ON SOME GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

MIKÂIL ET, YAVUZ ALTIN AND HIFSI ALTINOK

Abstract

The idea of difference sequence spaces was introduced by Kızmaz [9] and generalized by Et and Çolak [6]. In this paper we introduce the sequence spaces $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$, $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right), \quad[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right), S_{\lambda}\left(\Delta^{r}, E\right)$ and $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$, where E is any Banach space, examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_{\lambda}\left(\Delta^{r}, E\right)$ may be represented as a $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ space.

1. Introduction

Let w be the set of all sequences real or complex numbers and ℓ_{∞}, c and c_{0} be respectively the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup \left|x_{k}\right|$, where $k \in \mathbb{N}=\{1,2, \ldots\}$, the set of positive integers.

Let $\lambda=\left(\lambda_{n}\right)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_{n}+1, \lambda_{1}=1$.

The generalized de la Vallée-Poussin mean is defined by

$$
t_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} x_{k}
$$

where $I_{n}=\left[n-\lambda_{n}+1, n\right]$ for $n=1,2, \ldots$.
A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number L [11] if $t_{n}(x) \rightarrow L$ as $n \rightarrow \infty$.

If $\lambda_{n}=n$, then (V, λ)-summability and strongly (V, λ)-summability are reduced to $(C, 1)$-summability and $[C, 1]$-summability, respectively.

The idea of difference sequence spaces was introduced by Kızmaz [9]. In 1981, Kızmaz [9] defined the sequence spaces

1991 Mathematics Subject Classification. 40A05, 40C05, 46A45 .
Key words and phrases. Difference sequence, statistical convergence, modulus function.

$$
X(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in X\right\}
$$

for $X=\ell_{\infty}, c$ and c_{0}, where $\Delta x=\left(x_{k}-x_{k+1}\right)$.
Then Et and Çolak [6] generalized the above sequence spaces to the sequence spaces

$$
X\left(\Delta^{r}\right)=\left\{x=\left(x_{k}\right): \Delta^{r} x \in X\right\}
$$

for $X=\ell_{\infty}, c$ and c_{0}, where $r \in \mathbb{N}, \Delta^{0} x=\left(x_{k}\right), \Delta x=\left(x_{k}-x_{k+1}\right)$, $\Delta^{r} x=\left(\Delta^{r} x_{k}-\Delta^{r} x_{k+1}\right)$, and so $\Delta^{r} x_{k}=\sum_{v=0}^{r}(-1)^{v}\binom{r}{v} x_{k+v}$.

Later on difference sequence spaces were studied by Malkowsky and Parashar [15], Et and Başarır [4], Et and Bektas [5].

We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous everwhere on $[0, \infty)$. A modulus may be unbounded or bounded. Ruckle [17] and Maddox [14], used a modulus f to construct some sequence spaces.

Subsequently modulus function has been discussed in [1], [16], [19] and many others.

Let $X, Y \subset w$. Then we shall write

$$
M(X, Y)=\bigcap_{x \in X} x^{-1} * Y=\{a \in w: a x \in Y \quad \text { for all } x \in X\}[20] .
$$

The set $X^{\alpha}=M\left(X, \ell_{1}\right)$ is called Köthe-Toeplitz dual space or α-dual of X.

Let X be a sequence space. Then X is called
i) Solid (or normal), if $\left(\alpha_{k} x_{k}\right) \in X$ for all sequences $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$, whenever $\left(x_{k}\right) \in X$.
ii) Symmetric, if $\left(x_{k}\right) \in X$ implies $\left(x_{\pi(k)}\right) \in X$, where $\pi(k)$ is a permutation of \mathbb{N}.
iii) Perfect if $X=X^{\alpha \alpha}$.
iv) Sequence algebra if $x . y \in X$, whenever $x, y \in X$.

It is well known that if X is perfect then X is normal [8$]$.
The following inequality will be used throughout this paper.

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq C\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\}, \tag{1}
\end{equation*}
$$

where $a_{k}, b_{k} \in \mathbb{C}, 0<p_{k} \leq \sup _{k} p_{k}=H, C=\max \left(1,2^{H-1}\right)[13]$.

2. Main Results

In this section we prove some results involving the sequence spaces

$$
[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right),[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right) \text { and }[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)
$$

Definition 2.1. Let E be a Banach space. We define $w(E)$ to be the vector space of all E-valued sequences that is $w(E)=\left\{x=\left(x_{k}\right): x_{k} \in E\right\}$. Let f be a modulus function and $p=\left(p_{k}\right)$ be any sequence of strictly positive real numbers. We define the following sequence sets

$$
\begin{aligned}
& {[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)=} \\
& \left\{x \in w(E): \lim _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}=0, \text { for some } L\right\} \\
& {[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)=\left\{x \in w(E): \lim _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}=0\right\}} \\
& {[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)=\left\{x \in w(E): \sup _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}<\infty\right\}}
\end{aligned}
$$

If $x \in[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ then we will write $x_{k} \rightarrow L[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ and L will be called λ_{E} - difference limit of x with respect to the modulus f.

Throughout the paper Z will denote any one of the notation 0,1 , or ∞.
In the case $f(x)=x, p_{k}=1$ for all $k \in \mathbb{N}$ and $p_{k}=1$ for all $k \in \mathbb{N}$, we shall write $[V, \lambda]_{Z}\left(\Delta^{r}, E\right)$ and $[V, \lambda, f]_{Z}\left(\Delta^{r}, E\right)$ instead of $[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right)$, respectively.

Theorem 2.2. Let the sequence $\left(p_{k}\right)$ be bounded. Then the sequence spaces $[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right)$ are linear spaces.

Proof. We shall prove it for $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$. The others can be proved by the same way. Let $x, y \in[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$ and $\beta, \mu \in \mathbb{C}$. Then there exist positive numbers M_{β} and N_{μ} such that $|\beta| \leq M_{\beta}$ and $|\mu| \leq N_{\mu}$. Since f is subadditive and Δ^{r} is linear

$$
\begin{aligned}
& \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r}\left(\beta x_{k}+\mu y_{k}\right)\right\|\right)\right]^{p_{k}} \\
& \quad \leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(|\beta|\left\|\Delta^{r} x_{k}\right\|\right)+f\left(|\mu|\left\|\Delta^{r} y_{k}\right\|\right)\right]^{p_{k}} \\
& \leq C\left(M_{\beta}\right)^{H} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}+C\left(N_{\mu}\right)^{H} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left\|\Delta^{r} y_{k}\right\|\right]^{p_{k}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. This proves that $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$ is a linear space.
Theorem 2.3. Let f be a modulus function, then

$$
[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right) \subset[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right) \subset[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)
$$

Proof. The first inclusion is obvious. We establish the second inclusion. Let $x \in[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$. By definition of f we have

$$
\begin{aligned}
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}-L+L\right\|\right)\right]^{p_{k}} \\
\leq C \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}+C \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}[f(\|L\|)]^{p_{k}}
\end{aligned}
$$

There exists a positive integer K_{L} such that $\|L\| \leq K_{L}$. Hence we have

$$
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}} \leq \frac{C}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}+\frac{C}{\lambda_{n}}\left[K_{L} f(1)\right]^{H} \lambda_{n}
$$

Since $x \in[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ we have $x \in[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$ and this completes the proof.

Theorem 2.4. $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$ is a paranormed (need not total paranorm) space with

$$
g_{\Delta}(x)=\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}
$$

where $M=\max \left(1, \sup p_{k}\right)$.
Proof. From Theorem 2.3, for each $x \in[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right), g_{\Delta}(x)$ exists. Clearly $g_{\Delta}(x)=g_{\Delta}(-x)$. It is trivial that $\Delta^{r} x_{k}=0$ for $x=0$. Since $f(0)=0$, we get $g_{\Delta}(x)=0$ for $x=0$. Since $p_{k} / M \leq 1$ and $M \geq 1$, using the Minkowski's inequality and definition of f, for each n, we have

$$
\begin{aligned}
\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}[f\right. & \left.\left.\left(\left\|\Delta^{r} x_{k}+\Delta^{r} y_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)+f\left(\left\|\Delta^{r} y_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \\
& \leq\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}+\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} y_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}
\end{aligned}
$$

Hence $g_{\Delta}(x)$ is subadditive. Finally, to check the continuity of multiplication, let us take any complex number β. By definition of f we have

$$
g_{\Delta}(\beta x)=\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\| \Delta^{r}\left(\beta x_{k} \|\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \leq K_{\beta}^{\frac{H}{M}} g_{\Delta}(x)
$$

where K_{β} is a positive integer such that $|\beta|<K_{\beta}$. Now, let $\beta \rightarrow 0$ for any fixed x with $g_{\Delta}(x) \neq 0$. By definition of f for $|\beta|<1$, we have

$$
\begin{equation*}
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\beta \Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}<\varepsilon \quad \text { for } n>n_{0}(\varepsilon) \tag{2}
\end{equation*}
$$

Also, for $1 \leq n \leq n_{0}$, taking β small enough, since f is continuous we have

$$
\begin{equation*}
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\beta \Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}<\varepsilon \tag{3}
\end{equation*}
$$

(2) and (3) together imply that $g_{\Delta}(\beta x) \rightarrow 0$ as $\beta \rightarrow 0$.

Theorem 2.5. If $r \geq 1$, then the inclusion

$$
[V, \lambda, f]_{Z}\left(\Delta^{r-1}, E\right) \subset[V, \lambda, f]_{Z}\left(\Delta^{r}, E\right)
$$

is strict. In general $[V, \lambda, f]_{Z}\left(\Delta^{i}, E\right) \subset[V, \lambda, f]_{Z}\left(\Delta^{r}, E\right)$ for all $i=1,2, \ldots$, $r-1$ and the inclusion is strict.

Proof. We give the proof for $Z=\infty$ only. It can be proved in a similar way for $Z=0$ and $Z=1$. Let $x \in[V, \lambda, f]_{\infty}\left(\Delta^{r-1}, E\right)$. Then we have

$$
\sup _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r-1} x_{k}\right\|\right)\right]<\infty
$$

By definition of f, we have

$$
\begin{aligned}
& \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}\right\|\right)\right] \leq \\
& \quad \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r-1} x_{k}\right\|\right)\right]+\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r-1} x_{k+1}\right\|\right)\right]<\infty
\end{aligned}
$$

Thus $[V, \lambda, f]_{\infty}\left(\Delta^{r-1}, E\right) \subset\left[\Delta^{r}, \lambda, f\right]_{\infty}\left(\Delta^{r}, E\right)$. Proceeding in this way one will have $[V, \lambda, f]_{\infty}\left(\Delta^{i}, E\right) \subset[V, \lambda, f]_{\infty}\left(\Delta^{r}, E\right)$ for $i=1,2, \ldots, r-1$. Let $E=\mathbb{C}$, and $\lambda_{n}=n$ for each $n \in \mathbb{N}$. Then the sequence $x=\left(k^{r}\right)$, for example, belongs to $[V, \lambda, f]_{\infty}\left(\Delta^{r}, E\right)$, but does not belong to $[V, \lambda, f]_{\infty}\left(\Delta^{r-1}, E\right)$ for $f(x)=x$. (If $x=\left(k^{r}\right)$, then $\Delta^{r} x_{k}=(-1)^{r} r!$ and $\Delta^{r-1} x_{k}=(-1)^{r+1} r!(k+$ $\left.\frac{(r-1)}{2}\right)$ for all $k \in \mathbb{N}$).

The proof of the following result is a routine work.
Proposition 2.6. $[V, \lambda, f, p]_{1}\left(\Delta^{r-1}, E\right) \subset[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$.
Theorem 2.7. Let f, f_{1}, f_{2} be modulus functions. Then we have
i) $\left[V, \lambda, f_{1}, p\right]_{Z}\left(\Delta^{r}, E\right) \subset\left[V, \lambda, f \circ f_{1}, p\right]_{Z}\left(\Delta^{r}, E\right)$,
ii) $\left[V, \lambda, f_{1}, p\right]_{Z}\left(\Delta^{r}, E\right) \cap\left[V, \lambda, f_{2}, p\right]_{Z}\left(\Delta^{r}, E\right) \subset\left[V, \lambda, f_{1}+f_{2}, p\right]_{Z}\left(\Delta^{r}, E\right)$.

Proof. i) We shall only prove (i). Let $\varepsilon>0$ and choose δ with $0<\delta<1$ such that $f(t)<\varepsilon$ for $0 \leq t \leq \delta$. Write $y_{k}=f_{1}\left(\left\|\Delta^{r} x_{k}\right\|\right)$ and consider

$$
\sum_{k \in I_{n}}\left[f\left(y_{k}\right)\right]^{p_{k}}=\sum_{1}\left[f\left(y_{k}\right)\right]^{p_{k}}+\sum_{2}\left[f\left(y_{k}\right)\right]^{p_{k}}
$$

where the first summation is over $y_{k} \leq \delta$ and second summation is over $y_{k}>\delta$. Since f is continuous, we have

$$
\begin{equation*}
\sum_{1}\left[f\left(y_{k}\right)\right]^{p_{k}}<\lambda_{n} \varepsilon^{H} \tag{4}
\end{equation*}
$$

and for $y_{k}>\delta$, we use the fact that

$$
y_{k}<\frac{y_{k}}{\delta} \leq 1+\frac{y_{k}}{\delta}
$$

By the definition of f we have for $y_{k}>\delta$,

$$
f\left(y_{k}\right)<2 f(1) \frac{y_{k}}{\delta}
$$

Hence

$$
\begin{equation*}
\frac{1}{\lambda_{n}} \sum_{2}\left[f\left(y_{k}\right)\right]^{p_{k}} \leq \max \left(1,\left(2 f(1) \delta^{-1}\right)^{H}\right) \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} y_{k} \tag{5}
\end{equation*}
$$

From (4) and (5), we obtain $[V, \lambda, f, p]_{0}\left(\Delta^{r}\right) \subset\left[V, \lambda, f \circ f_{1}, p\right]_{0}\left(\Delta^{r}\right)$.
The proof of (ii) follows from the following inequality

$$
\left[\left(f_{1}+f_{2}\right)\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}} \leq C\left[f_{1}\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}}+C\left[f_{2}\left(\left\|\Delta^{r} x_{k}\right\|\right)\right]^{p_{k}} .
$$

The following result is a consequence of Theorem 2.7 (i).
Proposition 2.8. Let f be a modulus function. Then $[V, \lambda, p]_{Z}\left(\Delta^{r}, E\right) \subset$ $[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right)$.

3. Statistical Convergence

The notion of statistical convergence was introduced by Fast [3] and studied by various authors ([2],[7],[10],[12],[16],[18]).

In this section we give some inclusion relations between $S_{\lambda}\left(\Delta^{r}, E\right)$ and $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$.
Definition 3.1. A sequence $x=\left(x_{k}\right)$ is said to be $\lambda_{E}^{r}-$ statistically convergent to the number L if for every $\varepsilon>0$,

$$
\lim _{n} \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right|=0 .
$$

In this case we write $S_{\lambda}\left(\Delta^{r}, E\right)-\lim x=L$ or $x_{k} \rightarrow L S_{\lambda}\left(\Delta^{r}, E\right)$.
In the case $\lambda_{n}=n$ and $L=0$ we shall write $S\left(\Delta^{r}, E\right)$ and $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$ instead of $S_{\lambda}\left(\Delta^{r}, E\right)$.

Theorem 3.2. Let $\lambda=\left(\lambda_{n}\right)$ be the same as in Section 1, then
i) If $x_{k} \rightarrow L[V, \lambda]_{1}\left(\Delta^{r}, E\right)$ then $x_{k} \rightarrow L S_{\lambda}\left(\Delta^{r}, E\right)$,
ii) If $x \in \ell_{\infty}\left(\Delta^{r}, E\right)$ and $x_{k} \rightarrow L S_{\lambda}\left(\Delta^{r}, E\right)$, then $x_{k} \rightarrow L[V, \lambda]_{1}\left(\Delta^{r}, E\right)$,
iii) $S_{\lambda}\left(\Delta^{r}, E\right) \cap \ell_{\infty}\left(\Delta^{r}, E\right)=[V, \lambda]_{1}\left(\Delta^{r}, E\right) \cap \ell_{\infty}\left(\Delta^{r}, E\right)$.
where $\ell_{\infty}\left(\Delta^{r}, E\right)=\left\{x \in w(E): \sup _{k}\left\|\Delta^{r} x_{k}\right\|<\infty\right\}$.
Proof. i) Let $\varepsilon>0$ and $x_{k} \rightarrow L[V, \lambda]_{1}\left(\Delta^{r}, E\right)$. Then we have

$$
\sum_{k \in I_{n}}\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\left|\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right| .
$$

Hence $x_{k} \rightarrow L S_{\lambda}\left(\Delta^{r}, E\right)$.
In fact the set $[V, \lambda]_{1}\left(\Delta^{r}, E\right)$ is a proper subset of $S_{\lambda}\left(\Delta^{r}, E\right)$. To show this, let $E=\mathbb{C}$ and define $x=\left(x_{k}\right)$ such that

$$
\Delta^{r} x_{k}=\left\{\begin{array}{cc}
k, & \text { for } n-[\sqrt{n}]+1 \leq k \leq n \\
0, & \text { otherwise } .
\end{array}\right.
$$

Then $x \notin \ell_{\infty}\left(\Delta^{r}, E\right), x_{k} \rightarrow 0 S_{\lambda}\left(\Delta^{r}, E\right)$, and $x \notin[V, \lambda]_{1}\left(\Delta^{r}, E\right)$.
ii) Suppose that $x_{k} \rightarrow L S_{\lambda}\left(\Delta^{r}, E\right)$ and $x \in \ell_{\infty}\left(\Delta^{r}, E\right)$, say $\left\|\Delta^{r} x_{k}-L\right\| \leq$ M. Given $\varepsilon>0$, we have

$$
\begin{aligned}
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left\|\Delta^{r} x_{k}-L\right\|= & \\
\frac{1}{\lambda_{n}} \sum_{\substack{k \in I_{n} \\
\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon}}\left\|\Delta^{r} x_{k}-L\right\| & +\frac{1}{\lambda_{n}} \sum_{\substack{k \in I_{n} \\
\left\|\Delta^{r} x_{k}-L\right\|<\varepsilon}}\left\|\Delta^{r} x_{k}-L\right\| \\
& \leq \frac{M}{\lambda_{n}}\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}+\varepsilon
\end{aligned}
$$

Hence x is $\lambda_{E}^{r}-$ statistically convergent to the number L.
iii) This immediately follows from (i) and (ii).

Theorem 3.3. If $\lim \inf \frac{\lambda_{n}}{n}>0$, then $S\left(\Delta^{r}, E\right) \subseteq S_{\lambda}\left(\Delta^{r}, E\right)$.
Proof. For given $\varepsilon>0$, we get

$$
\left\{k \leq n:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\} \supset\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}
$$

Hence

$$
\begin{aligned}
\frac{1}{n}\left|\left\{k \leq n:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right| & \geq \frac{1}{n}\left|\left\{k \leq n:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right| \\
& \geq \frac{\lambda_{n}}{n} \cdot \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right|
\end{aligned}
$$

Therefore $x \in S_{\lambda}\left(\Delta^{r}, E\right)$.

Theorem 3.4. Let f be a modulus function and $\sup _{k} p_{k}=H$. Then $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right) \subset S_{\lambda}\left(\Delta^{r}, E\right)$.
Proof. Let $x \in[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ and $\varepsilon>0$ be given. Let Σ_{1} denote the sum over $k \leq n$ such that $\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon$ and Σ_{2} denote the sum over $k \leq n$ such that $\left\|\Delta^{r} x_{k}-L\right\|<\varepsilon$. Then

$$
\begin{aligned}
& \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}= \\
& \quad \frac{1}{\lambda_{n}} \sum_{1}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}+\frac{1}{\lambda_{n}} \sum_{2}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}} \\
& \quad \geq \frac{1}{\lambda_{n}} \sum_{1}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}} \geq \frac{1}{\lambda_{n}} \sum_{1}[f(\varepsilon)]^{p_{k}} \\
& \quad \geq \frac{1}{\lambda_{n}} \sum_{1} \min \left([f(\varepsilon)]^{\inf p_{k}},[f(\varepsilon)]^{H}\right) \\
& \quad \geq \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right| \min \left([f(\varepsilon)]^{\inf p_{k}},[f(\varepsilon)]^{H}\right) .
\end{aligned}
$$

Hence $x \in S_{\lambda}\left(\Delta^{r}, E\right)$.
Theorem 3.5. Let f be bounded and $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=$ $H<\infty$. Then $S_{\lambda}\left(\Delta^{r}, E\right) \subset[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$.

Proof. Suppose that f is bounded. Let $\varepsilon>0$ be given and Σ_{1} and Σ_{2} be in previous theorem. Since f is bounded there exists an integer K such that $f(x)<K$, for all $x \geq 0$. Then

$$
\begin{aligned}
& \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left|\Delta^{r} x_{k}-L\right|\right)\right]^{p_{k}}= \\
& \frac{1}{\lambda_{n}} \sum_{1}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}}+\frac{1}{\lambda_{n}} \sum_{2}\left[f\left(\left\|\Delta^{r} x_{k}-L\right\|\right)\right]^{p_{k}} \\
& \quad \leq \frac{1}{\lambda_{n}} \sum_{1} \max \left(K^{h}, K^{H}\right)+\frac{1}{\lambda_{n}} \sum_{2}[f(\varepsilon)]^{p_{k}} \\
& \leq \max \left(K^{h}, K^{H}\right) \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left\|\Delta^{r} x_{k}-L\right\| \geq \varepsilon\right\}\right| \\
& \quad+\max \left(f(\varepsilon)^{h}, f(\varepsilon)^{H}\right)
\end{aligned}
$$

Hence $x \in[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$.
Theorem 3.6. $S_{\lambda}\left(\Delta^{r}, E\right)=[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ if and only if f is bounded. Proof. Let f be bounded. By Theorems 3.4 and 3.5 we have $S_{\lambda}\left(\Delta^{r}, E\right)=$ $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$.

Conversely suppose that f is unbounded. Then there exists a sequence $\left(t_{k}\right)$ of positive numbers with $f\left(t_{k}\right)=k^{2}$, for $k=1,2, \ldots$. If we choose

$$
\Delta^{r} x_{i}= \begin{cases}t_{k}, & i=k^{2}, i=1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

then we have

$$
\frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left|\Delta^{r} x_{k}\right| \geq \varepsilon\right\}\right| \leq \frac{\sqrt{\lambda_{n-1}}}{\lambda_{n}}
$$

for all n and so $x \in S_{\lambda}\left(\Delta^{r}, E\right)$, but $x \notin[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$ for $E=\mathbb{C}$. This contradicts to $S_{\lambda}\left(\Delta^{r}, E\right)=[V, \lambda, f, p]\left(\Delta^{r}, E\right)$.

Theorem 3.7. The sequence spaces $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right),[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right)$, $[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right), S_{\lambda}\left(\Delta^{r}, E\right)$ and $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$ are not solid for $r \geq 1$.
Proof. Let $E=\mathbb{C}, p_{k}=1$ for all $k, f(x)=x$ and $\lambda_{n}=n$ for all $n \in \mathbb{N}$. Then $\left(x_{k}\right)=\left(k^{r}\right) \in[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$ but $\left(\alpha_{k} x_{k}\right) \notin[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$ when $\alpha_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$. Hence $[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$ is not solid. The other cases can be proved on considering similar examples.

From the above theorem we may give the following corollary.
Corollary 3.8. The sequence spaces $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right),[V, \lambda, f, p]\left(\Delta^{r}, E\right)$ and $[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$ are not perfect for $r \geq 1$.

Theorem 3.9. The sequence spaces $[V, \lambda, f, p]_{1}\left(\Delta^{r}, E\right),[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$, $S_{\lambda}\left(\Delta^{r}, E\right)$ and $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$ are not symmetric for $r \geq 1$.
Proof. Let $E=\mathbb{C}, p_{k}=1$ for all $k, f(x)=x$ and $\lambda_{n}=n$ for all $n \in \mathbb{N}$. Then $\left(x_{k}\right)=\left(k^{r}\right) \in[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$. Let $\left(y_{k}\right)$ be a rearrangement of $\left(x_{k}\right)$, which is defined as follows

$$
\left(y_{k}\right)=\left\{x_{1}, x_{2}, x_{4}, x_{3}, x_{9}, x_{5}, x_{16}, x_{6}, x_{25}, x_{7}, x_{36}, x_{8}, x_{49}, x_{10, \ldots}\right\}
$$

Then $\left(y_{k}\right) \notin[V, \lambda, f, p]_{\infty}\left(\Delta^{r}, E\right)$.
For the space $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$, consider the sequence $x=\left(x_{k}\right)$ defined by

$$
x_{k}=\left\{\begin{array}{lc}
1, & \text { if }(2 i-1)^{2} \leq k<(2 i)^{2}, \quad i=1,2, \ldots \\
4, & \text { otherwise }
\end{array}\right.
$$

Then $\left(x_{k}\right) \in S_{0}(\Delta)$. Let $\left(y_{k}\right)$ be the same as above, then $\left(y_{k}\right) \notin S_{0}(\Delta)$.

Remark 3.10. The space $[V, \lambda, f, p]_{0}\left(\Delta^{r}, E\right)$ is not symmetric for $r \geq 2$.
Theorem 3.11. The sequence spaces $[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right), S_{\lambda}\left(\Delta^{r}, E\right)$ and $S_{\lambda_{0}}\left(\Delta^{r}, E\right)$ are not sequence algebras.

Proof. Let $E=\mathbb{C}, p_{k}=1$ for all $k \in \mathbb{N}, f(x)=x$ and $\lambda_{n}=n$ for all $n \in \mathbb{N}$. Then $x=\left(k^{r-2}\right), y=\left(k^{r-2}\right) \in[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right)$, but $x . y \notin$ $[V, \lambda, f, p]_{Z}\left(\Delta^{r}, E\right)$. The other cases can be proved on considering similar examples.

References

[1] T. Bilgin, On the statistical convergence, An. Univ. Timişoara Ser. Math. Inform. 32 (1) (1994), 3-7
[2] J.S. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis, 8 (1988) 47-63
[3] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244
[4] M. Et and M. Başarır, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35 (3) (1997), 169-175
[5] M. Et and Ç. A. Bektaş, Generalized strongly (V, λ) -summable difference sequences defined by Orlicz functions (under communication).
[6] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. of Math. 21 (1995), 377-386
[7] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313
[8] P. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, 1980
[9] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176
[10] E. Kolk, The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu 928 (1991), 41-52
[11] L. Leindler, Über die la Vallee-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar 16 (1965), 375-387
[12] Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), 111-115
[13] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970
[14] I. J. Maddox, Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166
[15] E. Malkowsky and S.D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis 17 (1997), 87-97
[16] E. Malkowsky and E. Savaş, Some λ-sequence spaces defined by a modulus, Archivum Mathematicum 36 (2000), 219-228
[17] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors in bounded, Canad. J. Math. 25 (1973), 973-978
[18] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150
[19] E. Savaş, On some generalized sequence spaces defined by a modulus, Indian J. pure and appl. Math. 30 (5) (1999), 459-464
[20] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, (85), North-Holland, 1984

Department of Mathematics, Firat University, 23119, Elaziğ-TURKEY
Department of Mathematics, Firat University, 23119, Elaziğ-TURKEY
Department of Mathematics, Firat University, 23119, Elaziğ-TURKEY
E-mail address, Et: met@firat.edu.tr ; mikailet@yahoo.com
E-mail address, Altin: yaltin23@yahoo.com
E-mail address, Altinok: hifsialtinok@yahoo.com

