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Abstract
The concept of complex fuzzy set (CFS) and complex intuitionistic fuzzy set (CIFS) is two recent developments in the field of
fuzzy set (FS) theory. The significance of these concepts lies in the fact that these concepts assigned membership grades from
unit circle in plane, i.e., in the form of a complex number instead from [0, 1] interval. CFS cannot deal with information of
yes and no type, while CIFS works only for a limited range of values. To deal with these kinds of problems, in this article, the
concept of complex Pythagorean fuzzy set (CPFS) is developed. The novelty of CPFS lies in its larger range comparative to
CFS and CIFS which is demonstrated numerically. It is discussed how a CFS and CIFS could be CPFS but not conversely. We
investigated the very basic concepts of CPFSs and studied their properties. Furthermore, some distance measures for CPFSs
are developed and their characteristics are studied. The viability of the proposed new distance measures in a building material
recognition problem is also discussed. Finally, a comparative study of the proposed new work is established with pre-existing
study and some advantages of CPFS are discussed over CFS and CIFS.

Keywords Complex fuzzy set · Complex intuitionistic fuzzy set · Complex Pythagorean fuzzy set · Distance measures

Introduction

Handling of uncertain and imprecise information has always
been a challenge. Many theories are presented to cope with
imprecision and uncertainty that exists in almost all the real-
life problems such as theory of soft sets [1], theory of rough
sets [2], and theory of FSs [3]. All these theories have their
own characteristics and advantages, but among these Zadeh’s
FS is a remarkable concept and is greatly utilized in many
situations of uncertainties including decision-making prob-
lems, pattern recognition, clustering, networking, and many
other fields of computer and engineering. Zadeh’s FS cope
with uncertain events or objects by describing them in terms
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of a membership grades ranges on a scale of zero to one.
This type of mathematical modeling enables scientists to
describe the imprecision of an object or event numerically.
An FS only allows us to describe the membership grade of
an object, i.e., the degree of satisfaction; however, it does
not provide any information about degree of dissatisfaction.
In FS theory, if an object has a grade of membership as
0.7, then its non-membership grade is chosen by default
as 1 − 0.7 � 0.3. Hence, an FS does not allow us to
choose the non-membership grade independently. Realiz-
ing this, Atanassov [4] developed the notion of intuitionistic
fuzzy set (IFS) which not only describes the membership
grade of an object, but also describes its non-membership
grade on a scale of zero to one, independently. Keeping
the sum of both membership as well as non-membership
between 0 and 1. Atanassov’s IFS improved the concept
of FS by facilitating the scientists in assigning member-
ship and non-membership grades independently. However,
an IFS somehow restricts us in a certain range, i.e., one can-
not choose the membership and non-membership grades as
0.6 and 0.7 simultaneously, because their sum exceeds the
unit interval. Realizing this, Yager [5] developed the the-
ory of Pythagorean fuzzy set (PFS) which is also based
on a membership and non-membership grade but with an
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Table 1 Comparison of
constraints on ranges of IFS and
PFS

Structure Constraint

IFS 0 ≤ M + N ≤ 1

PFS 0 ≤ M2 + N 2 ≤ 1

improved constraint, i.e., the sum of squares of membership
and non-membership grades must not exceed 1. If we denote
the membership and non-membership grades by M and N ,
respectively, then the constraint on IFS and PFS is given in
Table 1.

In [6], Ramot et al. proposed a new concept of CFS, where
the membership grade of an element is a complex number
from unit circle instead of a real number from [0, 1] inter-
val. A CFS improved the concept of ordinary FS due to
its larger range of membership grades. Following the con-
cept of CFS, Alkouri et al. [7] developed the framework of
CIFS which is basically based on two complex functions
denoting the membership and non-membership grade of an
object/element. Keeping in mind the significance of these
two concepts, scientists contributed in these directions exten-
sively. Ma et al. [8] developed CFS-based method to solve
problems having multiple periodic factors. Dick et al. [9]
studied some operations of CFS and Liu and Zhang [10]
improved the results of defined by Dick et al. [9]. Green-
field et al. [11] proposed a novel concept of complex interval
valued FS (CIVFS) which certainly improved the idea of
CFS and generalizes the framework of interval valued fuzzy
set (IVFS). Garg and Rani [12] proposed some aggregation
operators for CIFSs and utilized those operators in multi-
attribute decisionmaking (MADM).Somedistancemeasures
for complex intuitionistic fuzzy soft sets (CIFSSs) are devel-
oped by Kumar and Bajaj in [13], whereas the theory of
power aggregation operators for CIFSs is proposed by Rani
and Garg [14] which was further utilized in MADM. Singh
et al. [15] studied the lattices of interval valued complex
fuzzy sets and their granular decompositions. Selvachandran
et al. [16] developed the notion of complex vague soft sets
(CVSSs) and examined their entropymeasures. Hu et al. [17]
proposed some distance measures for CFSs and studied the
continuity of operations of CFSs. Some similarity measures
of CVSSs are proposed by Selvachandran et al. [18] and their
applications in pattern recognitions are studied. In [19], Quek
and Selvachandran studied the algebraic structures of CIFS
associated with groups, while [20] discussed the application
of CFS in E-commerce. Complex fuzzy concept lattice is
studied in [21] and the idea of interval valued complex fuzzy
soft set along with their applications is discussed in [22]. In
[23], the authors studied Malaysian economy using interval
valued complex fuzzy soft set. Some other study on CIFS
can be found in [24, 25].

Distance and similarity measures are among the affective
tools that have been utilized in FS theory and its general-

ized forms to cope with problems of pattern recognition,
clustering, MADM, and medical diagnosis. Since the evo-
lution of FS theory, several types of distance and similarity
measures have been introduced for FS, IFS as well as PFSs.
Ngan et al. [26] proposed someH-max distancemeasures for
IFSs and unitized those distance measures in decision mak-
ing. Mishra et al. [27] assessed some cellular mobile service
providing companies using the similarity measures of IFSs.
Shen et al. [28] assessed the problem involving credit risk
evaluation of partners using new similarity measures of IFSs
in an extended TOPSIS method. Some Jaccard index-based
similarity measures of IFSs are proposed by Hwang et al.
[29] which are further utilized in a clustering problem. Luo
and Zhao [30] defined a new distance measure for IFSs and
applied these distance measures in a medical diagnosis prob-
lem. Li and Zeng [31] developed a similarity measure for
PFS that is based on four kinds of membership functions and
examined its viability and practicability. The cosine function-
based similarity measure for PFSs is defined byWei andWei
[32] and its applications are studied. A number of distance
and similarity measures of PFSs are developed by Zeng et al.
[33] which were further utilized in MADM problem. Some
point operator-based similarity measures of PFSs are devel-
oped by Biswas and Sarkar [34], and an MADM problem is
solved using the proposed similarity measures. Some sim-
ilarity measures for IFSs are studied by Garg [35–37] and
their viability is demonstrated. Some distance measures of
type 2 FS are developed in [38], while in [39], similarity
measures for connection numbers based on set pair analy-
sis are developed. These similarity measures are utilized in
MADM problems. Ullah et al. [40] developed few similarity
measures for T-spherical fuzzy set and utilized those sim-
ilarity measures in building material recognition problems.
[41–43] discussed some MADM problems in bipolar-valued
hesitant fuzzy environments, while [44, 45] are based on
some medical diagnosis and MADM problems based on T-
spherical fuzzy and linguistic cubic fuzzy information. A
state of art study of PFS is established in [46] and the study
of information measures of PFSs is developed in [47]. Cho-
quet integrals for PFSs are developed in [48], while some
aggregation operators for PFSs are developed in [49]. Hesi-
tant Pythagorean fuzzyMcLaurin symmetric mean operators
are developed and utilized inMADM in [50]. Some logarith-
mic aggregation operators of PFS and their applications are
studied in [51]. Some generalized power aggregation opera-
tors for IFSs and their applications in MADM are studied in
[52]. In [53], the correlation coefficients for IFSs are devel-
oped and applied in MADM. Some other related work can
be found in [54–57].

The concept of FS proposed by Zadeh [3] and IFS pro-
posed byAtanassov [4] discuss the uncertainties of imprecise
events using real numbers as membership grades. However,
neither FS nor IFS discussed the fractional ignorance and
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variations that exist in the data, for example, phase change
or periodicity. Due to this reason, the idea of CFS has been
introduced that extended the idea of FS from realmembership
grades to complex membership grade, therefore, lessened
the chances of information loss. CIFS proposed by Alkouri
et al. [7] improved the idea of CFS by adding another func-
tion to it known as non-membership function. It is discussed
that the existing definition of CIFS did not describe the hesi-
tancy degree and it needs to be redefined. Furthermore, CIFS
cannot not describe some situations due to a restriction that
the sum of membership and non-membership grades can-
not exceed 1. A detailed analysis of the restrictions of CFS
and CIFS has been done in Sect. 3. Therefore, in this paper,
our aim is to develop the idea of CPFS. The novelty and
effectiveness of proposed CPFS are demonstrated with the
help of some examples and through a comparative study.
Furthermore, motivated by the work of [6, 7], some distance
measures of CPFSs are defined and their properties are inves-
tigated.

This article organized in Sect. 1 is based on introduction.
In Sect. 2, some pre-requisites related to IFS, PFS, CFS, and
CIFS are described along with an introduction to distance
measures. In Sect. 3, the novelty of CPFS is demonstrated
with the help of numerical examples and some basic opera-
tions are developed. Section 4 is based on distance measures
forCPFSs and their characteristics. InSect. 5, a pattern recog-
nition problem is solved using the newly defined distance
measures. Section six is based on a comparative study, while
in Sect. 7, the advantages of CPFSs are discussed. Section 8
is based on some conclusive remarks and future directions.

Preliminaries

This section aims to provide a short literature survey of pre-
existing concepts related to IFS, PFS, CFS, and CIFS along
with some other notions.

Definition 1 [4] An IFS I is defined as I �
{(TI (x), FI (x)) : x ∈ X}, where TI and FI denote the
grades of membership and non-membership, respectively,
with a constraint 0 ≤ TI (x) + FI (x) ≤ 1. Moreover, the
term RI � 1− (TI + FI ) is referred as hesitancy degree and
(TI , FI ) is considered as intuitionistic fuzzy number (IFN).

Definition 2 [5] A PFS I is defined as I �
{(TI (x), FI (x)) : x ∈ X}, where TI and FI denote the
grades of membership and non-membership, respectively,
with a constraint 0 ≤ T 2

I (x) + F2
I (F) ≤ 1. Moreover, the

term RI �
√
1 − (

T 2
I + F2

I

)
is referred as hesitancy degree

and (TI , FI ) is considered as Pythagorean fuzzy number
(PyFN).

Definition 3 [6] ACFS C is defined as: C � {(x ,
MC (x))/x ∈ Xt}, where MC : U → {z : z ∈ C , |z| ≤ 1}
and MC (x) � a + ib � TC (x) · e2Π i ·WC (x). Here, TC
(x) � √

a2 + b2 ∈ R and TC (x), WC (x) ∈ [0, 1], where
i � √−1.

The range ofmembership grades of a CFS is demonstrated
in Fig. 1. Where the points inside the circle represents all the
complex numbers whose magnitudes lies between 0 and 1.

Definition 4 [7] ACIFS C is defined as: C �
{(x , MC (x), NC (x))/x ∈ X}, where MC : U →
{z1 : z1 ∈ C , |z1| ≤ 1} NC : U → {z2 : z2 ∈ C , |z2| ≤ 1},
such thatMC (x) � z1 � a1+ib1 and NC (x) � z2 � a2+ib2
provided that 0 ≤ |z1| + |z2| ≤ 1 or MC (x) � TC
(x) · e2Π i ·WTC (x) and NC (x) � FC (x) · e2Π i ·WFC (x)

satisfying the conditions: 0 ≤ TC (x) + FC (x) ≤ 1
and 0 ≤ WTC (x) + WFC (x) ≤ 1. Furthermore, τ �(
T · e2Π i ·WT , F · e2Π i ·WF

)
is called complex intuitionistic

fuzzy number (CIFN).

This definition of CIFS does not provide any informa-
tion about the hesitancy degree of an element as an ordinary
IFS. Therefore, this definition needs a little modification. An
improved definition of CIFS is proposed in Sect. 3.

Furthermore, the novelty and significance of CIFS lie in
the fact that it described an event having imprecision with the
help of two complex numbers denoting the degree of mem-
bership and non-membership, respectively. The geometrical
representation of the range of CIFS is similar to that of CFS
depicted in Fig. 1. The following proposition proposed by
Alkouri and Salleh [7] shows the novelty and superiority of
CIFS.

Proposition 1 [7] Every CFS can be considered as CIFS but
not conversely.

Now, some basic notions including complement, equality
and inclusion of CFSs as well as CIFSs are presented. These
notions provide bases for the new proposed work.

Definition 5 [7] For a two CIFNs A �
{
TA(x) · e2Π i ·WTA (x),

FA(x) · e2Π i ·WFA (x)
}
and B �

{
TB(x) · e2Π i ·WTB (x), FB

(x) · e2Π i ·WFB (x)
}

1. A ⊆ B if TA(x) ≤ TB(x), FA(x) ≥ FB(x) and WTA
(x) ≤ WTB (x), WFA(x) ≥ WFB (x).

2. A � B iff TA(x) � TB(x), FA(x) � FB(x) and WTA
(x) � WTB (x), WFA (x) � WFB (x).

3. Ac �
{
FA(x) · e2Π i ·WFA (x), TA(x) · e2Π i ·WTA (x)

}
.

The man key feature of CFS and CIFS is that these frame-
works describe the uncertainty in a way that the chances of
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Fig. 1 Range of complex fuzzy set

losing information such as periodicity or phase shift, etc. It
is noted that the existing definition of CIFS does not discuss
the hesitancy degree of an uncertain event, as demonstrated
in Sect. 2. Furthermore, the framework of CIFS has its limi-
tations in its range, as in some cases, the sum of membership
and non-membership grades exceeds 1. To overcome this
limitation, we propose the concept of CPFS.

Complex Pythagorean fuzzy set

In this section, we define CPFS and describe its novelty using
somenumerical examples alongwith somegeometrical inter-
pretations. It is also explained that a CFS and CIFS can be
regarded as CPFS; however, converse is not true. Some basic
operations of CPFSs are also proposed and supported with
examples.

First, we redefine the CIFS, as the existing definition pro-
vides no information about the hesitancy degree of CIFS.

Definition 6 ACIFS C is defined as: C �
{(x , MC (x), NC (x))/x ∈ X}, where MC : U →
{z1 : z1 ∈ C , |z1| ≤ 1} NC : U → {z2 : z2 ∈ C , |z2| ≤ 1},
such thatMC (x) � z1 � a1+ib1 and NC (x) � z2 � a2+ib2

provided that 0 ≤ |z1| + |z2| ≤ 1 or MC (x) � TC
(x) · e2Π i ·WTC (x) and NC (x) � FC (x) · e2Π i ·WFC (x) satisfy-
ing the conditions: 0 ≤ TC (x) + FC (x) ≤ 1 and 0 ≤ WTC
(x)+WFC (x) ≤ 1. The term HC (x) � R ·e2Π i ·WR , such that
R � 1− (|z1| + |z2|) andWR(x) � 1− (

WTC (x) +WFC (x)
)

is considered as hesitancy degree of x . Furthermore, C �(
T · e2Π i ·WT , F · e2Π i ·WF

)
is called CIFN.

Definition 7 ACPFS C is defined as C �
{(x , MC (x), NC (x))/x ∈ X}, where MC : U →
{z1 : z1 ∈ C , |z1| ≤ 1} NC : U → {z2 : z2 ∈ C , |z2| ≤ 1},
such thatMC (x) � z1 � a1+ib1 and NC (x) � z2 � a2+ib2
provided that 0 ≤ |z1|2 + |z2|2 ≤ 1 or MC (x) � TC
(x) · e2Π i ·WTC (x) and NC (x) � FC (x) · e2Π i ·WFC (x) sat-
isfying the conditions: 0 ≤ T 2

C (x) + F2
C (x) ≤ 1 and

0 ≤ W 2
TC

(x) + W 2
FC

(x) ≤ 1. Moreover, the term HC

(x) � R · e2Π i ·WRc (x), such that R � √
1 − (|z1| + |z2|)

and WR(x) �
√
1 − (

WTC (x) +WFC (x)
)

is consid-
ered as hesitancy degree of x . Furthermore, C �(
T · e2Π i ·WT , F · e2Π i ·WF

)
is called CPyFN.
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The membership and non-membership grades of CPFS
are clearly complex numbers in polar/Cartesian form. These
two types of notations are interconvertible as follows:

MC (x) � TC (x) · e2Π i ·WTC (x)

� TC (x) · (
Cos2ΠWTC (x) + iSin2ΠWTC (x)

)

� a1 + ib1 � z1,

NC (x) � FC (x) · e2Π i ·WFC (x)

� FC (x) · (
Cos2ΠWFC (x) + iSin2ΠWFC (x)

)

� a2 + ib2 � z2.

The reason to develop the concept of CPFS is that in some
cases information could not be processed using CIFS and
CFS. Already in [7], the authors proved the generalization
and superiority of CIFS over CFS with the help of some
results and examples. Here we demonstrate the limitation of
CIFS and established the superiority of CPFS.

Consider an example of CIFS of the form {(x ,
(0.399134 + 0.0263i), (0.399134 + 0.0263i)0.4ei2Π(0.6),
0.5ei2Π(0.4))}. This set satisfies the basic defini-
tion of CIFS as |0.399134 + 0.0263i| � 0.4 and
|0.499519 + 0.021925i| � 0.5 and 0 ≤ 0.4 + 0.5 ≤ 1. The
polar form of this CIFN is

{(
x , 0.4ei2Π(0.6), 0.5ei2Π(0.4)

)}
.

On the other hand, consider the representation of an
uncertain event as {(x , 0.698948 + 0.038363i, 0.597693 +
0.05257i)}. Then, |0.698948 + 0.038363i| � 0.7 and
|0.597693 + 0.05257i| � 0.6 and 0 ≤ 0.7 + 0.6�1. This
means that CIFS is not enough to deal with this type of
information. However, the concept of CPFS can handle such
information 0 ≤ 0.72 + 0.62 � 0.85 ≤ 1. Hence, the
number, {(x , 0.698948 + 0.038363i, 0.597693 + 0.05257i)}
which can be written as

{(
x , 0.7ei2Π(0.5), 0.6ei2Π(0.8)

)}
, is

considered as a CPyFN.
Figure 2 shows the comparison of the restrictions of CIFS

and CFS.
Now, the basic operations such as inclusion, complement,

and equality of CPFSs are presented which are analogous to
operations of CIFSs and CFSs.

Proposition 2 Every CIFS can be considered as CPFS but
not conversely.

Proof Straightforward from Definitions 6 and 7.

Definition 8 For a two CPyFNs A �{
TA(x) · e2Π i ·WTA (x), FA(x) · e2Π i ·WFA (x)

}
and B �{

TB(x) · e2Π i ·WTB (x), FB(x) · e2Π i ·WFB (x)
}
, then

1. A ⊆ B if TA(x) ≤ TB(x), FA(x) ≥ FB(x) and WTA
(x) ≤ WTB (x), WFA (x) ≥ WFB (x).

Fig. 2 Comparisons of restrictions of CIFS and CPFS

2. A � B iff TA(x) � TB(x), FA(x) � FB(x) and WTA
(x) � WTB (x), WFA (x) � WFB (x).

3. Ac �
{
FA(x) · e2Π i ·WFA (x), TA(x) · e2Π i ·WTA (x)

}
.

Definition 9 Ascore function S and accuracy function H on
τ � (

T · e2Π i ·WT , F · e2Π i ·WF
)
is defined as:

S(τ ) � (T − F) +
1

2Π
(2Π · WT − 2Π · WF )

H(τ ) � (T + F) +
1

2Π
(2Π · WT + 2Π · WF ),

where S(τ ) ∈ [−2, 2] and H(τ ) ∈ [0, 2].

Definition 10 An order relation between two CPyFNs τ and
τ̇ is of the form:

1. If S(τ ) > S(τ̇ ), then τ > τ̇ ; similarly, if H(τ ) > H(τ̇ ),
then τ > τ̇ .

2. If S(τ ) � S(τ̇ ), then τ � τ̇ ; similarly, if H(τ ) � H(τ̇ )

then τ � τ̇ .

Distancemeasures of CPFSs

The purpose of this section is to develop some DMs,WDMs,
and GWDMs for CPFSs. Throughout this article, ω �
(ω1, ω2, . . . , ωn)

T represents the weight vector, where ωi ∈
[0, 1],

∑n
i�1 ωi � 1, and A, B, C be three CPFSs. Further-

more, ai , bi , ci , , ri ∈ [0, 1], such that ai + bi + ci + ri � 1.
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Definition 11 A DM for CPFS is defined as

D1
CPyFS(A, B)

� 1

2

n∑
i�1

[(
a1 · ∣∣T 2

A(xi ) − T 2
B(xi )

∣∣ + b1 · ∣∣F2
A(xi ) − F2

B(xi )
∣∣

+ c1 · max
(∣∣T 2

A(xi ) − T 2
B(xi )

∣∣, ∣∣F2
A(xi ) − F2

B(xi )
∣∣))

+
1

2Π

(
a2 ·

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣
+ b2 ·

∣∣∣2ΠWF2
A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣
+ c2 · max

(∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣,
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣
))]

. (1)

The above D1
CPyFS(A, B) satisfies the following proper-

ties:

1. 0 ≤ D1
CPyFS(A, B) ≤ 1.

2. D1
CPyFS(A, B) � D1

CPyFS(B, A).

3. D1
CPyFS(A, B) � 1 if A � B, i.e., TA(x) � TB(x), FA

(x) � FB(x) and WTA (x) � WTB (x), WFA(x) � WFB

(x).
4. If A ⊆ B ⊆ C , then D1

CPyFS(A, C) > D1
CPyFS(A, B)

and D1
CPyFS(A, C) > D1

CPyFS(B, C).

Proof The condition 0 ≤ D1
CPyFS(A, B) obviously holds

true. Next, consider

D1
CPyFS(A, B)

� 1

2

n∑
i�1

[(
a1 · ∣∣T 2

A(xi ) − T 2
B(xi )

∣∣ + b1 · ∣∣F2
A(xi ) − F2

B(xi )
∣∣

+ c1 · max
(∣∣T 2

A(xi ) − T 2
B(xi )

∣∣, ∣∣F2
A(xi ) − F2

B(xi )
∣∣))

+
1

2Π

(
a2 ·

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣
+ b2 ·

∣∣∣2ΠWF2
A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣
+ c2 · max

(∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣,
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣
))]

� 1

2

n∑
i�1

[
(a1 · 1 + b1 · 1 + c1 · max(1, 1))

+
1

2Π
(a2 · 2Π + b2 · 2Π + c2 · max(2Π , 2Π))

]

� 1

2

n∑
i�1

[
(a1 + b1 + c1) +

2Π

2Π
(a2 + b2 + c2)

]
.

As a1 + b1 + c1 � 1 and a2 + b2 + c2 � 1. Therefore,

� 1

2

n∑
i�1

[
(a1 + b1 + c1) +

2Π

2Π
(a2 + b2 + c2)

]
� 2

2
� 1.

Therefore, 0 ≤ D1
CPyFS(A, B) ≤ 1.

The conditions (2) and (3) are straightforward. To prove
(4), using Definition 8, we have 1 ≥ T 2

A(xi ) ≥ T 2
B(xi ) ≥ T 2

C
(xi ) ≥ 0 and 2Π ≤ 2ΠWT 2

A
(xi ) ≤ 2ΠWT 2

B
(xi ) ≤ 2ΠWT 2

C
(xi ) ≤ 0. Therefore,

∣∣∣T 2
A(xi ) − T 2

B(xi )
∣∣∣ ≤

∣∣∣T 2
A(xi ) − T 2

C (xi )
∣∣∣

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣ ≤
∣∣∣2ΠWT 2

A
(xi ) − 2ΠWT 2

C
(xi )

∣∣∣
∣∣∣F2

A(xi ) − F2
B(xi )

∣∣∣ ≤
∣∣∣F2

A(xi ) − F2
C (xi )

∣∣∣
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣ ≤
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

C
(xi )

∣∣∣.

Therefore, D1
CPyFS(A, B) ≤ D1

CPyFS(A, C). Similarly,

D1
CPyFS(B, C) ≤ D1

CPyFS(A, C).

Definition 12 The DM of two CPFS is defined as:

D2
CPyFS(A, B)

� 1

2

n∑
i�1

[(
a1 ·

∣∣∣T 2
A(xi ) − T 2

B (xi )
∣∣∣ + b1 ·

∣∣∣F2
A(xi ) − F2

B (xi )
∣∣∣

+ r1 ·
∣∣∣R2

A(xi ) − R2
B (xi )

∣∣∣

+ c1.max
(∣∣∣T 2

A(xi ) − T 2
B (xi )

∣∣∣,
∣∣∣F2

A(xi ) − F2
B (xi )

∣∣∣,
∣∣∣R2

A(xi ) − R2
B (xi )

∣∣∣
))

+
1

2Π

(
a2 ·

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣ + b2 ·
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣

+ r2 ·
∣∣∣2ΠWR2

A
(xi ) − 2ΠWR2

B
(xi )

∣∣∣

+ c2 · max
(∣∣∣2ΠWT 2

A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣,
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣,
∣∣∣2ΠWR2

A
(xi ) − 2ΠWR2

B
(xi )

∣∣∣
)]

. (2)

The above D2
CPyFS(A, B) satisfies the following proper-

ties:

1. 0 ≤ D2
CPyFS(A, B) ≤ 1.

2. D2
CPyFS(A, B) � D2

CPyFS(B, A).

3. D2
CPyFS(A, B) � 1 if A � B, i.e., TA(x) � TB(x), FA

(x) � FB(x), RA(x) � RB(x) and WTA (x) � WTB (x),
WFA(x) � WFB (x), WRA (x) � WRB (x).

4. If A ⊆ B ⊆ C , then D2
CPyFS(A, C) > D2

CPyFS(A, B)

and D2
CPyFS(A, C) > D2

CPyFS(B, C).

Now, the proposed DMs are further extended to weighted
distance measure, because in real-life problems, the weight
of the opinion of experts does matter sometimes.
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Definition 13 The WDM for CPFS is defined as

(3)WD1
CPyFS (A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi

[(
a1 ·

∣∣∣T 2
A (xi ) − T 2

B (xi )
∣∣∣ + b1.

∣∣∣F2
A (xi ) − F2

B (xi )
∣∣∣

+ c1 · max
(∣∣∣T 2

A (xi ) − T 2
B (xi )

∣∣∣ ,
∣∣∣F2

A (xi ) − F2
B (xi )

∣∣∣
))

+
1

2Π

(
a2 ·

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣ + b2 ·
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣

+ c2 · max
(∣∣∣2ΠWT 2

A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣ ,
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣
))] ]

.

The above WD1
CPyFS(A, B) satisfies the following prop-

erties:

1. 0 ≤ WD1
CPyFS(A, B) ≤ 1.

2. WD1
CPyFS(A, B) � WD1

CPyFS(B, A).

3. WD1
CPyFS(A, B) � 1 if A � B, i.e.,TA(x) � TB(x), FA

(x) � FB(x) and WTA (x) � WTB (x), WFA(x) � WFB

(x).
4. If A ⊆ B ⊆ C , then WD1

CPyFS(A, C) > WD1
CPyFS

(A, B) and WD1
CPyFS(A, C) > WD1

CPyFS(B, C).

Definition 14 The WDM for CPFS is defined as

WD2
CPyFS(A, B) � 1

2
∑n

i�1 ωi[
n∑

i�1

ωi

[(
a1 ·

∣∣∣T 2
A(xi ) − T 2

B (xi )
∣∣∣ + b1 ·

∣∣∣F2
A(xi ) − F2

B (xi )
∣∣∣ + r1

·
∣∣∣R2

A(xi ) − R2
B (xi )

∣∣∣

+ c1 · max
(∣∣∣T 2

A(xi ) − T 2
B (xi )

∣∣∣ ·
∣∣∣F2

A(xi ) − F2
B (xi )

∣∣∣ ·
∣∣∣R2

A(xi ) − R2
B (xi )

∣∣∣
))

+
1

2Π

(
a2 ·

∣∣∣2ΠWT 2
A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣ + b2 ·
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣

+ r2 ·
∣∣∣2ΠWR2

A
(xi ) − 2ΠWR2

B
(xi )

∣∣∣

+ c2 · max
(∣∣∣2ΠWT 2

A
(xi ) − 2ΠWT 2

B
(xi )

∣∣∣,
∣∣∣2ΠWF2

A
(xi ) − 2ΠWF2

B
(xi )

∣∣∣,
∣∣∣2ΠWR2

A
(xi ) − 2ΠWR2

B
(xi )

∣∣∣
))]]

. (4)

The above WD2
CPyFS(A, B) satisfies the following prop-

erties:

1. 0 ≤ WD2
CPyFS(A, B) ≤ 1.

2. WD2
CPyFS(A, B) � WD2

CPyFS(B, A).

3. WD2
CPyFS(A, B) � 1 if A � B, i.e., TA(x) � TB(x),

FA(x) � FB(x), RA(x) � RB(x) and WTA (x) � WTB
(x), WFA(x) � WFB (x), WRA(x) � WRB (x).

4. If A ⊆ B ⊆ C , then WD2
CPyFS(A, C) > WD2

CPyFS

(A, B) and WD2
CPyFS(A, C) > WD2

CPyFS(B, C).

Application

The purpose of this section is to utilize the DMs developed
in Sect. 4 in practical problems; here, we solve the famous
building material recognition problem using developed DMs
of CPFSs.

Buildingmaterial recognition problem

In this type of problems, the aim is to identify the class
of unknown building material using the degree of distance
measure of unknown material with that of known building
materials. The detailed steps of algorithm for finding the class
of unknown building material are described as:

1. Obtained the information about the knownbuildingmate-
rials in the form of CPFSs.

2. Compute the distance measure of unknownmaterial with
known building material.

3. Rank the distance measures to find out the class of
unknown material.

The following example is to demonstrate the building
material recognition problem.

Example 1 Consider four building material, such as sealant,
floor varnish, wall paint, and polyvinyl chloride flooring rep-
resented by fourCPyFNs Ai (i � 1, 2, 3, 4)with attribute set
denoted by X � {x1, x2, x3, x4, x5, x6, x7} and the weight
vector of attribute is ω � (0.11, 0.14, 0.1, 0.18, 0.21,
0.10, 0.16)T. Let A be the unknownbuildingmaterial, whose
class is needed to bedetermine.The information about known
and unknown building material in the form of CPyFNs is
provided in Table 2. The detailed steps of this process are
demonstrated as follows.

1. In this step, the decision makers provide their prefer-
ences about the known building materials with which the
distance degree of unknown building material is to be
determined. The information of the decision makers is
given in Table 2.

2. This step involves the measurement of distance measures
of each known material with that of unknown material.
The weighted distance measures given in Eq. (3) are uti-
lized to obtain the distance measure. The results obtained
using Eq. (3) with {a1 � 0.3, b1 � 0.5, c1 � 0.2} and
{a2 � 0.1, b2 � 0.2, c2 � 0.7} are provided in Table 3.

Here, the distance measure defined in Eq. (4) is utilized to
compute the distancemeasures between known and unknown
building materials. The concept of WD2

CPyFS(Ai , A), i � 1,
2, 3, 4 for CPFS is applied in Table 1. The results obtained
using Eq. (4) with {a1 � 0.3, b1 � 0.4, c1 � 0.2, r1 � 0.1}
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Table 2 Complex Pythagorean fuzzy information about known and unknown materials

A1 A2 A3 A4 A

x1
(
0.8ei ·2Π(0.7), 0.3ei ·2Π(0.4)

) (
0.7ei ·2Π(0.5), 0.4ei ·2Π(0.7)

) (
0.5ei ·2Π(0.6), 0.7ei ·2Π(0.5)

) (
0.7ei ·2Π(0.6), 0.3ei ·2Π(0.5)

) (
1 · ei ·2Π , 0

)

x2
(
0.7ei ·2Π(0.6), 0.5ei ·2Π(0.6)

) (
0.6ei ·2Π(0.7), 0.6ei ·2Π(0.5)

) (
0.6ei ·2Π(0.5), 0.5ei ·2Π(0.6)

) (
0.8ei ·2Π(0.5), 0.4ei ·2Π(0.6)

) (
1 · ei ·2Π , 0

)

x3
(
0.9ei ·2Π(0.4), 0.2ei ·2Π(0.7)

) (
0.8ei ·2Π(0.8), 0.3ei ·2Π(0.3)

) (
0.3ei ·2Π(0.6), 0.3ei ·2Π(0.6)

) (
0.7ei ·2Π(0.6), 0.5ei ·2Π(0.3)

) (
1 · ei ·2Π , 0

)

x4
(
0.6ei ·2Π(0.6), 0.5ei ·2Π(0.5)

) (
0.8ei ·2Π(0.9), 0.3ei ·2Π(0.1)

) (
0.5ei ·2Π(0.7), 0.5ei ·2Π(0.5)

) (
0.4ei ·2Π(0.8), 0.7ei ·2Π(0.2)

) (
1 · ei ·2Π , 0

)

x5
(
0.5ei ·2Π(0.3), 0.6ei ·2Π(0.7)

) (
0.6ei ·2Π(0.3), 0.5ei ·2Π(0.6)

) (
0.6ei ·2Π(0.7), 0.6ei ·2Π(0.3)

) (
0.7ei ·2Π(0.6), 0.5ei ·2Π(0.2)

) (
1 · ei ·2Π , 0

)

x6
(
0.4ei ·2Π(0.6), 0.7ei ·2Π(0.6)

) (
0.2ei ·2Π(0.7), 0.8ei ·2Π(0.2)

) (
0.8ei ·2Π(0.6), 0.3ei ·2Π(0.5)

) (
0.6ei ·2Π(0.8), 0.5ei ·2Π(0.3)

) (
1 · ei ·2Π , 0

)

x7
(
0.2ei ·2Π(0.2), 0.5ei ·2Π(0.8)

) (
0.1ei ·2Π(0.6), 0.9ei ·2Π(0.5)

) (
0.2ei ·2Π(0.5), 0.8ei ·2Π(0.5)

) (
0.8ei ·2Π(0.7), 0.3ei ·2Π(0.4)

) (
1 · ei ·2Π , 0

)

Table 3 Distance measures of
known and unknown quantities
using WD1

CPyFS

WD1
CPyFS(A1, A) WD1

CPyFS(A2, A) WD1
CPyFS(A3, A) WD1

CPyFS(A4, A)

0.568 0.077 0.079 0.067

Table 4 Distance measures of
known and unknown quantities
using WD2

CPyFS

WD2
CPyFS(A1, A) WD2

CPyFS(A2, A) WD2
CPyFS(A3, A) WD2

CPyFS(A4, A)

0.270 0.282 0.275 0.288

Table 5 Ranking of distance measures

Ranking

Using Eq. (3) A1 > A3 > A2 > A4

Using Eq. (4) A4 > A2 > A3 > A1

and {a2 � 0.1, b2 � 0.2, c2 � 0.6, r2 � 0.1} are provided
in Table 4.

3. This step involves the ranking of distance measures of
obtained using Eqs. (3) and (4). The ranking of known
building materials based on distance measures is pro-
vided in Table 5. The unknown buildingmaterial belongs
to the class with which its distance measure is the least.

The analysis of information obtained in Table 5 shows that
using the weighted distance measure defined in Eq. (3), the
class of unknown building material is A4, i.e., the unknown
building material belongs to the class of polyvinyl chloride
flooring. This is because the unknown building material has
least distance measure with polyvinyl chloride flooring. On
the other hand, if we use the distance measure defined in
Eq. (4), the unknown building material seems to belong
to class A1, i.e., sealant due to its least distance measure
value with A1. The results obtained using Eq. (4) are con-
sidered as more accurate due to the fact that the distance
measure defined in Eq. (4) takes into account the hesitancy
degree of the information along with membership and non-
membership values.

Comparative study

In this section, we established the comparison of the pro-
posed distance measures of CPFSs with PFS, CIFS, IFS,
CFS, and FS. With the help of some restrictions on the
proposedDMs, it is proposed that theseDMs reduce the envi-
ronments of PFS, CIFS, IFS, CFS, and FS. The comparison is
demonstrated in Remarks 1–5. We have also considered the
numerical data in other fuzzy environments and show appli-
cability of the proposed work distance measures in those
situations.

Remark 1 The DMs proposed in Eqs. (3) and (4) for CPFSs
reduce to the environment of PFSs if we considered the imag-
inary part as zero as defined in Eqs. (5) and (6):

WD1
PyFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi
[(
a1 · ∣∣T 2

A(xi ) − T 2
B(xi )

∣∣

+ b1 · ∣∣F2
A(xi ) − F2

B(xi )
∣∣ + c1.max

(∣∣TAss2(xi ) − T 2
B(xi )

∣∣,
∣∣F2

A(xi ) − F2
B(xi )

∣∣))]
]
, (5)

WD2
PyFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi

[(
a1 ·

∣∣∣T 2
A(xi ) − T 2

B(xi )
∣∣∣

+ b1 ·
∣∣∣F2

A(xi ) − F2
B(xi )

∣∣∣ + r1 ·
∣∣∣R2

A(xi ) − R2
B(xi )

∣∣∣
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+ c1 · max
(∣∣∣T 2

A(xi ) − T 2
B(xi )

∣∣∣,
∣∣∣F2

A(xi ) − F2
B(xi )

∣∣∣,
∣∣∣R2

A(xi ) − R2
B(xi )

∣∣∣
))]]

. (6)

Remark 2 The DMs proposed in Eqs. (3) and (4) for CPFSs
reduce to the environment of CIFSs if the constraint 0 ≤
|z1|2 + |z2|2 ≤ 1 is replaced by 0 ≤ |z1| + |z2| ≤ 1, i.e., 2 is
replaced by 1, as defined in Eqs. (7) and (8):

WD1
CIFS(A, B) � 1

2
∑n

i�1 ωi[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )| + b1 · |FA(xi ) − FB(xi )|

+ c1.max(|TA(xi ) − TB(xi )|, |FA(xi ) − FB(xi )|))
+

1

2Π

(
a2 · ∣∣2ΠWTA (xi ) − 2ΠWTB (xi )

∣∣
+ b2 · ∣∣2ΠWFA (xi ) − 2ΠWFB (xi )

∣∣
+ c2 · max

(∣∣2ΠWTA (xi ) − 2ΠWTB (xi )
∣∣,

∣∣2ΠWFA (xi ) − 2ΠWFB (xi )
∣∣))]

]
, (7)

WD2
CIFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ b1 · |FA(xi ) − FB(xi )| + r1 · |RA(xi ) − RB(xi )|
+ c1 · max(|TA(xi ) − TB(xi )|,
|FA(xi ) − FB(xi )|, |RA(xi ) − RB(xi )|))
+

1

2Π

(
a2 · ∣∣2ΠWTA (xi ) − 2ΠWTB (xi )

∣∣
+ b2.

∣∣2ΠWFA(xi ) − 2ΠWFB (xi )
∣∣

+ r2 · ∣∣2ΠWRA(xi ) − 2ΠWRB (xi )
∣∣

+ c2 · max
(∣∣2ΠWTA(xi ) − 2ΠWTB (xi )

∣∣,∣∣2ΠWFA(xi ) − 2ΠWFB (xi )
∣∣,

∣∣2ΠWRA(xi ) − 2ΠWRB (xi )
∣∣))]

]
. (8)

Remark 3 The DMs proposed in Eqs. (3) and (4) for CPFSs
reduce to the environment of IFSs as defined in Eqs. (9) and
(10).

WD1
CPyFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ b1 · |FA(xi ) − FB(xi )|

+ c1 · max(|TA(xi ) − TB(xi )|, |FA(xi ) − FB(xi )|))]
]

(9)

WD2
CPyFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ b1 · |FA(xi ) − FB(xi )| + r1 · |RA(xi ) − RB(xi )|
+ c1 · max(|TA(xi ) − TB(xi )|, |FA(xi ) − FB(xi )|,

|RA(xi ) − RB(xi )|))]
]
. (10)

Remark 4 The DMs proposed in Eqs. (3) and (4) for CPFSs
reduce to the environment of CFSs as defined in Eqs. (11)
and (12) [6]:

WD1
CFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ c1 · max(|TA(xi ) − TB(xi )|))
+

1

2Π

(
a2 · ∣∣2ΠWTA(xi ) − 2ΠWTB (xi )

∣∣

+ c2 · max
(∣∣2ΠWTA (xi ) − 2ΠWTB (xi )

∣∣))
]
, (11)

WD2
CFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ r1 · |RA(xi ) − RB(xi )|
+ c1 · max(|TA(xi ) − TB(xi )|, |RA(xi ) − RB(xi )|))
+

1

2Π

(
a2 · ∣∣2ΠWTA(xi ) − 2ΠWTB (xi )

∣∣
+ r2 · ∣∣2ΠWRA(xi ) − 2ΠWRB (xi )

∣∣
+ c2 · max

(∣∣2ΠWTA(xi ) − 2ΠWTB (xi )
∣∣,

∣∣2ΠWRA(xi ) − 2ΠWRB (xi )
∣∣))]

]
. (12)

Remark 5 The DMs proposed in Eqs. (3) and (4) for CPFSs
reduce to the environment of IFSs as defined in Eqs. (13) and
(14) [29]:

WD1
CFS(A, B) � 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1 · |TA(xi ) − TB(xi )|

+ c1 · max(|TA(xi ) − TB(xi )|))]
]

(13)

WD2
CFS(A, B)

� 1

2
∑n

i�1 ωi

[
n∑

i�1

ωi [(a1.|TA(xi ) − TB(xi )|
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Table 6 Complex intuitionistic fuzzy information about known and unknown materials

A1 A2 A3 A4 A

x1
(
0.7ei ·2Π(0.1), 0.3ei ·2Π(0.4)

) (
0.6ei .2Π(0.2), 0.4ei .2Π(0.5)

) (
0.5ei ·2Π(0.2), 0.4ei ·2Π(0.4)

) (
0.7ei ·2Π(0.6), 0.3ei ·2Π(0.3)

) (
1 · ei ·2Π , 0

)

x2
(
0.3ei ·2Π(0.4), 0.5ei ·2Π(0.6)

) (
0.4ei ·2Π(0.3), 0.6ei ·2Π(0.4)

) (
0.6ei ·2Π(0.5), 0.3ei ·2Π(0.5)

) (
0.6ei ·2Π(0.4), 0.4ei ·2Π(0.2)

) (
1 · ei ·2Π , 0

)

x3
(
0.8ei ·2Π(0.3), 0.2ei ·2Π(0.3)

) (
0.7ei ·2Π(0.5), 0.3ei ·2Π(0.3)

) (
0.3ei ·2Π(0.1), 0.3ei ·2Π(0.7)

) (
0.5ei .2Π(0.3), 0.5ei ·2Π(0.6)

) (
1 · ei ·2Π , 0

)

x4
(
0.5ei ·2Π(0.4), 0.5ei ·2Π(0.3)

) (
0.6ei ·2Π(0.7), 0.3ei ·2Π(0.2)

) (
0.5ei ·2Π(0.2), 0.5ei ·2Π(0.3)

) (
0.4ei ·2Π(0.2), 0.5ei ·2Π(0.2)

) (
1 · ei ·2Π , 0

)

x5
(
0.5ei ·2Π(0.4), 0.4ei ·2Π(0.4)

) (
0.6ei ·2Π(0.1), 0.4ei ·2Π(0.2)

) (
0.6ei ·2Π(0.7), 0.3ei ·2Π(0.1)

) (
0.4ei ·2Π(0.4), 0.5ei ·2Π(0.1)

) (
1 · ei ·2Π , 0

)

x6
(
0.4ei ·2Π(0.8), 0.5ei ·2Π(0.1)

) (
0.2ei ·2Π(0.2), 0.8ei ·2Π(0.4)

) (
0.7ei ·2Π(0.4), 0.3ei ·2Π(0.3)

) (
0.4ei ·2Π(0.4), 0.5ei ·2Π(0.2)

) (
1 · ei ·2Π , 0

)

x7
(
0.2ei ·2Π(0.6), 0.5ei ·2Π(0.3)

) (
0.1ei ·2Π(0.4), 0.9ei ·2Π(0.6)

) (
0.2ei ·2Π(0.4), 0.8ei ·2Π(0.4)

) (
0.7ei ·2Π(0.4), 0.3ei ·2Π(0.5)

) (
1 · ei ·2Π , 0

)

Table 7 Distance measures of
known and unknown quantities WD1

CPyFS(A1, A) WD1
CPyFS(A2, A) WD1

CPyFS(A3, A) WD1
CPyFS(A4, A)

0.564 0.0936 0.08669 0.08985

Table 8 Distance measures of
known and unknown quantities WD2

CPyFS(A1, A) WD2
CPyFS(A2, A) WD2

CPyFS(A3, A) WD2
CPyFS(A4, A)

0.02835 0.314 0.294 0.307

Table 9 Ranking of distance measures

Ranking

Using Eq. (3) A3 > A4 > A2 > A1

Using Eq. (4) A1 > A3 > A4 > A2

+ r1.|RA(xi ) − RB(xi )|

+ c1 · max(|TA(xi ) − TB(xi )|, |RA(xi ) − RB(xi )|))]
]
.

(14)

All these results lead us to the point that the proposed dis-
tance measure can be applied to existing problems. Now,
we consider the building material problem in the envi-
ronment of CIFSs. The information of DMs is given in
Table 6.

The distance measure proposed in Eq. (3) with {a1 � 0.3,
b1 � 0.5, c1 � 0.2} and {a2 � 0.1, b2 � 0.2, c2 � 0.7} is
applied to the data presented in Table 6 and the results are
given in Table 7.

The distance measure proposed in Eq. (4) with {a1 � 0.3,
b1 � 0.4, c1 � 0.2, r1 � 0.1} and {a2 � 0.1, b2 � 0.2,
c2 � 0.6, r2 � 0.1} is applied to the data presented in Table 6
and the results are given in Table 8.

The ranking of distancemeasures obtained in Tables 7 and
8 is provided in Table 9.

Hence, the proposed distance measures are successfully
applied to problem in the environment of CIFS. Similarly,
these distance measures can also be applied to other fuzzy
frameworks which are illustrated in Sect. 7. On the other

Table 10 Pythagorean fuzzy information about known and unknown
materials

A1 A2 A3 A4 A

x1 (0.8, 0.3) (0.7, 0.4) (0.5, 0.7) (0.7, 0.3) (1, 0)

x2 (0.7, 0.5) (0.6, 0.6) (0.6, 0.5) (0.8, 0.4) (1, 0)

x3 (0.9, 0.2) (0.8, 0.3) (0.3, 0.3) (0.7, 0.5) (1, 0)

x4 (0.6, 0.5) (0.8, 0.3) (0.5, 0.5) (0.4, 0.7) (1, 0)

x5 (0.5, 0.6) (0.6, 0.5) (0.6, 0.6) (0.7, 0.5) (1, 0)

x6 (0.4, 0.7) (0.2, 0.8) (0.8, 0.3) (0.6, 0.5) (1, 0)

x7 (0.2, 0.5) (0.1, 0.9) (0.2, 0.8) (0.8, 0.3) (1, 0)

hand, none of the existing tools can be applied to problems
lying in the environment of CPFSs.

Advantages

In this section, we demonstrate the advantages of working
in the area of CPFS and DMs of CPFSs. Our claim is that
the proposed distance measures can solve the problem lies in
the region of PFSs, CIFSs, IFSs, CFSs, and FS. On the other
hand, the DMs of PFSs, CIFSs, IFSs, CFSs, and FS could
not handle the information provided in the form of CPFSs.
We prove our claim with the help of some examples.

Suppose we have information about building materials in
the form of PFSs, as shown in Table 10. Then, such problem
can be solved using the restricted version of DMs proposed
in Remark 1.

Suppose we have information about building materials in
the form of IFSs, as shown in Table 11. Then, such problem
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Table 11 Intuitionistic fuzzy information about unknown and known
materials

A1 A2 A3 A4 A

x1 (0.7, 0.3) (0.6, 0.4) (0.5, 0.4) (0.7, 0.3) (1, 0)

x2 (0.3, 0.5) (0.4, 0.6) (0.6, 0.3) (0.6, 0.4) (1, 0)

x3 (0.8, 0.2) (0.7, 0.3) (0.3, 0.3) (0.5, 0.5) (1, 0)

x4 (0.5, 0.5) (0.6, 0.3) (0.5, 0.5) (0.4, 0.5) (1, 0)

x5 (0.5, 0.4) (0.6, 0.4) (0.6, 0.3) (0.4, 0.5) (1, 0)

x6 (0.4, 0.5) (0.2, 0.8) (0.7, 0.3) (0.4, 0.5) (1, 0)

x7 (0.2, 0.5) (0.1, 0.9) (0.2, 0.8) (0.7, 0.3) (1, 0)

Table 12 Complex fuzzy information about unknown and knownmate-
rials

A1 A2 A3 A4 A

x1 0.7ei ·2Π(0.4) 0.6ei ·2Π(0.6) 0.5ei ·2Π(0.2) 0.7ei ·2Π(0.2) 1 · ei ·2Π
x2 0.3ei ·2Π(0.5) 0.4ei ·2Π(0.4) 0.6ei ·2Π(0.3) 0.6ei ·2Π(0.4) 1 · ei ·2Π
x3 0.8ei ·2Π(0.7) 0.7ei ·2Π(0.1) 0.3ei ·2Π(0.5) 0.5ei ·2Π(0.6) 1 · ei ·2Π
x4 0.5ei .2Π(0.9) 0.6ei .2Π(0.3) 0.5ei .2Π(0.7) 0.4ei .2Π(0.8) 1.ei .2Π

x5 0.5ei ·2Π(0.6) 0.6ei ·2Π(0.9) 0.6ei ·2Π(0.9) 0.4ei ·2Π(0.1) 1 · ei ·2Π
x6 0.4ei ·2Π(0.6) 0.2ei ·2Π(0.1) 0.7ei ·2Π(0.3) 0.4ei ·2Π(0.2) 1 · ei ·2Π
x7 0.2ei ·2Π(0.7) 0.1ei ·2Π(0.6) 0.2ei ·2Π(0.4) 0.7ei ·2Π(0.7) 1 · ei ·2Π

can be solved using the restricted version of DMs proposed
in Remark 3.

Suppose we have information about building materials in
the form of CFSs as in Table 12. Then, such problem can
be solved using the restricted version of DMs proposed in
Remark 4.

On the other hand, if we consider the information provided
in Table 2. Neither the DMs of PFS, nor of IFS, CIFS, and
CFS could handle such type of data because of the limita-
tion in their nature. All this discussion shows the superiority
of our proposed work and the limitations of existing struc-
tures.

Conclusion

In this paper, a novel concept of CPFS is introduced due the
limitations exist in the framework of CFS and CIFS. CFS
and CIFS are critically examined and their limitations are
pointed out numerically. The main contributions are:

1. A new definition for CIFS is proposed as well involving
the degree of hesitancy.

2. The concept of CPFS is introduced and its novelty is
discussed.

3. A geometrical comparison of CPFS is established with
CFS and CIFS showing the superiority of CPFS.

4. Some distance measures for CPFSs are proposed and are
applied to a building material recognition problem.

5. Comparative study of CPFS with CFS and CIFS is estab-
lished and advantages of CPFS are studied.

In the near future, we aim to develop some aggrega-
tion operators for CPFS including weighted averaging and
weighted geometric aggregation operators which can be uti-
lized inMADMproblems. The concept of power aggregation
operators can also be established for CPFSs and utilized in
MADM. A study of similarity and entropy measures is also
suggested for future work.
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