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Abstract. The qualitative behavior of the solution x of the equation

x(f) = /c|p(f) - J A(t - s)x(s) ds j|/(f) + | a(t - s)x(s) ds j, t > 0

is studied. This equation arises in the study of the spread of an infectious disease that

does not induce permanent immunity.

1. Introduction. The purpose of this paper is to investigate the qualitative behavior

(in particular as time goes to infinity) of solutions of an equation that arises in the study

of the spread of an infectious disease that does not induce permanent immunity.

Suppose that we have a population of constant size P (which must be quite large if

the deterministic model we describe below is not to be completely unrealistic). It is

assumed that the average infectivity of an individual infected at time s is proportional to

a(t — s) at time t. If the rate at which individuals susceptible to the disease have become

infected up to time f is x(s), s < t, then the integral J'_ x a(t — s)x(s) ds will be approxi-

mately proportional to the " total infectivity If the cumulative probability function for

the loss of immunity of an individual infected at time s is 1 — A(t — s), t > s, then

P — J'_00 A(t — s)x(s) ds will approximate the number of susceptibles. Our main assump-

tion is that the rate at which susceptibles become infected is proportional to the number

of susceptibles and the " total infectivity ". This leads us to consider the equation

x(f) = k^p(t) — | A(t — s)x(s) ds j|/(f) 4- J a(t — s)x(s) dsj, t e R+ = [0, oo) (1.1)

where k > 0 is a constant and where the functions p and / take into account the effects of

the infection before t = 0 (for example: p(t) = P — „ A(t — s)x(s) ds, /(f) =

„ a(t — s)x(s) ds and x is assumed to be known on ( — oo, 0)).

When one compares the model used here with the ones used by other authors (see e.g.

[1, 2, 3, 7, 11, 12, 13] and the references mentioned there), one can make the following

observations. This model is quite closely related to the one used in [3] and the main

difference is that it is not here assumed that permanent immunity is induced. Another

important feature of this model, not shared by those in e.g. [2] and [13], is that the

"infectivity" depends on how long the infectious individuals have been infected, not just

the total number of infectives. Thus it is not necessary explicitly to introduce classes of

individuals "exposed but not yet infectious" or "recovered but still immune" as in e.g.
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[11] and [12]. The equation (1.1) is essentially time-invariant, i.e., there is not, for

example, a periodic contact rate (the constant k), as in [11], We will show that Eq. (1.1)

behaves nicely (as one would expect) in everything that concerns the existence and

boundedness of a solution and that under certain restrictive conditions the infection rate

and the number of susceptibles converge to limits when t-* oo. The case when Eq. (1.1)

has periodic solutions is considered in [7], Finally, we remark that this model is com-

pletely deterministic (for stochastic models see e.g. [1]) and that no space variables are

involved (cf. [4]).

2. Statement of results.

Theorem. Assume that k > 0 is a constant and that

p is a positive, continuous and nondecreasing function on R+,
def

P = lim p(t) < oo, (2.1)

A is a nonnegative, right-continuous, nonincreasing function on

R+, ,4(0) = 1 and lim A(t) = 0, (2.2)
t~* co

f is a nonnegative, continuous function on R+,f ^ 0,

lim f(t) = 0 and if A 4 Ll(R + ), then/€ L1(R + ), (2.3)

a is a nonnegative, measurable function on R +, | a(s) ds = 1, (2.4)
•'o

where

if kP > 1, then xar(h; R + ) < 1 and if kP < 1
and A $ L1(R + ), then var(/i, R + ) < oo (2.5)

h is the solution of the equation

h(t) = A(t)—\ a(s) ds + | a(t - s)h(s) ds, t e R+ (2.6)
• o

and

if A ^ Ll(R + ) and kP > 1, then r e Ll(R + ) where r is the
, t

solution of the equation r(t) = A(t) - A(t - s)r(s) ds, t e R +. (2.7)
* 0

Then there exists a unique, nonnegative, continuous and bounded solution x of (1.1) such

that x(t) > 0 when t > T for some T > 0 and

lim x(t) = max{0, kP - 1}/k I /l(s) ds I (2.8)
t— oo \ • 0 '

and

lim |p(f) — I A(t — s)x(s) ds I = min{l, kP}/k. (2.9)
<-♦00 \ • 0 /

The assumptions (2.5)-(2.7) are needed only in the proofs of (2.8) and (2.9).
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For sufficient conditions for (2.7) to hold, see [8] and [10]. That (2.7) does not follow

from (2.2) is shown in [5]. Another way to formulate the crucial condition that

var(h; R + ) < 1 is to say that the "quotient" of A(t) and j,°° a(s) ds (when the multiplica-

tion is the convolution product) is sufficiently close to unity. In general it can be very

difficult to check if this condition is satisfied (and it does not appear to have any obvious

biological interpretation), but the following proposition gives some cases when this can

be seen to be the case.

Proposition. If h is defined by (2.6), then var(/i; R + ) < 1 in the following cases:

a(t) = 0, t e [0, t0), a(t) = ce~c('~'°\ t>t0, c > 0, t0 > 0,

A(t) = ) a(s — v) d<x(v) ds (2-10)
•I [0, s]

where a is a nonnegative (Borel) measure supported on R +, a(R + ) = 1 and

| t da(t) < (c(l + c(l + ct0/2)(n/2)ll2(t0 + f^(2 + cr0)2/12)1/2))~ \
R +

a(t) = 2" '(c2^-0' + ce~cl), teR+, c > 0,

A(t) = | [ c2(s-teR+ (2.11)
• I ■ [0. s]

where a is a nonnegative (Borel) measure supported on R+, a(R + )=l and

Jk+ t da(t) < c~l,

a(t) = c I e~c{'~s) d/i(s), c > 0, (2-12)
•[o. tj

where ft is a nonnegative (Borel) measure supported on R + , fi(R + ) — 1, JR+ f dfi(t) < oo

and A is defined as in (2.10) and

t da(t) < c 1 l+<pic\ t dp(t)
\ ■ R +

where <p(t) = t/( 1 — f), 0 < t < 1 — 10 2, (p(t) = 50(21)5 Ajt, t > 1 — 10 2.

Observe that the following assumptions concerning the spread of the disease lead to

Eq. (1.1) with a and A as in (2.10): an individual infected at time t becomes infective (i.e.,

will be able to communicate infectious organisms to other individuals) at t + t0, the

infectivity remains constant up to time £ + r0 + tj when it drops to zero and the immun-

ity is lost at time t + t0 + r1 + z2. Here tj and t2 are independent random variables,

has exponential distribution with mean value c~1 and r2 has probability measure a. Note

that we only put a restriction on the mean value of t2 in (2.10).

The case (2.11) arises from a similar situation, but here t0 = 0 and the distribution

function for z1 is c2te~" (so that the mean value is 2c'1).

The condition (2.12) is a generalization of (2.10) and the only difference is that now t0

is also a random variable with probability measure /?.

3. Proof of the Theorem. We consider the equation

x(t) = k^p(t) — | A(t — s)x(s)+ £?sj|/(t) + J a(t - s)x(s)+ dsj, t e R+ (3.1)
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where y+ = max{0, y}. If we can show that this equation has a nonnegative continuous

solution, then we have also found a nonnegative continuous solution of (1.1). Using the

Banach fixed-point theorem we find a continuous solution of (3.1) on some interval

[0, f0]. Combining a standard translation argument with the Banach fixed-point theorem,

we are able to continue this solution to R+ if we can show that x remains bounded and

that

p(t) — I A(t — s)x(s)+ ds I > 0 (3.2)
• o /

for as long as the solution exists. Assume that the last statement does not hold and let

?! = min{f > 0|p(f) — jo A(t — s)x(s)+ ds + 0}. Since we assume that we have a contin-

uous solution of (3.1) on [0, f,], it follows from (2.1)—(2.4) and (3.1) that there exists a

constant c1 such that

0 < x(r) < C!(p(r) - p(M) + | (x(s)++ x(s — u)+ dA(v) I ds
■I ' J[0,s] /

. '1

< cl I x(s)+ ds, t e [0, fj.
% t

But this implies that x(t) = 0 on [0, tj, and we get a contradiction.

Now we conclude from (2.3), (2.4), (3.1) and (3.2) that x is nonnegative for as long as

the solution exists. We proceed to establish an a priori bound for the solution.

If kP < 1, then we immediately obtain from (2.1)—(2.4), (3.1) and (3.2)

x(r) < sup /(f)/(l - kP).

Assume next that kP > 1. It is clearly possible to choose functions and a2 such that

a(t) = a^t) + a2(t), teR+, a, e BF(K + ), | \a2(t)\dt<2 6(kP) 2e~
■ o

Let

w(d, t) = sup(|x(f1) — x(f2)| |0 < - r2 < <5, fj < f},

P(t) = sup x(t).
s e [0, «]

Using (3.1) and (3.3), we have

x(fi) - x(t2) = klp(ti) - p(t2) - I A(tt - s)x(s) ds
\ * 0

+ | A(t2 - s)x(s) ds j| f(t2) + | a(t2 - s)x(s) ds j

+ kjp(ti) - | Mh - s)x(s) ds^f(ty)-f(t2) + | a1(tl - s)x(s) ds

(3.3)
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r '2 r"
— ai(h — s)x(s) ds + — s)a2(s) ds

•o ■ l2

+ | (x(ti - s) - x(t2 - s))a2(s) ds ), 0<t2<t!. (3.4)
• 0 /

If we use (2.1)-(2.4), (3.3), (3.4) and the fact that x is bounded on [0, I0] if t0 is small

enough and always nonnegative, then we conclude that there exists a nondecreasing

function <?i(<h(<5) -* 0 as S -*0) such that

o>(&, t) < q^Mt) + 1) + 4k[l(t)2d, S e (0, S0)

where S0 < t0 is such that A(S0)>2~1 (this fact we will use below). Applying this

inequality together with (2.1)—(2.4) and (3.3) once more to (3.4) we get (take t2 = - 5

and recall the definition of p)

x(ti) ~ x(ti -S)< q2m(tl) + 1) + 2-4P-Ie"4'"7?(r1)2«5

+ k/](tl)\ (P(ti)-x(v))dv, Se( 0, <50) (3.5)

where q2 is some nonnegative, nondecreasing function such that q2(S) -* 0 as <5-^-0.

Assume next that Ij is such that x(tj = P(tt). Then it follows from Gronwall's inequality

applied to (3.5) that

x(t1)-x(t1-5)<(^)(/S(t1)+l) + 2-4p-1e-4k7(fiW('l)3, Se{0,do).

But this implies that

| Ah - s)x(s)ds>2~l(P(tl)~ (q2(S)(P(h) + 1)
4 0

+ 2-*p-1e-*kpP{tlf 5)eklti")S) 5, <5 e (0, g0)

since /1(^0) ̂  2-1. But if ^(ft) is so large that q2(S)(P(ti) + l)e*kP < 2~ 2yS(r1) if we choose

S = 4P/?(f1)"1, then we get a contradiction since Jo1 A(tt - s)x(s) ds < P by (3.2). This

shows that the solution x is bounded by an a priori bound and hence it can be continued

to R + .

So far we have shown that there exists a continuous, nonnegative and bounded

solution of (1.1) on R+ and the uniqueness of this solution follows immediately from a

contraction mapping argument.

We see from (3.2) and (1.1) that x(f) > 0 if (/(f) + |'0 a(t — s)x(s) ds) > 0. Since/# 0

we conclude from this fact and (2.4) that x(t) > 0 if t > T for some T > 0 (we use the

result that if V s R+ is a measurable set with m(V) > 0 then 1J®=1 nV contains an

interval [T, oo) where nV = {£"=1 xjx, e V}).

Since x is bounded it follows from (2.2) and (2.4) that J'0 A(t - s)x(s) ds and

j'0 a(t — s)x(s) ds are uniformly continuous functions of t. Therefore the same is by (1.1),

(2.1) and (2.3) true for the function x.

It remains for us to establish (2.8) and (2.9). We define

, OO

A0(t) = I a(s) ds, B(t) = A(t) - /l0(f), t e R+ (3.6)
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and we observe that it follows from (2.6) that

B(t) = | A0(t — s) dh(s), t e R +. (3.7)
• [0, »]

First we consider the case kP < 1. Assume that (2.8) does not hold and choose a se-

quence j (tending to infinity) such that lim,,.,,*, x(f„) = lim sup,-.^ x(r) > 0. Since x is

uniformly continuous and lim,_0+ A{t) = 1, it follows that there exists a number a > 0

such that

. t„
I A(tn — s)x(s) ds > a, n = 1, 2,  (3.8)
• o

It follows from (2.3) and (2.4) that

lim sup (f(tn) + | a(tn - s)x(s) ds) < lim sup x(t).
n~* oo * 0 t~+ oo

Using this inequality combined with (3.8) in (1.1) we get

lim sup x(r) < k(P — a)lim sup x(f)
t~*<X) t~* 00

and since a > 0 and kP < 1 we have a contradiction and (2.8) holds in this case.

If A e I}(R + ), then it is clear that (2.9) follows from (2.8). If A $ I?(K + ), then we

define the function w by

. t . °o

w(t) = I A0(t — s)z(s) ds -I- I f(s)ds, teR+. (3.9)
• o ■ t

Since kP < 1 and the function x is nonnegative we have w'(() < 0 by (1.1) and (3.6). This

implies by (3.9) that lim,^ A0(t — s)x(s) ds exists and then by (2.5) and (3.7)
def

lim,^^ Jo B(t — s)x(s) ds exists too. If /? = lim,..^ J'0 A(t — s)x(s) ds is zero, then we are

done. Assume that /? > 0. We have by (1.1)

x(f) < c2|/(0 + | a(t - s)x(s) ds j, t>T0> 0, c2 = k(P - >9/2) < 1

for some sufficiently large number T0. Using a comparison argument (see [9, Chap. II]),

(2.3) and (2.4) we see that there exists an integrable function g such that if

b(t) = g(t) + c2 | a(t — s)b(s) ds, t e R+ (3.10)

then

'o

0 < x(f + T0) < b(t), t e R +. (3.11)

Since c2 a(s) ds < 1 we conclude from (3.10) that b e I}(R + ) and hence by (3.11)

xe L'(R + ); hence /? = 0, a contradiction. This completes the proof in the case when

kP < 1.
We proceed to consider the case kP > 1 and first we assume that A e I}(R + ). We

choose a continuous function u such that
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| A0(t — s)u(s) ds = (kP — l)(/c + kh(cc)) t > 1 (312)
• o

where h(cc) = h(t). This can be done e.g. as follows. Let u be any nonnegative

continuous function on [0, 1] such that jo ^o(l ~ s)u(s) ds = (kP — l)(/c + /c/i(oo))_1 and

u(l) = Jo a(l — s)u(s) ds and for t> 1 let u be the solution of the equation u(t) -

Jo a(t - s)u(s) ds = 0. If we combine (3.12) with (2.4), (3.6) and (3.7), then we conclude

from the standard renewal theorem, since Jo ta(t) dt = }<f A(t) dt( 1 + h(oo))'1, that

lim u(t) = (kP — 1)1 k I /l(s)ds) . (3.13)
(->00 \ -0 /

Let

, t
y(t) = x(r) - u(t), v(t) = I A0(t - s)y(s) ds,

z(t) = P — A0(t — s)x(s) ds, t e R+. (314)
•o

We obviously have by (1.1), (3.6) and (3.14)

z'(t) = | f(t) + I a(t - s)x(s) rfsjjl -f(t)
- i

f(t) + | a(t — s)x(s) ds
' o

t > Tj (3.15)— k p(t) — A(t — s)x(s) ds /,
• o I

where Tx > 1 is chosen so that

def , t

q(t) = j\t) +1 a(t — s)x(s) ds > 0, t > T1. (3.16)
• o

Since lim,^^ J'0 B(t — s)w(s) ds = (kP — l)h(<x>)(k + kh(co))'1 by (2.5), (3.7) and (3.12), it
is easy to conclude from (1.1), (2.1), (3.6), (3.7) and (3.14)—(3.16) (note that v'(t) = -z'(t),
t > 7\), that if we define et(t) = k~1 — p(t) + Jo A0(t — s)u(s) ds + J'0 B(t — s)u(s) ds,

then ex is continuous and

lim et(t) = 0 (317)
t-* 00

and

i/(t) = -^(t)(-/(0(M0)_1 + ei(0 + v(0 +1 v(l ~s) dh(s))> t - ri- (3-18)
' [0, r]

Assume that -lim inf^^ v(t) > lim sup,^ v(t) and that v(t) does not converge as

t -* oo. Then there exists a sequence of numbers (tending to infinity) such that

lim v(tn) = lim inf v(t) < 0 and v'(tn) = 0, n = 1, 2, .... (319)
n~*ao t~* oo

Since we clearly have lim sup,,-^ J[0, tn] v(t„ - s) dh(s) < -var(/i; J? + )lim inf,-.^ v(t) it fol-

lows from (2.5) and (3.16H3.19) that t/(t„) > 0 for n large enough and we have a

contradiction.
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If i>(t) exists and is negative, then we easily see from (1.1), (2.1), (2.5), (3.6),

(3.7), (3.13) and (3.14) that there exists a constant c3 > 1 such that

<(0 > c3|/(t) +| a(t - s).x(s) dsj

when t is large enough. But then a straightforward argument using the fact that

c3 J® a(s) ds > 1 shows that x cannot be bounded and we have a contradiction.

It follows from the results above that unless lim,.,^ v(t) exists and is nonnegative we

have
def

y = lim sup v(t) > 0, lim inf v(t) > — y. (3.20)
t~* 00 t~* GO

Let yt = y(3 + var(/i; R + ))/4. By (2.5) and (3.20) there exists a number T2 > Tj such that

I v(t — s) dh(s) < (1 + var(/i; # +))y/2, t >T2. (3.21)
' [0, t]

Now we pick two sequences {s„}"=1, (tending to infinity), T2< sn< tn, such that

v(t„) > v(t) > on [s„, t„] and v(t„) > (y + yx)/2, n = 1,2, .... (3.22)

It follows from (3.18), (3.21) and (3.22) that if f e [s„, f„] is such that v'(t) > 0, then we

must have

-/(fXMOr1 + ei(0 + (! - var(/i; R+))y/4 < 0

or, if n is large enough (see (3.17))

q(t)< 8/(f)((l - var(/i; R + ))y/c)_1. (3.23)

Since J'0 a(t — s)x(s) ds < q(t) and x(t) < kPq(t) it follows from (2.3), (2.5) (3.6), (3.14) and

(3.23) that

lim sup v'(t) = 0.
n-*cc t e [s„, t„]

Hence we can choose the sequences j and {fn}®= t so that

lim (t„ - s„) = oo. (3.24)
n~* oo

It follows from (1.1), (2.1), (2.5), (3.6), (3.7), (3.13), (3.14), (3.20)-(3.22) that there exists a
constant c4 < 1 such that

x(t) < c4|/(t) + ) a(t - s)x(s) dsj, te[sn,tn], n>N0 (3.25)

for some integer N0. By (2.3), (2.4) and (3.25) it is easy to construct a nonnegative

continuous function g on R+ such that g(t) -> 0 as t -> oo and such that if

t

b(t) = g(t) + c4 I a(t — s)b(s) ds, t e R +
• o

then

b(t) > x(t + s„), t e [0, tn - s„], n > N0 (3.26)



ON SOME EPIDEMIC MODELS 325

(see [7, Chap. II]). Since c4 J® a(s) ds < 1 it follows that lim,.,^ b(t) = 0, and then by

(3.24) and (3.26) we have |'<j A(tn — s)x(s) ds -> 0 as n -> oo, which gives a contradiction

in view of (1.1), (2.1), (3.25) and the fact that kP > 1. Hence it follows that t'(oo) =

lim,.^ v(t) exists and is nonnegative. It follows from (3.6), (3.7) and the assumptions that

A e I}(R + ) and var(fr, R + ) < 1 that A0 e L1(R + ) and, since A0 is nonincreasing, we

deduce from Wiener's Tauberian theorem that lim,.,^ y(f) = o(co)(j® y40(s)ds)_1. We

see from Eq. (1.1) that if (2.8) does not hold but x(t) converges, then the limit must be 0.

Thus it follows from (3.13) and (3.14) that i>(oo) = 0, i.e. (2.8) holds. As A e L}(R + ) the

statement (2.9) is a direct consequence of (2.8). This completes the proof in the case when

kP > 1 and A e I}(R+).

Finally we consider the case when kP > 1 and A $ Ll(R + ). We define the functions u

and y as before and we note that (3.13) still holds. But this time we let

t ,00

v(t) = A0(t — s)y(s) ds + j f(s)ds, t e R +. (3.27)
• 0 ' r

In the same way as we deduced (3.18) above we can now conclude that

v'(t) = -kq(t)ie2(t) + v(t) + | v(t - s) dh(s)), t > Tt (3.28)
' J[0, I] /

where e2 is a continuous function satisfying

lim e2(t) = 0. (3.29)
t~* OO

If lim,.,^ v(t) does not exist and e.g. lim sup,^ v(t) > -lim inf,^ v(t), then we can

again choose a sequence ! (tending to infinity) such that

lim v(t„) = lim sup v(t), v'(tn) = 0, n= 1, 2, .... (3.30)
n cc t-* oo

Since lim supn-.^ | v(t - s) dh(s)\ < var(h; /? + )lim sup,,,^ v(t) and var(h\ R + ) < 1

it follows from (3.28) and (3.29) that v'(tn) < 0 if n is large enough. But then (3.30) gives a

contradiction, and we see that lim,^^ v(t) exists. If this limit is negative, we get a

contradiction in the same way as in the case when A e L1(R + ) and if the limit is positive

we argue in the same manner as when kP < 1 and A $ l}(R + ). Hence we have estab-

lished that

lim v(t) = 0. (3.31)
t~* oo

We conclude from (2.1), (2.3), (2.5), (3.6), (3.7), (3.12), (3.27) and (3.31) that (2.9) holds
in this case and by (3.13) and (3.14) it remains to show that

lim y(t) = 0.
t~* 00

To do this we observe that by (2.3), (2.5), (3.6), (3.27)-(3.29) and (3.31) we have
lim,^ F(t) = 0 if F is defined by

, r t

F(t) = y{t) - I a{t — s)y(s) ds + | A0(t - s)y(s) ds, t e R +.
• 0 *0

(Recall that v'(t) +f(t) = y(t) — Jo a(t — s)y(s) ds and that x and u, hence also y, are
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uniformly continuous.) Therefore it is sufficient to show that there exists a function

/-t e L1(R + ) such that (" A " denotes Laplace transform)

r^z)^ (-a(z) + A0(z))(l - a(z) + A^y1, Re z > 0. (3.32)

Since a e I}(R + ) and 1 - a(z)( 1 + A0(z)y1 =f= 0, Re z > 0 (see (2.4) and (3.6)) and

Mz) = (-«(z)(l - r2(z)) + r2(z))( 1 - a(z)(l - f2(z)))~1

by (3.32) where r2(z) = A0(z)( 1 + A0(z))~it suffices to prove that r2 e L1(R + ), see [10].

But by (2.7), (3.6) and (3.7) (note that zh(z) = J® e~" dh(t)),

r2(z) = r(z)(l + z/z(z))_1( 1 + r(z)(l + zh(z)Yl - r(z))"1,

and since re L1(R + ), var(/i; R + ) < 1 and 1 + A0(z) =/= 0, Re z > 0 it is easy to conclude

from Banach algebra arguments (see also [10]) that r2 e Ll(R + ). This completes the proof

of the Theorem.

4. Proof of the Proposition. Assume that (2.10) holds. Then the Laplace transforms

of a and A are a(z) = ce~'0Z(z + c)~A(z) = (1 — a(z)a(z))/z where a denotes the

Laplace-Stieltjes transform of the measure a. It is therefore sufficient by (2.6), to show

that (1 — a(z))a(z)(l — a(z))-1 is the Laplace transform of a function in Ll(R + ) with norm

< 1. But if a(z)( 1 — a{z)Y1 = q(z), then (q(t) = 0 if t < 0)

• o
q(t) - q(t - s) da(s)

• 10. t]

dt < | | \q(t) — q(t - s)\ dt da(s)
• R + * - oo

< var(q; R) | s du(s). (4.1)
• R

Consequently we must show that

var(<?; R) < c(l + c(l + ct0/2)(n/2)ll2(t0 + rg(2 + ct0)2/ 12)l/2). (4.2)

But it follows from the definition of q that

zq(z) — ce~'°z( 1 — ?i(z)) (4.3)

where

Mz) = <7i(z)(l + qi(z))~ <Zi(z) = c/z ~ e~'0Zc/z. (4.4)

From Plancherel's theorem and Holder's inequality we have

v 1/2 / . 00 V 1/2

Jo |rj(t)| dt < (1 + t2) 1 |j (1 + t2)\ri(t)\2 dt^

= 2_1(|_ (|M«)|2+ l*i(")|2)<&) • (4-5)

It is easy to see that 11 + ^(ix)!"1 < 1 + t0c/2, and therefore it follows from Plancher-

el's theorem and (4.4) that

I (|M'x)|2 + l?i('*)|2) dx ^ 2n(c2t0(l + ct0/2)2 + c2t^(l + ct0/2)4/3).
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If we use this inequality together with (4.3) and (4.5), then we obtain (4.2) and the proof

of the first part of the Proposition is completed.

Assume next that (2.11) holds. In this case we must clearly show that

zh(z) = (2~ 1c2(z + c)~ 2 + 2" 1c(z + c)~1 — c2(z + c)~ 2a(z))

x (1 — 2~1c2(z + c)~2 — 2_1c(z + c)-1)-1

is the Laplace transform of a function in Ll(R + ) with norm < 1. Some calculations show

that

zh(z) = (c2(z2 + 3cz/2)~ '(1 — a(z)) + 2~ lc(z + 3c/2)~').

From this equation we see that it is obviously sufficient to have (recall that ot(R+) = 1

and see (4.1))

2c/3 | s doi(s) + 1/3 < 1.
• R+

This completes the proof of the second part of the Proposition.

To establish the assertion in the case when (2.12) holds, we proceed in the same

manner as in the case (2.10) and it is clearly sufficient to show that

var(q\ R) < c 1 + (p|c j t d[i(t)j

(iq is defined above). But it follows from the definition of a that zq(z) = c/?(z) x

(1 + c(l — p(z))/z)~1 and since (1 — fi(z))jz is the Laplace transform of a nonnegative,

nonincreasing function with L'-norm jR+ t dfi(t) the desired result follows from [6,

Thm. 1] and the fact that (i(R +) = 1. This completes the proof of the Proposition.
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