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Abstract

The main aim of this article is to introduce a new class of difference
sequence spaces associated with a multiplier sequence which are isomor-
phic with the classical spaces c0, c and �∞ respectively and investigate
some algebraic and topological structures of the spaces.
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1 Introduction

Let w denote the space of all scalar sequences and any subspace of w is called
a sequence space. Let �∞ , c and c0 be the spaces of bounded, convergent and
null sequences x = (xk) with complex terms respectively, normed by

‖x‖∞ = sup
k

|xk| (1.1)

Let Λ = (λk) be a sequence of non-zero scalars. Then for E a sequence
space, the multiplier sequence space E(Λ), associated with the multiplier se-
quence Λ is defined as

E(Λ) = {(xk) ∈ w : (λkxk) ∈ E}.

The scope for the studies on sequence spaces was extended by using the
notion of associated multiplier sequences. Goes and Goes [3] defined the dif-
ferentiated sequence space dE and integrated sequence space

∫
E for a given

sequence space E, using the multiplier sequences (k−1) and (k) respectively. A
multiplier sequence can be used to accelerate the convergence of the sequences
in some spaces. In some sense, it can be viewed as a catalyst, which is used to
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accelerate the process of chemical reaction. Sometimes the associated multi-
plier sequence delays the rate of convergence of a sequence. Thus it also covers
a larger class of sequences for study. In the present article we shall consider a
general multiplier sequence Λ = (λk) of non-zero scalars.

The notion of difference sequence spaces was introduce by Kizmaz [4]. The
notion was further generalized by Et and Colak [1] by introducing the spaces
�∞(Δs), c(Δs) and c0(Δ

s) . Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [6], who studied the spaces �∞(Δr),
c(Δr) and c0(Δr) . Tripathy, Esi and Tripathy [7] generalized the above notions
and unified these as follows:

Let r, s be non-negative integers, then for Z a given sequence space we
have

Z(Δs
r) = {x = (xk) ∈ w : (Δs

rxk) ∈ Z},
where Δs

rx = (Δs
rxk) = (Δs−1

r xk −Δs−1
r xk+r) and Δ0

rxk = xk for all k ∈ N and
which is equivalent to the binomial representation

Δs
rxk =

s∑
v=0

(−1)v

(
s

v

)
xk+rv.

Let r, s be non-negative integers and Λ = (λk) be a sequence of non-zero
scalars. Then for Z, a given sequence space we define the following sequence
spaces:

Z(Δs
(r), Λ) = {x = (xk) ∈ w : (Δs

(r)λkxk) ∈ Z}, for Z = �∞, c and c0

where (Δs
(r)λkxk) = (Δs−1

(r) λkxk − Δs−1
(r) λk−rxk−r) and Δ0

(r)λkxk = λkxk for all
k ∈ N and which is equivalent to the binomial representation

Δs
(r)λkxk =

s∑
v=0

(−1)v

(
s

v

)
λk−rvxk−rv.

In this expansion it is important to note that we take λk−rv = 0 and
xk−rv = 0 for non-positive values of k − rv.

For s = 1 and λk = 1 for all k ∈ N , we get the spaces �∞(Δr), c(Δr) and
c0(Δr). For r = 1 and λk = 1 for all k ∈ N , we get the spaces �∞(Δs), c(Δs)
and c0(Δ

s). For r = s = 1 and λk = 1 for all k ∈ N , we get the spaces �∞(Δ),
c(Δ) and c0(Δ).

Similarly we can define the spaces Z(Δs
r, Λ), for Z = �∞, c and c0.

2 Main Results

In this section we study the spaces Z(Δs
(r), Λ) and Z(Δs

r, Λ), for Z = �∞, c
and c0 for some linear algebraic and topological structure.
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Proposition 2.1. (i) The spaces Z(Δs
(r), Λ) and Z(Δs

r, Λ), for Z = �∞, c
and c0 are linear.
(ii) c0(Δ

s
(r), Λ) ⊂ c(Δs

(r), Λ) ⊂ �∞(Δs
(r), Λ).

(iii) c0(Δ
s
r, Λ) ⊂ c(Δs

r, Λ) ⊂ �∞(Δs
r, Λ).

Proof. Proofs are routine verification and thus omitted

Proposition 2.2. For Z = �∞, c and c0

(i) Z(Δs
r, Λ) are normed linear spaces, normed by

‖x‖ =

rs∑
k=1

|λkxk| + sup
k

|Δs
rλkxk| (2.1)

(ii) Z(Δs
(r), Λ) are normed linear spaces, normed by

‖x‖′ = sup
k

|Δs
(r)λkxk| (2.2)

Proof. (i) For x = θ, we have ‖x‖ = 0. Conversely, let ‖x‖ = 0. Then using
(2.1), we have

rs∑
k=1

|λkxk| + sup
k

|Δs
rλkxk| = 0 (2.3)

It follows that
rs∑

k=1

|λkxk| = 0. Hence xk = 0, for k = 1, 2, . . . , rs, since (λk) is

a sequence of non-zero scalars (2.4)
Again from (2.3) we have sup

k
|Δs

rλkxk| = 0. It follows that Δs
rλkxk = 0,

for all k ≥ 1. Let k = 1, then Δs
rλ1x1 =

s∑
v=0

(−1)v
(

s
v

)
λ1+rvx1+rv = 0 and so

x1+rs = 0 using (2.4). Similarly taking k = 2, we have x2+rs = 0. Proceeding
in this way xk = 0 for all k ≥ 1. Hence x = θ. Again it is easy to show that
‖x + y‖ ≤ ‖x‖ + ‖y‖ and for any scalar α, ‖αx‖ = |α| ‖x‖. This completes
the proof.

(ii) For this part we only prove that ‖x‖′ = 0 implies x = θ. Proof of other
properties are similar with part (i).
Let ‖x‖′ = 0. Then using (2.2), we have sup

k
|Δs

(r)λkxk| = 0. It follows that

Δs
(r)λkxk = 0 for all k ≥ 1. Let k = 1, then Δs

(r)λ1x1 =
s∑

v=0

(−1)v
(

s
v

)
λ1−rvx1−rv =

0 and so x1 = 0, since (λk) is a sequence of non-zero scalars and by putting
x1−rv = 0 for v = 1, 2, . . . , s. Similarly taking k = 2 we have x2 = 0. Pro-
ceeding in this way xk = 0 for all k ≥ 1. Hence x = θ. This completes the
proof.
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Proposition 2.3. For Z = �∞, c and c0

(i) Z(Δi
(r), Λ) ⊂ Z(Δs

(r), Λ), (i = 0, 1, 2, . . . , s − 1) and the inclusions are
proper.
(ii) Z(Δi

r, Λ) ⊂ Z(Δs
r, Λ), (i = 0, 1, 2, . . . , s−1) and the inclusions are proper.

Proof. Proofs are easy and so omitted.

Remark 2.4. It is obvious that for any sequence x = (xk), x ∈ Z(Δs
r, Λ) if

and only if x ∈ Z(Δs
(r), Λ). Hence from the above Proposition we can conclude

that Z is a subspace of both Z(Δs
r) and Z(Δs

(r)). Now if we compare norm (1.1)

with norms (2.1) and (2.2), (2.2) looks quite natural as norm on a generalized
space of Z. Keeping these in mind this new operator Δs

(r) is introduced. The
fruitfulness of introducing this operator will be more visible in Proposition 2.8.
and Proposition 2.9. Again it is clear that norms ‖.‖ and ‖.‖′ are equivalent.

Theorem 2.5. For Z = �∞, c and c0

(i) Z(Δs
(r), Λ) are Banach spaces, normed by ‖.‖′.

(ii) Z(Δs
r, Λ) are Banach spaces, normed by ‖.‖.

Proof. We give the proof of part (i) only. Proof of part (ii) follows on
applying similar arguments.

Let (xi) be a Cauchy sequence in Z(Δs
(r), Λ), where (xi) = (xi

k) = (xi
1, x

i
2, . . . )

for each i ≥ 1. Then for a given ε > 0, there exists a positive integer n0 such
that

‖xi − xj‖′ = sup
k

|Δs
(r)λk(x

i
k − xj

k)| < ε,

for all i, j ≥ n0. It follows that |Δs
(r)λk(x

i
k − xj

k)| < ε, for all i, j ≥ n0 and for

all k ≥ 1. This implies that (Δs
(r)λkx

i
k) is a Cauchy sequence in C for all k ≥ 1

and so it is convergent in C for all k ≥ 1.
Let lim

i→∞
Δs

(r)λkx
i
k = yk, say for each k ≥ 1. Considering k = 1, 2, . . . , rs, . . . ,

we can easily conclude that lim
i→∞

xi
k = xk, exists for each k ≥ 1. Now we can

have
lim

j−→∞
|Δs

(r)λk(x
i
k − xj

k)| < ε

for all i ≥ n0 and k ≥ 1 and hence

sup
k

|Δs
(r)λk(x

i
k − xk) < ε

for all i ≥ n0. This implies that (xi − x) ∈ Z(Δs
(r), Λ). Since Z(Δs

(r), Λ) is a

linear space, x = xi − (xi − x) ∈ Z(Δs
(r), Λ). Hence Z(Δs

(r), Λ) is complete.

From the above proof we can easily conclude that ‖xi − x‖′ −→ 0 implies
|xi

k − xk| −→ 0 as i −→ ∞, for each k ≥ 1. Hence we have the following
Proposition.
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Proposition 2.6. For Z = �∞, c and c0, Z(Δs
(r), Λ) and Z(Δs

r, Λ) are BK-
spaces.

Proposition 2.7. (i) The spaces c0(Δ
s
(r), Λ) and c(Δs

(r), Λ) are nowhere

dense subsets of �∞(Δs
(r), Λ).

(ii) The spaces c0(Δ
s
r, Λ) and c(Δs

r, Λ) are nowhere dense subsets of �∞(Δs
r, Λ).

Proof. We give the proof of part (i). Proof of part (ii) follows on applying
similar arguments.

From proposition 2.1 (ii), we have c0(Δ
s
(r), Λ) and c(Δs

(r), Λ) are proper sub-

spaces of �∞(Δs
(r), Λ). Again from Theorem 2.5 (i), it follows that c0(Δ

s
(r), Λ)

and c(Δs
(r), Λ) are closed subspaces of �∞(Δs

(r), Λ). Hence the proof follows.

Proposition 2.8. (i) The spaces c0(Δ
s
(r), Λ), c(Δs

(r), Λ) and �∞(Δs
(r), Λ)

are topologically isomorphic to the spaces c0, c and �∞ respectively.
(ii) The spaces Sc0(Δ

s
r, Λ), Sc(Δs

r, Λ) and S�∞(Δs
r, Λ) are topologically iso-

morphic to the spaces c0, c and �∞ respectively, where SZ(Δs
r, Λ) is a subspace

of Z(Δs
r, Λ) defined by

SZ(Δs
r, Λ) = {x = (xk) : x ∈ Z(Δs

r, Λ), x1 = x2 = · · · = xrs = 0}

and normed by

‖x‖ = sup
k

|Δs
rλkxk|.

Proof. We give the proof of part (i) and proof of part (ii) follows on applying
similar arguments. For Z = �∞, c and c0, consider the mapping

T : Z(Δs
(r), Λ) −→ Z,

defined by Tx = y = (Δs
(r)λkxk), for every x ∈ Z(Δs

(r), Λ) (2.5)
Then clearly T is a linear homeomorphism.

Proposition 2.9. For Z = �∞, c and c0, Z(Δs
(r), Λ) and Z(Δs

r, Λ) are
isometrically isomorphic with the spaces c0, c and �∞ respectively.

Proof. In view of Remark 2.4, we can define a mapping exactly similar with
(2.5) on both the spaces Z(Δs

(r), Λ) and Z(Δs
r, Λ). Then it is obvious that this

mapping will be an isomorphic and isometry. This completes the proof.

Theorem 2.10. The continuous dual of Z(Δs
(r), Λ) and Z(Δs

r, Λ), for Z =
c, c0 is �1.

Proof. Since continuous dual of c0 and c is �1, proof follows from Proposition
2.9.
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Theorem 2.11. The spaces Z(Δs
(r), Λ) and Z(Δs

r, Λ), for Z = c, c0 are
separable.

Proof. Since �1 is separable, the proof follows from the fact that if the dual
of a normed space is separable, then the space itself is separable.

Theorem 2.12. (i) The spaces Z(Δs
(r), Λ) and Z(Δs

r, Λ) for Z = c, c0 are
not reflexive.
(ii) The spaces Z(Δs

(r), Λ) and Z(Δs
r, Λ) for Z = c, c0 are not Hilbert spaces.

(iii) The spaces �∞(Δs
(r), Λ) and �∞(Δs

r, Λ) are not Hilbert spaces.

(iii) The spaces �∞(Δs
(r), Λ) and �∞(Δs

r, Λ) are not reflexive.

Proof. (i) Since �1 is not reflexive, the proof follows from the fact that if a
normed space is reflexive then its dual is also reflexive.
(ii) Proof follows from the fact that every Hilbert space is reflexive.
(iii) We know that a closed subspace of a Hilbert space is Hilbert space. Here
Z(Δs

(r), Λ), Z = c, c0 are closed subspaces of �∞(Δs
(r), Λ) but both of them are

not Hilbert spaces. So �∞(Δs
(r), Λ) is not a Hilbert space.

By applying similar arguments we can argue that �∞(Δs
r, Λ) is not a Hilbert

space.
(iv) We know that a closed subspace of a reflexive Banach space is reflexive.
Here Z(Δs

(r), Λ), Z = c, c0 are closed subspaces of �∞(Δs
(r), Λ) but both of

them are not reflexive. So �∞(Δs
(r), Λ) is not reflexive.

By applying similar arguments we can argue that �∞(Δs
r, Λ) is not reflexive.

Theorem 2.13. The spaces �∞(Δs
(r), Λ) and �∞(Δs

r, Λ) are not separable.

Proof. We give the proof for the space �∞(Δs
(r), Λ) only. For the other space

�∞(Δs
r, Λ) it will follow on applying similar arguments. We can associate for

every y′ ∈ [0, 1], a sequence y = (yi) ∈ �∞(Δs
(r), Λ) of zeros and ones, where

y′ = y1

2
+ y2

22 + y3

23 + . . . . Since [0, 1] is uncountable, so there are uncountably
many sequences of zeros and ones. For any two different sequences x and y of
�∞(Δs

(r), Λ) we have

‖x − y‖′ = sup
k

|Δs
(r)λk(xk − yk)|

= sup
k

|(xk − yk)| = 1 by Proposition 2.9

If we let each of these sequences be the centers of neighbourhoods, say, of
radius 1

3
, these neighbourhoods do not intersect and we have uncountably many

of them. If D is any dense set in �∞(Δs
(r), Λ) , each of these non intersecting

neighbourhoods must contain an element of D. Hence D can not be countable.
Since D was an arbitrary dense set, this shows that �∞(Δs

(r), Λ) can not have

countable dense subset. Consequently, �∞(Δs
(r), Λ) is not separable.
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Theorem 2.14. (i) Let A ⊂ Z. If A is convex, then A(Δs
(r), Λ) is convex

in Z(Δs
(r), Λ).

(ii) Let A ⊂ Z. If A is convex, then A(Δs
r, Λ) is convex in Z(Δs

r, Λ).

Proof. We give proof of part (i) only. The proof of part (ii) follows on
applying similar arguments.
Let x, y ∈ A(Δs

(r), Λ), then (Δs
(r)λkxk), (Δs

(r)λkyk) ∈ A. Since Δs
(r) is linear,

we have

δ(Δs
(r)λkxk) + (1 − δ)(Δs

(r)λkyk) = Δs
(r)(δ(λkxk) + (1 − δ)(λkyk)), 0 ≤ δ ≤ 1

Since A is convex, δ(Δs
(r)λkxk) + (1 − δ)(Δs

(r)λkyk) ∈ A.

Hence δx + (1 − δ)y ∈ A(Δs
(r), Λ), 0 ≤ δ ≤ 1. This completes the proof.
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