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Some new properties of fuzzy associative �lters (also known as fuzzy associative pseudo-�lters), fuzzy p-�lter (also known as
fuzzy pseudo-p-�lters), and fuzzy a-�lter (also known as fuzzy pseudo-a-�lters) in pseudo-BCI algebras are investigated. By these
properties, the following important results are proved: (1) a fuzzy �lter (also known as fuzzy pseudo-�lters) of a pseudo-BCI algebra
is a fuzzy associative �lter if and only if it is a fuzzy a-�lter; (2) a �lter (also known as pseudo-�lter) of a pseudo-BCI algebra is
associative if and only if it is an a-�lter (also call it pseudo-� �lter); (3) a fuzzy �lter of a pseudo-BCI algebra is fuzzy a-�lter if and
only if it is both a fuzzy p-�lter and a fuzzy q-�lter.

1. Introduction and Preliminaries

In the �eld of arti�cial intelligence research, nonclassical
logics (fuzzy logic, epistemic logic, nonmonotonic logic,
default logic, etc.) are extensively used (see [1]). In this paper
we discuss a kind of logic algebra system, that is, pseudo-
��� algebra, which originated from ���-logic; it is a kind of
nonclassical logic and inspired by the calculus of combinators
[2]. Newly, in [3], we show that pseudo-��� algebra plays
an important role in weakly integral residuated algebraic
structure, which is in close connection with various fuzzy
logic formal systems [4, 5].

In 1966, Iséki [2] introduced the concept of ���-algebra
as an algebraic counterpart of the ���-logic. Since then,
the ideal theory of ���-algebras gets in-depth research and
development. In 2008, as a generalization of ���-algebra,
Dudek and Jun [6] introduced the notion of pseudo-���
algebra which is also generalization of pseudo-��� algebra
introduced by Georgescu and Iorgulescu in [7]. We investi-
gated some classes of pseudo-��� algebras in [8]. Recently,
the pseudoideal theory of pseudo-��� algebras has been
studied: the notion of pseudo-��� ideal (or pseudoideal)
of pseudo-��� algebra is introduced in [9]; some special
pseudo-��� ideals are discussed in [10], for example, associa-
tive pseudoideal and pseudo-� ideal, which are generalization
of associative ideal of ���-algebra (it is introduced by X.H.
Zhang and R.G. Ling).


e notion of fuzzy sets has been applied to many alge-
braic systems (see [4, 11, 12]); naturally, it has been applied to
pseudo-���/��� algebra; for example, fuzzy pseudoideals
have been investigated in [13–15]. As continuums of the above
works, we further study fuzzy associative pseudoideal and
fuzzy pseudo-� ideal in pseudo-��� algebras.

Note that the notion of pseudo-��� algebra in this paper
is indeed dual form of original de�nition in [6]; accordingly,
the notion of pseudo-�lter (or pseudo-��� �lter) is the dual
form of pseudoideal (or pseudo-��� ideal) in [9]. Moreover,
for short, the notion of pseudo-�lter (or pseudo-��� �lter) is
simply called “�lter” in this paper.

At �rst, we recall some basic concepts and properties of
pseudo-��� algebras.

De�nition 1 (see [6]). A pseudo-��� algebra is a structure
(�; ≤, → , 
�, 1), where “≤” is a binary relation on �, “→ ”
and “
�” are binary operations on�, and “1” is an element of
�, verifying the axioms: for all �, , � ∈ �,

(1)  → � ≤ (� → �) 
� ( → �),  
� � ≤ (� 
�
�) → ( 
� �);

(2) � ≤ (� → ) 
� , � ≤ (� 
� ) → ;
(3) � ≤ �;
(4) � ≤ ,  ≤ � ⇒ � = ;
(5) � ≤  ⇔ � →  = 1 ⇔ � 
�  = 1.
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If (�; ≤, → , 
�, 1) is a pseudo-��� algebra satisfying
� →  = � 
�  for all �,  ∈ �, then (�; ≤, → , 
�, 1) is
a ���-algebra.

Proposition 2 (see [6, 9, 10]). Let (�; ≤, → , 
�, 1) be a
pseudo-��� algebra; then � satisfy the following properties
(∀�, , � ∈ �):

(1) 1 ≤ � ⇒ � = 1;
(2) � ≤  ⇒  → � ≤ � → �,  
� � ≤ � 
� �;
(3) � ≤ ,  ≤ � ⇒ � ≤ �;
(4) � 
� ( → �) =  → (� 
� �);
(5) � ≤  → � ⇒  ≤ � 
� �;
(6) � →  ≤ (� → �) → (� → ), � 
�  ≤ (� 
�
�) 
� (� 
� );

(7) � ≤  ⇒ � → � ≤ � → , � 
� � ≤ � 
� ;
(8) 1 → � = �, 1 
� � = �;
(9) (( → �) 
� �) → � =  → �, (( 
� �) → �) 
�
� =  
� �;

(10) � →  ≤ ( → �) 
� 1, � 
�  ≤ ( 
� �) → 1;
(11) (� → ) → 1 = (� → 1) 
� ( 
� 1), (� 
� ) 
�
1 = (� 
� 1) → ( → 1);

(12) � → 1 = � 
� 1.

De�nition 3 (see [9]). A nonempty subset � of a pseudo-���
algebra � is called a pseudo-��� �lter (brie�y, �lter) of � if
it satis�es

(F1) 1 ∈ �;
(F2) � ∈ �, � →  ∈ � ⇒  ∈ �;
(F3) � ∈ �, � 
�  ∈ � ⇒  ∈ �.

De�nition 4 (see [10]). A nonempty subset� of a pseudo-���
algebra � is called an associative pseudo-��� �lter (brie�y,
associative �lter) of� if it satis�es

(1) 1 ∈ �;
(2) � → ( 
� �) ∈ � and � →  ∈ � ⇒ � ∈ �;
(3) � 
� ( → �) ∈ � and � 
�  ∈ � ⇒ � ∈ �.

De�nition 5 (see [10]). A nonempty subset� of a pseudo-���
algebra� is called a pseudo-�-�lter (brie�y, �-�lter) of� if it
satis�es

(1) 1 ∈ �;
(2) (� → 1) 
� ( → �) ∈ � and  ∈ � ⇒ � 
� � ∈ �;
(3) (� 
� 1) → ( 
� �) ∈ � and  ∈ � ⇒ � → � ∈ �.

De�nition 6 (see [13–15]). A fuzzy set � : � → [0, 1] is
called a fuzzy pseudo�lter (brie�y, fuzzy �lter) of pseudo-���
algebra� if it satis�es

(FF1) �(1) ≥ �(�), ∀� ∈ �;
(FF2) �() ≥ min{�(� → ), �(�)}, ∀�,  ∈ �;
(FF3) �() ≥ min{�(� 
� ), �(�)}, ∀�,  ∈ �.

Proposition 7. Let � be a fuzzy �lter of a pseudo-��� algebra
�. If � ≤ , then �(�) ≤ �(), where �,  ∈ �.

As a consequence of the so-called Transfer Principle for
Fuzzy Sets in [11], we have the following.

�eorem8 (see [11, 15]). Let� be a pseudo-��� algebra.
en
a fuzzy set � : � → [0, 1] is a fuzzy �lter of� if and only if the
level set �� = {� ∈ � | �(�) ≥ �} is �lter of� for all � ∈ Im(�).

�eorem 9 (see [15]). Let� be a pseudo-��� algebra. 
en a
fuzzy set � : � → [0, 1] is a fuzzy �lter of � if and only if it
satis�es

(1) for all �, , � ∈ �, � ≤  → � ⇒ �(�) ≥
min{�(�), �()};

(2) for all �, , � ∈ �, � ≤  
� � ⇒ �(�) ≥
min{�(�), �()}.

De�nition 10 (see [13, 15]). A fuzzy set � : � → [0, 1] is
called a fuzzy �-�lter of a pseudo-��� algebra� if it satis�es
(FF1) and

(FPF1) for all �, , � ∈ �, �(�) ≥ min{�((� → ) 
� (� →
�)), �()};

(FPF2) for all �, , � ∈ �, �(�) ≥ min{�((� 
� ) → (� 
�
�)), �()}.

De�nition 11 (see [13, 15]). A fuzzy set� : � → [0, 1] is called
a fuzzy �-�lter of a pseudo-��� algebra � if it satis�es (FF1)
and

(FaF1) for all �, , � ∈ �, �(� → �) ≥ min{�((� 
� 1) →
( 
� �)), �()};

(FaF2) for all �, , � ∈ �, �(� 
� �) ≥ min{�((� → 1) 
�
( → �)), �()}.

De�nition 12 (see [15]). A fuzzy set � : � → [0, 1] is called a
fuzzy associative �lter of a pseudo-��� algebra� if it satis�es
(FF1) and

(FAF1) for all �, , � ∈ �, �(�) ≥ min{�(� → ( 
�
�)), �(� → )};

(FAF2) for all �, , � ∈ �, �(�) ≥ min{�(� 
� ( →
�)), �(� 
� )}.

De�nition 13 (see [13, 15]). A fuzzy set � : � → [0, 1] is
called a fuzzy �-�lter of a pseudo-��� algebra� if it satis�es
(FF1) and

(FqF1) for all �, , � ∈ �, �(� → �) ≥ min{�((� 
� ) →
�), �()};

(FqF2) for all �, , � ∈ �, �(� 
� �) ≥ min{�((� → ) 
�
�), �()}.
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2. New Properties of Fuzzy �-Filters and Fuzzy
Associative Filters

Lemma 14 (see [15]). Let � be a fuzzy �-�lter of a pseudo-���
algebra�. 
en � satis�es

� (� �→ ) ≥ � (( 
� 1) �→ �) ,

� (� 
� ) ≥ � (( �→ 1) 
� �) ,

∀�,  ∈ �.

(1)

Lemma 15 (see [15]). Let � be a fuzzy �-�lter of a pseudo-���
algebra�. 
en � satis�es

� (�) = � (� �→ 1) = � (� 
� 1) , ∀� ∈ �. (2)

�eorem 16. Let � be a fuzzy �-�lter of a pseudo-��� algebra
�. 
en the following statements hold for all �, , � ∈ �:

(1) for all �,  ∈ �, �(�) ≥ min{�(), �(� → )}, �(�) ≥
min{�(), �(� 
� )};

(2) for all �,  ∈ �, �(� → ) = �(� 
� );
(3) for all � ∈ �, �((� → 1) → �) = �((� 
� 1) 
� �) =
�(1);

(4) for all �, , � ∈ �, �(� → �) ≥ min{�((� 
� ) →
�), �()};

(5) for all �, , � ∈ �, �(� 
� �) ≥ min{�((� → ) 
�
�), �()};

(6) for all � ∈ �, �(� → (� 
� 1)) = �(� 
� (� → 1)) =
�(1);

(7) for all �, , � ∈ �, �((� → ) → ) ≥ �(�), �((� 
�
) 
� ) ≥ �(�).

Proof. (1) For any �,  ∈ �, by Proposition 2(6), we have
 → 1 ≤ (� → ) → (� → 1). From this, applying
Proposition 7, we get

� ( �→ 1) ≤ � ((� �→ ) �→ (� �→ 1)) . (3)

Using De�nition 6(FF2), we have

� (� �→ 1)

≥ min {� ((� �→ ) �→ (� �→ 1)) , � (� �→ )} .
(4)


us,

� (� �→ 1)

≥ min {� ((� �→ ) �→ (� �→ 1)) , � (� �→ )}

≥ min {� ( �→ 1) , � (� �→ )} .

(5)

By Lemma 15, �(� → 1) = �(�) and �( → 1) = �().

erefore, �(�) ≥ min{�(), �(� → )}.

Similarly, we have �(�) ≥ min{�(), �(� 
� )}.
(2) For any �,  ∈ �, by Proposition 2(11) and (12), we

have (� → ) → 1 = (� → 1) 
� ( → 1). By Lemma 14,
it follows that

� ((� �→ ) �→ 1) = � ((� �→ 1) 
� ( �→ 1))

≤ � (( �→ 1) 
� �) ≤ � (� 
� ) .
(6)

From this, applying Lemma 15, we get �(� → ) ≤ �(� 
�
). Similarly, we can get �(� 
� ) ≤ �(� → ). By
De�nition 1(4), �(� → ) = �(� 
� ).

(3) For any � ∈ �, applying Proposition 2(12) and
Lemma 14, we have

� ((� �→ 1) �→ �) = � ((� 
� 1) �→ �)

≥ � ((� 
� 1) �→ (� 
� 1)) = � (1) .
(7)

By De�nition 6(FF1), it follows that �((� → 1) → �) =
�(1).

Similarly, we have �((� 
� 1) 
� �) = �(1).
(4) For any �,  ∈ �, by Proposition 2(6) and

De�nition 1(1), we have

 
� 1 ≤ (� 
� ) 
� (� 
� 1)

≤ ((� 
� 1) 
� �) �→ ((� 
� ) 
� �) .
(8)

From this, by 
eorem 8, we get

� ((� 
� ) 
� �) ≥ min {� ( 
� 1) , � ((� 
� 1) 
� �)} .
(9)

Applying (3), Lemma 15, and De�nition 6(FF1), �((� 
�
) 
� �) ≥ �(). From this and (2), we get �((� 
� ) →
�) ≥ �().

On the other hand, by De�nition 1(1), (� 
� ) → � ≤
(� → �) 
� ((� 
� ) → �). Using Proposition 7 and the
above result, we have

� () ≤ � ((� 
� ) �→ �)

≤ � ((� �→ �) 
� ((� 
� ) �→ �)) .
(10)

Moreover, by (1), we have

� (� �→ �) ≥ min {� ((� 
� ) �→ �) ,

� ((� �→ �) 
� ((� 
� ) �→ �))} .
(11)


erefore,

� (� �→ �) ≥ min {� ((� 
� ) �→ �) ,

� ((� �→ �) 
� ((� 
� ) �→ �))}

≥ min {� ((� 
� ) �→ �) , � ()} .

(12)


is means that (4) holds.
(5) 
e proof is similar to (4).
(6) For any � ∈ �, by (4), we have

� (� �→ (� 
� 1)) ≥ min {� ((� 
� 1) �→ (� 
� 1)) , � (1)}

= min {� (1) , � (1)} = � (1) .
(13)

It follows that �(� → (� 
� 1)) = �(1). Similarly, �(� 
�
(� → 1)) = �(1).
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(7) For any � ∈ �, by De�nition 1(3), we have � ≤ (� →
) 
� . From this, (2), and Proposition 7, we get

� (�) ≤ � ((� �→ ) 
� ) = � ((� �→ ) �→ ) . (14)

Similarly, we have �((� 
� ) 
� ) ≥ �(�).

Lemma 17. Let � be a fuzzy associative �lter of a pseudo-���
algebra�. 
en � satis�es

� () ≥ � (� �→ (� 
� )) ,

� () ≥ � (� 
� (� �→ )) ,

∀�,  ∈ �.

(15)

Proof. It is easily proved byDe�nition 12; the proof is omitted.

�eorem18. Let� be a fuzzy associative �lter of a pseudo-���
algebra�. 
en the following statements hold:

(1) for all � ∈ �, �(� → (� 
� 1)) = �(� 
� (� → 1)) =
�(1);

(2) for all �,  ∈ �, �() ≥ �((� → 1) 
� (� → ));
(3) for all �,  ∈ �, �() ≥ �((� 
� 1) → (� 
� ));
(4) for all �,  ∈ �, �(� → ) = �(� 
� );
(5) for all �,  ∈ �, �(� → (� → )) ≥ �(), �(� 
�
(� 
� )) ≥ �();

(6) for all � ∈ �, �(�) ≥ �((� → 1) → 1)), �(�) ≥
�((� 
� 1) 
� 1));

(7) for all �,  ∈ �, �(� → ( → 1)) ≥ �(� → ),
�(� 
� ( 
� 1)) ≥ �(� 
� );

(8) for all �,  ∈ �, �( → �)) ≥ �(� → ), �( 
�
�)) ≥ �(� 
� );

(9) for all � ∈ �, �((� 
� 1) → �) = �((� → 1) 
� �) =
�(1);

(10) for all �,  ∈ �, �((� → ) → ) ≥ �(�), �((� 
�
) 
� ) ≥ �(�);

(11) for all � ∈ �, �(�) = �(� → 1) = �(� 
� 1);
(12) for all �,  ∈ �, �(�) ≥ min{�(), �(� → )}, �(�) ≥

min{�(), �(� 
� )}.

Proof. (1) For any � ∈ � (by De�nition 1 and Proposition 2),

(� 
� 1) 
� ((� 
� 1) �→ (� �→ (� 
� 1)))

= (� 
� 1) 
� (� �→ ((� 
� 1) �→ (� 
� 1)))

= (� 
� 1) 
� (� �→ 1)

= (� �→ 1) 
� (� �→ 1) = 1.

(16)

From this and Lemma 17, we have

� (� �→ (� 
� 1))

≥ � ((� 
� 1) 
� ((� 
� 1) �→ (� �→ (� 
� 1)))) = � (1) .
(17)


is means that �(� → (� 
� 1)) = �(1). Similarly, �(� 
�
(� → 1)) = �(1).

(2) For any �,  ∈ �, by De�nition 1(1), we have

� 
� (� �→ 1)
≤ ((� �→ 1) 
� (� �→ )) �→ (� 
� (� �→ )) .

(18)

Applying
eorem 9(1), we get

� (� 
� (� �→ ))

≥ min {� (� 
� (� �→ 1)) , � ((� �→ 1) 
� (� �→ ))} .
(19)

By (1) and Lemma 17, �(� 
� (� → 1)) = �(1), �() ≥
�(� 
� (� → )). 
erefore,

� () ≥ � (� 
� (� �→ ))

≥ min {� (1) , � ((� �→ 1) 
� (� �→ ))}
= � ((� �→ 1) 
� (� �→ )) .

(20)

(3) It is similar to (2).
(4) For any �,  ∈ �, by (2), we have �(� 
� ) ≥ �(( →
1) 
� ( → (� 
� ))). On the other hand, applying
De�nition 1 and Proposition 2,

( �→ 1) 
� ( �→ (� 
� ))
= ( �→ 1) 
� (� 
� ( �→ ))
= ( �→ 1) 
� (� 
� 1)

= ( �→ 1) 
� (� �→ 1)

≥ � �→ .

(21)

From this and Proposition 7, �(( → 1) 
� ( → (� 
�
))) ≥ �(� → ). 
us, �(� 
� ) ≥ �(� → ). Similarly,
we can get �(� → ) ≥ �(� 
� ). 
erefore, �(� → ) =
�(� 
� ).

(5) For any �,  ∈ �, since (by Proposition 2)

 
� (� �→ (� �→ )) = � �→ ( 
� (� �→ ))
= � �→ (� �→ ( 
� ))
= � �→ (� �→ 1)
= � �→ (� 
� 1) ,

(22)

then �( 
� (� → (� → ))) = �(� → (� 
� 1)). By (1),
�(� → (� 
� 1)) = �(1); hence, �( 
� (� → (� → ))) =
�(1). Moreover, by De�nition 6(FF3), we have

� (� �→ (� �→ ))
≥ min {� ( 
� (� �→ (� �→ ))) , � ()} .

(23)


us,

� (� �→ (� �→ ))
≥ min {� ( 
� (� �→ (� �→ ))) , � ()}

= min {� (1) , � ()} = � () .
(24)

Similarly, �(� 
� (� 
� )) ≥ �().
(6) By (2) and (3), we can get (6).
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(7) For any �,  ∈ �, by De�nition 1, we have  → ( →
1)) ≤ (� → ) → (� → ( → 1)).

Applying (1) and
eorem 9, we get

� (� �→ ( �→ 1))

≥ min {� ( �→ ( �→ 1)) , � (� �→ )}

= min {� (1) , � (� �→ )} = � (� �→ ) .

(25)

Similarly, �(� 
� ( 
� 1)) ≥ �(� 
� ).
(8) For any �,  ∈ �, by Lemma 17, �( → �) ≥ �(� 
�
(� → ( → �))). And, using Proposition 2(4), we have

� 
� (� �→ ( �→ �))

= � �→ (� 
� ( �→ �)) = � �→ ( �→ (� 
� �))

= � �→ ( �→ 1) .
(26)

Hence, �( → �) ≥ �(� → ( → 1)). From this and (7),
we get

� ( �→ �) ≥ � (� �→ ( �→ 1)) ≥ � (� �→ ) . (27)

Similarly, �( 
� �) ≥ �(� 
� ).
(9) By (1) and (8), we can get (8).
(10) It is similar to the proof of 
eorem 16(7).
(11) For any � ∈ �, by Lemma 17, �(�) ≥ �(� → (� 
�
�)) = �(� → 1). On the other hand, using (8), �(� → 1) ≥
�(1 → �) = �(�). Hence, �(�) = �(� → 1) = �(� 
� 1).

(12) It is similar to the proof of 
eorem 16(1).

3. Some Necessary and Sufficient
Conditions for Fuzzy �-Filters and
Fuzzy Associative Filters

Checking the proof of 
eorem 18 in detail, we know that
the proof only applies the properties of fuzzy �lters and the
conditions in Lemma 17. From this, we can get the following.

Lemma 19. Let � be a fuzzy �lter of a pseudo-��� algebra�.
If � satis�es

(C1) for all �,  ∈ �, �() ≥ �(� → (� 
� ));
(C2) for all �,  ∈ �, �() ≥ �(� 
� (� → )),

then the following statements hold:

(C3) for all � ∈ �, �(� → (� 
� 1)) = �(� 
� (� → 1)) =
�(1);

(C4) for all �,  ∈ �, �(� → ) = �(� 
� );
(C5) for all � ∈ �, �(�) = �(� → 1) = �(� 
� 1);
(C6) for all �,  ∈ �, �(�) ≥ min{�(), �(� → )}, �(�) ≥

min{�(), �(� 
� )}.

Proof. It is similar to 
eorem 18 (the conditions (FAF1) and
(FAF2) are not applied); the proof is omitted.

�eorem20. Let� be a fuzzy �lter of a pseudo-��� algebra�.

en � is a fuzzy associative �lter of� if and only if it satis�es

(C1) for all �,  ∈ �, �() ≥ �(� → (� 
� ));
(C2) for all �,  ∈ �, �() ≥ �(� 
� (� → )).

Proof. Assume that � is a fuzzy associative �lter of �; by
Lemma 17, (C1) and (C2) hold.

Conversely, assume that � satis�es conditions (C1) and
(C2). For any �, , � ∈ �, by Proposition 2(6),  → (� →
�) ≤ (� → ) → (� → (� → �)). Using 
eorem 9, we
get

� (� �→ (� �→ �))

≥ min {� ( �→ (� �→ �)) , � (� �→ )} .
(28)

By Lemma 19(C4) and Proposition 2(4), �( → (� → �)) =
�( 
� (� → �)) = �(� → ( 
� �)).


us,
(P1) �(� → (� → �)) ≥ min{�(� → ( 
� �)), �(� →
)}.

On the other hand, applying Lemma 19(C5),
Proposition 2(11), and (12),

� (� �→ (� �→ �))

= � ((� �→ (� �→ �)) �→ 1)

= � ((� �→ 1) 
� ((� �→ 1) 
� (� �→ 1)))

= � ((� �→ 1) 
� (� �→ ((� �→ 1) 
� 1)))

= � (� �→ ((� �→ 1) 
� ((� �→ 1) 
� 1))) .

(29)

And, by Lemma 19(C6),

� (�) ≥ min {� ((� �→ 1) 
� ((� �→ 1) 
� 1)) ,

� (� �→ ((� �→ 1) 
� ((� �→ 1) 
� 1)))} .
(30)

By Lemma 19(C3) and the above result, we get
(P2) �(�) ≥ min{�(1), �(� → (� → �))} = �(� →
(� → �)).

Combining (P1) and (P2), we get that �(�) ≥ min{�(� →
( 
� �)), �(� → )}. 
at is, (FAF1) holds. Similarly,
condition (FAF2) holds. 
erefore, by De�nition 12, � is a
fuzzy associative �lter of�.

�eorem 21 (see [13, 15]). Let � be a fuzzy �lter of a pseudo-
��� algebra �. 
en � is a fuzzy �-�lter of � if and only if it
satis�es

(a1) for all �,  ∈ �, �(� → ) ≥ �(( 
� 1) → �);
(a2) for all �,  ∈ �, �(� 
� ) ≥ �(( → 1) 
� �).

�eorem 22. Let � be a fuzzy �lter of a pseudo-��� algebra
�. 
en the following conditions are equivalent:

(i) � is a fuzzy �-�lter of�;
(ii) � is a fuzzy associative �lter of�.
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Proof. (i)⇒ (ii). Suppose that � is a fuzzy �-�lter of �. For
any �,  ∈ �, by De�nition 1(1),

� �→ (� 
� 1)

≤ ((� 
� 1) �→ (� 
� )) 
� (� �→ (� 
� )) .
(31)

Applying
eorem 16(6) and Proposition 7, we get

� (1) = � (� �→ (� 
� 1))

≤ � (((� 
� 1) �→ (� 
� )) 
� (� �→ (� 
� ))) .
(32)

It follows that

� (1) = � (((� 
� 1) �→ (� 
� )) 
� (� �→ (� 
� ))) .
(33)

Moreover, by 
eorem 16(1),

� ((� 
� 1) �→ (� 
� ))

≥ min {� (� �→ (� 
� )) ,

� (((� 
� 1) �→ (� 
� ))


� (� �→ (� 
� )))} .

(34)


en we get

� ((� 
� 1) �→ (� 
� )) ≥ min {� (� �→ (� 
� )) , � (1)}

= � (� �→ (� 
� )) .
(35)

Using 
eorem 16(2), �((� 
� 1) 
� (� 
� )) = �((� 
�
1) → (� 
� )). 
us,

� ((� 
� 1) 
� (� 
� )) ≥ � (� �→ (� 
� )) . (36)

On the other hand, applying Proposition 2(6) and (8),  ≤
1 →  ≤ (� 
� 1) 
� (� 
� ). From this and
eorem 16(1),
we get

� () ≥ min {� ((� 
� 1) 
� (� 
� )) ,

� ( �→ ((� 
� 1) 
� (� 
� )))} .
(37)

From  ≤ (� 
� 1) 
� (� 
� ), we have  → ((� 
� 1) 
�
(� 
� )) = 1; it follows that

� () ≥ min {� ((� 
� 1) 
� (� 
� )) , � (1)}

= � ((� 
� 1) 
� (� 
� )) .
(38)


erefore,

� () ≥ � ((� 
� 1) 
� (� 
� )) ≥ � (� �→ (� 
� )) .
(39)


is means that (C1) holds. Similarly, �() ≥ �(� 
� (� →
)). By 
eorem 20, � is a fuzzy associative �lter of�.

(ii)⇒ (i). Suppose that � is � fuzzy associative �lter of�.
For any �,  ∈ �, by De�nition 1(1), ( 
� 1) → � ≤ (� →
) 
� ( 
� 1). Applying Proposition 7, we get

� ((� �→ ) 
� ( 
� 1)) ≥ � (( 
� 1) �→ �) . (40)

On the other hand, using
eorem 18(12),

� (� �→ ) ≥ min {� (( 
� 1) �→ ) ,

� ((� �→ ) 
� ( 
� 1))} .
(41)

By
eorem 18(9), �(( 
� 1) → ) = �(1). It follows that

� (� �→ ) ≥ min {� (1) , � ((� �→ ) 
� ( 
� 1))}

= � ((� �→ ) 
� ( 
� 1)) .
(42)


erefore,

� (� �→ ) ≥ � ((� �→ ) 
� ( 
� 1))

≥ � (( 
� 1) �→ �) .
(43)

Similarly, we can get �(� 
� ) ≥ �(( → 1) 
� �). By

eorem 21, � is a fuzzy �-�lter of�.

Now, we discuss the relationship between associative
�lters and �-�lters of pseudo-��� algebras. At �rst, we give
the following results (the proofs are omitted).

Proposition 23. A nonempty subset � of pseudo-��� algebra
� is a �lter (associative �lter, �-�lter) of � if and only if the
characteristic function�� of� is a fuzzy �lter (fuzzy associative
�lter, fuzzy �-�lter) of�.

Proposition 24. Let� be a pseudo-��� algebra.
en a fuzzy
set � : � → [0, 1] is a fuzzy associative �lter (fuzzy �-�lter)
of � if and only if the level set �� = {� ∈ � | �(�) ≥ �} is
associative �lter (�-�lter) of � for all � ∈ Im(�).

In fact, the above proposition is a consequence of the so-
called Transfer Principle for Fuzzy Sets in [11].

Combining Propositions 23 and 24, 
eorems 8 and 22,
we get the following.

�eorem25. Let� be a �lter of a pseudo-��� algebra�.
en
the following conditions are equivalent:

(i) � is an �-�lter of�;
(ii) � is an associative �lter of�.

Remark 26. In [10], the authors proved 
eorem 18, but the
proof is wrong (from “Conversely . . .” to the end of proof). In
fact, by 
eorem 25, 
eorem 4 in [10] is true.

Finally, we discuss the relationship among fuzzy associa-
tive �lters, fuzzy �-�lters, and fuzzy �-�lters in pseudo-���
algebras.

Lemma 27. Let � be a fuzzy �-�lter of a pseudo-��� algebra
�. 
en � satis�es
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(1) for all � ∈ �, �(�) = �((� → 1) 
� 1);
(2) for all � ∈ �, �(((� → 1) 
� 1) 
� �) = �(1).

Proof. (1) For any � ∈ �, by De�nition 10(FPF1), we have

� (�) ≥ min {� ((� → 1) 
� (1 → 1)) , � (1)}

= � ((� → 1) 
� 1) .
(44)

And, using De�nition 1(2) and Proposition 7, �((� → 1) 
�
1) ≥ �(�). It follows that �(�) = �((� → 1) 
� 1).

(2) For any � ∈ �, by Proposition 2(11), (12), and (9), we
have

((((� �→ 1) 
� 1) 
� �) �→ 1) 
� 1

= ((((� �→ 1) 
� 1) 
� �) �→ 1) �→ 1

= ((((� �→ 1) 
� 1) 
� �) 
� 1) �→ 1

= ((((� �→ 1) 
� 1) 
� 1) �→ (� 
� 1)) �→ 1

= ((((� �→ 1) 
� 1) �→ 1) �→ (� 
� 1)) �→ 1

= ((� �→ 1) �→ (� 
� 1)) �→ 1

= ((� �→ 1) �→ (� �→ 1)) �→ 1

= 1 �→ 1 = 1.

(45)

From this and (1), we get

� (((� �→ 1) 
� 1) 
� �)

= � (((((� �→ 1) 
� 1) 
� �) �→ 1) 
� 1) = � (1) .
(46)


is means that (2) holds.

�eorem 28. Let � be a fuzzy �lter of a pseudo-��� algebra
�. 
en the following conditions are equivalent:

(1) � is a fuzzy �-�lter of�;
(2) � is both a fuzzy �-�lter and a fuzzy �-�lter of�.

Proof. Assume that � is a fuzzy �-�lter of�. It is easy to prove
that � is both a fuzzy �-�lter and a fuzzy �-�lter of�.

Conversely, let � be both a fuzzy �-�lter and fuzzy �-�lter
of�. For any �,  ∈ �, by De�nition 13(FqF1), we have

� (� �→ )

≥ min {� ((� 
� (( 
� 1) �→ �)) �→ ) ,

� (( 
� 1) �→ �) } .

(47)

And, by Proposition 2(4),

(� 
� (( 
� 1) �→ �)) �→ 

= (( 
� 1) �→ (� 
� �)) �→ 

= (( 
� 1) �→ 1) �→ .

(48)

From this and Lemma 27(2),

� ((� 
� (( 
� 1) �→ �)) �→ )

= � ((( 
� 1) �→ 1) �→ ) = � (1) .
(49)


erefore,

� (� �→ )

≥ min {� (1) , � (( 
� 1) �→ �)} = � (( 
� 1) �→ �) .
(50)


ismeans that
eorem 21(a1) holds. Similarly, we can prove
(a2). By 
eorem 21, we know that � is a fuzzy �-�lter of �.
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