On Some Generalized Difference Sequence Spaces

B. Surender Reddy

Department of Mathematics, PGCS, Saifabad Osmania University, Hyderabad-500004, A.P., India bsrmathou@yahoo.com

Abstract

The main aim of this article is to introduce a new class of difference sequence spaces associated with a multiplier sequence which are isomorphic with the classical spaces c_0 , c and ℓ_{∞} respectively and investigate some algebraic and topological structures of the spaces.

Mathematics Subject Classification: 40A05, 40C05, 46A45

Keywords: Difference sequence space, Completeness, BK-space, Separable space, Dual, Reflexive space, Hilbert space

1 Introduction

Let w denote the space of all scalar sequences and any subspace of w is called a sequence space. Let ℓ_{∞} , c and c_0 be the spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_k| \tag{1.1}$$

Let $\Lambda = (\lambda_k)$ be a sequence of non-zero scalars. Then for E a sequence space, the multiplier sequence space $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$E(\Lambda) = \{ (x_k) \in w : (\lambda_k x_k) \in E \}.$$

The scope for the studies on sequence spaces was extended by using the notion of associated multiplier sequences. Goes and Goes [3] defined the differentiated sequence space dE and integrated sequence space $\int E$ for a given sequence space E, using the multiplier sequences (k^{-1}) and (k) respectively. A multiplier sequence can be used to accelerate the convergence of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used to

accelerate the process of chemical reaction. Sometimes the associated multiplier sequence delays the rate of convergence of a sequence. Thus it also covers a larger class of sequences for study. In the present article we shall consider a general multiplier sequence $\Lambda = (\lambda_k)$ of non-zero scalars.

The notion of difference sequence spaces was introduce by Kizmaz [4]. The notion was further generalized by Et and Colak [1] by introducing the spaces $\ell_{\infty}(\Delta^s)$, $c(\Delta^s)$ and $c_0(\Delta^s)$. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [6], who studied the spaces $\ell_{\infty}(\Delta_r)$, $c(\Delta_r)$ and $c_0(\Delta_r)$. Tripathy, Esi and Tripathy [7] generalized the above notions and unified these as follows:

Let r, s be non-negative integers, then for Z a given sequence space we have

$$Z(\Delta_r^s) = \{ x = (x_k) \in w : (\Delta_r^s x_k) \in Z \},$$

where $\Delta_r^s x = (\Delta_r^s x_k) = (\Delta_r^{s-1} x_k - \Delta_r^{s-1} x_{k+r})$ and $\Delta_r^0 x_k = x_k$ for all $k \in \mathbb{N}$ and which is equivalent to the binomial representation

$$\Delta_r^s x_k = \sum_{v=0}^s (-1)^v \binom{s}{v} x_{k+rv}.$$

Let r, s be non-negative integers and $\Lambda = (\lambda_k)$ be a sequence of non-zero scalars. Then for Z, a given sequence space we define the following sequence spaces:

$$Z(\Delta_{(r)}^s, \Lambda) = \{x = (x_k) \in w : (\Delta_{(r)}^s \lambda_k x_k) \in Z\}, \text{ for } Z = \ell_\infty, \text{ c and } c_0$$

where $(\Delta_{(r)}^s \lambda_k x_k) = (\Delta_{(r)}^{s-1} \lambda_k x_k - \Delta_{(r)}^{s-1} \lambda_{k-r} x_{k-r})$ and $\Delta_{(r)}^0 \lambda_k x_k = \lambda_k x_k$ for all $k \in \mathbb{N}$ and which is equivalent to the binomial representation

$$\Delta_{(r)}^s \lambda_k x_k = \sum_{v=0}^s (-1)^v \binom{s}{v} \lambda_{k-rv} x_{k-rv}.$$

In this expansion it is important to note that we take $\lambda_{k-rv} = 0$ and $x_{k-rv} = 0$ for non-positive values of k - rv.

For s=1 and $\lambda_k=1$ for all $k \in N$, we get the spaces $\ell_{\infty}(\Delta_r)$, $c(\Delta_r)$ and $c_0(\Delta_r)$. For r=1 and $\lambda_k=1$ for all $k \in N$, we get the spaces $\ell_{\infty}(\Delta^s)$, $c(\Delta^s)$ and $c_0(\Delta^s)$. For r=s=1 and $\lambda_k=1$ for all $k \in N$, we get the spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$.

Similarly we can define the spaces $Z(\Delta_r^s, \Lambda)$, for $Z = \ell_{\infty}$, c and c_0 .

2 Main Results

In this section we study the spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$, for $Z = \ell_{\infty}$, c and c_0 for some linear algebraic and topological structure.

Proposition 2.1. (i) The spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$, for $Z = \ell_{\infty}$, c and c_0 are linear.

(ii) $c_0(\Delta^s_{(r)}, \Lambda) \subset c(\Delta^s_{(r)}, \Lambda) \subset \ell_\infty(\Delta^s_{(r)}, \Lambda)$.

(iii)
$$c_0(\Delta_r^s, \Lambda) \subset c(\Delta_r^s, \Lambda) \subset \ell_\infty(\Delta_r^s, \Lambda)$$
.

the proof.

Proof. Proofs are routine verification and thus omitted

Proposition 2.2. For $Z = \ell_{\infty}$, c and c_0

(i) $Z(\Delta_r^s, \Lambda)$ are normed linear spaces, normed by

$$||x|| = \sum_{k=1}^{rs} |\lambda_k x_k| + \sup_k |\Delta_r^s \lambda_k x_k|$$

$$(2.1)$$

(ii) $Z(\Delta_{(r)}^s, \Lambda)$ are normed linear spaces, normed by

$$||x||' = \sup_{k} |\Delta_{(r)}^s \lambda_k x_k| \tag{2.2}$$

Proof. (i) For $x = \theta$, we have ||x|| = 0. Conversely, let ||x|| = 0. Then using (2.1), we have

$$\sum_{k=1}^{rs} |\lambda_k x_k| + \sup_k |\Delta_r^s \lambda_k x_k| = 0$$
 (2.3)

It follows that $\sum_{k=1}^{rs} |\lambda_k x_k| = 0$. Hence $x_k = 0$, for $k = 1, 2, \dots, rs$, since (λ_k) is a sequence of non-zero scalars (2.4) Again from (2.3) we have $\sup_k |\Delta_r^s \lambda_k x_k| = 0$. It follows that $\Delta_r^s \lambda_k x_k = 0$, for all $k \geq 1$. Let k = 1, then $\Delta_r^s \lambda_1 x_1 = \sum_{v=0}^s (-1)^v {s \choose v} \lambda_{1+rv} x_{1+rv} = 0$ and so $x_{1+rs} = 0$ using (2.4). Similarly taking k = 2, we have $x_{2+rs} = 0$. Proceeding in this way $x_k = 0$ for all $k \geq 1$. Hence $x = \theta$. Again it is easy to show that $||x + y|| \leq ||x|| + ||y||$ and for any scalar α , $||\alpha x|| = |\alpha| ||x||$. This completes

(ii) For this part we only prove that ||x||' = 0 implies $x = \theta$. Proof of other properties are similar with part (i). Let ||x||' = 0. Then using (2.2), we have $\sup_{k} |\Delta_{(r)}^{s} \lambda_{k} x_{k}| = 0$. It follows that

 $\Delta_{(r)}^s \lambda_k x_k = 0$ for all $k \geq 1$. Let k = 1, then $\Delta_{(r)}^s \lambda_1 x_1 = \sum_{v=0}^s (-1)^v {s \choose v} \lambda_{1-rv} x_{1-rv} = 0$ and so $x_1 = 0$, since (λ_k) is a sequence of non-zero scalars and by putting $x_{1-rv} = 0$ for $v = 1, 2, \ldots, s$. Similarly taking k = 2 we have $x_2 = 0$. Proceeding in this way $x_k = 0$ for all $k \geq 1$. Hence $x = \theta$. This completes the proof.

Proposition 2.3. For $Z = \ell_{\infty}$, c and c_0

(i) $Z(\Delta^i_{(r)}, \Lambda) \subset Z(\Delta^s_{(r)}, \Lambda)$, (i = 0, 1, 2, ..., s - 1) and the inclusions are proper.

(ii) $Z(\Delta_r^i, \Lambda) \subset Z(\Delta_r^s, \Lambda)$, (i = 0, 1, 2, ..., s - 1) and the inclusions are proper.

Proof. Proofs are easy and so omitted.

Remark 2.4. It is obvious that for any sequence $x = (x_k)$, $x \in Z(\Delta_r^s, \Lambda)$ if and only if $x \in Z(\Delta_{(r)}^s, \Lambda)$. Hence from the above Proposition we can conclude that Z is a subspace of both $Z(\Delta_r^s)$ and $Z(\Delta_{(r)}^s)$. Now if we compare norm (1.1) with norms (2.1) and (2.2), (2.2) looks quite natural as norm on a generalized space of Z. Keeping these in mind this new operator $\Delta_{(r)}^s$ is introduced. The fruitfulness of introducing this operator will be more visible in Proposition 2.8. and Proposition 2.9. Again it is clear that norms $\|.\|$ and $\|.\|'$ are equivalent.

Theorem 2.5. For $Z = \ell_{\infty}$, c and c_0

- (i) $Z(\Delta_{(r)}^s, \Lambda)$ are Banach spaces, normed by $\|.\|'$.
- (ii) $Z(\Delta_r^s, \Lambda)$ are Banach spaces, normed by $\|.\|$.

Proof. We give the proof of part (i) only. Proof of part (ii) follows on applying similar arguments.

Let (x^i) be a Cauchy sequence in $Z(\Delta_{(r)}^s, \Lambda)$, where $(x^i) = (x_k^i) = (x_1^i, x_2^i, \ldots)$ for each $i \geq 1$. Then for a given $\epsilon > 0$, there exists a positive integer n_0 such that

$$||x^{i} - x^{j}||' = \sup_{k} |\Delta_{(r)}^{s} \lambda_{k} (x_{k}^{i} - x_{k}^{j})| < \epsilon,$$

for all $i, j \geq n_0$. It follows that $|\Delta_{(r)}^s \lambda_k(x_k^i - x_k^j)| < \epsilon$, for all $i, j \geq n_0$ and for all $k \geq 1$. This implies that $(\Delta_{(r)}^s \lambda_k x_k^i)$ is a Cauchy sequence in C for all $k \geq 1$ and so it is convergent in C for all $k \geq 1$.

Let $\lim_{i\to\infty} \Delta_{(r)}^s \lambda_k x_k^i = y_k$, say for each $k \geq 1$. Considering $k = 1, 2, \ldots, rs, \ldots$, we can easily conclude that $\lim_{i\to\infty} x_k^i = x_k$, exists for each $k \geq 1$. Now we can have

$$\lim_{i \to \infty} |\Delta_{(r)}^s \lambda_k (x_k^i - x_k^j)| < \epsilon$$

for all $i \geq n_0$ and $k \geq 1$ and hence

$$\sup_{k} |\Delta_{(r)}^{s} \lambda_{k}(x_{k}^{i} - x_{k}) < \epsilon$$

for all $i \geq n_0$. This implies that $(x^i - x) \in Z(\Delta^s_{(r)}, \Lambda)$. Since $Z(\Delta^s_{(r)}, \Lambda)$ is a linear space, $x = x^i - (x^i - x) \in Z(\Delta^s_{(r)}, \Lambda)$. Hence $Z(\Delta^s_{(r)}, \Lambda)$ is complete.

From the above proof we can easily conclude that $||x^i - x||' \longrightarrow 0$ implies $|x_k^i - x_k| \longrightarrow 0$ as $i \longrightarrow \infty$, for each $k \ge 1$. Hence we have the following Proposition.

Proposition 2.6. For $Z = \ell_{\infty}$, c and c_0 , $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$ are BK-spaces.

Proposition 2.7. (i) The spaces $c_0(\Delta_{(r)}^s, \Lambda)$ and $c(\Delta_{(r)}^s, \Lambda)$ are nowhere dense subsets of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$.

(ii) The spaces $c_0(\Delta_r^s, \Lambda)$ and $c(\Delta_r^s, \Lambda)$ are nowhere dense subsets of $\ell_{\infty}(\Delta_r^s, \Lambda)$.

Proof. We give the proof of part (i). Proof of part (ii) follows on applying similar arguments.

From proposition 2.1 (ii), we have $c_0(\Delta_{(r)}^s, \Lambda)$ and $c(\Delta_{(r)}^s, \Lambda)$ are proper subspaces of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$. Again from Theorem 2.5 (i), it follows that $c_0(\Delta_{(r)}^s, \Lambda)$ and $c(\Delta_{(r)}^s, \Lambda)$ are closed subspaces of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$. Hence the proof follows.

Proposition 2.8. (i) The spaces $c_0(\Delta_{(r)}^s, \Lambda)$, $c(\Delta_{(r)}^s, \Lambda)$ and $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ are topologically isomorphic to the spaces c_0 , c and ℓ_{∞} respectively. (ii) The spaces $Sc_0(\Delta_r^s, \Lambda)$, $Sc(\Delta_r^s, \Lambda)$ and $S\ell_{\infty}(\Delta_r^s, \Lambda)$ are topologically isomorphic to the spaces c_0 , c and ℓ_{∞} respectively, where $SZ(\Delta_r^s, \Lambda)$ is a subspace of $Z(\Delta_r^s, \Lambda)$ defined by

$$SZ(\Delta_r^s, \Lambda) = \{x = (x_k) : x \in Z(\Delta_r^s, \Lambda), \ x_1 = x_2 = \dots = x_{rs} = 0\}$$

and normed by

$$||x|| = \sup_{k} |\Delta_r^s \lambda_k x_k|.$$

Proof. We give the proof of part (i) and proof of part (ii) follows on applying similar arguments. For $Z = \ell_{\infty}$, c and c_0 , consider the mapping

$$T: Z(\Delta^s_{(r)}, \Lambda) \longrightarrow Z,$$

defined by $Tx = y = (\Delta_{(r)}^s \lambda_k x_k)$, for every $x \in Z(\Delta_{(r)}^s, \Lambda)$ Then clearly T is a linear homeomorphism. (2.5)

Proposition 2.9. For $Z = \ell_{\infty}$, c and c_0 , $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$ are isometrically isomorphic with the spaces c_0 , c and ℓ_{∞} respectively.

Proof. In view of Remark 2.4, we can define a mapping exactly similar with (2.5) on both the spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$. Then it is obvious that this mapping will be an isomorphic and isometry. This completes the proof.

Theorem 2.10. The continuous dual of $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$, for Z = c, c_0 is ℓ_1 .

Proof. Since continuous dual of c_0 and c is ℓ_1 , proof follows from Proposition 2.9.

Theorem 2.11. The spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$, for Z = c, c_0 are separable.

Proof. Since ℓ_1 is separable, the proof follows from the fact that if the dual of a normed space is separable, then the space itself is separable.

Theorem 2.12. (i) The spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$ for Z = c, c_0 are not reflexive.

- (ii) The spaces $Z(\Delta_{(r)}^s, \Lambda)$ and $Z(\Delta_r^s, \Lambda)$ for Z = c, c_0 are not Hilbert spaces.
- (iii) The spaces $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ and $\ell_{\infty}(\Delta_r^s, \Lambda)$ are not Hilbert spaces.
- (iii) The spaces $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ and $\ell_{\infty}(\Delta_r^s, \Lambda)$ are not reflexive.

Proof. (i) Since ℓ_1 is not reflexive, the proof follows from the fact that if a normed space is reflexive then its dual is also reflexive.

- (ii) Proof follows from the fact that every Hilbert space is reflexive.
- (iii) We know that a closed subspace of a Hilbert space is Hilbert space. Here $Z(\Delta_{(r)}^s, \Lambda)$, Z = c, c_0 are closed subspaces of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ but both of them are not Hilbert spaces. So $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ is not a Hilbert space.

By applying similar arguments we can argue that $\ell_{\infty}(\Delta_r^s, \Lambda)$ is not a Hilbert space.

(iv) We know that a closed subspace of a reflexive Banach space is reflexive. Here $Z(\Delta_{(r)}^s, \Lambda)$, Z = c, c_0 are closed subspaces of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ but both of them are not reflexive. So $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ is not reflexive.

By applying similar arguments we can argue that $\ell_{\infty}(\Delta_r^s, \Lambda)$ is not reflexive.

Theorem 2.13. The spaces $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ and $\ell_{\infty}(\Delta_r^s, \Lambda)$ are not separable.

Proof. We give the proof for the space $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ only. For the other space $\ell_{\infty}(\Delta_r^s, \Lambda)$ it will follow on applying similar arguments. We can associate for every $y' \in [0, 1]$, a sequence $y = (y_i) \in \ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ of zeros and ones, where $y' = \frac{y_1}{2} + \frac{y_2}{2^2} + \frac{y_3}{2^3} + \ldots$ Since [0, 1] is uncountable, so there are uncountably many sequences of zeros and ones. For any two different sequences x and y of $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ we have

$$||x - y||' = \sup_{k} |\Delta_{(r)}^{s} \lambda_{k}(x_{k} - y_{k})|$$

$$= \sup_{k} |(x_{k} - y_{k})| = 1 \text{ by Proposition 2.9}$$

If we let each of these sequences be the centers of neighbourhoods, say, of radius $\frac{1}{3}$, these neighbourhoods do not intersect and we have uncountably many of them. If D is any dense set in $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$, each of these non intersecting neighbourhoods must contain an element of D. Hence D can not be countable. Since D was an arbitrary dense set, this shows that $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ can not have countable dense subset. Consequently, $\ell_{\infty}(\Delta_{(r)}^s, \Lambda)$ is not separable.

Theorem 2.14. (i) Let $A \subset Z$. If A is convex, then $A(\Delta_{(r)}^s, \Lambda)$ is convex in $Z(\Delta_{(r)}^s, \Lambda)$.

(ii) Let $A \subset Z$. If A is convex, then $A(\Delta_r^s, \Lambda)$ is convex in $Z(\Delta_r^s, \Lambda)$.

Proof. We give proof of part (i) only. The proof of part (ii) follows on applying similar arguments.

Let $x, y \in A(\Delta_{(r)}^s, \Lambda)$, then $(\Delta_{(r)}^s \lambda_k x_k)$, $(\Delta_{(r)}^s \lambda_k y_k) \in A$. Since $\Delta_{(r)}^s$ is linear, we have

$$\delta(\Delta_{(r)}^s \lambda_k x_k) + (1 - \delta)(\Delta_{(r)}^s \lambda_k y_k) = \Delta_{(r)}^s (\delta(\lambda_k x_k) + (1 - \delta)(\lambda_k y_k)), \quad 0 \le \delta \le 1$$

Since A is convex, $\delta(\Delta_{(r)}^s \lambda_k x_k) + (1 - \delta)(\Delta_{(r)}^s \lambda_k y_k) \in A$. Hence $\delta x + (1 - \delta)y \in A(\Delta_{(r)}^s, \Lambda)$, $0 \le \delta \le 1$. This completes the proof.

ACKNOWLEDGEMENTS. The author is grateful to the referee for careful reading of the article and suggested improvements.

References

- [1] M. Et and R. Colak, On generalized difference sequence spaces, *Soochow Jour. Math.*, **21** (1995), 377 386.
- [2] A. Esi, B.C. Tripathy and B. Sarma, On some new type generalized difference sequence spaces, M. Slov., 57 (2007), 475 482.
- [3] G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier Coefficients, *Math. Zeift.*, **118** (1970), 93 102.
- [4] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169 - 176.
- [5] E. Kreyszig, Introductory Functional Analysis with Applications, *Jhon Wiley and Sons*, 1978.
- [6] B.C. Tripathy and A. Esi, A new type of difference sequence spaces, *Int. Jour. of Sci. and Tech.*, 1 (2006), 11 14.
- [7] B.C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Cesàro Sequence spaces, *Soochow J. Math.*, **31** (2005), 333 340.

Received: January, 2010