
CONTRIBUTED RESEARCH ARTICLE 187

On Some Extensions to GA Package:

Hybrid Optimisation, Parallelisation and

Islands Evolution
by Luca Scrucca

Abstract Genetic algorithms are stochastic iterative algorithms in which a population of individuals
evolve by emulating the process of biological evolution and natural selection. The R package GA
provides a collection of general purpose functions for optimisation using genetic algorithms. This
paper describes some enhancements recently introduced in version 3 of the package. In particular,
hybrid GAs have been implemented by including the option to perform local searches during the
evolution. This allows to combine the power of genetic algorithms with the speed of a local optimiser.
Another major improvement is the provision of facilities for parallel computing. Parallelisation has
been implemented using both the master-slave approach and the islands evolution model. Several
examples of usage are presented, with both real-world data examples and benchmark functions,
showing that often high-quality solutions can be obtained more efficiently.

Introduction

Optimisation problems of both practical and theoretical importance deal with the search of an optimal
configuration for a set of variables to achieve some specified goals. Potential solutions may be encoded
with real-valued, discrete, binary or permutation decision variables depending on the problem to
be solved. Direct search or derivative-free methods, gradient-based and Newton-type methods, all
encompass traditional local optimisation algorithms for real-valued functions (Chong and Zak, 2013;
Givens and Hoeting, 2013, Chap. 2). In contrast, discrete and combinatorial optimisation problems
involve decision variables expressed using integers or binary values and consist in searching for the
best solution from a set of discrete elements (Papadimitriou and Steiglitz, 1998; Givens and Hoeting,
2013, Chap. 3).

A large number of heuristics and metaheuristics algorithms have been proposed for solving
complex optimisation tasks. Specific (ad-hoc) heuristic techniques are able to identify solutions in a
reasonably short amount of time, but the solutions obtained are generally not guaranteed to be optimal
or accurate. On the contrary, metaheuristics offer a tradeoff between exact and heuristics methods,
in the sense that they are generic techniques that offer good solutions, often the global optimum
value sought, in a moderate execution time by efficiently and effectively exploring the search space
(Luke, 2013). This class of algorithms typically implements some form of stochastic optimisation and
includes: Evolutionary Algorithm (EA; Back et al., 2000a,b), Iterated Local Search (ILS; Lourenço et al.,
2003), Simulated Annealing (SA; Kirkpatrick et al., 1983), Differential Evolution (DE; Storn and Price,
1997), Particle Swarm Optimisation (PSO; Kennedy and Eberhart, 1995), Tabu Search (TS; Glover and
Laguna, 2013), Ant Colony Optimisation (ACO; Dorigo and Stützle, 2004), and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES; Hansen, 2006).

EAs are stochastic iterative algorithms in which a population of individuals evolve by emulating
natural selection (Eiben and Smith, 2003; De Jong, 2006; Simon, 2013). Each individual of the population
represents a tentative solution to the problem. The quality of the proposed solution is expressed by
the value of a fitness function assigned to each individual. This value is then used by EAs to guide
the search and improve the fitness of the population. Compared to other metaheuristics algorithms,
EAs are able to balance between exploration of new areas of the search space and exploitation of good
solutions. The trade-off between exploration and exploitation is controlled by some tuning parameters,
such as the population size, the genetics operators (i.e. selection, crossover, and mutation), and the
probability of applying them. Genetic Algorithms (GAs) are search and optimisation procedures that
are motivated by the principles of natural genetics and natural selection. GAs are the "earliest, most
well-known, and most widely-used EAs" (Simon, 2013, p. 35).

R offers several tools for solving optimisation problems. A comprehensive listing of available
packages is contained in the CRAN task view on “Optimization and Mathematical Programming”
(Theussl and Borchers, 2015). An extensive treatment of optimisation techniques applied to problems
that arise in statistics and how to solve them using R is provided by Nash (2014). A gentle introduction
to metaheuristics optimisation methods in R is contained in Cortez (2014). Some R packages imple-
menting evolutionary optimisation algorithms are: rgenoud, Rmalschains, DEoptim, GenSA, pso,
cmaes, tabuSearch.

The R package GA is a flexible general-purpose set of tools for optimisation using genetic algo-
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rithms and it is fully described in Scrucca (2013). Real-valued, integer, binary and permutation GAs
are implemented, whether constrained or not. Discrete or combinatorial optimisation problems, where
the search space is made of a finite or countably infinite set of potential solutions, can be easily treated
by adopting a binary or permutation representation. Several genetic operators for selection, crossover,
and mutation are available, and more can be defined by experienced R users.

This paper describes some recent additions to the GA package. The first improvement involves the
option to use hybrid GAs. Although for many objective functions GAs are able to work in an efficient
way and find the area of the global optimum, they are not especially fast at finding the optimum
when in a locally quadratic region. Hybrid GAs combine the power of GAs with the speed of a local
optimiser, allowing researchers to find a global solution more efficiently than with the conventional
evolutionary algorithms. Because GAs can be easily and conveniently executed in parallel machines,
the second area of improvement is that associated with parallel computing. Two approaches, the
master-slave and islands models, have been implemented and are fully described. Several examples,
using both real-world data examples and benchmark functions, are presented and discussed.

GA package

In the following we assume that the reader has already installed the latest version (≥ 3.0) of the
package from CRAN with

> install.packages("GA")

and the package is loaded into an R session using the usual command

> library(GA)

Hybrid genetic algorithms

EAs are very good at identifying near-optimal regions of the search space (exploration), but they can
take a relatively long time to locate the exact local optimum in the region of interest (exploitation).
Traditionally, exploitation is done through selection, whilst exploration is performed by search oper-
ators, such as mutation and crossover (Eiben and Schippers, 1998). However, exploitation can also
be pursued by controlling crossover and mutation, e.g. by reducing the mutation probability as the
search progresses. Balancing between exploration and exploitation is vital for successful application
of EAs (Črepinšek et al., 2013).

A further possibility for improving exploitation is to try to incorporate efficient local search
algorithms into EAs. There are different ways in which local searches or problem-specific information
can be integrated in EAs (see Eiben and Smith, 2003, Chap. 10). For instance, a local search may
be started from the best solution found by a GA after a certain number of iterations, so that, once
a promising region is identified, the convergence to the global optimum can be sped up. These
evolutionary methods have been named in various ways, such as hybrid GAs, memetic GAs, and genetic
local search algorithms. Some have argued that the inclusion of a local search in GAs implies the use
of a form of Lamarckian evolution. This fact has been criticised from a biological point of view, but
"despite the theoretical objections, hybrid genetic algorithms typically do well at optimization tasks”
(Whitley, 1994, p. 82).

In case of real-valued optimisation problems, the GA package provides a simple to use implemen-
tation of hybrid GAs by setting the argument optim = TRUE in a ga() function call. This allows to
perform local searches using the base R function optim(), which makes available general-purpose
optimisation methods, such as Nelder–Mead, quasi-Newton with and without box constraints, and
conjugate-gradient algorithms.

Having set optim = TRUE, the local search method to be used and other parameters can be
controlled with the optional argument optimArgs. This must be a list with the following structure and
defaults:

optimArgs = list(method = "L-BFGS-B",

poptim = 0.05,

pressel = 0.5,

control = list(fnscale = -1, maxit = 100))

where
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method The method to be used among those available in optim function. By default,
the BFGS algorithm with box constraints is used, where the bounds are
those provided in the ga() function call. Further methods are available as
described in the Details section in help(optim).

poptim A value in the range (0, 1) which gives the the probability of applying the
local search at each iteration.

pressel A value in the range (0, 1) which specifies the pressure selection.
control A list of parameters for fine tuning the optim algorithm. See help(optim) for

details.

In the implementation available in GA, the local search is applied stochastically during the
GA iterations with probability poptim ∈ [0, 1]; by default, once every 1/0.05 = 20 iterations on
average. The local search algorithm is started from a random selected solution drawn with probability
proportional to fitness and with the selection process controlled by the parameter pressel ∈ [0, 1]. Let
fi be the fitness value associated with the ith solution for i = 1, . . . , n, where n is the popSize, and
let ri be the corresponding rank in non increasing order. Then, for a given pressel the probability of
selection is computed as pi = pressel× (1 − pressel)ri−1, and then normalised as pi = pi/ ∑

n
i=1 pi.

Figure 1 shows the probability of selection as a function of the fitness value for different levels of
selection pressure. The values on the y-axis are computed using the function optimProbsel(), which
is used in the GA package for computing the probability of selection for each individual of the genetic
population. When the pressure is set at 0, the same probability of selection is assigned to all solutions.
Larger probabilities are assigned to larger fi values as the pressure value increases. In the extreme
case of pressure selection equal to 1, only the largest fi receives a probability of selection equal to 1,
whereas the others have no chance of being selected. Thus, smaller values of pressel tend to assign
equal probabilities to all the solutions, and larger values tend to assign larger values to those solutions
having better fitness.
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Figure 1: Graph of the probability of selecting a solutions for starting a local search in HGA as a
function of the fitness and for different levels of selection pressure.

Note that when a ga() function call is issued with optim = TRUE, a local search is always applied
at the end of GA evolution, i.e. after the last iteration and even in case of poptim = 0, but starting
from the solution with the highest fitness value. The rationale for this is to allow for local optimisation
as a final improvement step.

Portfolio selection

In portfolio selection the goal is to find the optimal portfolio, i.e. the portfolio that provides the highest
return and lowest risk. This is achieved by choosing the optimal set of proportions of various financial
assets (Ruppert and Matteson, 2015, Chap. 16). In this section an example of mean–variance efficient
portfolio selection (Gilli et al., 2011, Chap. 13) is illustrated.

Suppose we have selected 10 stocks from which to build a portfolio. We want to determine how
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much of each stock to include in our portfolio. The expected return rate of our portfolio is

E(R) =
10

∑
i=1

wiE(Ri),

where E(Ri) is the expected return rate on asset i, and wi is the fraction of the portfolio value due to

asset i. Note that the portfolio weights wi must satisfy the constraints wi ≥ 0, and ∑
10
i=1 wi = 1. At the

same time, we want to minimise the variance of portfolio returns given by

σ2
p = w′Σw,

where Σ is the covariance matrix of stocks returns, and w′ = (w1, . . . , w10), under the constraint
that the portfolio must have a minimum expected return of 1%, i.e E(R) ≥ 0.01. Provided that only
linear constraints are included, the problem of mean-variance portfolio selection is typically solved by
quadratic programming. However, GAs provide a general approach to portfolio selection that can be
used for problems with both linear and nonlinear constraints (Gilli and Schumann, 2012).

Consider the following stocks with monthly return rates obtained by Yahoo finance using the
quantmod package:

> library(quantmod)

> myStocks <- c("AAPL", "XOM", "GOOGL", "MSFT", "GE", "JNJ", "WMT", "CVX", "PG", "WFC")

> getSymbols(myStocks, src = "yahoo")

> returns <- lapply(myStocks, function(s)

monthlyReturn(eval(parse(text = s)),

subset = "2013::2014"))

> returns <- do.call(cbind,returns)

> colnames(returns) <- myStocks

The monthly return rates for the portfolio stocks are shown in Figure 2 and obtained with the code:

> library(timeSeries)

> plot(as.timeSeries(returns), at = "chic", minor.ticks="month",

mar.multi = c(0.2, 5.1, 0.2, 1.1), oma.multi = c(4, 0, 4, 0),

col = .colorwheelPalette(10), cex.lab = 0.8, cex.axis = 0.8)

> title("Portfolio Returns")

Summary statistics for the portfolio stocks are computed as:

> nStocks <- ncol(returns) # number of portfolio assets

> R <- colMeans(returns) # average monthly returns

> S <- cov(returns) # covariance matrix of monthly returns

> s <- sqrt(diag(S)) # volatility of monthly returns

> plot(s, R, type = "n", panel.first = grid(),

xlab = "Std. dev. monthly returns", ylab = "Average monthly returns")

> text(s, R, names(R), col = .colorwheelPalette(10), font = 2)

The last two commands draw a graph of the average vs standard deviation for the monthly returns
(see Figure 3a). From this graph we can see that there exists a high degree of heterogenity among
stocks, with AAPL having the largest standard deviation and negative average return, whereas some
stocks have small volatility and high returns, such as WFC and MSFT. Clearly, the latter are good
candidate for inclusion in the portfolio. The exact amount of each stock also depends on the correlation
among stocks through the variance of portfolio returns σ2

p , and so we need to formalise our objective
function under the given constraints.

In order to compute the GA fitness function, we define the following functions:

> weights <- function(w) # normalised weights

{ drop(w/sum(w)) }

> ExpReturn <- function(w) # expected return

{ sum(weights(w)*R) }

> VarPortfolio <- function(w) # objective function

{

w <- weights(w)

drop(w %*% S %*% w)

}

We may define the fitness function to be maximised as the (negative) variance of the portfolio
penalised by an amount which is function of the distance between the expected return of the portfolio
and the target value:
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Figure 2: Monthly return rates for a portfolio of selected stocks.
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Figure 3: (a) Plot of average monthly returns vs the standard deviation for the selected stocks. (b)
Portfolio stocks composition estimated by HGA. (c) Trace of HGA iterations.
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> fitness <- function(w) # fitness function

{

ER <- ExpReturn(w)-0.01

penalty <- if(ER < 0) 100*ER^2 else 0

-(VarPortfolio(w) + penalty)

}

A hybrid GA with local search can be obtained with the following call:

> GA <- ga(type = "real-valued", fitness = fitness,

min = rep(0, nStocks), max = rep(1, nStocks), names = myStocks,

maxiter = 1000, run = 200, optim = TRUE)

> summary(GA)

+-----------------------------------+

| Genetic Algorithm |

+-----------------------------------+

GA settings:

Type = real-valued

Population size = 50

Number of generations = 1000

Elitism = 2

Crossover probability = 0.8

Mutation probability = 0.1

Search domain =

AAPL XOM GOOGL MSFT GE JNJ WMT CVX PG WFC

Min 0 0 0 0 0 0 0 0 0 0

Max 1 1 1 1 1 1 1 1 1 1

GA results:

Iterations = 216

Fitness function value = -0.00049345

Solution =

AAPL XOM GOOGL MSFT GE JNJ WMT CVX PG WFC

[1,] 0.030918 0.11534 0.034683 0.52062 0 0 0.17201 0.26144 0.18096 0.98719

> plot(GA)

The last command produces the graph on Figure 3c, which shows the trace of best, mean, and median
values during the HGA iterations. We also added some vertical dashes at the top of the graph to
indicate when the local search occurred. It is interesting to note that the inclusion of a local search
greatly speeds up the termination of the GA search, which converges after 216 iterations. Without
including the local optimisation step, a fitness function value within a 1% from the maximum value
found above is attained after 1, 633 iterations, whereas the same maximum fitness value cannot be
achieved even after 100, 000 iterations.

The estimated portfolio weights and the corresponding expected return and variance are computed
as:

> (w <- weights(GA@solution))

AAPL XOM GOOGL MSFT GE JNJ WMT CVX

0.013424 0.050081 0.015059 0.226047 0.000000 0.000000 0.074685 0.113512

PG WFC

0.078572 0.428621

> ExpReturn(w)

[1] 0.016178

> VarPortfolio(w)

[1] 0.00049345

> barplot(w, xlab = "Stocks", ylab = "Portfolio weights",

cex.names = 0.7, col = .colorwheelPalette(10))

The last command draws a barchart of the optimal portfolio selected, and it is shown in Figure 3b.

Poisson change-point model

In the study of stochastic processes a common problem is to determine whether or not the functioning
of a process has been modified over time. Change-point models assume that such a change is occurring
at some point in time in a relatively abrupt manner (Lindsey, 2004).
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In a single change-point model the distribution of a response variable Yt at time t is altered at the
unknown point in time τ, so we can write

Yt ∼
{

f (yt; θ1) t < τ

f (yt; θ2) t ≥ τ
(1)

where f (·) is some given parametric distribution depending on θk for k = {1, 2}, and τ is an unknown
parameter giving the change-point time. Some or all of the elements of the vector of parameters θk in
model (1) may change over time. In more complex settings, the distribution function itself may be
different before and after the change point.

Given a sample {yt; t = 1, . . . , T} of observations over time, the log-likelihood function of the
change-point problem is

ℓ(θ1, θ2, τ; y1, . . . , yT) = ∑
t<τ

log f (yt; θ1) + ∑
t≥τ

log f (yt; θ2) (2)

Further, for a Poisson change-point model we assume that f (yt; θk) is the Poisson distribution with
mean parameter θk. Maximisation of (2) can also be seen as a discrete optimisation problem.

Consider the British coal-mining disasters dataset which provides the annual counts of disasters
(having at least 10 deaths) from 1851 to 1962 (Jarrett, 1979; Raftery and Akman, 1986). The data from
Table 1 of Carlin et al. (1992) are the following:

> data <- data.frame(

y = c(4, 5, 4, 1, 0, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1,

4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3,

0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0,

0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2,

0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1),

year = 1851:1962,

t = 1:112)

Graphs of annual counts and cumulative sums over time are shown in Figure 4. These can be
obtained using the following code:

> plot(y ~ year, data = data, ylab = "Number of mine accidents/yr")

> plot(cumsum(y) ~ year, data = data, type = "s",

ylab = "Cumsum number of mine accidents/yr")

Both graphs seem to suggest a two-regime behaviour for the number of coal-mining disasters.
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Figure 4: Plots of the number of yearly coal-mining accidents (a) and cumulative sum of mine accidents
(b) from 1851 to 1962 in Great Britain.

We start the analysis by fitting a no change-point model, i.e. assuming a homogeneous Poisson
process with constant mean. Clearly, in this simple case the MLE of the Poisson parameter is the
sample mean of counts. However, for illustrative purposes we write down the log-likelihood and we
maximise it with a hybrid GA.
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> loglik1 <- function(th, data)

{

mu <- exp(th) # Poisson mean

sum(dpois(data$y, mu, log = TRUE))

}

> GA1 <- ga(type = "real-valued",

fitness = loglik1, data = data,

min = log(1e-5), max = log(6), names = "th",

maxiter = 200, run = 50,

optim = TRUE)

> exp(GA1@solution[1,])

1.7054

> mean(data$y)

[1] 1.7054

For the change-point model in (1), the mean function can be expressed as

µt = exp {θ1 + (θ2 − θ1)I(t ≥ τ)} ,

where τ is the time of change-point, θ1 is the mean of the first regime, i.e. when t < τ, θ2 is the mean
of the second regime, i.e. when t ≥ τ, and I(·) denotes the indicator function (which is equal to 1 if its
argument is true and 0 otherwise). In R the above mean function and the log-likelihood from (2) can
be written as

> meanFun <- function(th, t)

{

tau <- th[3] # change-point parameter

th <- th[1:2] # mean-related parameters

X <- cbind(1, t >= tau) # design matrix

exp(drop(X %*% th))

}

> loglik2 <- function(th, data)

{

mu <- meanFun(th, data$t) # vector of Poisson means

sum(dpois(data$y, mu, log = TRUE))

}

The vector th contains the three parameters that have to be estimated from the sample dataset data.
Note that, for convenience, it is defined as (θ1, θ∗2 , τ)′, where θ∗2 = (θ2 − θ1) is the differential mean
effect of second regime.

Direct maximisation of the log-likelihood in loglik2() by iterative derivative-based methods is
not viable due to lack of differentiability with respect to τ. However, hybrid GAs can be efficiently
used in this case as follows:

> GA2 <- ga(type = "real-valued",

fitness = loglik2, data = data,

min = c(log(1e-5), log(1e-5), min(data$t)),

max = c(log(6), log(6), max(data$t)+1),

names = c("th1", "th2", "tau"),

maxiter = 1000, run = 200,

optim = TRUE)

> summary(GA2)

+-----------------------------------+

| Genetic Algorithm |

+-----------------------------------+

GA settings:

Type = real-valued

Population size = 50

Number of generations = 1000

Elitism = 2

Crossover probability = 0.8

Mutation probability = 0.1

Search domain =

th1 th2 tau

Min -11.5129 -11.5129 1
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Max 1.7918 1.7918 113

GA results:

Iterations = 318

Fitness function value = -168.86

Solution =

th1 th2 tau

[1,] 1.1306 -1.2344 41.446

> (mean <- exp(cumsum(GA2@solution[1,1:2]))) # mean function parameters

th1 th2

3.09756 0.90141

> (tau <- GA2@solution[1,3]) # change-point

tau

41.446

Note that both the estimated change-point and the means are quite close to those reported by Raftery
and Akman (1986), and Carlin et al. (1992), using Bayesian methodology.

The two estimated models can be compared using a model selection criterion, such as the Bayesian
information criterion (BIC; Schwartz, 1978), defined as

BIC = 2ℓ(θ̂; y)− ν log(n)

where ℓ(θ̂; y) is the log-likelihood evaluated at the MLE θ̂, n is the number of observations, and ν is
the number of estimated parameters. Using this definition, larger values of BIC are preferable.

> (tab <- data.frame(

loglik = c(GA1@fitnessValue, GA2@fitnessValue),

df = c(ncol(GA1@solution), ncol(GA2@solution)),

BIC = c(2*GA1@fitnessValue - log(nrow(data))*ncol(GA1@solution),

2*GA2@fitnessValue - log(nrow(data))*ncol(GA2@solution))))

loglik df BIC

1 -203.86 1 -412.43

2 -168.86 3 -351.88

A comparison of BIC values clearly indicates a preference for the change-point model. We may
summarise the estimated model by drawing a graph of observed counts over time with the estimated
means before and after the change-point:

> mu <- meanFun(GA2@solution, data$t)

> col <- c("red3", "dodgerblue2")

> with(data,

{ plot(t, y)

abline(v = tau, lty = 2)

lines(t[t < tau], mu[t < tau], col = col[1], lwd = 2)

lines(t[t >= tau], mu[t >= tau], col = col[2], lwd = 2)

par(new=TRUE)

plot(year, cumsum(y), type = "n", axes = FALSE, xlab = NA, ylab = NA)

axis(side = 3); mtext("Year", side = 3, line = 2.5)

})

and a graph of observed cumulative counts and the estimated cumulative mean counts:

> with(data,

{ plot(t, cumsum(y), type = "s", ylab = "Cumsum number of mine accidents/yr")

abline(v = tau, lty = 2)

lines(t[t < tau], cumsum(mu)[t < tau], col = col[1], lwd = 2)

lines(t[t >= tau], cumsum(mu)[t >= tau], col = col[2], lwd = 2)

par(new=TRUE)

plot(year, cumsum(y), type = "n", axes = FALSE, xlab = NA, ylab = NA)

axis(side = 3); mtext("Year", side = 3, line = 2.5)

})

Both graphs are reported in Figure 5. The latter plot is particularly illuminating of the good fit achieved
by the selected model.
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Figure 5: Summary plots for the change-point model fitted to the British coal-mining accidents dataset:
(a) plot of observed counts over time with the estimated means before and after the estimated change-
point (vertical dashed line); (b) plot of observed cumulative counts (step function) and the cumulative
estimated mean counts.

Parallel genetic algorithms

Parallel computing in its essence involves the simultaneous use of multiple computing resources to
solve a computational problem. This is viable when a task can be divided into several parts that can
be solved simultaneously and independently, either on a single multi-core processors machine or on a
cluster of multiple computers.

Support for parallel computing in R is available since 2011 (version 2.14.0) through the base
package parallel. This provides parallel facilities previously contained in packages multicore and
snow. Several approaches to parallel computing are available in R (McCallum and Weston, 2011), and
an extensive and updated list of R packages is reported in the CRAN Task View on High-Performance
and Parallel Computing with R (Eddelbuettel, 2016, HighPerformanceComputing).

GAs are regarded as “embarrassingly parallel” problems, meaning that they require a large number
of independent calculations with negligible synchronisation and communication costs. Thus, GAs
are particularly suitable for parallel computing, and it is not surprising that such idea has been often
exploited to speed up computations (see for instance Whitley (1994) in the statistical literature).

Luque and Alba (2011) identify several types of parallel GAs. In the master-slaves approach
there is a single population, as in sequential GAs, but the evaluation of fitness is distributed among
several processors (slaves). The master process is responsible for the distribution of the fitness function
evaluation tasks performed by the slaves, and for applying genetic operators such as selection,
crossover, and mutation (see Figure 6). Since the latter operations involve the entire population, it is
also known as global parallel GAs (GPGA). This approach is generally efficient when the computational
time involving the evaluation of the fitness function is more expensive than the communication
overhead between processors.

Another approach is the case of distributed multiple-population GAs, where the population
is partitioned into several subpopulations and assigned to separated islands. Independent GAs
are executed in each island, and only occasionally sparse exchanges of individuals are performed
among these islands (see Figure 7). This process, called migration, introduces some diversity into the
subpopulations, thus preventing the search from getting stuck in local optima. In principle islands can
evolve sequentially, but increased computational efficiency is obtained by running GAs in each island
in parallel. This approach is known as coarse-grained GAs or island parallel GAs (ISLPGA).

By default, searches performed with the GA package occur sequentially. In some cases, particularly
when the evaluation of the fitness function is time consuming, parallelisation of the search algorithm
may be able to speed up computing time. Starting with version 2.0, the GA package provides
facilities for using parallel computing in genetic algorithms following the GPGA approach. Recently,
with version 3.0, the ISLPGA model has also been implemented in the GA package. The following
subsections describes usage of both approaches.

Parallel computing in the GA package requires the following packages to be installed: parallel
(available in base R), doParallel, foreach, and iterators. Moreover, doRNG is needed for reproducibil-
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Slave 1 Slave 2 Slave p. . .

Master

Figure 6: Master-slaves or global parallel GA
scheme (GPGA). The master process stores the
population, executes genetic operations, and
distributes individuals to the slaves, which
only evaluate the fitness of individuals.

Figure 7: Islands parallel GA scheme
(ISLPGA). In a multiple-population parallel
GA each process is a simple GA which evolves
independently. Individuals occasionally mi-
grate between one island and its neighbours.

ity of results.

Global parallel implementation

The GPGA approach to parallel computing in GA can be easily obtained by manipulating the optional
argument parallel in the ga() function call. This argument accepts several different values. A logical
value may be used to specify if parallel computing should be used (TRUE) or not (FALSE, default) for
evaluating the fitness function. A numeric value can also be supplied, in which case it gives the number
of cores/processors to employ; by default, all the available cores, as provided by detectCores(), are
used.

Two types of parallel functionalities are available depending on system OS: on Windows only
snow type functionality is present, whereas on POSIX operating systems, such as Unix, GNU/Linux,
and Mac OSX, both snow and multicore (default) functionalities are available. In the latter case, a string
can be used as the argument to parallel to set out which parallelisation tool should be used.

A final option is available if a researcher plans to use a cluster of multiple machines. In this case,
ga() can be executed in parallel using all, or a subset of, the cores available to each machine assigned
to the cluster. However, this option requires more work from the user, who needs to set up and register
a parallel back end. The resulting cluster object should then be passed as input for the parallel

argument.

Islands parallel implementation

The ISLPGA approach to parallel computing in GA has been implemented in the gaisl() function.
This function accepts the same input arguments as the ga() function (see Scrucca, 2013, Section 3),
with the following additional arguments:

numIslands An integer value which specifies the number of islands to use in the genetic
evolution (by default is set to 4).

migrationRate A value in the range (0, 1) which gives the proportion of individuals that
undergo migration between islands in every exchange (by default equal to
0.10).

migrationInterval An integer value specifying the number of iterations at which exchange of
individuals takes place. This interval between migrations is called an epoch,
and it is set at 10 by default.

The implemented ISLPGA uses a simple ring topology, in which each island is connected unidi-
rectionally with another island, hence forming a single continuous pathway (see Figure 7). Thus, at
each exchange step the top individuals, selected according to the specified migrationRate, substitute
random individuals (with the exception of the elitist ones) in the connected island.

By default, the function gaisl() uses parallel = TRUE, i.e. the islands algorithm is run in parallel,
but other values can also be provided as described in the previous subsection. Note that it is possible
to specify a number of islands larger than the number of available cores. In such a case, the parallel

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 198

algorithm will be run using blocks of islands, with the block size depending on the maximal number
of cores available or the number of processors as specified by the user.

It has been noted that using parallel islands GAs often leads to, not only faster algorithms, but
also superior numerical performance even when the algorithms run on a single processor. This
because each island can search in very different regions of the whole search space, thus enhancing the
exploratory attitude of evolutionary algorithms.

Simulation study

In this Section results from a simulation study are presented and discussed. The main goal is to
compare the performance of sequential GAs with the two forms of parallel algorithms implemented
in the GA package, namely GPGA and ISLPGA, for varying number of cores and different fitness
computing times. A fictitious fitness function is used to allow for controlling the computing time
required at each evaluation. This is achieved by including the argument pause which suspend the
execution for a specified time interval (in seconds):

> fitness <- function(x, pause = 0.1)

{

Sys.sleep(pause)

x*runif(1)

}

The simulation design parameters used are the following:

> ncores <- c(1, 2, 4, 8, 16) # number of cores/processors

> pause <- c(0.01, 0.1, 1, 2) # pause during fitness evaluation

> nrep <- 10 # number of simulation replications

Thus, ncores specifies that up to 16 cores or CPU processors are used in the parallel GAs solutions for
increasing time spent on fitness evaluation as specified by pause (in seconds). Each combination of
design parameters is replicated nrep = 10 times and results are then averaged.

GAs are run under the GPGA approach using popSize = 50 and maxiter = 100. For ISLPGA runs
the numIslands argument is set at the specified number of cores, with popSize = 160 and maxiter =

100. The increased population size allows to work with at least 10 individuals on each island when
numIslands is set at the maximum number of cores. In both cases, the remaining arguments in ga() or
gaisl() function are set at their defaults. Note that run times cannot be compared between the two
approaches because they use different population sizes.

The study was performed on a 16 cores Intel® Xeon® CPU E5-2630 running at 2.40GHz and
with 128GB of RAM. The R code used in the simulation study is provided in the accompanying
supplemental material.

Graphs in the left panel of Figures 8 and 9 show the average execution times needed for varying
number of cores and different fitness computing times. As expected, increasing the number of cores
allows to run GAs faster, but the improvement is not linear, in particular for the GPGA approach.

By using a machine with P cores/processors, we would like to obtain an increase in calculation
speed of P times. However, this is typically not the case because in the implementation of a parallel
algorithm there are some inherent non-parallelisable parts and communication costs between tasks
(Nakano, 2012). The speedup achieved using P processors is computed as sP = t1/tP, where ti is the
execution time spent using i cores. Graphs in the right panel of Figures 8 and 9 show the speedup
obtained in our simulation study. For the GPGA approach the speedup is quite good but it is always
sub-linear, in particular for the less demanding fitness evaluation time and when the number of cores
increases. On the other hand, the ISLPGA implementation shows a very good speedup (nearly linear).

Amdahl’s law (Amdahl, 1967) is often used in parallel computing to predict the theoretical
maximum speedup when using multiple processors. According to this, if f is the fraction of non-
parallelisable task, i.e. the part of the algorithm that is strictly serial, and P is the number of processors
in use, then the speedup obtained on a parallel computing platform follows the equation

SP =
1

f + (1 − f )/P
. (3)

In the limit, the above ratio converges to Smax = 1/ f , which represents the maximum speedup
attainable in theory, i.e. by a machine with an infinite number of processors. Figures 10 and 11 show
the observed speedup factors SP and the estimated Amdahl’s law curves fitted by nonlinear least
squares. In all the cases, Amdahl’s law appears to well approximate the observed behaviour. The
horizontal dashed lines are drawn at the maximum speedup Smax, which is computed based on the
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Figure 8: Empirical GPGA performance for varying number of cores/processors and different fitness
computing times. Graph on the left panel shows the average running times, whereas graph on the
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computing times. Graph on the left panel shows the average running times, whereas graph on the
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In the latter plot, the dashed line represents the “ideal” linear speedup.

estimated fraction of non-parallelisable task f (see also Table 2). As the time required for evaluating
the fitness function increases, the maximum speedup attainable also increases. As noted earlier, the
ISLPGA approach shows an improved efficiency compared to the simple GPGA.
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Table 2: Fraction of non-parallelisable task ( f ) estimated by nonlinear least squares using the Amdahl’s
law (3), and corresponding theoretical speedup (Smax) for the GPGA and ISLPGA approaches.

GPGA ISLPGA

0.01 0.1 1 2 0.01 0.1 1 2

f 0.0695 0.0209 0.0122 0.0114 0.0069 0.0036 0.0031 0.0025
Smax 14.38 47.76 81.88 87.88 145.29 278.57 327.12 408.58
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Figure 10: Amdahl’s law curves for the GPGA approach. Points refer to the speedup factors observed
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Figure 11: Amdahl’s law curves for the ISLPGA approach. Points refer to the speedup factors observed
using different number of cores/processors, whereas the curves are estimated using nonlinear least
squares. Horizontal dashed lines refer to the maximum speedup theoretically attainable. Each panel
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ARIMA order selection

Autoregressive moving average (ARMA) models are a broad class of parametric models for stationary
time series popularised by Box and Jenkins (1976). They provide a parsimonious description of a
stationary stochastic process in terms of two polynomials, one for the auto-regression and the second
for the moving average. Nonstationay time series can be modelled by including an initial differencing
step (“integrated” part of the model). This leads to autoregressive integrated moving average (ARIMA)
models, a popular modelling approach in real-world processes.

ARIMA models can be fitted by MLE after identifying the order (p, d, q) for the autoregressive,
integrated, and moving average components, respectively. This is typically achieved by preliminary
inspection of the autocovariance function (ACF) and partial autocovariance function (PACF). Model
selection criteria, such as the Akaike information criterion (AIC), the corrected AIC (AICc), and the
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Bayesian information criterion (BIC), are also used for order selection.

The function auto.arima() in package forecast (Hyndman, 2016; Hyndman and Khandakar, 2008)
provides an automatic algorithm which combines unit root tests, minimisation of the AICc in a
stepwise greedy search, and MLE, to select the order of an ARIMA model. Here, an island parallel
GAs approach is used for order selection.

Consider the quarterly U.S. GNP from 1947(1) to 2002(3) expressed in billions of chained 1996
dollars and seasonally adjusted. The data are available on package astsa and described in Shumway
and Stoffer (2013).

> data(gnp, package="astsa")

> plot(gnp)

The plot of the time series obtained with the last command is shown in Figure 12a.

Time

g
n

p

1950 1960 1970 1980 1990 2000

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

(a)

0 50 100 150 200 250

−
2

2
7

5
−

2
2

7
0

−
2

2
6

5
−

2
2

6
0

Generation

F
it
n

e
s
s
 v

a
lu

e
s

(b)

Figure 12: (a) Plot of quarterly U.S. GNP from 1947(1) to 2002(3). (b) Trace of island parallel GAs
search for ARIMA order selection.

The selection of the “optimal” ARIMA(p, d, q) model can be pursued by using binary GAs to
maximise the BIC. The decision variables to be optimised are expressed in binary digits using the
following function:

> decode <- function(string, bitOrders)

{

string <- split(string, rep.int(seq.int(bitOrders), times = bitOrders))

orders <- sapply(string, function(x) { binary2decimal(gray2binary(x)) })

return(unname(orders))

}

For example, using 3 bits for encoding p and q, and 2 bits for d, an ARIMA(3,1,1) model can be
expressed with the binary string (0, 1, 0, 0, 1, 0, 0, 1):

> decode(c(0,1,0, 0,1, 0,0,1), bitOrders = c(3,2,3))

[1] 3 1 1

Note that the decode() function assumes that the input binary string is expressed using Gray encoding,
which ensures that consecutive values have the same Hamming distance (Hamming, 1950).

The fitness function to be used in the GA search is defined as follows:

> fitness <- function(string, data, bitOrders)

{

orders <- decode(string, bitOrders)

mod <- try(Arima(data, order = orders, include.constant = TRUE, method = "ML"),

silent = TRUE)

if(inherits(mod, "try-error")) NA else -mod$bic

}

Note that the objective function is defined as (minus) the BIC for the specified ARIMA model, with
the latter fitted using the Arima() function available in the R package forecast. If a different criterion

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=astsa


CONTRIBUTED RESEARCH ARTICLE 202

for model selection is preferred, for instance the Akaike information criterion (AIC), only the last line
of the above fitness() function needs to be modified.

An island binary parallel GA is then used to search for the best ARIMA model, using a migration
interval of 20 generations, and the default migration rate of 0.1:

> GA <- gaisl(type = "binary", nBits = 8,

fitness = fitness, data = gnp, bitOrders = c(3,2,3),

maxiter = 1000, run = 100, popSize = 50,

numIslands = 4, migrationInterval = 20)

> plot(GA)

> summary(GA)

+-----------------------------------+

| Genetic Algorithm |

| Islands Model |

+-----------------------------------+

GA settings:

Type = binary

Number of islands = 4

Islands pop. size = 12

Migration rate = 0.1

Migration interval = 20

Elitism = 1

Crossover probability = 0.8

Mutation probability = 0.1

GA results:

Iterations = 280

Epochs = 14

Fitness function values = -2259.615 -2259.615 -2259.615 -2259.615

Solutions =

x1 x2 x3 x4 x5 x6 x7 x8

[1,] 0 1 1 1 1 0 0 1

[2,] 0 1 1 1 1 0 0 1

[3,] 0 1 1 1 1 0 0 1

[4,] 0 1 1 1 1 0 0 1

Figure 12b shows the trace of the ISLPGA search for each of the four islands used. All the islands
converge to the same final solution, as also shown by the summary output above. The selected model
is an ARIMA(2,2,1), which can be fitted using:

> (orders <- decode(GA@solution[1,], c(3,2,3)))

[1] 2 2 1

> mod <- Arima(gnp, order = orders, include.constant = TRUE, method = "ML")

> mod

Series: gnp

ARIMA(2,2,1)

Coefficients:

ar1 ar2 ma1

0.2799 0.1592 -0.9735

s.e. 0.0682 0.0682 0.0143

sigma^2 estimated as 1451: log likelihood=-1119.01

AIC=2246.02 AICc=2246.21 BIC=2259.62

It is interesting to compare the above solution with that obtained with the automatic procedure
implemented in auto.arima() using the same criterion:

> mod1 <- auto.arima(gnp, ic = "bic")

> print(mod1)

Series: gnp

ARIMA(1,2,1)

Coefficients:

ar1 ma1
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0.3243 -0.9671

s.e. 0.0665 0.0162

sigma^2 estimated as 1486: log likelihood=-1121.71

AIC=2249.43 AICc=2249.54 BIC=2259.62

> mod1$bic

[1] 2259.622

> mod$bic

[1] 2259.615

The model returned by auto.arima() is an ARIMA(1,2,1), so a simpler model where an AR(1) compo-
nent is chosen instead of an AR(2). The BIC values are almost equivalent, with a slightly smaller value
for the ARIMA(2,2,1) model identified by ISLPGA. However, by looking at some diagnostic plots it
seems that a second-order AR component is really needed to account for autocorrelation at several
lags as indicated by the Ljung-Box test of autocorrelation (see Figure 13; the code used to produce the
plots is available in the supplementary material).
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Figure 13: ACF of residuals and p-values for the Ljung-Box test of autocorrelation for the ARIMA(1,2,1)
model (top graphs) and the ARIMA(2,2,1) model (bottom graphs) fitted to the quarterly U.S. GNP
data from 1947(1) to 2002(3).

Benchmark function optimisation

Mullen (2014) compared several optimisation algorithms using 48 benchmark functions available in
the globalOptTests package. GA was one of the several R packages investigated in such a comparison.
However, with the settings used in this study, its overall performance was not particularly brilliant,
ranking 14th out of 18 methods, thus leaving plenty of room for improvements. For instance, the
Griewank function was one of the most problematic cases, and it is defined as

f (x1, . . . , xd) = 1 +
1

4000

d

∑
i=1

x2
i −

d

∏
i=1

cos(xi/
√

i).

This a multimodal, non-separable function, with several local optima within the search region. For
any dimensionality d, it has one global minimum of zero located at the point (0, . . . , 0).
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We replicated the simulation study in Mullen (2014) using the standard sequential GA (GA), the
parallel island GA with 4 islands (GAISL), the hybrid GA with local search (HGA), and the island GA
with local search (HGAISL). Results for the Griewank function based on 100 replications are shown
in Figure 14. The use of hybrid GAs, particularly in combination with the islands evolution, clearly
yields more accurate solutions and with less dispersion. The same behavior has been observed in
many other benchmark functions available in the globalOptTests package.
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Figure 14: Results from 100 replications of Griewank function optimisation using standard GAs (GA),
island GAs (GAISL), hybrid GAs with local search (HGA), and island GAs with local search (HGAISL).
The table at the bottom reports the average (and standard deviation) computing times in seconds used
by each algorithm.

Summary

GA is a flexible R package for solving optimisation problems with genetic algorithms. This paper
presents some improvements recenquadrtly added to the package. We have discussed the implementa-
tion of hybrid GAs, which employ local searches during the evolution of a GA to improve accuracy and
efficiency. Further speedup can also be achieved by parallel computing. This has been implemented
following two different approaches. In the first one, the so-called master-slave approach, the fitness
function is evaluated in parallel, either on a single multi-core machine or on a cluster of multiple
computers. In the second approach, called islands model, the evolution takes place independently on
several sub-populations assigned to different islands, with occasional migration of solutions between
islands. Both enhancements often lead to high-quality solutions more efficiently.

Future plans include the possibility to improve the overall performance by rewriting some key
functions in C++ using the Rcpp package. In particular, coding of genetic operators in C++ should pro-
vide sensible benefits in terms of computational speedup. Another interesting option to perform local
search is the inclusion of Hooke-Jeeves direct search algorithm as described in Satman (2015). Finally,
the package memoise enables to store the results of an expensive fitness function call and returns
the cached result when the same input arguments occur again. This strategy could be conveniently
employed in the case of binary and permutation GAs.
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