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Abstract 

Dual integral equations involving Legendre and associated Legendre functions as kernels are considered in this 
paper. Except for one pair, these dual integral equations are first reduced to solving some appropriate ordinary 
differential eauations. Invoking. the inversion formulae for Abel internal eauations. closed-fonn solutions to - .  
these dual integral equations are obtained in most cases and in other cases they are reduced to some appropri- 
ate Fredholm integral equation of the second kind. For the exceptional dual integral equations pair which in- 
volves the associated Legendre function as kernel, a direct method of the use of Abel integral equation is 
applied to obtain the closed-form solution. As an example of application of these dual integral equations a 
problem arising from mathematical physics is considered. 

Key words: Dual integral equations, Legendre and associated Legendre function kernel, Fredholm integral 
equation of the second kind. 

1. Introduction 

Dual integral equations involving Legendre functions as kernels are encountered in the 
study of certain mixed boundary value problems in mathematical physics. ~abloian' first 
considered some dual integral equations involving ~l,2+i,(cosha) as kernel. He solved 
these equations by using the Mehler-Fok inversion formulae and applied these to solve a 
torsion problem involving a spherical segment in the theory of elasticity. Certain dual in- 
tegral equations involving the associated Legendre function P-$2+i,(cosha), where 
m = 0, 1,2,. . . , were considered by Rukhovets and ufliand2, who reduced these equations 
to the solution of a Fredholm integral eqaution of the second kind. They also applied these 
to solve the problem of an elastic half-space twisted by a hollow cylindrical die. Later, 
Pathak3 considered some dual integral equations involving P<,2+i,(cosha) as kernel, 
where p is not an integer. He exploited the results of some integrals involving 
P!,2+i&osha) to handle these dual integral equations and obtained the closed-form solu- 
tion in some cases and in other cases expressed the solutions in terms of one unknown 
function which satisfies a Fredholm integral equation of the second kind. For ,u = 0, the 
corresponding integral equations were mostly considered by ~abloian'. Recently, ~ a n d a l ~  
also considered certain dual integral equations involving P$,+i,(cosha), where Re ,u < 3. 
and obtained a closed-form solution. 
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In this paper we consider some new classes of dual integral equations involving both 
Legendre function P_,,z+i,(cosha) and the associated Legendre function P~,+i,(cosha) 
(-+ < Rep S 0) as kernels. These dual integral equations are solved by a method based on 
reducing them to solving ordinary differential equations, followed by an appropriate in- 
version formula for Abel integral equations. A somewhat similar idea has recently been 
used by Srivastava and ~rivastava' for studying some dual integral equation involving 
Bessel functions as kernel. We obtain the closed-form solution in some cases and in other 
cases the dual integral equations are reduced to solving Fredholm integral equations of the 
second kind. As an application to physical problems, a boundary value problem in elastic- 
ity involving a half-space under torsion due to an attached rigid annular die is considered. 

2. Dual integral equations involving the Legendre function as kernel 

In this section, we consider three pairs of dual integral equations with the Legendre func- 
tion as kernel. 

(A) The first is 

j ~ r 2 ~ ( z ) ~ - l i 2 + i r ( ~ ~ ~ h a )  dz = f (a), 0 5 o 5 a, 1 

where f(a) is a prescribed function and A(z) is an unknown. 

To solve these, we assume that 

where )(a) is an unknown for 0 5 a <  a. It follows from the second equation of (1) and 
(2). by using Mehler-Fok transform formulae (see sneddon6), that 

A(z) = jo4@(a) P_,,+i,(cosha)sinha da. (3) 

Substituting this expression for A(s)  in the first equation of (I), we fmd 

Equation (4) is now equivalent to the differential equation 
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The solution of ( S ) ,  by the method of variation of parameter, is 

where the constants C1 and C2 are arbitrary. They are to be determined from physical 
considerations of the problems. Of these, the constant C2 must be zero in order that u(a) is 
finite for a = 0. The constant CI will be determined later. 

Interchanging the order of integration and then using the result (which can be estab- 
lished by using the integral representation of the Legendre function) 

and again interchanging the order of integration, (6) reduces to the Abel's integral equa- 
tion 

so that 

where 

~ ( x )  = s i n h x s  U'(t) df. 
0 (coshx - c o ~ h t ) " ~  

Another use of Abel's inversion formula6 gives 

1 d y(t)sinht dt, 
sinhx g(x) = ----I 

7~ (cosht - coshx)'" 
(10) 

This gives the complete solution of dual integral equations (1) provided the constant C1 
is determined. This is found from the fact that y(a) = 0, which arises from the physical 
requirement involving the continuity of $(a) at a=  a. Hence, the constant CI is deter- 
mined by the equation 

(B) The second pair is 
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where p is real. The pair (12) is a generalisation of the pair (1) in the sense that for p = 0 
these are reduced to the pair (1). 

To solve the pair (12), we assume 

where )(a) is unknown for 0 5 a 5 a. Thus, 

Substituting (14) into the first equation of (12), we find 

[(r2 -P2)~-m+ii(~oshff) [ J ~ @ ( P ) P ~ ~ I ~ + ~ ~ ( C ~ ~ ~ P ) S ~ * P ~ P  1 d r  = f (a), 0 b a b 0, (15) 

This is equivalent to the differential equation 

where now 

-~-112+~,Jcosha)~ f (t)Kl12+, (coshr)sinhr dt. 

Since u(a) must be f ~ t e  at a= 0, the constant C2 must be equal to zero. Now, proceeding 
as before, the solution of the pair (12) can be obtained. 

(C) Next we consider the pair 

I'wthm ~ ( r ) ~ - ~ ~ ~ + ~ ~ ( c o s h a ) d z  = f (or), 0 5 n 5 a, 

[ [ k + f l ( r 2  +c2)cothm] A(z) ~,,+i,(cosha)dz = 0, a b a < =-, 

where A, ,u are red constants and c > ). 
When ,u= 0, equation (19) reduces to the pair considered by Babloianl (writing 

B ( 3  = coth mA(r)). 
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When 1 = 0 but p # 0, (19) reduces to the pair 

whose solution can be obtained in a similar manner as in case (A), and the solution in this 
case is given by (after utilizing the result (2) on p. 170 of Erdelyi et af involving Legen- 
dre functions in the simplification) 

When both Rand pare not zero, we can write the second equation of (19) as 

cothm A(T)E,,+~~ ( c o s h a ) d W ,  a c: a < -. (22) 

This is equivalent to the differential equation 

where now 

tanhm cothm A(z)P-l,+i, (cosha)dz. I 
The solution of (23) is 

Since u(a) must remain finite as a tends to i n f ~ t y  and c > +, we must have CI = 0. 
Thus, (24) gives 

The first equation of (19) and (25) produces A(r) by Mehler-Fok inversion. After some 
simplification, we find 
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The continuity requirement at a = a gives 

Using (27) in (26),  we obtain the Fredhofm integral equation (FIE) of the second kind 
for A(T) as 

where 
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3. Dual integral equation involving associated Legendre function as kernel 

In this section, we consider four pairs of dual integral equations with associated Legendre 
function as kernel. 

(A) The first pair is 

where -{ c. Re p < 0 

To solve (29), we assume the right-hand side of the second equation to be equal to the 
unknown function ( ( a )  for 0 5 a S a, so that by applying generalized Mehler-Fok inver- 
sion formulae (cf. (2.14) and (2.15) of ~athak') we find 

Using (30), then interchanging the order of integration and using the result (which can 
be established by using the integral representation of associated Legendre function) 

-2 =[rif - P i ]  [sinh. anhpjY 

in the first equation of (29), we obtain the Abel's integral equation 

so that 
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Another Abel's inversion gives 

Hence, the solution of the dual integral equations (29) is obtained, after some elemen- 
tary calculations and using the result (2.12) of path&' as 

This result was earlier obtained by pathak3. For ,u = 0, this also reduces to the known re- 
sult obtained by ~abloian'. 

(B) Next we consider the pair 

where -+ < Re ,u 5 0 

As before, we assume the right-hand side of the second equation (36)  to be the unknown 
function ((a) for 0 5 a 2 a. Then by the generalized Mehler-Fok inversion formulae (cf. 
(2.14) and (2.15) of pathak3), we obtain 

Substituting A(z) in the first equation of (36), we have 

This is equivalent to the differential equation 

The solution of (39) is 
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x PJi2 (cosha) % sinht Q!l,2 (cosht ) f (!)dl - QfIi2 (cosha) 

where C1 and C2 are arbitrary constants to be detennined from physical considerations of 
the problems. Since u(a) must be bounded at a= 0 and -f < Re p 5 0, C2 must be zero. 
The constant C1 will be determined later. 

As before, (40) gives rise to 

from which we find another Abet integral equation 

=y(x), say, for - + < R e p r o ,  O r x < o ,  

so that 

This gives the complete solution of dual integral equations (36) provided the constant 
C, is determined. This constant C1 is obtained from the fact that Y(a) = 0 if ((x) is to be 
continuous at x = a. Therefore, the constant C1 is obtained from the equation 

P % {u(t) sinh-' t} dt = 0 
o (cosha - c ~ s h t ) " ~ - ~  

For p =  0, the dual integral equations together with the solution are the same as in 
Section 2(A). 

(C) Next, we consider the pair 

where -+ < Re p 5 0 and vis real. 

As before, we assume the right-hand side of the second equation of (45) to be the un- 
known function ((a) for 0 < a< a. By using the generalized Mehler-Fok inversion for- 
mulae cited above, we find 



574 NANIGOPAL MANDAL AND B.  N. MANDAL 

Substituting this into the first equation of (45) we find 

(46) 

This is equivalent to the differential equation 

where now 

The solution of (47) is 

-Q!,,2+iv(~o~ha) Ioasinht P?;,Z+iv(~o~hf) f (t) dt . 1 (49) 

Since u(a) must be finite at a=  0 and -5 i Re ,u 5 0, the constant Cz = 0. Now proceed- 
ing as in Section 3(B) we obtain @ ( x )  (0 < x  < a)  and the constant CI by the equations (43) 
and (44), respectively, with u(a) given by (49). This gives the complete solution of the 
dual integral equations (45). 

(D) Finally, we consider the pair 

i [ ( - + i i ) ( - - i ) ]  cosech mA(i)P$,2+,7(mrhz) d i  = f(a),  0 S a  6 u 1 

where -f c Re p i 0,  a,, fl, are real and c > $ 
For PI  = 0, the equations (50) are reduced to the pair (29) by redefining A(7) 

appropriately. 
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When 21 = 0 but .P I#  0, the solution to the dual integral equations can be obtained as 
before and is given by (after utilizing the result (1) on p. 169 of Erdelyi et af involving 
associated Legendre functions in the simplification) 

n ~ ( z )  = z sinh2 nz [ ~ ( f  - p + iz) T($ - y - iz)]Z 

X [*{(iz - c)cosha P ~ l , T i ~ ( c o ~ h a ) Q ~ I l z  (cosha) 
(zZ +cZ) 

When both RI and p~ are not zero, we can write the second equation of (50) as 

-1 lr (zZ + c2)[r(*- p + iz) r ( f  - p - iz)] . cosechm 

x A(r) P< ,z+ i7 (~o~ha)d~  = 0, a < a < -. 
As before, equation (52) is equivalent to the differential equation 

where now 

X [ ~ ( f  - p  + iz) T(*- p -iz)]-l cosech nz A(z)P<,,+i, (cosha)dz, a < a < m. (54) 

The solution of (53) is given by 

Since u(a) must be finite as a tends to infinity and c > +, we must have C1 = 0 .  Hence, 
by (54), we have 

j;[T(+-p +iz) T(+ p-iz)]-I cosech mA(z)P<,+i,(cosha)d~ 
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Equation (55) and the first equation of (50) gives, after using the generalized Me&- 
Fok inversion formulae cited above, 

A(Z) ~ [ r ( + - ~ + i r )  r(i-p-ir)]-2 cosech2 nz.- 

The continuity requirement at a = a gives 

Substituting the value of CZ in (56) and after some simplification, we find the FIE of the 
second kind for A(r) as 

q- ~ ~ ~ ~ ( y , r ) d y  = B(z), (57) 

where 

+(fl+c-*) J?~,2+iz(cosha)~f-l12 (cosha) 

-(fl+iz-i) ~$,~+~,(cosha)  Q&(cosha)} 

+(r2 +c2)(y2 - ~ ~ ) - ~ { i ( r  - y)cosha P$,z+i . i (~~~ha)  
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and 

p I  [ ~ ( f  - p  + iz) r ( 4  - ,u - iz)]2 sinh2 m 
B(r) = 

z { ~ , z r ( f - p + i z )  r(f-p-iz)sinhm+,u,(z2 +c2) }  

x {(iz - c)coshn P < , 2 + i r ( ~ ~ ~ h a )  QEllz (cosha) 

+ (v + c - ~ ) ~ ? , ~ + ~ , ( c o s h a  )QL312 (cosha) 

- ( p + i r  -4) P $ ~ + ~ ~  (cosha) Q:!lj2 (cosha)} . J 
It is easy to verify that by putting .u = 0 in the dual integral equations of Section 3,  some 

results obtained in Section 2 for the solutions of dual integral equations involving Legen- 
dre h c t i o n  as kernel are recovered. 

4. An example 

As application of the dual integral equations, we consider a mixed boundary value prob- 
lem involving a half-space due to torsion of an attached rigid annular die. Using toroidal 
coordinates (a, p, 0) where 

0 < a < w, 0 5 ,B 5 z, the half-space is z 2 0, and the die is represented by z = 0, 
@ < a < m. The state of stress and strain does not depend on the angular coordinate 0 and 
is determined by the non-zero component of displacements, us = u(r, 2). u(r, 2) satisfies 

with the boundary conditions 

where k is the angle of rotation of the die. 

We seek a solution of the above mixed boundary value problem in the form 

sinh (n  - B)z 
u = kc(cosha + C O S B ) ~ ' ~ ~ ~ A ( Z )  COShnZ P ! , ~ ~ + ~ ~ ( C O S ~ ~ )  dz, 
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then the boundary conditions produce the dual integral equations 

for the unknown function A(z). IJsing the formula P ' ~ , ~ + , , ( C O S ~ ~ )  = dlda  y,,,+i,(cosha) 

and taking rB(r )  =A($ ,  we obtain the dual integral equations discussed in Section 2(A). 
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