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ON SOME FAST WELL-BALANCED FIRST ORDER SOLVERS

FOR NONCONSERVATIVE SYSTEMS

MANUEL J. CASTRO, ALBERTO PARDO, CARLOS PARÉS, AND E. F. TORO

Abstract. The goal of this article is to design robust and simple first order
explicit solvers for one-dimensional nonconservative hyperbolic systems. These
solvers are intended to be used as the basis for higher order methods for one or
multidimensional problems. The starting point for the development of these
solvers is the general definition of a Roe linearization introduced by Toumi in
1992 based on the use of a family of paths. Using this concept, Roe methods
can be extended to nonconservative systems. These methods have good well-
balanced and robustness properties, but they have also some drawbacks: in
particular, their implementation requires the explicit knowledge of the eigen-
structure of the intermediate matrices. Our goal here is to design numerical
methods based on a Roe linearization which overcome this drawback. The
idea is to split the Roe matrices into two parts which are used to calculate
the contributions at the cells to the right and to the left, respectively. This
strategy is used to generate two different one-parameter families of schemes
which contain, as particular cases, some generalizations to nonconservative sys-
tems of the well-known Lax-Friedrichs, Lax-Wendroff, FORCE, and GFORCE
schemes. Some numerical experiments are presented to compare the behaviors
of the schemes introduced here with Roe methods.

1. Introduction

The goal of this article is to design robust and simple first order explicit nu-
merical schemes for solving Cauchy problems for a general class of one-dimensional
nonconservative hyperbolic systems. Hyperbolic systems of conservation laws with
source terms and/or nonconservative products are particular cases. A number of
models of this type have been introduced in fluid dynamics to serve as simplified
models of multiphase or multilayer flows. The theory introduced in [10] is used
here to define the weak solutions of the system. This theory allows one to give a
sense to the nonconservative terms of the system as Borel measures provided that
a Lipschitz-continuous family of paths is prescribed in the space of states.

We consider here the discretization of the systems by means of numerical schemes
which are path-conservative in the sense introduced in [20]. The concept of a
path-conservative method, which is also based on a prescribed family of paths,
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provides a generalization of the conservative schemes introduced by Lax for systems
of conservation laws which are also based on the choice of a family of paths. The
simple first order path-conservative methods to be designed here are intended to be
used as the basis for higher order methods for one and two-dimensional problems.

In [6] it has been proved that, in general, the numerical solutions provided by a
path-conservative numerical scheme converge to functions which solve a perturbed
system in which an error source-term appears on the right-hand side. The appear-
ance of this source-term, which is a measure supported on the discontinuities, has
been first observed in [15] when a scalar conservation law is discretized by means of
a nonconservative numerical method. Nevertheless, in certain special situations the
convergence error vanishes for finite difference methods: this is the case for systems
of balance laws. Moreover for more general problems, even when the convergence
error is present, it may only be noticeable for very fine meshes, for discontinuities
of large amplitude, and/or for large-time simulations; see [6] for details.

The family of generalized Roe schemes introduced in [28] constitutes a particular
case of path-conservative numerical methods. Although the schemes of this family
are robust and have good well-balanced properties (see, for instance, [2], [8], [21],
[20]) they also present, as their conservative counterpart, some drawbacks:

• their implementation requires the explicit knowledge of the eigenstructure
of the intermediate matrices (see [23]); when their analytic expression is
not available, the eigenvalues and eigenvectors of the matrix have to be
calculated numerically at every interface and at every time step, which is
computationally expensive;

• they do not satisfy in general an entropy inequality; as a consequence, an
entropy-fix technique has to be added to the numerical scheme in order
to capture the entropy solution in the presence of smooth transitions (see
[14]);

• the positivity-preserving properties of the exact solutions of the problems
are not satisfied in general by the numerical solutions.

The goal of this article is to design numerical methods based on a Roe lineariza-
tion that overcome the first of these drawbacks of Roe methods. Moreover, some of
the numerical schemes introduced here will also overcome the second and the third
drawbacks.

For hyperbolic systems of conservation laws, it is well known that the use of
incomplete Riemann solvers such as Rusanov, Lax-Friedrichs, HLL, etc. allows one
to reduce the cpu time required by a Roe solver which resolves all the characteristic
fields (see, for instance, [11]). Although when combined with piecewise constant
approximation Roe solvers give in general a better resolution of the discontinuities
than incomplete Riemann solvers, when combined with high order reconstructions
the resolution may be indistinguishable. Therefore high order methods based on in-
complete Riemann solvers may be more efficient than high order Roe methods. The
idea here is to try to extend this strategy to nonconservative hyperbolic systems.

Even if all the numerical schemes considered here are based on a Roe lineariza-
tion, the information concerning the eigenstructure of the intermediate matrices
will not be used, in which case the corresponding numerical scheme is symmetric
or nonupwind, or only partially used. In fact, the Roe matrices will be used here
to compute in an easy manner the integrals through paths related to the definition
of the nonconservative terms: when such a matrix is available, these integrals may
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be calculated by a simple matrix/vector product. In [4] a different approach to
construct nonupwind schemes for nonconservative systems has been put forward,
which is based on a reinterpretation of the PRICE-T method developed in [26]
using the theoretical framework of path-conservative schemes. The main difference
is that in their case, instead of using Roe matrices, the integrals through paths are
computed numerically using Gaussian quadrature.

The organization of the paper is as follows: in Section 2 we recall some basic
concepts. Section 3 is the core of the article. In the first paragraph, we introduce
a family of numerical methods that generalizes the conservative Rusanov schemes.
The Lax-Friedrichs method for nonconservative systems introduced and analyzed in
[6] can be considered as a particular case. As their conservative counterpart, these
methods satisfy a discrete entropy inequality and they are positivity-preserving.
However, they are not well-balanced in general. In order to overcome this drawback,
we present some well-balanced versions of these methods based on two different
strategies: the first one is based on a modification of the identity matrix appearing
in the definition of the methods; the second one consists of using the generalized
hydrostatic reconstruction introduced in [9] which is an extension of the technique
introduced in [1] for the numerical treatment of the source term in the shallow-water
system.

Rusanov and Lax-Friedrichs schemes are very diffusive. The strategy followed
here to reduce the numerical diffusion is inspired in the definition of the FORCE or
GFORCE methods for conservative problems (see [25], [27]). In these methods, the
numerical diffusion of the Lax-Friedrichs scheme is reduced by considering a con-
servative method whose flux is a convex linear combination of the Lax-Friedrichs
and Lax-Wendroff fluxes. To follow such a strategy, first a generalization of Lax-
Wendroff methods for nonconservative systems has to be defined. This is done
in two different ways: while the first generalization is only second order for con-
servative problems, the second one is second order for general systems. Once the
Lax-Friedrichs and the Lax-Wendroff methods have been generalized, we consider
in Subsection 3.4 linear convex combinations of these methods. We thus obtain two
different families of numerical schemes (depending on the choice of the first or the
second order extension of the Lax-Wendroff scheme) which depend on a parame-
ter ω ∈ [0, 1]. In particular, the choices ω = 0, 1, 1/2, 1/(1 + CFL) correspond to
the extensions of Lax-Friedrichs, Lax-Wendroff, FORCE, and GFORCE numerical
schemes, respectively.

In Section 4 the particular expression of these methods for systems of conser-
vation laws with source terms and/or nonconservative products is obtained. The
difficulty related to resonance is also discussed.

In Section 5 the numerical schemes introduced here are applied to the one and
the two-layer shallow water systems and compared between them and with the
usual Roe scheme. Together with the first order schemes presented here, we also
consider their high order extensions based on the use of a reconstruction operator
following the ideas given in [7], [20]. As expected, the numerical results given
by the first order numerical schemes introduced here are worse than those given
by Roe methods, but when they are extended to higher order, the quality of the
results is similar. Moreover, they are easier to implement and the numerical cost
is dramatically reduced for problems in which the eigenvalues and eigenvectors are
not explicitly known.
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2. Preliminaries

We consider one-dimensional P.D.E. systems of the form:

(2.1) Wt +A(W ) ·Wx = 0, x ∈ R, t > 0,

where the unknown W (x, t) takes values on an open convex set Ω of R
N . The

system is supposed to be strictly hyperbolic and the characteristic fields Ri(W ),
i = 1, . . . , N , are supposed to be either genuinely nonlinear:

∇λi(W ) ·Ri(W ) �= 0, ∀W ∈ Ω,

or linearly degenerate:

∇λi(W ) ·Ri(W ) = 0, ∀W ∈ Ω.

Here, λ1(W ), . . . , λN (W ) represent the eigenvalues of A(W ) (in increasing order)
and R1(W ), . . . , RN (W ) a set of associated eigenvectors.

Solutions of nonlinear hyperbolic systems are generally discontinuous. Due to
the nondivergence form of the equations, the notion of solutions in the sense of
distributions cannot be used. The theory introduced by Dal Maso, LeFloch, and
Murat [10] is followed here to define weak solutions of (2.1). This theory allows one
to define the nonconservative product A(W )Wx as a bounded measure provided
that a family of Lipschitz continuous paths Φ : [0, 1] × Ω × Ω is prescribed, which
must satisfy certain natural regularity conditions; in particular,

(2.2) Φ(0;WL,WR) = WL, Φ(1;WL,WR) = WR,

and

(2.3) Φ(s;W,W ) = W.

See [10] for details.
As occurs in the conservative case, not every discontinuity is admissible. There-

fore, a concept of entropy solution has to be assumed. Here, we assume that there
exists an entropy pair (η,G), i.e. a pair of regular functions from Ω to R, η being
convex, such that

∇G(W ) = ∇η(W ) ·A(W ), ∀ W ∈ Ω.

A weak solution is said to be an entropy solution if it satisfies the inequality

∂tη(W ) + ∂xG(W ) ≤ 0,

in the distributions sense.
In order to discretize (2.1) we consider here path-conservative methods (see [20])

of the form:

(2.4) Wn+1
i = Wn

i − Δt

Δx

(
D+

i−1/2 +D−
i+1/2

)
,

where Δx and Δt are, for simplicity, assumed to be constant; Wn
i is the approxi-

mation provided by the numerical scheme of the cell average of the exact solution
at the i-th cell, Ii = [xi−1/2, xi+1/2] at the n-th time level tn = nΔt, and

D±
i+1/2 = D±(Wn

i , . . . ,W
n
i+1

)
,

where D− and D+ are two Lipschitz continuous functions from Ω2 to Ω satisfying:

(2.5) D±(W,W ) = 0, ∀W ∈ Ω,
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and for every pair of states WL, WR:

D−(WL,WR) +D+(WL,WR) =

∫ 1

0

A
(
Φ(s;WL,WR)

)∂Φ
∂s

(s;WL,WR) ds.

The family of generalized Roe schemes introduced in [28] constitutes a particular
case of path-conservative numerical methods. These schemes are based on the
following general concept of a Roe linearization for (2.1): given a family of paths
Φ, a function AΦ : Ω×Ω �→ MN×N (R) is called a Roe linearization if it verifies the
following properties:

• for any WL,WR ∈ Ω, AΦ(WL,WR) has N distinct real eigenvalues,
• for every W ∈ Ω,

(2.6) AΦ(W,W ) = A(W );

• for any WL,WR ∈ Ω,

(2.7) AΦ(WL,WR) · (WR −WL) =

∫ 1

0

A(Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds.

Once a Roe linearization has been chosen, the corresponding Roe scheme is given
by (2.4) together with:

(2.8) D±
i+1/2 = A±

i+1/2 · (W
n
i+1 −Wn

i ),

where

Ai+1/2 = AΦ(W
n
i ,W

n
i+1),

and A±
i+1/2 denote its positive and negative parts, i.e.

(2.9)

A±
i+1/2 = Ki+1/2L

±
i+1/2K

−1
i+1/2, L±

i+1/2 =

⎡⎢⎢⎣
(λ

i+1/2
1 )± 0

. . .

0 (λ
i+1/2
N )±

⎤⎥⎥⎦ ,
λ
i+1/2
1 < λ

i+1/2
2 < · · · < λ

i+1/2
N being the eigenvalues of Ai+1/2 and Ki+1/2 an

N ×N matrix whose columns are the associated eigenvectors.
Well-balancing is related to the numerical approximation of steady state solu-

tions. Notice that system (2.1) can only have nontrivial steady state solutions if it
has at least one linearly degenerate field: if W (x) is a smooth nontrivial stationary
solution

A(W (x)) ·W ′(x) = 0, ∀ x ∈ R,

then 0 is an eigenvalue of A(W (x)) and W ′(x) an associated eigenvector for every
x such that W ′(x) �= 0. Therefore, given an interval J ⊂ R such that W ′(x) �= 0
for every x in the interior of J , x ∈ J → W (x) is a parameterization of an arc of an
integral curve of a characteristic field. Moreover, as the corresponding eigenvalue
vanishes identically, the characteristic field has to be linearly degenerate.

Let us introduce the set Γ of all the integral curves γ of a linearly degenerate
field of A(W ) such that the corresponding eigenvalue vanishes on Γ. According to
[21], we introduce the following definitions:
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Definition 2.1. Given a curve γ ∈ Γ, a numerical scheme for solving (2.1) is said
to be exactly well-balanced for γ if it solves exactly any smooth stationary solution
W such that

(2.10) W (x) ∈ γ, ∀ x.

The scheme is said to be well-balanced of order k for γ if it solves up to order k
any smooth stationary solution satisfying (2.10). Finally, the scheme is said to be
exactly well-balanced or well-balanced of order k if these properties are satisfied for
any curve of Γ.

Definition 2.1 generalizes the usual concept of well-balanced scheme for a system
of balance laws (see [3]). It is a rather formal and geometrical definition, but it
is well suited to the analysis of the well-balanced properties of path-conservative
numerical schemes as these properties are strongly connected to the relationship
between the paths and the set of curves Γ; see [20]. For instance, the following
general result can be easily shown for Roe methods (see [21]):

Proposition 2.2. Let γ be a curve in Γ. Let AΦ be a Roe linearization related to
a family of paths Φ satisfying that given two states WL and WR belonging to γ, the
path Φ(·;WL,WR) is a parameterization of the arc of γ linking the states. Then,
the corresponding Roe scheme is exactly well-balanced for γ.

The proof of this proposition is straightforward: on the one hand, it can be easily
deduced from (2.7) that, given two states WL and WR belonging to γ, the following
equality holds:

(2.11) AΦ(WL,WR) · (WR −WL) = 0.

The proof is easily concluded by using the definitions of the positive and negative
parts, and the form (2.4) of the scheme.

3. Numerical schemes

The D± functions of the new families of path-conservative numerical schemes
introduced here will be of the form:

(3.1) D±
i+1/2 = Â±

Φ(W
n
i ,W

n
i+1) · (Wn

i+1 −Wn
i ),

where

(3.2) AΦ(WL,WR) = Â+
Φ(WL,WR) + Â−

Φ(WL,WR)

represents an arbitrary decomposition of the Roe linearization. In particular, the
decomposition

(3.3) Â±
Φ(WL,WR) = A±

Φ(WL,WR),

where A±
Φ(WL,WR) are the positive and negative parts of the matrix corresponds

to the Roe method.
Clearly, a numerical scheme of the form (2.4), (3.1) based on a decomposition

(3.2) of a Roe linearization AΦ is well-balanced for a curve γ ∈ Γ if, and only if,
given two states WL and WR belonging to γ, the following equalities hold:

(3.4) Â±
Φ(WL,WR) · (WR −WL) = 0.
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3.1. Rusanov methods. Let us consider first the numerical schemes (2.4), (3.1)
based on the decomposition (3.2) given by:

Â+
Φ(WL,WR) =

1

2
[α(WL,WR)Id+AΦ(WL,WR)] ,(3.5)

Â−
Φ(WL,WR) =

1

2
[−α(WL,WR)Id+AΦ(WL,WR)] ,(3.6)

where α(WL,WR) is a positive number such that:

|λi(WL,WR)| ≤ α(WL,WR), i = 1, . . . , N.

Here, λi(WL,WR), i = 1, . . . , N represent the eigenvalues of the Roe matrix.

Clearly, the eigenvalues of Â+
Φ(WL,WR) and Â−

Φ(WL,WR) are, respectively, posi-
tive and negative. We remark that this method only requires a partial knowledge of
the eigenstructure: at every interface only the maximum eigenvalue (or an estimate)
has to be known.

It can be easily verified that, for conservative problems, this family of schemes
reduces to the conservative methods based on Rusanov numerical fluxes. Schemes
of this family are first order accurate and linearly stable under the usual CFL
condition:

(3.7)
Δt

Δx
max{|λj(W

n
i ,W

n
i+1)| : j = 1, . . . , N} = CFL, ∀i,

where CFL ∈ (0, 1]. Moreover, they have good entropy-satisfying and positivity-
preserving properties: under some hypotheses on Φ (see Appendix A), the following
results hold:

Proposition 3.1. Let us assume that α(WL,WR) satisfies:

(3.8) max{|λj(Wk)| : j = 1, . . . , N} ≤ α(WL,WR), k = 0, . . . , N,

where W0, . . . , WN are the intermediate states appearing in the self-similar entropy
solution V (x/t;WL,WR) of the Riemann problem corresponding to WL, WR. Then,
under the CFL assumption:

(3.9)
Δt

Δx
α(Wn

i ,W
n
i+1) ≤

1

2
, ∀i,

there exists a consistent numerical entropy flux function Ĝ(WL,WR) such that the
following entropy inequality is satisfied:

(3.10) η(Wn+1
i )− η(Wn

i ) +
Δt

Δx

(
Ĝ(Wn

i ,W
n
i+1)− Ĝ(Wn

i−1,W
n
i )
)
≤ 0.

Proposition 3.2. Under the hypothesis of Proposition 3.1, let us suppose that the
Riemann problem has the following positivity-preserving property: there exists j
such that:

(3.11) wL
j , w

R
j ≥ 0 =⇒ Vj(v;WL,WR) ≥ 0, ∀v,

where wL
j , wR

j , Vj(·;WL,WR) represent, respectively, the j-th component of WL,
WR, and V (·;WL,WR). Then, the Rusanov method based on the decomposition
(3.5), (3.6) is also positivity-preserving in the following sense:

w0
i,j ≥ 0, ∀i =⇒ wn

i,j ≥ 0, ∀i, n,
where wn

i,j represents the j-th component of Wn
i .
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These results are proved in Appendix A. The proof is based on the interpretation
of the methods as approximate Riemann solvers.

Notice that, if Δx and Δt satisfy (3.7), a possible choice for α is given by:

(3.12) α(Wn
i ,W

n
i+1) =

Δx

Δt
, ∀i.

For conservative problems, the corresponding numerical scheme reduces to the Lax-
Friedrichs method. In this case no local information is used in the expression of
the numerical scheme. Only an estimate of the maximum speed in the whole of the
domain at any given time level is needed in order to impose the CFL condition.

By using the Roe property (2.7), this generalized Lax-Friedrichs method can also
be written in the form (2.4) with:

(3.13) D±
i+1/2 =

∫ 1

0

Â±(Φ(s;Wn
i ,W

n
i+1))

∂Φ

∂s
(s;Wn

i ,W
n
i+1) ds,

where

Â±(W ) =
1

2

(
±Δx

Δt
Id+A(W )

)
.

The Lax-Friedrichs method written in this form has been introduced and analyzed
in [6]. From equation (3.13), it is clear that the method is independent of the
particular choice of Roe linearization. Nevertheless, its practical implementation is
easier when a Roe linearization is available.

3.2. Well-balanced Rusanov schemes. Let us consider in this section a Roe
linearization based on a family Φ satisfying the hypotheses of Proposition 2.2. The
corresponding Roe scheme is thus well-balanced for γ.

In general, Rusanov schemes based on the decomposition (3.5), (3.6) are not
well-balanced for γ. In effect, given WL, WR ∈ γ, we have the equality:

Â±
Φ(WL,WR)(WR −WL) = ±1

2
α(WL,WR)(WR −WL) �= 0.

In this section, we introduce two different strategies to make the numerical
scheme well-balanced.

3.2.1. Modification of the identity matrix. Observe that, given WL, WR ∈ γ, equa-
tion (2.11) is satisfied and thus 0 is an eigenvalue of AΦ(WL,WR) and WR −WL is
an associated eigenvector. Let us consider the following decomposition:

Â+
Φ(WL,WR) =

1

2

[
α(WL,WR)Î(WL,WR) +AΦ(WL,WR)

]
,(3.14)

Â−
Φ(WL,WR) =

1

2

[
−α(WL,WR)Î(WL,WR) +AΦ(WL,WR)

]
,(3.15)

where Î(WL,WR) is:

(3.16) Î(WL,WR) = K(WL,WR) · Îd ·K(WL,WR)
−1.

Here K(WL,WR) is a matrix whose columns are eigenvectors of AΦ(WL,WR), and

Îd is the diagonal matrix whose i-th coefficient is 1 if λi(WL,WR) �= 0, or 0 if
λi(WL,WR) = 0.

Notice that, if the states WL and WR belong to γ, WR −WL is an eigenvector

associated to 0 for both the matrices AΦ(WL,WR) and Î(WL,WR). Therefore,
(3.4) is satisfied and the numerical scheme is exactly well-balanced for γ.
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Again, the choice (3.12) provides a well-balanced version of the generalized Lax-
Friedrichs scheme.

This well-balanced version of the Rusanov and Lax-Friedrichs methods is also
first order accurate and linearly stable under the usual CFL condition. Unfortu-
nately, the proofs of Propositions 3.1 and 3.2 cannot be adapted in general to this
modified scheme: the entropy-satisfying and positivity-preserving properties of the
scheme may fail for the modified version.

Notice that in this well-balanced version of the scheme, at least the eigenvector
associated with the null eigenvalue of the intermediate matrices has to be known.

3.2.2. Generalized hydrostatic reconstruction. In this paragraph we follow the strat-
egy designed in [9] (which is a generalization of that introduced in [1] for the shallow
water system) to modify any path-conservative numerical scheme (2.4) in order to
be well-balanced for all the curves of a subset Γ0 of Γ.

Let us assume that there exists a family of Lipschitz-continuous curves:

(3.17) Γ̃ = {CW , W ∈ Ω},
satisfying the following properties:

(P1) W ∈ CW for every W ∈ Ω.
(P2) If W belongs to a curve γ ∈ Γ0, then

(3.18) CW = γ.

(P3) Given two arbitrary states W0 and W1 in Ω, it is possible to choose in a
continuous way two states W−

1/2 ∈ CW0
and W+

1/2 ∈ CW1
such that

W−
1/2 = W+

1/2

whenever W0 and W1 belong to the same curve γ ∈ Γ0.

The following modification of the numerical scheme (2.4) is then considered:

(3.19) Wn+1
i = Wn

i − Δt

Δx

(
D+(W−

i−1/2,W
+
i−1/2) +D−(W−

i+1/2,W
+
i+1/2)

+

∫ 1

0

A
(
Q+

i−1/2(s)
)dQ+

i−1/2

ds
ds+

∫ 1

0

A
(
Q−

i+1/2(s)
)dQ−

i+1/2

ds
ds

)
,

where W±
i+1/2 represent the reconstructed states obtained by applying (P3) to Wn

i

and Wn
i+1, and

s ∈ [0, 1] �→ Q−
i+1/2(s),

s ∈ [0, 1] �→ Q+
i+1/2(s),

are, respectively, parameterizations of the arcs of the curves CWn
i
and CWn

i+1
, linking

the pairs of states (Wn
i ,W

−
i+1/2) and (W+

i+1/2,W
n
i+1). The numerical scheme (3.19)

is path-conservative, consistent and well-balanced for every curve γ ∈ Γ.
The entropy-satisfying and positivity-preserving properties of the chosen path-

conservative scheme may also be satisfied by its modification (3.19) if the gener-
alized hydrostatic reconstruction satisfies some properties. We give hereafter two
general results which are satisfied for the particular case of the hydrostatic recon-
struction introduced in [1] for the shallow water system with source terms. In fact,
their proofs follow closely those of the corresponding results given in [3].
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Proposition 3.3. Let us suppose that the numerical scheme (2.4) satisfies the
following semi-discrete entropy inequality by interfaces: there exists a consistent
numerical flux entropy such that

G(W1) +∇η(W1) ·D−(W0,W1) ≤ Ĝ(W0,W1),(3.20)

G(W0) +∇η(W0) ·D+(W0,W1) ≥ Ĝ(W0,W1)(3.21)

hold for any pair of states W0 and W1. Let us also suppose that the reconstructed
states satisfy the inequalities:

G(W−
1/2)−G(W0) +

(
∇η(W−

1/2)−∇η(W0)
)
·D+(W−

1/2,W
+
1/2)

≤ ∇η(W0) ·
∫ 1

0

A
(
Q−

1/2(s)
)dQ−

1/2

ds
ds,

G(W+
1/2)−G(W1) +

(
∇η(W+

1/2)−∇η(W1)
)
·D−(W−

1/2,W
+
1/2)

≥ ∇η(W1) ·
∫ 1

0

A
(
Q+

1/2(s)
)dQ+

1/2

ds
ds.

Then, the numerical scheme (3.19) also satisfies a semi-discrete entropy inequality
by interfaces for the consistent numerical flux function:

G̃(W0,W1) = Ĝ(W−
1/2,W

+
1/2).

Proposition 3.4. Let us suppose that the numerical scheme (2.4) is positivity-
preserving in the sense of Proposition 3.2. Let us also suppose that, given two
states

Wk = [wk,1, . . . , wk,N ]T , k = 0, 1,

the reconstructed states

W±
1/2 = [w±

1/2,1, . . . , w
±
1/2,N ]T

are such that

(3.22) w0,j ≥ w−
1/2,j , w1,j ≥ w+

1/2,j ,

and

(3.23)

∫ 1

0

N∑
l=1

aj,l
(
Q−

1/2(s)
)d q−1/2,l

ds
ds+

∫ 1

0

N∑
l=1

aj,l
(
Q+

1/2(s)
)d q+1/2,l

ds
ds ≤ 0,

where aj,l(W ) represents the (j, l)-entry of the matrix A(W ), and

s �→ Q±
1/2(s) = [q±1/2,1(s), . . . , q

±
1/2,N (s)]T

are some parameterizations of the arcs of CW0
and CW1

, linking the pairs of states
(W0,W

−
1/2) and (W+

1/2,W1). Then the numerical scheme (3.19) is also positivity-

preserving.
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3.3. Generalized Lax-Wendroff schemes. We consider now the numerical
scheme defined by the following decomposition:

Â+
Φ(WL,WR) =

1

2

[
AΦ(WL,WR) +

Δt

Δx
A2

Φ(WL,WR)

]
,(3.24)

Â−
Φ(WL,WR) =

1

2

[
AΦ(WL,WR)−

Δt

Δx
A2

Φ(WL,WR)

]
.(3.25)

For linear or conservative problems these schemes reduce to conservative methods
based on Lax-Wendroff numerical fluxes, and they are second order accurate in
these cases. However, in the presence of nonconservative terms they are only first
order accurate. In effect, a Taylor series expansion allows us to prove the following
development for a smooth solution of (2.1) with bounded derivatives:

W (x, t+Δt) = W (x, t)−ΔtA(W ) ·Wx +
Δt2

2
∂x
(
A(W )2 ·Wx

)
+
Δt2

2

(
DA(W )

[
A(W ) ·Wx,Wx

]
−DA(W )

[
Wx,A(W ) ·Wx

])
+O(Δt3),

where the dependence on x, t of the terms involving derivatives has been dropped
for simplicity, and the following notation has been used: given two vectors

U = [u1, . . . , uN ]T , V = [v1, . . . , vN ]T ,

DA(W )
[
U, V

]
represents the derivative of A(W ) in the direction of the vector U

applied to the vector W , i.e.

DA(W )
[
U, V

]
=

(
N∑
l=1

ul∂wl
A(W )

)
· V.

Here, ∂wl
A(W ) is the N ×N matrix whose (i, j) entry is

∂wl
ai,j(W ).

Let us consider the numerical scheme given by

D+(WL,WR) =
1

2

[
AΦ(WL,WR) · (WR −WL) +

Δt
ΔxA

2
Φ(WL,WR) · (WR −WL)

− Δt
2Δx

(
DA(WR)

[
AΦ(WL,WR) · (WR −WL),WR −WL

]
(3.26)

−DA(WR)
[
WR −WL,AΦ(WL,WR) · (WR −WL)

])]
,

D−(WL,WR)
1

2

[
AΦ(WL,WR) · (WR −WL)− Δt

ΔxA
2
Φ(WL,WR) · (WR −WL)

− Δt
2Δx

(
DA(WL)

[
AΦ(WL,WR) · (WR −WL),WR −WL

]
(3.27)

−DA(WL)
[
WR −WL,AΦ(WL,WR) · (WR −WL)

])]
.

This scheme is second order accurate for general problems.
Both the first and the second order extensions of the Lax-Wendroff scheme in-

troduced in this section preserve the well-balanced properties of the Roe scheme
corresponding to the chosen linearization: let us suppose again that the hypothesis
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of Proposition 2.2 is satisfied. Then, (2.11) is satisfied and it can be easily verified
that:

Â±
Φ(WL,WR) · (WR −WL) = 0, D±(WL,WR) = 0,

for Â±
Φ(WL,WR) given by (3.24)-(3.25) and D±(WL,WR) given by (3.26)-(3.27).

The schemes introduced in this paragraph are expected to produce oscillations
near the discontinuities, as happens for conservative systems. The idea here is
to construct numerical schemes which are a combination of the generalized Lax-
Friedrichs and Lax-Wendroff schemes, in order to reduce the numerical viscosity of
the first one without losing its good stability properties.

3.4. Convex linear combinations of Lax-Friedrichs and Lax-Wendroff
schemes. In this paragraph, we consider decompositions which are obtained by
means of a convex linear combination of those corresponding to Lax-Wendroff and
Lax-Friedrichs schemes. First, we consider:

(3.28) Â±
Φ(WL,WR) = (1− ω)Â±

Φ,LF (WL,WR) + ωÂ±
Φ,LW (WL,WR),

where ω is a fixed parameter in [0, 1], Â±
Φ,LF (WL,WR) are given by (3.5)-(3.6) with

the choice (3.12), and Â±
Φ,LW (WL,WR) are given by (3.24)-(3.25). It is interesting

to note that the eigenvalues of Â+
Φ(WL,WR) (resp. Â−

Φ(WL,WR) ) are positive
(resp. negative) if

ω ≤ 1

1 + CFL
,

given that this is precisely the region of all monotone schemes allowed by the convex
average for linear scalar problems. In that case, the particular choice ω = 1/(1+ c)
corresponds to the Godunov upwind scheme.

We will only consider here the choices ω = 0, 1, 1/2, 1/(1+CFL) that correspond
to the particular cases of the generalized Lax-Friedrichs, Lax-Wendroff, FORCE,
and GFORCE numerical schemes.

In general, the scheme based on the decomposition (3.28) is not well-balanced
for γ under the hypotheses of Proposition 2.2. A well-balanced numerical scheme
can again be recovered if the following decomposition is considered:

(3.29) Â±
Φ(WL,WR) = (1− ω)Â±

Φ,WBLF (WL,WR) + ωÂ±
Φ,LW (WL,WR),

where now Â±
Φ,WBLF (WL,WR) are given by (3.14)-(3.15) together with the choice

(3.12).
Finally, we also consider the following combinations of the Lax-Friedrichs scheme

and the second order extension of the Lax-Wendroff scheme:

(3.30) D±(WL,WR) = (1− ω)Â±
Φ,LF (WL,WR) · (WR −WL) + ωD±

LW (WL,WR),

where D±
LW are given by (3.26)-(3.27), or its well-balanced version, in which

Â±
Φ,LF (WL,WR) are replaced by Â±

Φ,WBLF (WL,WR).

4. Systems of conservation laws with source terms and

nonconservative products

We consider in this section PDE systems of the form:

(4.1) wt + F (w)x +B(w) · wx = S(w)σx,
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where the unknown w(x, t) takes values on an open convex set O of RN ; F is a
regular function from O to R

N , whose Jacobian matrix will be denoted by J(w):

J(w) =
∂F

∂w
(w);

B is a regular matrix function from O to MN×N (R); S is a function from O to R
N ;

and σ(x) is a known function from R to R.
By adding to (4.1) the equation

(4.2) σt = 0,

the system can be rewritten in the form (2.1):

(4.3) Wt + Ã(W ) ·Wx = 0,

where W is the augmented vector

W =

[
w
σ

]
∈ Ω = O× R,

and Ã(W ) is the (N + 1)× (N + 1) matrix whose block structure is given by

Ã(W ) =

[
A(w) −S(w)
0 0

]
.

Here,

A(w) = J(w) +B(w),

which is assumed to have N real distinct eigenvalues

λ1(w) < · · · < λN (w),

and associated eigenvectors rj(w), j = 1, . . . , N . If the eigenvalues λ1(w), . . . , λN (w)

of A(w) do not vanish, (4.3) is a strictly hyperbolic system: Ã(W ) has N+1 distinct
real eigenvalues

λ1(w), . . . , λN (w), 0,

with associated eigenvectors

R1(W ), . . . , RN+1(W ),

given by

Ri(W ) =

[
ri(w)
0

]
, i = 1, . . . , N ; RN+1(W ) =

[
A(w)−1 · S(w)

1

]
.

Clearly, the (N+1)-th field is linearly degenerate and, for the sake of simplicity, we
assume that it is the only one, the others being genuinely nonlinear. In this case,
the set Γ is composed of all the interval curves of the (N + 1)-th field, which are
the integral curves of the o.d.e. system:

dw

ds
= A(w)−1 · S(w).

In order to construct Roe linearizations of (4.3), first a family of paths Φ̃ in Ω
has to be chosen. We will use the notation

WL =

[
wL

σL

]
, WR =

[
wR

σR

]
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for the states, and

Φ̃(s;WL,WR) =

[
Φ(s;WL,WR)

ΦN+1(s;WL,WR)

]
,

where

Φ(s;WL,WR) =

⎡⎢⎣ Φ1(s;WL,WR)
...

ΦN (s;WL,WR)

⎤⎥⎦ ,
for the paths connecting the states.

As in [21], we consider families of paths Φ̃ which are an extension to Ω of a family
of paths in O; i.e., we assume that there exists a family of paths φ : [0, 1]×O×O → O

such that, if WL and WR are two states such that σL = σR = σ̄, then:

(4.4) Φ̃(s;WL,WR) =

[
φ(s;wL, wR)

σ̄

]
, ∀s ∈ [0, 1].

This requirement is natural, as it ensures that for constant σ, the numerical schemes
designed for (4.1) will reduce to φ-conservative numerical schemes for the homoge-
neous problem:

(4.5) wt + F (w)x +B(w) · wx = 0.

Following [21], we consider Roe linearizations ÃΦ̃(WL,WR) of the form:

(4.6) ÃΦ̃(WL,WR) =

[
AΦ(WL,WR) −SΦ̃(WL,WR)

0 0

]
,

where

(4.7) AΦ(WL,WR) = J(wL, wR) +BΦ(WL,WR).

Here, J(wL, wR) is a Roe linearization of the Jacobian of the flux F in the usual
sense:

(4.8) J(wL, wR) · (wR − wL) = F (wR)− F (wL);

BΦ(WL,WR) is a matrix satisfying:

(4.9) BΦ(WL,WR) · (wR − wL) =

∫ 1

0

B(Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds;

and SΦ̃(WL,WR) is a vector satisfying:

(4.10) SΦ̃(WL,WR)(σR − σL) =

∫ 1

0

S(Φ(s;WL,WR))
∂ΦN+1

∂s
(s;WL,WR) ds.

It can be easily shown that, if (4.8)-(4.10) are fulfilled, then the matrix defined

by (4.6)-(4.7) satisfies (2.6) and (2.7) for the family of paths Φ̃. It is thus a Roe
linearization provided that it has N + 1 different real eigenvalues.

The non-well-balanced numerical versions of the schemes introduced in Section
3.4 are useless in this case, as they do not preserve equation (4.2), which is an
obvious requirement. Let us thus apply their well-balanced versions.
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4.1. Modification of the identity matrix. Some algebraical calculations allow

us to show that the matrix Î(WL,WR) given by (3.16) has, in this case, the following
block structure:

Î(WL,WR) =

[
Id −A−1

Φ (WL,WR) · SΦ̃(WL,WR)
0 0

]
.

Using this expression and dropping the (N + 1)-th components (which are not
relevant, as σ is a known function), the numerical scheme corresponding to the
decomposition (3.29) can be written as follows:

wn+1
i = wn

i +
Δt

Δx

(
Fω
i−1/2 − Fω

i+1/2

)
− Δt

2Δx

(
Bi−1/2(w

n
i − wn

i−1) +Bi+1/2(w
n
i+1 − wn

i )
)

+
Δt

2Δx

(
Si−1/2(σi − σi−1) + Si+1/2(σi+1 − σi)

)
(4.11)

+
Δt

2Δx

(
ω
Δt

Δx
Ai−1/2 + (1− ω)

Δx

Δt
A−1

i−1/2

)
Si−1/2(σi − σi−1),

− Δt

2Δx

(
ω
Δt

Δx
Ai+1/2 + (1− ω)

Δx

Δt
A−1

i+1/2

)
Si+1/2(σi+1 − σi),

where

Fω
i+1/2 = ωF lw

i+1/2 + (1− ω)F lf
i+1/2;(4.12)

F lw
i+1/2 =

1

2

[
F (wn

i ) + F (wn
i+1)−

Δt

Δx
A2

i+1/2 · (wn
i+1 − wn

i )

]
;(4.13)

F lf
i+1/2 =

1

2

[
F (wn

i ) + F (wn
i+1)−

Δx

Δt
(wn

i+1 − wn
i )

]
;(4.14)

Ai+1/2 = AΦ(W
n
i ,W

n
i+1);(4.15)

Bi+1/2 = BΦ(W
n
i ,W

n
i+1);(4.16)

Si+1/2 = SΦ̃(W
n
i ,W

n
i+1).(4.17)

The last two terms of the scheme can be interpreted as the upwinding part of
the source term discretization.

If, instead, the second order Lax-Wendroff scheme is chosen, the following terms
have to be added to the right-hand side of (4.12):

(4.18)

ω
Δt2

4Δx2

N∑
l=1

(
(wn

i − wn
i−1)

T · C+
l,i−1/2 · (w

n
i − wn

i−1)

+ (wn
i+1 − wn

i )
T · C−

l,i+1/2 · (w
n
i+1 − wn

i )

+ V +
l,i−1/2 · (w

n
i − wn

i−1)(σi − σi−1) + V −
l,i+1/2

· (wn
i+1 − wn

i )(σi+1 − σi)

+ β+
l,i−1/2(σi − σi−1)

2 + β−
l,i+1/2(σi+1 − σi)

2

)
El,
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where {E1, . . . , EN} is the canonical basis of RN and

C±
l,i+1/2 = C±

l (Wn
i ,W

n
i+1),(4.19)

V ±
l,i+1/2 = V ±

l (Wn
i ,W

n
i+1),(4.20)

β±
l,i+1/2 = β±

l (wn
i , w

n
i+1).(4.21)

Here, C±
l (WL,WR) represents the matrices whose (i, j) entries are, respectively,

cl,+i,j (WL,WR) =

N∑
k=1

(∂wk
bl,i(wR)− ∂wi

bl,k(wR)) ak,j(WL,WR),(4.22)

cl,−i,j (WL,WR) =
N∑

k=1

(∂wk
bl,i(wL)− ∂wi

bl,k(wL)) ak,j(WL,WR),(4.23)

where ai,j(WL,WR) and bi,j(w) denote respectively the (i, j) entries ofAΦ(WL,WR)
and B(w); V ±

l (WL,WR) are the 1×N vectors whose j-th components are given by

v+l,j(WL,WR) = −
N∑

k=1

((
∂wk

bl,j(wR)− ∂wj
bl,k(wR)

)
Sk(WL,WR)

+∂wk
Sl(wR)ak,j(WL,WR)

)
,

v−l,j(WL,WR) = −
N∑

k=1

((
∂wk

bl,j(wL)− ∂wj
bl,k(wL)

)
Sk(WL,WR)

+∂wk
Sl(wL)ak,j(WL,WR)

)
,

where Sj(w) and Sj(WL,WR) denote respectively the j-th component of S(w) and
SΦ̃(WL,WR). Finally β±

l (WL,WR) are the real numbers given by

β+
l (WL,WR) =

N∑
k=1

∂wk
Sl(wR)Sk(WL,WR),

β−
l (WL,WR) =

N∑
k=1

∂wk
Sl(wL)Sk(WL,WR).

Observe that in the expression of the numerical schemes above there are al-
ways products of the form A−1

i+1/2Si+1/2. If one of the eigenvalues of Ai+1/2 is

zero, the corresponding product makes no sense. In this case two eigenvalues of

Ãφ̃(W
n
i ,W

n
i+1) vanish and the problem is said to be resonant. Resonant problems

exhibit an additional difficulty, as weak solutions may not be uniquely determined
by their initial data, so that the limiting numerical solutions may depend both on
the family of paths and the numerical scheme itself. The analysis of these difficult
problems is beyond the scope of this article. According to our general purpose here,
we would like to introduce some easy modifications of the schemes which avoid the
difficulty related to the presence of A−1

i+1/2. The strategy followed is based on a dif-

ferent definition of Î(WL,WR) in the decomposition (3.14)-(3.15). This choice will
avoid the appearance of singular matrices but, at the same time, will restrict the
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well-balanced properties of the numerical scheme. Let us suppose that the numer-
ical scheme needs to be well-balanced only for the curves of a subset Γ0 of Γ. Let
us suppose that the curves γ ∈ Γ0 are such that, given two states WL = [wL, σL]

T ,
WR = [wR, σR]

T in γ:

• the path Φ̃(s;WL,WR) gives a parameterization of the arc of γ linking the
states;

• the Roe matrix AΦ(WL,WR) is regular.

Let us also assume that there exists a continuous function τ : Ω → Ω such that

τ (W ) = W, ∀W ∈ γ ∈ Γ0.

We propose to modify the numerical schemes by replacing A−1
i+1/2 by (A∗

i+1/2)
−1,

with
A∗

i+1/2 = AΦ

(
τ (Wn

i ), τ (W
n
i+1)
)
.

With this modification, the numerical scheme is still exactly well-balanced for the
curves belonging to Γ0 as can be easily verified. In Section 5, these numerical
schemes will be denoted by adding MI (Modified Inverse) at the end of its name:
for instance, GFORCE2MI denotes the numerical scheme of the second family with
ω = 1/(1 + CFL) using the Modified Inverse (A∗

i+1/2)
−1.

4.2. Generalized hydrostatic reconstruction. The use of the generalized hy-
drostatic reconstruction presented in Subsection 3.2.2 avoids the difficulty related
to the resonant problem provided that the reconstructed states satisfy a further re-
quirement. Let us suppose that the numerical scheme is desired to be well-balanced
for the curves of a subset Γ0 of Γ for which the numerical scheme is required to
be well-balanced. Let us assume that there exists a family of Lipschitz-continuous
curves:

(4.24) Γ̃ = {CW | W ∈ Ω},
satisfying the properties (P1), (P2), and (P3) described in Subsection 3.2.2. Let
us denote by

W±
1/2 = [w±

1/2, σ
±
1/2]

T

the reconstructed states. Let us finally assume that the following property is also
fulfilled:

(P4) for every pair of states W0 and W1, the reconstructed states are such that

σ−
1/2 = σ+

1/2.

If the reconstruction operator is now applied to the family of path-conservative
numerical schemes corresponding to the decomposition (3.29), the modified scheme
(3.19) can be written as follows:

(4.25)

wn+1
i = wn

i +
Δt

Δx

(
Fω
i−1/2 − Fω

i+1/2

)
− Δt

2Δx

(
Bi−1/2(w

+
i−1/2 − w−

i−1/2) +Bi+1/2(w
+
i+1/2 − w−

i+1/2)
)

− Δt

Δx

(∫ 1

0

B(P+
i−1/2(s))

dP+
i−1/2

ds
ds+

∫ 1

0

B(P−
i+1/2(s))

dP−
i+1/2

ds
ds

)

+
Δt

Δx

(∫ 1

0

S(P+
i−1/2(s))

dp+σ,i−1/2

ds
ds+

∫ 1

0

S(P−
i+1/2(s))

dp−σ,i+1/2

ds
ds

)
,
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where the flux Fω
i+1/2 and the intermediate matrices are given again by (4.12)-(4.16)

but they are now evaluated at the reconstructed states w±
i+1/2. Finally,

s ∈ [0, 1] �→ [P±
i+1/2, p

±
σ,i+1/2]

T

are the chosen parameterizations of the arcs of the curves CWn
i
and CWn

i+1
, linking

the pairs of states (Wn
i ,W

−
i+1/2) and (W+

i+1/2,W
n
i+1).

If, instead, the second family is used, some terms similar to (4.18) have to be
added. In this case, they are also evaluated at the reconstructed states, so that all
the terms related to the source term vanish.

5. Numerical tests

In this section, the well-balanced properties, accuracy and efficiency of the nu-
merical schemes introduced here are tested for the one-layer and the two-layer
shallow water systems. In Subsections 5.1 and 5.2 we recall the formulation of
these systems as well as the Roe linearizations considered here to derive the dif-
ferent numerical schemes. In order to avoid the appearance of negative values of
the thickness of the water layers when wet/dry fronts are present, the corrections
proposed in [5] have been applied.

Following [7, 20, 12] we have also derived some third order extensions of all the
first order numerical schemes presented here. These extensions are based on the
third order reconstruction operator PHM (piecewise hyperbolic method) introduced
in [18]. For the one-layer and two-layer shallow water systems the implementation
of these high order extensions can be done in such a way that the well-balanced
properties of the first order schemes for the water at rest and vacuum solutions are
preserved (see [12] for details). A third order TVD-Runge-Kutta discretization has
been used here for the time-stepping. The high order extensions of the previous
numerical schemes will be denoted by adding HO at the beginning of its name:
for instance, HOGFORCE2MI denotes the high order extension of the numerical
scheme of the second family with ω = 1/(1 + CFL) using the modified inverse.

A large number of numerical tests has been performed to compare all of the
numerical schemes introduced in this article with Roe schemes. The following
general facts have been observed:

• In all cases, the Roe scheme gives the best results, followed by the GFORCE
schemes. The results obtained by FORCE schemes are very close to those
obtained by the GFORCE family.

• No significant differences can be found between the numerical results ob-
tained with a numerical scheme based on the first order extension of the
Lax-Wendroff scheme or on the second order one. As a consequence, it
seems that it is not worth adding the extra terms (4.18).

• No significant differences can be found between the numerical results ob-
tained by applying the Modified Inverse or the Hydrostatic Reconstruction
technique.

• No significant differences can be found between the numerical results ob-
tained with the third order extensions of the numerical schemes.

Due to this, we only show hereafter the results obtained with ROE, LAXF1MI,
GFORCE1MI and their high order extensions in order to avoid an excess of tables
and figures.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON SOME FAST WELL-BALANCED FIRST ORDER SOLVERS FOR NCS 1445

5.1. Shallow water equations with depth variations. We consider the follow-
ing formulation of the shallow water system:

(5.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

[
q2

h
+

g

2
h2

]
= gh

∂H

∂x
.

The variable x makes reference to the axis of the channel and t is time; q(x, t) and
h(x, t) represent the mass-flow and the thickness, respectively; g is the acceleration
due to gravity; H(x) is the depth measured from a fixed level of reference; and
η = h−H is the free surface elevation.

This system can be written as a particular case of (4.1) with N = 2, B = 0,
σ = H and

w =

(
h
q

)
, F (w) =

⎛⎝ q
q2

h
+

g

2
h2

⎞⎠ , S(w) =

(
0
gh

)
.

The eigenvalues of this system are:

λ1 = u− c, λ2 = u+ c,

where u = q/h represents the averaged velocity and c =
√
gh. A state W is said to

be supercritical, critical or subcritical if Fr > 1, Fr = 1, or Fr < 1, respectively,

Fr =
u

c
being the Froude number.

The integral curves of the linearly degenerate field are given by the equations:

(5.2) q = constant, h+
q2

2gh2
−H = constant.

In the particular case q = 0 these curves are straight lines in h, q,H space:

(5.3) q = 0, h−H = constant.

These curves correspond to water at rest solutions, while vacuum solutions corre-
spond to:

(5.4) h = 0, q = 0.

We consider here the following Roe matrices based on the family of segments
(see [21]):

(5.5) Ãi+1/2 =

[
Ai+1/2 Si+1/2

0 . . . 0 0

]
,

where

(5.6) Ai+1/2 =

[
1 0

−(un
i+1/2)

2 + (cni+1/2)
2 2un

i+1/2

]
, Si+1/2 =

[
0

(cni+1/2)
2

]
,

with

un
i+1/2 =

√
hn
i u

n
i +

√
hn
i+1u

n
i+1√

hn
i +

√
hn
i+1

, cni+1/2 =

√
g
hn
i + hn

i+1

2
.

The corresponding Roe scheme coincides with the generalized Q-scheme of Roe
upwinding the source term introduced in [2]. It can be easily verified that the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1446 MANUEL J. CASTRO, ALBERTO PARDO, CARLOS PARÉS, AND E. F. TORO

hypotheses of Proposition 2.2 are satisfied for any curve γ given by (5.3). Therefore,
the Roe scheme is exactly well-balanced for water at rest or vacuum stationary
solutions. Moreover, it is well-balanced of order 2 for general stationary solutions
(see [21]).

To apply the technique of modification of the inverse, we consider the subset Γ0

of the integral curves of the linearly degenerate field defined by (5.3) together with
the projection:

W =

⎡⎣ h
q
H

⎤⎦→ τ (W ) =

⎡⎣ h
0
H

⎤⎦ .
With this choice, it can be easily shown that

A∗
i+1/2 =

[
0 1

(cni+1/2)
2 0

]
.

This matrix is regular if cni+1/2 > 0. The corresponding numerical schemes are well-

balanced for water at rest solutions. Nevertheless, the second order of accuracy for
general stationary solutions of Roe methods is not preserved.

The hydrostatic reconstruction technique has been used in [1] to obtain first and
second order schemes for the shallow water system which are well-balanced for vac-
uum and water at rest solutions. It has also been used in [9] to obtain high order
Roe schemes which are also well-balanced for the vacuum and water at rest solu-
tions. A first order Roe method which is well-balanced for every smooth stationary
solution has also been obtained in the latter reference. A different generalization
of the hydrostatic reconstruction technique has also been used in [22] to obtain
high order numerical schemes which are well-balanced for every smooth stationary
solution.

5.2. The two-layer shallow water system. We consider here the following for-
mulation of the two-layer shallow water system (see [8]):

(5.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h1

∂t
+

∂q1
∂x

= 0,

∂q1
∂t

+
∂

∂x

(
q21
h1

+
g

2
h2
1

)
= −gh1

∂h2

∂x
+ gh1

dH

dx
,

∂h2

∂t
+

∂q2
∂x

= 0,

∂q2
∂t

+
∂

∂x

(
q22
h2

+
g

2
h2
2

)
= −ρ1

ρ2
gh2

∂h1

∂x
+ gh2

dH

dx
.

In these equations, index 1 makes reference to the upper layer and index 2 to the
lower one layer. The fluid is assumed to occupy a straight channel with constant
rectangular cross section and constant width. The coordinate x refers to the axis
of the channel, t is time, and g is the acceleration due to gravity. H(x) represents
the depth function measured from a fixed level of reference. Each layer is assumed
to have a constant density, ρi, i = 1, 2 (ρ1 < ρ2). The unknowns qi(x, t) and
hi(x, t) represent respectively the mass-flow and the thickness of the i-th layer at
the section of coordinate x at time t.
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System (5.7) can be written in the form (4.1) with N = 4, σ = H,

w(x, t) =

⎡⎢⎢⎣
h1(x, t)
q1(x, t)
h2(x, t)
q2(x, t)

⎤⎥⎥⎦ , F (w) =

⎡⎢⎢⎢⎢⎢⎣
q1

q21
h1

+
g

2
h2
1

q2
q22
h2

+
g

2
h2
2

⎤⎥⎥⎥⎥⎥⎦ , S(w) =

⎡⎢⎢⎣
0

gh1

0
gh2

⎤⎥⎥⎦ ,

B(w) =

⎡⎢⎢⎣
0 0 0 0
0 0 gh1 0
0 0 0 0

grh2 0 0 0

⎤⎥⎥⎦ ,
where

r =
ρ1
ρ2

.

The characteristic equation of the homogeneous system, i.e. H = constant, is:

(5.8)
(
λ2 − 2u1λ+ u2

1 − gh1

)(
λ2 − 2u2λ+ u2

2 − gh2

)
= rg2h1h2,

where ui = qi/hi represents the averaged velocity of the i-th layer and ci =
√
ghi,

i = 1, 2.
In the case r ∼= 1 (which is the situation arising in many geophysical flows) a

first-order approximation of the eigenvalues was given in [24]:

λ±
ext

∼=
u1h1 + u2h2

h1 + h2
±
(
g(h1 + h2)

) 1
2 ,(5.9)

λ±
int

∼=
u1h2 + u2h1

h1 + h2
±
(
g′

h1h2

(h1 + h2)

[
1− (u1 − u2)

2

g′(h1 + h2)

]) 1
2

.(5.10)

In the above expression, g′ is the reduced gravity :

g′ = (1− r)g.

Note that, λ±
int may become complex, corresponding to the development of shear

instabilities. We note that an approximated hyperbolicity condition that is re-
garded as acceptable when the ratio of densities r is close to 1, as happens in the
oceanographical applications, is

(u1 − u2)
2

g(1− r)(h1 + h2)
< 1.

In the Strait of Gibraltar, r is about 0.99805.
In the present work only the case where λ±

int ∈ R is considered; i.e., the flow is
supposed to be stable and the system strictly hyperbolic.

The integral curves of the 5-th characteristic field are:

q1 = constant,
u2
1

2
− u2

2

2
+ grh1 = constant,

q2 = constant,
u2
1

2
+ g(h1 + h2 −H) = constant.

In particular, if q1 = 0, q2 = 0, we obtain the solutions:

(5.11) q1 = 0, h1(x) = constant, q2 = 0, h2(x)−H(x) = constant,
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representing water at rest. Another steady state solution corresponding to a vacuum
is given by

(5.12) hi = 0, qi = 0, i = 1, 2.

We consider again the family of segments in order to construct a Roe linearization
(see [21] for details):

(5.13) Ãi+1/2 =

[
Ai+1/2 Si+1/2

0 . . . 0 0

]
,

where Ai+1/2 =⎡⎢⎢⎣
0 1 0 0

−(un
1,i+1/2)

2 + (cn1,i+1/2)
2 2un

1,i+1/2 (cn1,i+1/2)
2 0

0 0 0 1
r(cn2,i+1/2)

2 0 −(un
2,i+1/2)

2 + (cn2,i+1/2)
2 2un

2,i+1/2

⎤⎥⎥⎦ ,

Si+1/2 =

⎡⎢⎢⎣
0

−(cn1,i+1/2)
2

0
−(cn2,i+1/2)

2

⎤⎥⎥⎦ .
Here,

un
k,i+1/2 =

√
hn
k,iu

n
k,i +

√
hn
k,i+1u

n
k,i+1√

hn
k,i +

√
hn
k,i+1

, cnk,i+1/2 =

√
g
hn
k,i + hn

k,i+1

2
, k = 1, 2.

The corresponding Roe scheme coincides with the generalized Q-scheme of Roe
upwinding the source term introduced in [8]. It is well-balanced of order 2 for
general stationary solutions and exactly well-balanced for water at rest or vacuum
stationary solutions.

In order to overcome the difficulty of the calculation of the inverse matrix in
resonant cases, we consider the set of integral curves of the linearly degenerate field
(5.11) together with the projection:

W =

⎡⎢⎢⎢⎢⎣
h1

q1
h2

q2
H

⎤⎥⎥⎥⎥⎦→ τ (W ) =

⎡⎢⎢⎢⎢⎣
h1

0
h2

0
H

⎤⎥⎥⎥⎥⎦ .
With this choice, we have

A∗
i+1/2 =

⎡⎢⎢⎣
0 1 0 0

(cn1,i+1/2)
2 0 (cn1,i+1/2)

2 0

0 0 0 1
r(cn2,i+1/2)

2 0 (cn2,i+1/2)
2 0

⎤⎥⎥⎦ ,
which is regular.

The hydrostatic reconstruction technique can also be extended in this case to
obtain numerical schemes which are well-balanced for water at rest or vacuum
stationary state solutions (see [9] for details).
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Table 1. Test 1: Water at rest solution. Errors.

ROE LAXF1MI GFORCE1MI
L1 h L1 q L1 h L1 q L1 h L1 q

Cells error error error error error error

100 1.12E−15 1.75E−15 2.23E−15 2.17E−15 1.78E−15 2.05E−15

0 1 2 3 4 5 6 7 8 9 10

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2 Free S.
Bottom

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

Mass flow

Figure 1. Test 1: Stationary solution and depth function.

Table 2. Test 1: Errors and order.

ROE LAXF1MI

L1 h L1 q L1 h L1 q

Cells error order error order error order error order

10 2.10E−03 - 1.55E−15 - 9.97E−01 - 1.97E+01 -

20 6.23E−04 1.75 1.60E−15 - 1.17 −0.23 1.93E+01 0.03

40 1.58E−04 1.97 1.27E−15 - 2.64E−01 2.15 8.09E−01 4.58

80 3.98E−05 1.99 1.30E−15 - 1.26E−01 1.06 3.97E−01 1.03

160 9.95E−06 2.00 1.38E−15 - 6.19E−02 1.03 1.97E−01 1.01

GFORCE1MI

L1 h L1 q

Cells error order error order

10 9.50 - 2.12E+01 -

20 2.47E−01 5.27 6.94E−01 4.93

40 1.18E−01 1.07 3.75E−01 0.89

80 5.85E−02 1.01 1.86E−01 1.01

160 2.92E−02 1.00 9.34E−02 0.99

5.3. Test 1: One-layer system. Well-balanced property. All the numerical
schemes considered in this work solve exactly water at rest solutions. The objective
of this first test case is to check this fact numerically. To do it, a channel whose
axis is the interval [0, 1] and whose depth function H(x) is given by an exponential
perturbed with a random noise is considered. As initial conditions we take h(x, 0) =
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(a) Free surface
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LXF1MI
GFORCE1MI

(b) Discharge

Figure 2. Test 1: Comparison with the exact solution at t = 100
with Δx = 1/8.

H(x) and q(x, 0) = 0, x ∈ [0, 1]. Table 1 shows the L1 errors obtained with the
numerical schemes: ROE, LAXF1MI and GFORCE1MI for a given mesh with
Δx = 0.01. The CFL parameter is set to 0.9. As expected, all numerical schemes
preserve the steady state up to machine accuracy. Similar results are obtained by
the high order extensions of the previous numerical schemes.

Next, we test the well-balanced property for smooth stationary solutions with
q �= 0. We consider a channel whose axis is the interval [0, 10] and whose bathymetry

is given by the function H(x) = 1 − 0.3e−(x−5)2 . We consider the supercritical
solution corresponding to the integral curve

q = 2, h−H +
q2

2gh 2
= 2.

(See Figure 1).
Table 2 shows the L1 errors obtained with the numerical schemes: ROE,

LAXF1MI and GFORCE1MI for five regular meshes with increasing number of
cells. The CFL parameter is set to 0.9. As expected, ROE gives order 2 while the
other numerical schemes only achieve first order. Figures 2(a) and 2(b) show the
comparison of the numerical results with the exact solution at time t = 100 with
Δx = 1/8. As expected, the best results are given by ROE, and GFORCE1MI
provides better results than LAXF1MI.

5.4. Test 2: One-layer system. Well-balanced property for a nonsmooth
solution. This test is designed to assess the long time behavior and the convergence
to a steady state including a regular transition and a shock. The axis of the channel
is the interval [0, 25]. The bottom topography is given by the function

H(x) =

⎧⎨⎩ 0.05(x− 10)2, if 8 < x < 12;

0.2, otherwise.
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(a) Free surface
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Figure 3. Test 2: Comparison with the reference solution at t =
200 with Δx = 1/8.
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ROE
LAXF1MI
GFORCE1MI
Exact Solution

Figure 4. Test 2: Fr−1. Comparison with the reference solution
at t = 200 with Δx = 1/8.

The initial conditions are h(x, 0) = 0.13+H(x), q(x, 0) = 0.18, and the boundary
conditions are q(0, t) = 0.18, h(25, t) = 0.33. The CFL parameter is set to 0.9.

A reference solution is computed with a mesh of 3200 points. Table 3 shows
the L1 errors obtained with ROE, LAXF1MI, and GFORCE1MI for five regular
meshes with increasing number of cells. In this case, as the steady state solution
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Table 3. Test 2: Errors and order at t = 200.

ROE LAXF1MI

L1 h L1 q L1 h L1 q

Cells error order error order error order error order

50 4.87E−02 - 1.55E−02 - 5.16E−01 - 8.93E−02 -

100 1.09E−02 2.15 8.18E−03 0.92 3.32E−01 0.64 6.90E−02 0.37

200 2.82E−03 1.96 4.03E−03 1.02 1.96E−01 0.76 4.80E−02 0.52

400 7.27E−04 1.95 1.86E−03 1.11 1.07E−01 0.87 2.98E−02 0.69

800 1.87E−04 1.96 1.04E−03 0.85 5.78E−02 0.89 1.73E−02 0.79

GFORCE1MI

L1 h L1 q

Cells error order error order

50 3.17E−01 - 6.69E−02 -

100 1.86E−01 0.77 4.57E−02 0.55

200 1.02E−01 0.86 2.89E−02 0.66

400 5.40E−02 0.92 1.65E−02 0.81

800 2.83E−02 0.93 8.96E−03 0.88

is not regular, at most first order approximation could be expected for all the nu-
merical schemes. As happened in the previous test case, ROE is the most accurate
scheme. Figures 3(a) and 3(b) show the comparison of the numerical results with
the reference solution at time t = 200 with Δx = 1/8. The conclusions coincide
with those of the previous test case.

Figure 4 shows Fr − 1, Fr being the Froude number, computed from the numer-
ical solution obtained using ROE, LAXF1MI, and GFORCE1MI schemes and the
reference solution. As can be observed, this numerical test corresponds to a non-
smooth transcritical solution. Note that if the numerical scheme proposed in [22]
was used, as it is well-balanced for any stationary solution, then the corresponding
errors in Tables 2 and 3 would be of the order of machine accuracy.

5.5. Test 3: Two-layer shallow water. Well-balanced property. In this
numerical experiment we test the well-balanced property of the numerical schemes
for smooth steady solutions not corresponding to water at rest, that is, q1 �= 0 and
q2 �= 0. The axis of the channel is the interval [0, 10], and the bottom is given by

the function H(x) = 2.0 − 0.5e−(x−5)2 . The ratio of densities is set to r = 0.98.
We consider a subcritical steady solution corresponding to the integral curve (see
Figure 5):

q1 = 0.15,
u2
1

2
− u2

2

2
+ g(1− r)h1 = K1, q2 = −0.15,

u2
1

2
+ g(h1 + h2 −H) = K2,

with

K1 =
1

2

(
0.15

0.5

)2

− 1

2

(
0.15

1.5

)2

+ g · (1− 0.98) · 0.5,

K2 =
1

2

(
0.15

0.5

)2

, g = 9.81.
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(a) Free surface and interface.
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Figure 5. Test 3: Exact solution

Table 4. Test 3: Errors and order

ROE

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 3.30E−02 - 6.71E−06 - 1.50E−01 - 6.57E−06 -

80 1.12E−02 1.56 2.11E−06 1.67 5.12E−02 1.55 2.04E−06 1.69

160 3.15E−03 1.83 5.77E−07 1.87 1.47E−02 1.80 5.53E−07 1.88

320 7.98E−04 1.98 1.45E−07 1.99 3.81E−03 1.95 1.40E−07 1.98

640 2.01E−04 1.99 3.51E−08 2.05 9.65E−04 1.98 3.48E−08 2.01

LAXF1MI

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 4.86E−01 - 1.57E−02 - 6.69E−01 - 2.51E−02 -

80 2.85E−01 0.77 1.00E−02 0.65 3.98E−01 0.75 1.58E−02 0.67

160 1.69E−01 0.75 6.07E−03 0.72 2.30E−01 0.79 9.38E−03 0.75

320 9.60E−02 0.82 3.44E−03 0.82 1.26E−01 0.87 5.28E−03 0.83

640 4.93E−02 0.96 1.78E−03 0.95 6.43E−02 0.97 2.73E−03 0.95

GFORCE1MI

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 4.89E−01 - 1.73E−02 - 5.42E−01 0.00 2.07E−02 -

80 2.87E−01 0.77 9.80E−03 0.82 3.22E−01 0.75 1.22E−02 0.76

160 1.67E−01 0.78 5.51E−03 0.83 1.88E−01 0.78 7.07E−03 0.79

320 9.20E−02 0.86 2.91E−03 0.92 1.03E−01 0.87 3.89E−03 0.86

640 4.70E−02 0.97 1.48E−03 0.98 5.24E−02 0.97 1.99E−03 0.97
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Figure 6. Test 3: ROE, LAXF1MI and GFORCE1MI schemes.
Comparison with the exact solution with Δx = 1/16.

As boundary conditions, the discharges are both imposed at x = 0, that is, q1(0, t) =
0.15 and q2(0, t) = −0.15, while the free surface level is fixed to z = 0 at x = 10.
The CFL parameter is set to 0.9.

Tables 4 and 5 show the L1 errors obtained with ROE, LAXF1MI and
GFORCE1MI, and their high order extensions HOROE, HOLAXF1MI and
HOGFORCE1MI, for five regular meshes with increasing number of cells. As ex-
pected, the high order numerical schemes give order 3, ROE gives order 2, and the
other schemes only give first order accuracy.

The numerical results obtained with Δx = 1/16 are compared with the exact
solution in Figures 6 and 7. The first one corresponds to ROE, LAXF1MI, and
GFORCE1MI and the second one to HOROE, HOLAXF1MI and HOGFORCE1MI.
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Table 5. Test 3 (II): Errors and order

HOROE

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 3.92E−02 - 5.46E−06 - 1.54E−01 - 7.99E−06 -

80 4.51E−03 3.12 6.15E−07 3.15 1.77E−02 3.12 8.82E−07 3.18

160 8.19E−04 2.46 1.09E−07 2.50 3.09E−03 2.52 1.45E−07 2.60

320 1.26E−04 2.70 1.54E−08 2.82 4.59E−04 2.75 2.02E−08 2.85

640 1.67E−05 2.92 1.94E−09 2.99 6.15E−05 2.90 2.52E−09 3.00

HOLAXF1MI

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 4.89E−01 - 1.61E−02 - 6.68E−01 - 2.53E−02 -

80 6.28E−02 2.96 2.00E−03 3.01 8.18E−02 3.03 3.18E−03 2.99

160 1.10E−02 2.52 3.46E−04 2.53 1.41E−02 2.54 5.18E−04 2.62

320 1.61E−03 2.77 4.80E−05 2.85 2.08E−03 2.76 7.14E−05 2.86

640 2.05E−04 2.97 6.04E−06 2.99 2.63E−04 2.98 8.98E−06 2.99

HOGFORCE1MI

L1 h1 L1 q1 L1 h2 L1 q2
Cells error order error order error order error order

40 4.87E−01 - 1.76E−02 - 5.39E−01 - 2.10E−02 -

80 6.17E−02 2.98 2.26E−03 2.96 6.69E−02 3.01 2.63E−03 3.00

160 1.08E−02 2.52 3.86E−04 2.55 1.14E−02 2.55 4.33E−04 2.60

320 1.62E−03 2.73 5.47E−05 2.82 1.69E−03 2.76 6.01E−05 2.85

640 2.11E−04 2.94 6.88E−06 2.99 2.17E−04 2.96 7.61E−06 2.98

Table 6. Test 3: CPU time (in seconds).

Cells ROE LAXF1MI GFORCE1MI HOROE HOLAXF1MI HOGFORCE1MI

40 4.27 0.94 1.35 23.90 10.64 14.47
80 16.56 3.68 5.22 95.60 43.11 58.54
160 65.48 14.49 20.85 394.90 184.07 233.93
320 258.60 57.30 81.83 1567.40 754.96 946.99

Finally, Table 6 shows the CPU time (in seconds) used to compute the solution
at t = 300 with ROE, LAXF1MI and GFORCE1MI schemes and their high order
extensions . It can be observed that the CPU time is reduced up to 4.5 times when
using the LAXF1MI or 3.15 times when using GFORCE1MI in comparison with
ROE, which gives the best results. The CPU time is reduced up to 2.10 times when
using HOLAXF1MI or 1.65 times when using HOGFORCE1MI in comparison with
HOROE. These reductions are due to the fact that, while in the implementation
of ROE, the eigenvalues of the intermediate matrices are numerically computed,
for LAXF1MI and GFORCE1MI only an estimate of the maximum eigenvalue is
required to fit the CFL condition. The same thing happens for the high order
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Figure 7. Test 3: HOROE, HOLAXF1MI and HOGFORCE1MI
schemes. Comparison with the exact solution with Δx = 1/16.

extensions. This estimate is given by:

λmax ≈
∣∣∣∣ q1 + q2
h1 + h2

∣∣∣∣+√g(h1 + h2)

(see [24] for details).
Observe that ROE and HOROE numerical schemes are more accurate than the

others: in particular the accuracy obtained for the discharges of both layers is much
better. Due to this, these methods may be preferable when the well-balancing is an
important issue. Moreover, in the case of stationary solutions, the computational
effort required to achieve a prescribed accuracy is similar for the different numerical
schemes: see Figure 8 in which the CPU time is plotted vs. the approximation error
in log scale for a fixed mesh composed by 80 cells. As will be seen in Test 6, this is
not the case for time-dependent solutions.
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Figure 8. Test 3: CPU time vs. Error (log scale)

5.6. Test 4: Two-layer shallow water. Well-balanced property for a non-
smooth solution. In this test the axis of the channel is the interval [0, 10]. The
bottom topography is given by the function

H(x) = 1.0− 0.47e−(x−5.0)2 .

The initial condition is q1(x, 0) = q2(x, 0) = 0, and

h1(x, 0) =

{
0.5 if x < 5,
0.03 otherwise,

and

h2(x, 0) =

{
0.5− 0.47e−(x−5)2 if x < 5,

0.97− 0.47e−(x−5)2 otherwise.

As boundary conditions, the relation q1(·, t) = −q2(·, t) is imposed at both ends, and
the free surface is fixed to z = 0 at x = 10, that is, h1(10, t)+h2(10, t)−H(x) = 0.
The CFL parameter is set to 0.8 and r = 0.98.

A reference solution is computed with a mesh of 3200 points. Figure 9 shows the
comparison of the numerical solutions obtained by ROE, LAXF1MI and
GFORCE1MI with the reference solution at time t = 300 taking Δx = 1/20. Fig-
ure 10 shows the comparison of the numerical solutions obtained by the high order
schemes HOROE, HOLAXF1MI and HOGFORCE1MI with the reference solution
at the same time, again taking Δx = 1/20.

5.7. Test 5. Order of accuracy: one-layer system. This test is designed to
evaluate the accuracy of the schemes for regular time-dependent solutions. The axis
of the channel is the interval [0, 10] and the bottom function is given by H(x) =
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Figure 9. Test 4: ROE, LAXF1MI and GFORCE1MI schemes.
Comparison with the reference solution at time t = 300 with Δx =
1/20.
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Figure 10. Test 4: HOROE, HOLAXF1MI and HOG-
FORCE1MI schemes. Comparison with the reference solution at
time t = 300 with Δx = 1/20.

1− 0.5e−3(x−5)2 sin2
(πx
10

)
. The initial condition is q(x, 0) = 0 and

h(x, 0) =

⎧⎨⎩ H(x) + 2− 0.3(1− e−0.5(x−5)2), if x ≥ 5;

H(x) + 2, if x < 5.
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The final time is t = 0.1. Periodic boundary conditions are considered. The CFL
parameter is set to 0.7.

A reference solution is computed with a mesh of 20480 points. Table 7 shows
the L1 errors and the order obtained with the numerical schemes: ROE, LAXF1MI,
GFORCE1MI, and their high order extensions HOROE, HOLAXF1MI and
HOGFORCE1MI, for five regular meshes with increasing number of cells. As ex-
pected, all the numerical schemes achieve first order approximation, ROE being the
most accurate, while their high order extensions achieve third order accuracy. It
can also be observed that the errors corresponding to HOROE, HOLAXF1MI and
HOGFORCE1MI are of the same order.

ROE HOROE

L1 h L1 q L1 h L1 q

Cells error order error order error order error order

80 2.46E−03 - 1.39E−03 - 2.62E−04 - 1.31E−03 -

160 6.47E−04 1.93 3.83E−04 1.86 4.47E−05 2.55 2.22E−04 2.56

320 2.12E−04 1.63 2.17E−04 0.82 7.33E−06 2.61 3.59E−05 2.63

640 7.78E−05 1.45 1.10E−04 0.98 1.10E−06 2.73 5.08E−06 2.82

1280 3.00E−05 1.37 5.00E−05 1.14 1.48E−07 2.90 6.85E−07 2.89

LAXF1MI HOLAXF1MI

L1 h L1 q L1 h L1 q

Cells error order error order error order error order

80 4.12E−03 - 3.79E−03 - 3.75E−04 - 1.70E−03 -

160 9.13E−04 2.17 8.45E−04 2.17 6.13E−05 2.62 2.97E−04 2.52

320 3.55E−04 1.36 5.09E−04 0.73 9.83E−06 2.64 5.00E−05 2.57

640 1.54E−04 1.20 2.70E−04 0.92 1.47E−06 2.74 7.33E−06 2.77

1280 6.95E−05 1.15 1.34E−04 1.01 2.04E−07 2.85 1.02E−06 2.84

GFORCE1MI HOGFORCE1MI

L1 h L1 q L1 h L1 q

Cells error order error order error order error order

80 2.81E−03 - 2.00E−03 - 2.88E−04 - 1.40E−03 -

160 6.58E−04 2.10 9.00E−04 1.69 4.53E−05 2.67 2.44E−04 2.52

320 2.19E−04 1.59 4.74E−04 0.93 6.87E−06 2.72 3.91E−05 2.64

640 8.25E−05 1.41 1.22E−04 0.94 9.73E−07 2.82 5.69E−06 2.78

1280 3.40E−05 1.28 5.90E−05 1.05 1.30E−07 2.90 7.78E−07 2.87

Table 7. Test 5: Errors and order at t = 0.1.

5.8. Test 6. Order of accuracy: two-layer system. This test is designed to
evaluate the accuracy of the schemes for smooth time-dependent solutions of the
homogeneous two-layer shallow water system. We consider a flat channel whose
axis is the interval [−10, 10]. The initial condition is the following:

h1(x, 0) = 2− e−2x2

(cos(πx/8) sin(πx/4))
2
, q1(x, 0) = e−4x2

(sin(πx/4))
2
,

h2(x, 0) = 1− e−2x2

(cos(πx/8) sin(πx/4))2 , q2(x, 0) = e−4x2

(sin(πx/2))2 .

The final time is t = 1.4. Periodic boundary conditions are considered. The CFL
parameter is set to 0.9.
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A reference solution is computed with a mesh of 25600 points. Table 8 shows the
L1 errors (only the maximum error in the four unknowns is shown), the order and
the CPU time corresponding to ROE, LAXF1MI, GFORCE1MI, and their high
order extensions HOROE, HOLAXF1MI and HOGFORCE1MI, for four regular
meshes with increasing number of cells. As expected, all the numerical schemes
achieve first order approximation, ROE being the most accurate, while their high
order extensions achieve third order accuracy. It can also be observed that the
errors corresponding to HOROE, HOLAXF1MI and HOGFORCE1MI are of the
same order. Figure 11 shows the CPU time vs. the approximation error in log
scale. It can be observed that the CPU time is reduced up to 4.5 times when
using the LAXF1MI or 3.15 times when using GFORCE1MI in comparison with
ROE, which gives the best results. The CPU time is reduced up to 2.10 times when
using HOLAXF1MI or 1.65 times when using HOGFORCE1MI in comparison with
HOROE, as in Test 3. Nevertheless, in this case, the accuracy of the high order
numerical schemes is quite similar, while HOLAXF1MI and HOGFORCE1MI are
cheaper (see Figure 11).

ROE LAXF1MI GFORCE1MI
Cells error order CPU error order CPU error order CPU

400 7.73E−2 - 1.80E0 1.31E−1 - 3.98E−1 1.22E−1 - 5.71E−1

800 4.53E−2 0.77 7.12E0 7.62E−2 0.78 1.57E0 7.13E−2 0.77 2.24E0

1600 2.49E−2 0.86 2.88E1 4.23E−2 0.85 6.26E0 3.85E−2 0.89 8.89E0

3200 1.31E−2 0.93 1.16E2 2.25E−2 0.91 2.50E1 2.03E−2 0.92 3.55E1

HOROE HOLAXF1MI HOGFORCE1MI
Cells error order CPU error order CPU error order CPU

400 9.39E−3 - 1.24E1 1.04E−2 - 5.54E0 9.86E−3 - 7.52E0

800 1.88E−3 2.32 4.89E1 2.24E−3 2.22 2.20E1 2.09E−3 2.24 2.99E1

1600 3.00E−4 2.65 1.95E2 4.10E−4 2.45 8.71E1 3.66E−4 2.51 1.19E2

3200 3.80E−5 2.98 7.79E2 5.53E−5 2.89 3.48E2 4.84E−5 2.92 4.73E2

Table 8. Test 6: Errors, order and CPU time at t = 1.4.

5.9. Test 7: Propagation of perturbations. In order to test the performances
of the schemes on a rapidly varying flow over a smooth bed, we consider a test
proposed by LeVeque in [17]. Specifically, a steady state solution is perturbed
by a pulse that splits into two waves propagating in opposite directions over a
continuous bed. The left-going wave travels over a horizontal bottom while the
right-going wave propagates over a bump. The axis of the channel is the interval
[0, 2]. Outflow boundary conditions have been considered. The bottom topography
is given by the function

H(x) =

⎧⎨⎩ 1− 0.25(cos(10π(x− 0.5)) + 1), if 1.4 < x < 1.6;

1, otherwise.

The initial data is q(x, 0) = 0, and

h(x, 0) =

⎧⎨⎩ H(x) + Δh, if 1.1 < x < 1.2;

H(x), otherwise.
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Figure 11. Test 6: CPU time vs. Error (log scale)

Here Δh is the height of the perturbation that takes the value Δh = 0.001 (small
pulse) (see Figure 12). Free boundary conditions are imposed and the CFL param-
eter is set to 0.9.
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Figure 12. Test 7: Perturbed steady state.

A reference solution is computed with a mesh of 20480 cells. In Figure 13
we compare the results obtained with ROE, LAXF1MI, GFORCE1MI, and the
reference solution at time t = 0.2 taking Δx = 1/40. Figure 14 corresponds to the
solutions obtained with the high order schemes at the same time using the same
mesh. Notice that, while the conclusions for first order schemes are similar to those
of the previous test cases, for high order schemes the differences are very small.

5.10. Test 8: Wet/dry fronts in a nonflat basin. In order to test the perfor-
mances of the schemes in the presence of wet/dry zones, we consider a problem
proposed by Gallouët et al. in [13], specifically designed to assess the behavior on
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Figure 13. Test 7: First order numerical schemes. Comparison
with the reference solution at t = 0.2 with Δx = 1/40.
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Figure 14. Test 7: High order numerical schemes. Comparison
with the reference solution at t = 0.2 with Δx = 1/40.

drying a nonflat basin. In this test case, a dry bed is formed in the middle of two
rarefaction waves traveling in opposite directions. The generation of the dry bed
makes this problem numerically difficult, especially when the left-going rarefaction
wave propagates over the step.
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The axis of the channel is the interval [0, 25]. The bottom topography is given
by the function

H(x) =

⎧⎨⎩ 13, if 25/3 < x < 25/2;

14, otherwise.

The initial condition is

q(x, 0) =

⎧⎨⎩ −300, if 50
3 ≤ x,

300, if 50
3 > x,

and h(x, 0) = H(x)− 4.
A reference solution is computed using the Roe scheme with a mesh of 20480

points. Figure 15 shows the comparison of the numerical results obtained with
ROE, LAXF1MI, and GFORCE1MI, and the reference solution at time t = 0.25
taking Δx = 5/32. Figure 16 corresponds to the comparison of their high order
extension at the same time using the same mesh. As can be seen, all the numerical
schemes capture correctly the generation and propagation of the wet-dry fronts.
The conclusions are similar to those of the previous test case.
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Figure 15. Test 8: First order numerical schemes. Comparison
with the reference solution at t = 0.25 with Δx = 5/32.

5.11. Test 9: Internal dam-break problem. This test is designed to evaluate
the accuracy of the schemes for nonregular time-dependent solutions over a flat
bottom. The axis of the channel is the interval [0, 10].

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =

⎧⎨⎩ 0.6, if x < 5,

0.4, otherwise,
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Figure 16. Test 8: High order numerical schemes. Comparison
with the reference solution at t = 0.25 with Δx = 5/32.

and

h2(x, 0) =

⎧⎨⎩ 0.4, if x < 5,

0.6, otherwise.

Free boundary conditions are considered. The CFL parameter is set to 0.9 and
r = 0.98.

A reference solution is computed with a mesh of 3200 points.
Figures 17 and 18 show the comparison of the numerical results of both first and

high order numerical schemes with the reference solution at time t = 10 s taking
Δx = 1/20.

Finally, as in the previous numerical tests, the differences between the high order
numerical schemes are much smaller than they are for first order numerical schemes
(see Figure 17).

The numerical results of this test seem to show that the numerical solutions
provided by the different numerical schemes converge to the same solution, but this
is not the case: there are slight differences between the speed and the limit states
of the shocks for the limits of the solutions obtained with the different schemes as
Δx tends to 0. Nevertheless, a finer analysis is required to notice this fact. This is
done in the next test case.

5.12. Test 10: Two-layer shallow-water system. Approximation of in-
ternal shocks. This test is specifically designed to show that, in the presence of
shocks, the numerical solutions provided by the different numerical schemes con-
verge to different weak solutions of the homogeneous two-layer shallow-water sys-
tem, even if all of them are based on the same Roe linearization and thus on the
same family of paths (the straight segments in this case). We consider here Roe,
Lax-Friedrichs and GFORCE methods.
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Figure 17. Test 9: ROE, LAXF1MI, and GFORCE1MI schemes.
Comparison with the reference solution at t = 10 s with Δx =
1/20.

When the family of straight segments is also used to define the weak solutions of
the system, the Rankine-Hugoniot conditions satisfied at a jump are the following:

(5.14)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(hr
1 − hl

1) = qr1 − ql1;

ξ(qr1 − ql1) =
(qr1)

2

hr
1

− (ql1)
2

hl
1

+
g

2
(hr

1)
2 − g

2
(hl

1)
2 + g

hl
1 + hr

1

2
(hr

2 − hl
2);

ξ(hr
2 − hl

2) = qr2 − ql2;

ξ(qr2 − ql2) =
(qr2)

2

hr
2

− (ql2)
2

hl
2

+
g

2
(hr

2)
2 − g

2
(hl

2)
2 + gr

hl
2 + hr

2

2
(hr

1 − hl
1),
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Figure 18. Test 9: HOROE, HOLAXF1MI, and HOG-
FORCE1MI schemes. Comparison with the reference solution at
t = 10 s with Δx = 1/20.

where ξ is the speed of propagation of the shock and

wl =

⎡⎢⎢⎣
hl
1

ql1
hl
2

ql2

⎤⎥⎥⎦ , wr =

⎡⎢⎢⎣
hr
1

qr1
hr
2

qr2

⎤⎥⎥⎦
are the values to the left and to the right, respectively.

In all of the cases considered here the order of the eigenvalues of the system is:

λ−
ext < λ−

int < λ+
int < λ+

ext.

Moreover

(5.15) |λ±
int| � |λ±

ext|.
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Figure 19. Test 10: Hugoniot curves: exact (continuous line) and
numerical (lines with dots).

The goal here is to compare the exact and the numerical Hugoniot curves cor-
responding to one of the internal characteristic fields, i.e., the fields related to the
eigenvalues λ±

int. We proceed as follows: the state

(5.16) wr =

⎡⎢⎢⎣
hr
1

qr1
hr
2

qr2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.392034161025472
−0.198826959396196
1.588829011097482
0.186046955388750

⎤⎥⎥⎦
is fixed. Then, we compute the Hugoniot curve corresponding to the “left” states
wl that can be connected with wr with a 3-shock with r = 0.98. To do this, we
use the speed of the shock ξ as a parameter and, for each value of ξ we solve the
nonlinear system (5.14). In Figure 19 we show the projection (continuous line) of
the computed Hugoniot curve onto the planes (h1, q1) (left) and (h2, q2) (right),
respectively.

Next, we consider a family of Riemann problems whose states are wr, while wl

runs on the Hugoniot curve. While the exact solution of the Riemann problem
consists only of an internal shock, this is not the case for the numerical solutions.
We have solved this family of Riemann problems using Roe, Lax-Friedrichs, and
GFORCE. The first divided difference is used then as a smoothness indicator to
determine the speed of propagation and the limit states of the shock corresponding
to the eigenvalue λ+

int in the numerical solutions. These calculations have been
performed by using four meshes with decreasing steps (Δx = 0.002, 0.001, 0.0005
and 0.00025). We check that all the numerical schemes converge, but their limits
do not satisfy the Rankine-Hugoniot conditions (5.14). The numerical Hugoniot
curves corresponding to Δx = 0.001 are compared with the exact one in Figure 19.
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Notice that, if wr and wl are close enough, all the curves are very close. The same
behaviour can be observed when the speed of the shock is close to zero.

6. Conclusions

Two families of first order path-conservative numerical schemes for nonconserva-
tive systems have been introduced in this article, which consists of a convex com-
bination of a generalized Lax-Friedrichs scheme and a generalized Lax-Wendroff
scheme. While in the first family the generalization of the Lax-Wendroff scheme
is first order accurate, in the second family it is second order accurate for general
problems. All of these schemes are based on a Roe linearization of the system and
among them, there are extensions of the FORCE and GFORCE conservative meth-
ods. Well-balanced versions of these schemes for solving systems of conservation
laws with source terms and/or nonconservative products have also been introduced,
together with some modifications to take into account the difficulty related to res-
onance.

The numerical schemes have been extended to high order by following the ideas
developed in [7, 20, 12] by means of the use of the PHM third order reconstruction
operator (see [18]).

Concerning the quality of the numerical solutions and the well-balanced prop-
erties, the best first order numerical scheme is Roe, followed by GFORCE. The
results obtained by FORCE schemes are very close to those obtained by GFORCE.
Although Rusanov and Lax-Friedrichs schemes are more diffusive, these methods
present the advantage of having good entropy and positivity-preserving properties
for homogeneous problems. These properties may be preserved for problems with
a source-term if a convenient generalized hydrostatic reconstruction is used.

The high order extensions are similar regardless of the first order scheme con-
sidered. Nevertheless, when the analytical expression of the eigenvalues and eigen-
vectors of the matrix is not available (as is the case for the two-layer system), the
CPU time is reduced if a numerical scheme of the families introduced here is used.
Nevertheless, in the case of stationary solutions, due to the improved accuracy of
Roe methods for this type of solutions, this reduction of the CPU time is lower:
the computational effort to obtain a prescribed accuracy is similar for the different
schemes.

As a conclusion, the numerical schemes studied are an excellent alternative to
Roe methods to approximate time-dependent solutions when the calculation of the
eigenvalues has to be numerically performed and the schemes are going to be used
as the basis for higher order methods or multidimensional problems.

Appendix A. As in [19] we will assume here that the family of paths fulfills the
following requirements:

(R1) Given an integral curve γ of a linearly degenerate field and WL,WR ∈ γ,
the path Φ(s;WL,WR) is a parameterization of the arc of γ linking WL and
WR.

(R2) Given an integral curve γ of a genuinely nonlinear field Ri and WL,WR ∈ γ,
with λi(WL) < λi(WR), the path Φ(s;WL,WR) is a parameterization of the
arc of γ linking WL and WR.
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(R3) Let us denote by RP ⊂ Ω × Ω the set of pairs (WL,WR) for which the
Riemann problem

(6.1)

⎧⎪⎨⎪⎩
Wt +A(W )Wx = 0,

W (x, 0) =

{
WL if x < 0,

WR if x > 0

has a unique self-similar weak solution composed of at most N simple waves
connecting J + 1 intermediate constant states

W0 = WL, W1, . . . ,WJ−1, WJ = WR,

with J ≤ N . Then, given (WL,WR) ∈ RP, the curve described by the path
Φ(·;WL,WR) is equal to the union of those corresponding to the paths
Φ(·;Wj−1,Wj), j = 1, . . . , J .

Proof of Proposition 3.1. Let us consider the family of Riemann problems:

(6.2)

⎧⎪⎪⎨⎪⎪⎩
Wt +

1

2
(A(W ) + β · Id)Wx = 0,

W (x, 0) =

{
WL if x < 0,

WR if x > 0,

where the family of paths Φ is used to give a sense to the nonconservative products.
It can be easily verified that the function

(6.3) Vβ(s;WL,WR) = V (2s− β;WL,WR) ,

where V (x/t;WL,WR) denotes the self-similar entropy solution of the Riemann
problem (6.1), is a self-similar solution of (6.2). Moreover, it consists of the same
intermediate states appearing at the solution of (6.1) and the simple waves linking
them are of the same nature but their velocites are averaged with β. Moreover, it
is an entropy solution for the pair (η,Gβ), given by

(6.4) Gβ(W ) =
1

2
(G(W ) + βη(W )) .

The following equality is thus satisfied:

(6.5) Gβ(WR) +

∫ ∞

0

(η(Vβ(v;WL,WR))− η(WR)) dv

≤ Gβ(WL)−
∫ 0

−∞
(η(Vβ(v;WL,WR))− η(WL)) dv.

Notice now that, if β is positive and the inequality

(6.6) |λj(Wk)| ≤ β, j = 1, . . . , N ; k = 0, . . . , J,

is satisfied, whereW0, . . . , WJ are the intermediate states appearing at the solutions
of the Riemann problems, then all the speeds of the simple waves involved by the
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solution of (6.2) are positive and thus the following equality holds:

−
∫ ∞

0

(Vβ(v;WL,WR)−WR) dv

=

〈
1

2
[(A(W (·, t)) + β · Id)Wx(·, t)]Φ , 1

〉
=

1

2

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds+

1

2
β(WR −WL)

=
1

2
(AΦ(WL,WR) + β · Id) · (WR −WL),(6.7)

where (2.7) and the properties (R1)-(R3) of Φ have been used (see [19]). In this
case, the entropy inequality (6.5) reduces to

(6.8) Gβ(WR) +

∫ ∞

0

(η(Vβ(v;WL,WR))− η(WR)) dv ≤ Gβ(WL).

Using similar arguments we can also obtain

(6.9) −
∫ 0

−∞
(V−β(v;WL,WR)−WL) dv

=
1

2
(AΦ(WL,WR)− β · Id) · (WR −WL)

and

(6.10) G−β(WR) ≤ G−β(WL)−
∫ 0

−∞
(η(V−β(v;WL,WR))− η(WL)) dv.

Adding (6.8) and (6.10), we obtain:

(6.11) G(WR) +

∫ ∞

0

(η(Vβ(v;WL,WR))− η(WR)) dv

≤ G(WL)−
∫ 0

−∞
(η(V−β(v;WL,WR))− η(WL)) dv.

Taking into account the equalities (6.7), (6.9) with β = α(WL,WR), it can be
easily seen that, under the hypotheses (3.8) and (3.9), the generalized Rusanov
scheme can be interpreted as the numerical method based on the approximate
Riemann solver:

(6.12) Ṽ (s;WL,WR)

⎧⎨⎩ V−α(WL,WR)(s;WL,WR) if s < 0;

Vα(WL,WR)(s;WL,WR) if s > 0.

Finally, from (6.11) with β = α(WL,WR), it can be easily deduced that (3.10) holds

for any numerical entropy flux function Ĝ(WL,WR) satisfying:

G(WR) +

∫ ∞

0

(
η(Vα(WL,WR)(v;WL,WR))− η(WR)

)
dv

≤ Ĝ(WL,WR)

≤ G(WL)−
∫ 0

−∞

(
η(V−α(WL,WR)(v;WL,WR))− η(WL)

)
dv. �
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Proof of Proposition 3.2. It has been seen in the proof of Proposition 3.1 that the
numerical scheme can be interpreted as the numerical method based on the ap-
proximate Riemann solver (6.12). From this representation, the proof is trivial by
taking into account the relations (6.3) and (3.11). �
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29071 Málaga, Spain

E-mail address: pares@anamat.cie.uma.es

University of Trento. Laboratory of Applied Mathematics. Faculty of Engineering,

38050 Mesiano di Povo, Trento, Italy

E-mail address: toroe@ing.unitn.it

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2104431
http://www.ams.org/mathscinet-getitem?mr=2104431
http://www.ams.org/mathscinet-getitem?mr=2356351
http://www.ams.org/mathscinet-getitem?mr=2356351
http://www.ams.org/mathscinet-getitem?mr=640362
http://www.ams.org/mathscinet-getitem?mr=640362
http://www.ams.org/mathscinet-getitem?mr=1736950
http://www.ams.org/mathscinet-getitem?mr=1736950
http://www.ams.org/mathscinet-getitem?mr=1994077
http://www.ams.org/mathscinet-getitem?mr=2235378
http://www.ams.org/mathscinet-getitem?mr=1187694
http://www.ams.org/mathscinet-getitem?mr=1187694

	1. Introduction
	2. Preliminaries
	3. Numerical schemes
	3.1. Rusanov methods
	3.2. Well-balanced Rusanov schemes
	3.3. Generalized Lax-Wendroff schemes
	3.4. Convex linear combinations of Lax-Friedrichs and Lax-Wendroff schemes

	4. Systems of conservation laws with source terms and nonconservative products
	4.1. Modification of the identity matrix
	4.2. Generalized hydrostatic reconstruction

	5. Numerical tests
	5.1. Shallow water equations with depth variations
	5.2. The two-layer shallow water system
	5.3. Test 1: One-layer system. Well-balanced property
	5.4. Test 2: One-layer system. Well-balanced property for a nonsmooth solution
	5.5. Test 3: Two-layer shallow water. Well-balanced property
	5.6. Test 4: Two-layer shallow water. Well-balanced property for a non-smooth solution
	5.7. Test 5. Order of accuracy: one-layer system
	5.8. Test 6. Order of accuracy: two-layer system
	5.9. Test 7: Propagation of perturbations
	5.10. Test 8: Wet/dry fronts in a nonflat basin
	5.11. Test 9: Internal dam-break problem
	5.12. Test 10: Two-layer shallow-water system. Approximation of internal shocks

	6. Conclusions
	Appendix A

	References

