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1 . INTRODUCTION 

In this paper , we prove that two categories are isomorphic for any positive integer 

n: Objects of the first category are n-f 1-ary relational structures where an n-f Vary 

relational structure is a set with one n-f Vary relation; morphisms of this category are 

strong homomorphisms of those structures. Objects of the second category are n-ary 

algebras where an 7i-ary algebra is a power set with a totally additive n-ary operation; 

morphisms of this category are totally additive atom-preserving homomorphisms of 

those algebras. This result generalizes Main Theorem of [6] and of [5] which represent 

particular cases of our present result for n = 1 and n = 2. Definitions presented in 

[5] and [6] for particular cases are now generalized, which may be of some interest . 

The proof of our Theorem is omitted because it is almost the same as in [5], Hence, 

this article represents a unified methodology for investigations included in [5] and 

[6]; naturally, this methodology offers further possibilities. 

2. T O T A L L Y A D D I T I V E AND ATOM-PRESERVING M A P P I N G S 

For any set A we denote by P(A) its power set, i.e. P(A) = {X; X C A}. 

Let A, A' be sets, H a mapping of P(A) into P(A'). The mapping H is said to 

be totally additive if H(X) = \J{H({x})] x G X} holds for any set X G P(A). The 

mapping H is referred to as atom-preserving if for any x G A there exists xf G A' 

such tha t H({x}) = {x'}. 

Let r be a binary relation from A to A'. Then for any X G P(A) we put P[r](X) = 

{x' G A1; there exists x G X with (x, x') G r). Clearly, P[r ] is a mapping of P(A) 

into P(A'). 
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Let H be a mapping of P(A) into P(A'). Then we set Q[H] = {(x, x') G A x A'; 
x' G H({x})}. Then Q[H] is a relation from A to A'. 

Hence, we have defined two operators P , Q . The operator P assigns a mapping 
P[r] of P(A) into P(A') to any relation r from A to A'; the operator Q assigns a 
relation Q[H] from A to ^4' to any mapping H of JP(J4) into P(A'). 

Example 1. If r is a mapping of A into A!, then P[r](K) = {r(x); x G K}. 

Example 2. If $J is an ordering on A, put H(X) = {y G -4; there exists x G 
K with x ^ y} for any K G -P(-4). Clearly, H(X) is the final section generated by 
X in (.4,-$). Then Q[H] = <:. 

3 . STRONG HOMOMORPHISMS OF RELATIONAL STRUCTURES 

In what follows n is a positive integer. If A is a set, we put An = A x . . . x A. A 

n times 

set t C An is said to be an n-ary relation on A and the ordered pair (A,t) is called 
an n-ary structure. 

If (A,t)> (A'yt') are n + 1-ary structures and h is a mapping of A into A', then 
h is said to be a strong homomorphism of the n -j- l-ary structure (A,t) into (^4',*') 
whenever the following holds: For any x1} ..., xn in A and x n + 1 in A' the condition 
(^ (x^ , . . . , / i(xn) , x n + 1 ) G 2' is satisfied if and only if there exists x n + 1 G A such 
that /i(xn + 1) = x n + 1 and (xi , . . . , x n , x n + 1 ) G *. 

Example 3. For n = 1, we obtain t C ,42, *' C .4'2, i.e. (A,t), (A',f) are 
binary structures. Furthermore, h is a strong homomorphism of (A,t) into (A',t') 

if and only if the following holds: For any x G A and any y' G -4' the condition 
(h(x),y') G *' is satisfied if and only if there exists y G A such that h(y) = t/ and 
(x)2/) £ -̂ By Lemma 1 of [6], our strong homomorphisms coincide with strong 
homomorphisms in the sense of [6] for the particular case n = 1. 

Example 4. For n = 2, we obtain t C A3, t' C A'3, i.e. (̂ 4, t), (A', *') are ternary 
structures. For any ternary relation t on A put £ = {(x,2r,y) G -43; (x,2/,z) G *} . 
Thus, (^4,0 and (A J) differ only in the way of notation. Let h be a mapping of A 
into A!. Then /i is a strong homomorphism of (-4,2) into (A!\t') if and only if the 
following holds: For any x £ A, y e A, z' € A' the condition (h(x), h(y), z') G *' 
is satisfied if and only if there exists z G A such that h(z) = z') (x,y, z) G 2. The 
condition may be reformulated as follows. For any x G - 4 , t / G - 4 , z ' G - 4 ' the 
condition (n(x), z', h(y)) G £' is satisfied if and only if there exists z G A such that 
h(z) = z ;, (x,2r,t/) G t. Hence, h is a strong homomorphism of (A, 2) into (A',t') if 
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and only if it is a strong homomorphism in the sense of [5] of the structure (A,t) 

into (A'J'). 

4 . ALGEBRAS ON POWER SETS 

Let n be a positive integer and let (A,t) be an n -f 1-ary structure. For arbitrary 

sets Ki, . . . , Xn in P(A) we put 

R[*](Ki,. . . ,X n ) = {*n+i £ A; there exist x\ € Xi,..., xn £ Xn 

such that (x i , . . . , x n , x n + i ) £ t}. 

Clearly, R[£] is an n-ary operation on the set P(A). Hence R is an operator assigning 
an n-ary operation on P(A) to any n + 1-ary relation on A. 

Example 5. Let (A, ^ ) be an ordered set. Then n = 1 and R[^](K) = {y £ A\ 

there exists x £ X such that x $C y}, i.e. R[^](K) is the final segment generated by 

the set X for any X £ P(A). 

Let n be a positive integer, A a set, and N an n-ary operation on -P(^4). Then the 
ordered pair (P(A)^N) will be referred to as an n-ary algebra. The operation N is 
said to be totally additive if N(Ki,.. .,Kn) = U{N({x i} , . . >{*n}); (*i, • • •, xn) £ 
X\ x ... x Xn } holds for any X\, ..., Kn in P(^4). By Lemma 7 of [5], this definition 
generalizes the definition included in [5]; clearly, a totally additive unary operation 
is a totally additive mapping. 

If n is a positive integer, A a set, and N an n-ary operation on -P(-4), we put 

S[JV] = {(*,, ..., xn,xn+l) e A"*1; xn+l e N({Xl},. ..,{.»„})}. 

Example 6. Let A be a set and N(X, Y) = X UY for any X, Y in P(.4). Then 
S[At]= {(x,y,z)eAz;z€{x,y}} = {(x,t/,x); z,y € A} U {(x,y,y); x,y € A}. 

Example 7. Let .4 be a set and N(X, Y) = XC\Y for any X, Y in P(y.). Then 
S[N] = {(x,y,z) e A3; z € {x} n {y}} = {(x,x,x); x e >l}. 
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5. C A T E G O R Y RELn-f 1 AND CATEGORY ALGn 

We now introduce two categories. The instruments of the theory of categories 

needed in the sequel may be easily found in [1]. 

Let n be a positive integer. 

Objects of the category RELn -f 1 are n -f l-ary structures of the form (A,t). By a 

morphism of the object (A}t) into (A ' , t') in RELn -f 1 we mean a strong homomor-

phism of the structure (A,t) into (A',t'). Since l(A,t) -s a strong homomorphism of 

(J4, t) into itself and since the composite of two strong homornorphisms is a strong 

homomorphism (this may be proved similarly as in [5], p. 91), RELn-f 1 is a category. 

Objects of the category ALGn are n-ary algebras of the form (P(A),N) where A 

is a set and N is a totally additive n-ary operation on P(A). By a morphism of the 

object (P(^4) ,N ) into the object ( P ( , 4 ' ) , N ' ) in ALGn we mean a totally additive 

atom-preserving homomorphism of the algebra ( P ( A ) , N ) into (P(Af), N'). Since 

l(p(A),N) is a totally additive atom-preserving homomorphism of ( P ( A ) , N) into it­

self and since the composite of two totally additive atom-preserving homornorphisms 

is a totally additive atom-preserving homomorphism, ALGn is a category. 

E x a m p l e 8. in [6], REL2 was denoted by STR and ALG1 by PMA. The category 

REL3 appeared in [5] under the name TER, and ALG2 was denoted by PGR there. 

6. ISOMORPHISMS OF CATEGORIES RELn-f 1 AND ALGn 

We now introduce two functors. F will be a functor of the category RELn-f 1 into 

ALGn and G will be a functor of the category ALGn into RELn-f 1. These functors will 

be defined by presenting the object mappings Fo, Go and the morphism mappings 

Fm, Gm. 

If ( J4 , t) is an object in the category RELn -f 1 and h a morphism in this category, 

we put 

Fo(A,t) = (P(A),K[t])J Fm(h) = P[/i] . 

If (P(A),N) is an object in the category ALGn and H is a morphism in this 

category, we set 

Go(P(A)) N) = (A, S[N]), Gm(H) = Q[H]. 

T h e o r e m . Let n be a positive integer. Then F is a functor of the category 

RELn -f 1 into ALGn and G is a functor of the category ALGn into RELn -f 1 such 

that F o G and G o F are identity functors. 
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P r o o f is the same as the proof of Main Theorem of [5]. All results included in 

[5] tha t are needed in the proof of Main Theorem may be easily generalized to an 

arbitrary positive arity, which makes the proof of our Theorem possible. • 

Corol lary 1. Let n be a positive integer. Then the functor F is an isomorphism 

of the category RELn + 1 into ALGn and the functor G is an isomorphism of the 

category ALGn into RELn + 1. 

Corol lary 2 . Let n be a positive integer and (A,t), (A',t') n + l-ary structures. 

(i) For any strong homomorphism h of the structure (A, t) into (A', t') there exists 

a totally additive atom-preserving homomorphism H of the algebra (P(A), R[£]) into 

(P(A'),R[t'}) such that h = Q[H]. 

(ii) If H is an arbitrary totally additive atom-preserving homomorphism of the 

algebra (P(A),K[t]) into (P(A'),K[t']), then Q[H] is a strong homomorphism of 

the structure (A, t) into (A', t'). 

E x a m p l e 9. By Corollary 2, all strong hornomorphisms of a binary structure 

(A,t) into another one (A',t') may be constructed. We construct mono-unary al­

gebras (P (v i ) , R[£]) and (P(A'),H[t']). The construction of all hornomorphisms of 

the first algebra into the latter is known (cf., e.g., [2], [3], [4]). We take only to­

tally additive atom-preserving hornomorphisms; for any such homomorphism H the 

mapping Q[H] is a strong homomorphism of (A, t) into (A', t'), and any strong ho­

momorphism of (A, t) into (A', t') may be constructed in this way. If A, A' are finite, 

the construction is effective. Cf. Section 5 of [6]. 

E x a m p l e 10 . Theorem gives the possibility to describe subclasses of RELn + 1 

by means of subclasses of ALGn. We give a concrete example. Let (A, t) be a binary 

structure. Then t is a preordering if and only if H[t] is a totally additive closure 

operator. Cf. Section 6 of [6]. 
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