2, -~ nand ez} =z}
uniformly in (— 1, + 1), In the present paper we are going to prove the follow-
ing more general

Traeorem 1. Let the point group be such that the fundamental functions i:"]{_:if}
are uniformly bounded in (—1, + 1).  Then to every continuous function flx) and
e = 0 there exists a sequence of polynemianls o, (2, such that, 1) the degree of gali)
is = nl(l + ¢), 2) ealat™) = fl@i™), { = 1,2 <2 n, 3) gular) — flx) uniformiy in
{(—1, + 1)

Theorem 1 generalizes the result of Fejér in two directions; first the point
group is more general sinee it can be shown® that the fundamental functions are
uniformly bounded for normal point groups, and secondly the degree of @ la] is
lowered from 2n — 1 te n{l 4+ ¢l

Theorem 1 does not divectly generalize the result of 5. Bernstein, but we can
prove the following

Taeorem 2. Let the ri" be such that the fundamental functions are uniformly
Bounded in (—1, + 1); then to every eontinuous function f{x) there exisls a sequence
af polynominls o.(x) of degree = n — 1 which coineides with f(x) at, at least n-cn
points xi™ and @u(x) — flr).

LG, Grianwald, Aonals of Math, Vol. 37, (1936), p. H8-018,

2 5. Bernstein, Comptes Rendus de 1'Acad, des Briences Vol,

1 L. Fejér, Amer. Math, Monthly Vol. 41 p. 12,

4 Thad,

b Fejér proves this only for the so called strongly normal point groups (ibid). The
proof for normal point groups is much more complicated and we do not give it here,
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INTERPOLATION POLYNOMIALS 431

We are not going to give o proof of Thevrem 2.

The following problem is due to Fejér: Lot the oi" be the equidistant abscissae

that'is r{" = — 1 + 21;_1
to every continuous f(r) a sequence of pelynomials ¢.(r) of degree < 2n such
i‘lh;:t ealai™) = flai™) and e (2) = flx). In other words, does his result proved
for the normal point groups also hold for the eguidistant point group. We
prove the following

Tueonem 3. To every continvous function f(x) and to every o there cxisls a

v = 1,2 ---u. The question is, does there exist

sequence of polynomials ¢, (x) of degree = "'ﬁ’ n{l + ¢) such that ¢, (z:") = fx™) and

galx) — fla) uniformly in (=1, 1), and i can be shown that the constant X i the hest

2
W‘fbf-ﬂ.

Throughout this paper the ¢'s denote absolute constants not necessarily the
same. 1T there is no danger of confusion we will omit the upper index n in
Ezft_! £ poy
' i () ete.

Ta prove Theorem 1 we need two lemmas,

- Lmmma 1. Let the puint group be such that the fundamental functions are uni-
pmly bounded in (=1, 1) and putcos & = a8 < da < - < Xy, th > e >

=-r*- =t 5 then
0

[
"-I,-'i '-‘13,'1_1 e 1—!.;

Proor. Let |L{z)| < D,i=1,2 ---n By awell known theorem of 8.
Bernstein® | d/dd Licosd) | = nD and sinee Li{z;) = 1, li{zaa) = 0, we have finally

I
= P ot
thy i = B
ants 2. Let —1 5 y 2 1, co5 8@ = y. Then there cxists a polynomtial
of degree = 2m such that by (y) = 1, |hy(z)| € e, =1 = = = 1 and for

| hg™ (cos @) | < €0 min (1 1-——,).

"m0 — fy)
Jenote by X™ and X7, the roots of Tu(z) for which X{™ <y < X7}, It is
Lo see that

If the fundamental functions are uniformly bounded we have
Lol &y
= i —dyy < wat
the upper estimate is not needed here,  (Erdés-Turdn, Annals of Math, Vol. 39 (HM0)

tein, Belg. Mém. 1912 p. 19,
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L™+ LEm = 1, ° {

where L™ (y) denotes the fundamental polynomials belonging to the roots
Twlr). Without loss of generality we may assume Li(y) = L. It is well kn

that | L¥"'(@) | = /2, —1 = # = 1" Thus sinee 6, — 5, = :{1 {cos 8, =
A

onrr lemmawill be proved if we can show that for | 8, — & | > =

| By cos 00) | = | L /LI [ < 5.

Put

(X1 . 4 i‘
[ 4™ (o5 8) | £ —gr——s < 5

Proor of Theorem 1. Let ¢, i(2) be a polynomial of degree n-1 such that.
| fla) — a2} | <¢ —1 5251

Pul fiz;} — ¢u_ilr) = & Consider the polynomial of degree = n{l 4 i) swoh
that

ent(z) = fnalr) + g e Ll (), - [05]1

Clearly gp (2) = flr), 1 = 1, 2 --- n. W shall prove that ¢, (r) — f(z)
uniformly in {—1, 1), It suffices to show that

L

2 al@hs ) <o, =1=Zzsl

| =l

| gz} | =
Now

l0G) | <o 35 1B ()| = e T 14 (o)
Foee 3 [RE () | = e (200 4 20)

=

Thus we only have to show that 3 + 2.0 < e By Lemma 1,
< X W @) |

where | ave cos(r + k) — are cos x| > (re}/n. Thus by Lemma 2

21{2%{!‘4.

Similarly we obtain 2 s < e, which completes the proof of Theorem 1

* Erdiis-Turdn, Annals of Math. Vol. 41, (1841} p. 529, Lemma IV.
# L. Fejér, Mathematische Annalen, Vol, 106, (1932) p. 5.
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Theorem 1 does not give o necessary and suthicient condition for the existence
ol & sequence of polynomials ¢.(x) of degree = n(l + ¢} with ¢alz:) = flz;) and
ul) — flx) uniformly in (=1, 1). To obtain such a condition let ™ be s
,'_ int group, put cos & = 1" and denote by N, {4, b) the number of the d;
y (@, b), We have the following:

- Taronesm L. A neeessary ond sufficient condition that to every comtinuous fune-
tiore flx) and to every ¢ > O there exists a sequence of polynomials o, (x) of degree
3 il 4 e} swoh that wa ) = fla) and ea(x) — Flx) uniformiy in (—1, 1) iz that
il —o) — w02 <b.=x

(1) lim sup. ‘!?';b{":' !::jj g and lim inf. (¢ — deadn > 0, {n— = {arbitrary)

lcéﬂdﬂﬁ.m (1) stiales that the number of 3 én (a,, b)) con nol be much greater than the
ﬁt&uhw of roots of Tu(2) tn (g, B, JIf the furdaomental functions Lz are wni-
formly bounded (1) 15 satisfied, for then we have

. Nafan, b)) 1 vl
| W ety e BT s

10

'ﬁ."ﬁ do not give the proofl of Theorem 4, but the following proof of Theorem 3
ean by a simple modification be applied to it.
" Prioor of Theorem 3. Here the fundamental points are

5 2—1
x4 1+—ﬂ

?irst we prove the existence for every noand ¢ > 0 of m = 3 ﬂ{l + ¢} points,

" i = 1,2 - nsuch that (I) the #{™ oceur among the y“'” (11} the fun-
mental functions Lelrl, & = 1, 8, - -+ m are uniformly bounded in (=1, 1}
o Lifr) are the fundamental funetions belonging to the yi™). Having con-
ted the yf-"'" satisfying (I) and (IT) we immediately obtain Theorem 3 by
applying Theorem 1.
T construct the yi™ we first remark that by putting

uusﬂ;=—l+21_lf £ = 1,2 -9
)
we obiain by a simple ealeulation
& Py > _?'_'
we construet a sequence yi™, i = 1,2, :--m s-mch thut {I} the ri" oeeur

{m) 2 -

ng the 4™ (2) put cos §; = g, then §; = i+ + ~! where 2 i1 is

T

hﬂunlied {3} Eq ‘?I+l- = ‘1'}'."!.

i t.he roots of T'wlr).

(2) and (3) insure that the y; are “very

'3 Erdios-Turdn, ihid,, p. 510,




334 F. ERDUS

We construct the y; as follows: Suppose 3, < g2 < +++ < g,y are al
construeted.  We further muke the hypothesis that if 4, (cos 8, = =)

greatest 8 < 6 then ¢, — 4, > ﬁ If 2o d; < 0 we choose for y;

" 4 2 L A
the least 2, > piq,orif & < 8y — % we put & = 8, — ﬁ Thus 6, d

not eome nearer than ﬁ to the greatest & < f,, If 20150d; > 0, 5 = 4, if
g By — % and #,_; — *lm otherwise. Thus in any case if iatlmgma__"

ﬂﬁﬂ;then&i—ﬂ;}%. In this we can construct ¥, ¥, <=« Ym . (1) am

(3) are clearly satisfied and it s quite immediate that (2) is also satisfied. Now
we have to show that the .5 satisfying (1), (2), and (3) also satisfv (1) and (IT >
(1) is elearly satisfied, the proof that (I1) is satisfied is slightly more difficult.
Denote by zj , 24, =+« 2 the roots of Teia) and by LL(:] the fundamental fune-
tions belonging to the z,. From (2) and (3) it follows by a simple nalnulaﬁg’gﬁ
that

12) ') < Tulw) < ed'@), o) =IlE-—w
where ¢, and ¢ are independent of m and k. Denote
max | Lilx)| = A, max Li(z) = Be
—1=251 B S |

Then again from (2) and (3) by a simple caleulation [using (2)]

Ay
(3) 6> 5 <o

We know that"
(4) By < V2.

Thus from (3) and (4) we obtain (3), and this completes the proof of Theorem 3,
To ohtain the second part of Theorem 3 we first have to prove
Lesma 3. Let m = [(x/2n(l — €}, e = O fiwed, independent of m and n, n
odd. Let eonlz) be a polynomial of degree m such that @.(0) = 1 and
pu(—1 4+ (@ — /) = 0,1 = 1,2, +«- [(n — 1)/2], [(n + 3)/2] -+ 0.
Then

max |ewlz)| > e , e =ole) > 1.
—lzrst

Proor, We use the following lemma due to M. Riesz'™: Letgq(x) be a poly-

it I, Feajdr, see footnote 9.
1 M. Riese, Jahresbericht der Deutschen Math, Vereinigung, (1915}, p, 354368,
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nial of degree m, it assumes its absolute maximum in (=1, 1) at the point
oy = pos . Let z; = cos @ be the nearest root of ¢, (x) in {(—1, 4+ 1) then
™
9m’

It immediately follows from this lemma that if z; and x.. are the nearest roots
ntluding x, , then we have

| — | =

ﬂ,-—aa.-ﬂg;.

Put now cos 4, = —1 + (2 — 1)/n. A simple caleulation shows that there
pxists a constant ez = ex(e) such that if —e: = i < 2401 = 6 then

Hence wmlz) can not assume its absolute maximum for —e; = ¢ = o except if

e — t?-ﬂ-]. <

Tl < B s {i. &, in the neighborhood of ()
= i

Qonsider now a polvnomial i, (x) with highest eoefficient the same as that of
gnlr) whose roots are defined as follows: Let —e < 2 < exthenz = (1 + ),
where § i chosen so small that

iy

0 — 8 < T (costy = z)

The other roots of h.(x) coincide with those of wulz). Clearly the degree of
hofr) is m. Define

0@ = (5 + )2 = 2 Jmto

ﬁ;r,* the lemma of M. Riesz g{r] does not assume its absolute maximum
in (—es, eo). It follows from the inequality of the arithmetic and geometric
means that

(5) [g(a) | < | eml@)] for (1 + 8) = |z| = 1

Denote by A(e) the number of x; in (—e, ). We evidently have A(e) >
en, Thus

®) 190)] > 9al0) (1 + 8™ 125> enl0) = €ller > 1)

But since g(z) assumes its absolute maximum in (=1, 1) for some |z| >
es(1 -+ &) we have by (5) and (6)
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[eml@) | > |glz)| > € qed.

Let now ny, %z, -+ be an infinite sequence of odd integers, which tend {
infinity sufficiently quickly. We define a polynomial ¢(x) as follows

2-_1 B I Iu- ¥
¢‘(_1+1T)=ﬂ’ =T ST ol +T: J = ey

w0 =1 =2 -1=z2=1

From the approximation theorem of Weierstrass it follows that such a yule
exists, Consider now the continueus function

fia) = L0,

If the second part of Theorem 3 would not be true, we could find a sequenng;ﬁg
polynomialse(x) of degree S ndw/2)(1 — e)such thated—1 -+ (27 — 1)/ =
1L + (2] — 1)/n)] andiplz) — Fi2) uniformly-in (=1, 1), Fork > i

g =1y _ 14 ng
W+ 32T o alt

Thus ;{x) coinecides with
i—L

IRLZERTE

at the pointa —1 + (2 — 1)/, 7 = (1 + n)/2).
Let now n; tend to infinity o quickly that n; is greater than the degree of
glx). Then (2} can be written as

eilr) = o (2} + o (2),

where ) gfr}l and ¢! (x) is of degree = ({r,f'}} — g)msand vl (— L 4=
((2f — 1};,; D) =072 ((1 + nd/2),7 = n; ,nlsmp“{ﬂ} Dozl (0)) /29 =
(1/2°". Thus by lemma 3

{1

max |e(x)| 2 max Ienr“{z}i - s e and e cret

=lszs 2‘_"

if n; tends to infinity sufﬁmently quickly., Hence :(z) can not converge uni-
formly to fir), and this completes the proof of Theorem 3.

By & more complieated arsument we could prove that a point xy exists such
that en{ze) diverges, We give only the sketeh of the proof. Since
MAX jere1 | () | > (1 4+ 8)™ it follows from n theorem of Remes" that there
exists in (—1, 1) a set of measure >¢ = o8} such that on this set [, (r) | =
(1 + (521" . Then, it follows easily that there exist o point o with
lim sup | go i) | = w0,

12 B, Remes, Sur une propriéié extremale dea polynomes de Tehabyeheff.  Comm. de I'nsti-
tut des Seiences ete, Kharkov, (1938) série 4, XITT fasc. 1, p. 98-05.
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By the same method we ean prove the following:
[
I
Tueorem 5. Lot v , 28" be a point group and pul cos (#"') = 2", Suppose
that ]

lim inf n(#{™ — 9{5}) = E’ (n— =, { arbitrary)

Then to vvery continuous f(x) and constant ¢ > 0 there exists a soquence of poly-
mmmﬂs enlit) of degree <d(1 + e)n sueh that e (z™) = fl2i") and o.(r) — flx)
rtmgfurmiy i (=1, Tk

The constant o, of Theorem 5 is not best possible,  We can obtain the best
possible constant d as follows: Let a, and b, be two arbitrary sequences of real
pumbers, such that 0 = a, < by = wynlby — @) =—» =. Thenil d < =

Nalta s be)
nib, — ay)

Lemma 3 would not suffice for the proof of Theorem 5. Here we need

Lemma 4. Let @) be a polynomial of degres w1, @, (0) = 1, Ledapin) be any
fiinction of n tending to infinity together with n and let oy be a constant fndependent
af . Then df eu(e) s such that for eveiy oo < A< @) the number of roots of
eufcos &) in ((7/2) — (A/n), (r/2) + (A/n])) is greater than [((1 + e)2) (x| we
Jave max_ .o |eulr) | — =, Our condition means that the number of roots of
e ) in the neighborkood of © is substantially larger than the number of roots of
Tola).  The proof of Lemma 4 @s similar, but more complicated than the proof of
Lemma 4,

lim sup = el

UsrveErsrry 0 PENNSYLVANIA
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