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ON SOME DISCONTINUOUS FIXED POINT MAPPINGS 

IN CONVEX METRIC SPACES 

LJUBOMIR CIRIC, Beograd* 

(Received November 18, 1991) 

I . INTRODUCTION 

Let X be a Banach space and C a closed convex subset of A'. M. Gregus [7] proved 

the following result 

T h e o r e m 1 (Gregus [7]). Let T: C —• C be a mapping satisfying 

(G) \\Tx - Ty\\ ^ a| |* - y|| + p\\Tx - x\\ + p\\Ty - y\\ 

for all x, y £ C7 where 0 < a < 1, p ^ 0 and a + 2p = 1. Then T has a unique fixed 

point. 

Many theorems which are closely related to Gregus's Theorem have appeared in 

recent years ([2]-[9]). 

The purpose of this note is to define and to investigate a class of mappings (not 

necessarily continuous) which are defined on metric spaces and satisfy the following 

contractive condition. 

(1) rf(T*,Ty)^a'(^t/) + ( l ^ 

where 0 < a < 1 and b ^ ^ — i 0Tg a 2- We shall prove a fixed point theorem which 

is a double generalization of the above theorem of Gregus. Firstly the nonexpansive 

nature of the mapping is generalized, and secondly the underlying space is freed to 

a non-linear s i tuation. An example is constructed to show that our Theorem is a 

genuine generalization of the theorems of Gregus [7] and Li [8]. 

We recall the following definition of a convex metric space. 

*This research was supported by The Science Fund of Serbia, Grant No. 0401 D through 
Matematicki Institut. 
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Definition 1. (Takahashi [10]). Let X be a metric space and I = [0, I] the closed 
unit interval. A continuous mapping W: X x X x / —• A' is said to be a convex 

structure on X if for all x, y G X and A G I,d[u, W(x,y, A)] *_J \d(u, x) + (i — \)d(u, y) 

for all u G X. X together with a convex structure is called a convex metric space. A 
subset Iv C X is convex, if W(x, y, A) £ K whenever x,y G K and A G I. 

Clearly a Banach space, or any convex subset of it, is a convex metric space with 
W(x,y,\) = \x + (\-\)y. 

2. MAIN RESULT 

Now we are in a position to state our main result. 

Theorem 2. Let K be a closed convex subset of a complete convex metric space 
X and T: K —*> K a mapping satisfying (1) for all x,y G K. Then T has a unique 
fixed point. 

P r o o f . Let x = XQ be an arbitrary point and consider the sequence {xn} 

defined by xn+\ = Txn\ n. = 0, 1, 2, . . . From (1) we have 

d(xn,Txn) = d(Txn-X,Txn) ^. ad(xn-.x,xn) 

+ (i - a)nmx{d(xn-.l,xn),d(xn,Txn),b[d(xn-x,Txn)] }. 

Since b < ^, by simple calculation we obtain 

(2) d(xn,Txn)^d(x,Tx) ( . .= 1,2,...). 

We shall show that 

(3) (/(Txt.T3**) ^ [l + a + 0 ~ a)' ] d(x,Tx) 

for some k ^ 0. Using (1), (2) and the triangle inequality we have ^(TxnjT3!,.) ^ 

a(/(Txn_, ,T3x„_i) + (1 - a)max{-(x,Tx),&[2ft!(x,Tx) + o'(Tx f ._,,T3x„_,)]}. If 

for some u = k 

(4) rf(7'x_,T3x_) ^ arf(7'x„_,,T3xfc_1) + (1 - a)d(x,Tx), 

then (3) holds, since by (2) and the triangle inequality we have 

d.Tx.-, ,!-3*,. . , , ) = _(x_,Tx_+i) ^ _(x„,Tx_) + a*(x_+,,Tx_+1) ^ 2_(x,Tx). 
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Suppose that (4) does not hold. Then 

rf(T_„,T3x„)^arf(T_n_1,T
3_„_1) + (l-a)6[2rf(x,T_) + rf(T_n_,,T3_n_1)] 

holds for each n = 1, 2, . . . Hence 

d(Txn,T*xn) ^ [1 - (1 - a)(l - 6)]rf(T_„_,,T3_„_1) + 2(1 - a)bd(x,Tx). 

Hence, by induction we get 

(5) d(Txn,T3xn) ^ hnd(Tx}T
3x) + ^-^(x^x), 

where li = 1 - (1 - a)(l - b) < 1. Since d(Tx,T3x) <$ 2d(x,Tx) and by hypothesis 
for 6 we have 

26 < 4 ( l + a 2 ) _ ( 1 - a ) 3 (1 - a)3 

^ —;; ~~ = 1 + « + —--—5- < 1 + a + 1 - 6 ^ 3 + a- 3 + a2 3 ' 

we may choose k such that 2/i* + -j 2^ <, 1 + a + ' ~£> . For such it, (5) implies (3). 
Therefore, we proved (3). 

Let k be such that (3) holds and put y = x*. Since K is convex, by Definition 1 
W(T2y,T3y, | ) = z £ IV. Then, using Definition 1 and (2) and (3), we have 

d(z,T2y) < irf(T2y,T3y) < irf(x,Tx), 

d(z,T3y) <$ i_(7*»,7*0) <^rf(x,Tx), 

(6) </(,, Ty) ^ i [rf(Ty, T2y) + rf(Ty, T^y)] ^ 7 + 3 a 2 ~ "' • rf(x,Tx), 

(7) d(z, Tz) ^ i [rf(T_, T2y) + d(Tz, T3y)]. 

Now we shall show that there is a real number A, such that 

(8) rf(.,Tz)<. A-rf(x,Tx); 0 ^ A < 1. 

Put 
M = M(x,z) = max{rf(x,Tx),rf(;,T.)} 

and suppose M > 0. Using (1) again, from (2) we have 

(9) d(Tz,T*y) <. | • M + (1 - a) max{M,6[ i • M + rf(T.,T2y)j } , 
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d(Tz,T2y)^a Лf 

(10) + ( l - a ) m a x { M , 6 [ - M + rf(~z,~y)]}. 

Since 26 < I, using the triangle inequality we get 

b [ i M + rf(Tz, 7,2y)] $ 6[i M + rf(-, T-) + d(z, T2y)\ $ 26 M < M. 

Therefore, from (9) we have 

rf(T2,T3y)<^M + (l-a)M = ( l - 0 M. 

Using the triangle inequality and (2) we get 

d(Tz, Ty) <. d(Tz, T2y) + d(T2y, Ty) ^ M + d(Tz, T2y). 

Therefore, from (10) we have 

(12) d(Tz,T2y) <. a 7 + 3 a " " M + (1 - a)max{M,6[2 M + rf(Tz,T2y)] }. 

Case I. Suppose that from (12) we have 

(12') d(Tz,T2y) < a 7 + 3 a 2 ~ a 3 M + (1 - a)M = [l + a ^ 3 " 2 " " 3 ] M. 

Then by (7), (11) and (12') we have 

1 f. « . l + 3 a 2 - a 3 i d(z,Tz)^ - [ l - ^ + 1+rt 
6 

2-Зa 2 + a3^ 

M 

(13) = [l - a • q ~ + a ] mzx{d(x,Tx),d(z,Tz)}. 

Since 0 < a < 1 implies A, = 1 - a 2 " 3 ^ " 3 < 1, from (13) we have 

(14) d(z,Tz)^\id(x,Tx); 0 < A, < 1. 

Case II. Assume now that (12) implies 

d(Tz,T2y) ^ « 7 + 3

6

2 ~ a 3 M + (1 - a)6[ | M + d(Tz, T2y)\. 
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Then, as by hypothesis 6 < ^ t a . ' ' w e n a v e 

[5 + 3a2 - (1 - a)2(l + a2)]d(Tz,T2y) 

^ a ( 7 + 3 a2 _ a
3 ) ^ p - M + 3(1 - a)(l + a2) M 

< a(6 + 5a2 + a3) M + 3(1 - a)( 1 + a2) AI. 

After some computations we get 

(12") (3 + 2a + a2+2a3)o ,(T2,T2y) <$ [ ( l + ^) (3+2a + a 2 + 2 a 3 ) - ^ a ( l - a ) 2 ] M. 

Now from (7), (11) and (12") we have 

(15) d(z,Tz)^\2 nmx{d(x,Tx),d(z,Tz)}, 

where A2 = 1 - <* i2+&a+4a*+Ha* - Since A2 < 1, from (15) we have 

(16) d(z,Tz) ^ \2d(x,Tx); A2 < 1. 

Put A = max{Ai, A2). Then from (14) and (16) we conclude that (8) holds in any 
case. 

Now it is easy to prove that (8) implies 

(17) inf{rf(ar,Tar): x G K} = m = 0. 

Indeed, since A~ 2 > 1. there exists some x' £ A' such that d(x', Tx') ^ A" 2 m. Then, 
as above, there is z1 = z'(x') £ A" such that (8) holds, i.e. such that d(z',Tz') ^ 
\d(x',Tx'). Then we have m $ d(z',Tz') ^ A(A~im) = \?m. Hence m = 0. 

Now we shall show that 

2 + (T=-^2J »^{d(x,Tx),d(y,Ty)}. 

Let M = max{d(x,Tx),d(y,Ty)}. Then from (1) and the triangle inequality we 
have 

d(Tx, Ty) ^ a [d(x,Tx) + d(Tx, Ty) + d(Ty, y)} 

+ (1 - a) max {M, b[d(x, Tx) + 2d(Tx,Ty) + d(y,Ty)] } 

^ 2aM + ad(Tx, Ty) + (1 - a) [M + 26d(Tx, Ty)]. 
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Hence, as b ^ § i § ^ , we get 

5 + Зa2 

-^•^fâ]*-( l - « ) 2 

This and rf(x,t/) ^ 2M + d(Tx,Ty) imply (18). 
Now by (17) we can choose a sequence {xn} in K such that d(xn,Txn) ^ £ 

(n = 1 ,2 , . . . ) . It follows from (18) that 

max{rf(Txm,Tarn),rf(arm,xn)} ^ L-±- for 1 -̂  ?7, < w. 

Therefore, both {xn} and {Txn} are Cauchy sequences, and moreover they have a 
common limit, say u. By (1) 

d(Txn,Tu)^ad(xn,u)+(\-a)max{d(xn,Txn),d(u,Tu),b[d(xn,Tu^ 

Taking the limit as ?i —• oo in this inequality, we get 

d(u,Tu) ^ (\-a)d(u,Tu), 

which implies that Tu = u. The uniqueness of a fixed point follows from (1). • 

Re in a r k 1. If in Theorem 2 6 = ^, then T may be without fixed points, as the 
following simple example shows it. 

E x a m p l e 1. Let 7\ be the set of real numbers with usual metric and let 
T: K —> 7\ be defined by Tx = x + 1. Then for any 0 < a < 1 

d(Tx,Ty) = d(x,y) = ad(x%y) + (l-a)l[d(x,y)-l + d(x,y)+l] =d(x,y). 

R e m a r k 2. If b = 0, we obtain the result which was established by Fisher [5]. 
That result also appears in [2], [4], [6], and [9] as a corollary of common fixed point 
theorems. 

Theorem 3. Let K be as in Theorem 2 and T: K —• K a mapping satisfying 

(19) d(Tx, Ty) <: ad(x,y) + b[d(x,Ty) + d(y, Tx)] + c max {rf(x, Tx),d(y, Ty)} 

for all x,y£ K, where 0 ^ a < 1 , 6 ^ 0 , c^O, a + 6 > 0 aurf 

5 + a 2 

(20) a + ^—^b + c^ 1 
2 + aJ 
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Then T has a unique fixed point. 

P r o o f . We have 

««•(*, y) + 6 1 ± 4 • г т 4 И*- т»)+d(y> T x ) l + c m a x {J(X'T*)' <ь> ТУ)) 

^ш!(х,у)+ [ | ± 2 1 б + с] max {rf(*,Tx),rf(», Ту), | ± ^ j [ d ( « , Т у ) + d(»,Tx)l} 

< «r/(x,y) + (1 - «)max{«*(*,T*),d(y,Ty), ---t--- [<*(.-, Ty) + rf(y,Tx)}\. 
*• o + a ** 

Therefore, (19) and (20) imply (1) with 0 ^ a < 1 and 

t 2 + a 2 1 1 - a 2 

6 = r-r—n < x -
5 + a 2 2 1 0 + 6 a 2 

and so we can apply Theorem 2 in the case a > 0. 

If a = 0, then a + b > 0 implies 6 > 0, and then from (20) we have 

0 < 2 6 + c<J 1 - ^ < 1. 

So in the case a = 0 Theorem 3 reduces to a special case of Theorem 2.5 of [1]. • 

Corollary 2 (Li [8]). Let K be a closed convex subset of a convex metric space 

X and T: K —* K a mapping satisfying 

d(Tx,Ty) ^ ad(x,y) + b[d(x,Ty) + d(y,Tx)\ + c[d(x,Tx) + d(y,Ty)} 

for all x, y G A*, where 0 ^ a < 1 , 6 ^ 0 , c ^ 0 , a + 6 > 0 and 

(22) a + 3fc + 2 r ^ 1. 

if X has the property that every decreasing sequence of non-empty closed subsets of 

X with diameters tending to zero has non-empty intersection, then T has a unique 

fixed point in K. 

P r o o f . It is clear that the inequalities (19) and (20) are more general than 

corresponding inequalities (21) and (22). Since the property of X, stated in Corollary 

2 is equivalent to the completeness of A', we see that all assumptions of Theorem 3 

are satisfied. • 

The following simple example shows that our Theorems 2 and 3 are genuine gen­

eralizations of the Theorems of Gregus [7] and Li [8]. 
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E x a m p l e 2. Let K = [—4,4] be a closed convex subset of the real line and 

T: K —* K a mapping defined by 

Tx = | , if - 2 <$ x ^ 4; Tar = 4, if - 4 ^ x < - 2 . 
0 

It is clear that if x,y £ [ -2 ,4 ] or *,?/ £ [ - 4 , - 2 ) , then d(TxtTy) ^ |d(ar,y) . Let 

now x £ [—2,4] and y £ [—4, —2). Then we have 

d(TxtTy) ^ 4 + | < | 6 ^ g</(y,Ty) <C j | max {c/(y,Ty),a-(s ,T*)} . 

Therefore, T satisfies the condition (19) with a = | , c = | and 6 = 0, and the 

condition (1) with a = £ and any 0 -$ 6 < ^ — -|-. Since A* is compact, hence 

complete, all assumptions of Theorems 2 and 3 are satisfied and u = 0 is the unique 

fixed point of T. But T does not satisfy (21) with a + 36 + 2c ^ 1, and hence (G), 

since for all x £ [—1,0] and y £ [—3, —2) we have 

d(Tx, Ty) > 4 > 4 - 1 = max { 3 , 1 (5 + 3), 5 ( j | + ?) } 

S> max {d(xt y)t ± [rf(ar, Ty) + d(y9 Tx)), I [</(*, Tx) + d(yf Ty)] } 

^ ad(*, y) + *[<*(*, Ty) + d(y, Tx)] + c[d(x, Tx) + d(y, Ty)] 

for any a, 6, c ^ 0 with a + 36 + 2c ^ 1. 
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