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ON SOME GENERALIZED DIFFERENCE SEQUENCE
SPACES DEFINED BY A MODULUS FUNCTION

MIKAIL ET, YAVUZ ALTIN AND HIFSI ALTINOK

ABSTRACT. The idea of difference sequence spaces was intro-
duced by Kizmaz [9] and generalized by Et and Colak [6]. In
this paper we introduce the sequence spaces [V, A, f, p], (A", E),
VA ool (AT E),  [VIA fopl (AT, E), Sx(A”,E) and Sy, (A", E),
where FE is any Banach space, examine them and give var-
ious properties and inclusion relations on these spaces. We
also show that the space S\(A",E) may be represented as a
V. A\, £,p], (A", E) space.

1. INTRODUCTION

Let w be the set of all sequences real or complex numbers and £, ¢ and ¢
be respectively the Banach spaces of bounded, convergent and null sequences
x = (x) with the usual norm |z|| = sup |zg|, where k € N = {1,2, ...},
the set of positive integers.

Let A = (A,) be a non-decreasing sequence of positive numbers tending
to oo such that A\p41 < Ay +1, A\ = 1.

The generalized de la Vallée-Poussin mean is defined by

where I, = [n— A\, + 1,n] forn =1,2,... .

A sequence x = (z},) is said to be (V, A) —summable to a number L [11] if
tn (r) — L as n — oo.

If A\, = n, then (V, \) —summability and strongly (V, \) —summability are
reduced to (C, 1) —summability and [C, 1] —summability, respectively.

The idea of difference sequence spaces was introduced by Kizmaz [9]. In
1981, Kizmaz [9] defined the sequence spaces
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X (A)={z=(zx): Az € X}

for X =l c and cp, where Az = (z, — Tg41) -
Then Et and Colak [6] generalized the above sequence spaces to the sequence
spaces

X (A") ={z = (zy) : A"z € X}
for X = o, c and cg, where r € N, Az = (23), Az = (zp — Tp41),
Az = (ATz — ATxpy), and so A"z = 3 (1) (1) Thto-

Later on difference sequence spaces Werev studied by Malkowsky and Para-
shar [15], Et and Basarir [4], Et and Bektas [5].

We recall that a modulus f is a function from [0,00) to [0,00) such that

i) f(z) =0 if and only if z =0,

i) f(o+y) < f@) + f(y) for 2,y > 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everwhere on [0, 00). A modulus may
be unbounded or bounded. Ruckle [17] and Maddox [14], used a modulus f
to construct some sequence spaces.

Subsequently modulus function has been discussed in [1], [16], [19] and
many others.

Let X,Y C w. Then we shall write

M(X,Y)= (o '«Y={acw:az €Y forallz e X}[20]
zeX

The set X = M (X, ¢;) is called Kéthe-Toeplitz dual space or a—dual of
X.

Let X be a sequence space. Then X is called

i) Solid (or normal), if (apzy) € X for all sequences (ay) of scalars with
lag| <1 for all k € N, whenever (zj) € X.

ii) Symmetric, if (z)) € X implies (z,(;)) € X, where 7(k) is a permuta-
tion of N.

iii) Perfect if X = X .

iv) Sequence algebra if x.y € X, whenever z,y € X.

It is well known that if X is perfect then X is normal [8].

The following inequality will be used throughout this paper.

(1) lag, + bp[P* < C {Jag”* + |0 PF},
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where ag, by, € C, 0 < py, < supy px = H, C' = max (1,2H_1) [13].

2. MAIN RESULTS

In this section we prove some results involving the sequence spaces
[‘/7 )\7 fap]o (AT" E) 9 [‘/7 A7 f7p]1 (AT” E) and [V7 )\7 fvp]oo (AT” E) .

Definition 2.1. Let E be a Banach space. We define w(F) to be the vector
space of all E—valued sequences that is w (E) = {z = (z) : x € E}. Let f
be a modulus function and p = (py) be any sequence of strictly positive real
numbers. We define the following sequence sets

Vi fiply (A7, E) =

{x cw(kE) : lirrbn)\i Z [f (|A"z — L||)]P* = 0, for some L} ,

" kel,

V. foplg (A" E) = {x € w(k) :liyrln)\i Z [f (JA" 2k |)]PE = O},

" kel,

VA, £, (A7, E) = {wew(E):sup%Z[f(HkaH)]p’“<OO}-

mAN kel

If z € [V, f,p]; (A", E) then we will write z, — L[V, A, f,pl; (A", E)
and L will be called A\g— difference limit of x with respect to the modulus
I

Throughout the paper Z will denote any one of the notation 0, 1, or co.
In the case f (z) = x, pp = 1 forall k € Nand pr, = 1 for all k € N, we shall
write [‘/’ A]Z (AT’ E) and [Vv’ >‘a f]Z (Ar, E) instead of [VY? )‘7 f’p]Z (AT” E) )

respectively.

Theorem 2.2. Let the sequence (py) be bounded. Then the sequence spaces
V., f,pl, (AT, E) are linear spaces.

Proof. We shall prove it for [V, A, f,p], (A", E). The others can be proved
by the same way. Let x,y € [V, A, f,p], (A", E) and 3, € C. Then there
exist positive numbers Mg and N, such that |3] < Ms and |u| < N,. Since
f is subadditive and A" is linear
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1
)\— S I UIA™(Brg + pye))IP*
el,

1
W Z (B IA 2k ll) + f (Il [|A yx D]
el,
1 1
M) 3 (AP + O N 3 U AT
An An
el kel
as n — oo. This proves that [V, A, f,p], (A", E) is a linear space. O

Theorem 2.3. Let f be a modulus function, then

[Vv )‘7 f’p]O(AT7E) - [V, /\7f7p]1 (AT7E) - [V,)\,f,p]oo(Ar,E) .

Proof. The first inclusion is obvious. We establish the second inclusion.

Let z € [V, A, f,p]; (A", E). By definition of f we have

— Z (A" )]P* = — Z ([A"xy — L 4 LI|)]P*
An kely, " kel
1 - 1
<C— Y [f (1A z — LINIPE+C— > [f (1L
An An
kely, kely,

There exists a positive integer K, such that ||L|| < K. Hence we have
C

T3 VAT < £ 3 1F (1870 — LD + = o f (1)
" keln " kel "
Since x € [V, A, f,pl; (A", E) we have x € [V, A, f,p|,, (A", E) and this com-
pletes the proof. O

Theorem 2.4. [V A, f,pl, (A", E) is a paranormed (need not total para-
norm) space with

L

g5 (2) = sup (% > [f(HkaH)]p’“>

" " kel,
where M = max(1, sup pg).

Proof. From Theorem 2.3, for each = € [V, A, f,p], (A", E), g, (x) exists.
Clearly g, () = g, (—x). It is trivial that A"z = 0 for x = 0. Since
f(0) =0, we get g, (x) =0 for x = 0. Since px/M < 1 and M > 1, using
the Minkowski’s inequality and definition of f, for each n, we have
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L

<% > [f(!!kaJrNykI!)]pk)

" kel,
< (Ai S 1F (1A ]) +f<HA”ykl|>lp‘“)
" keI,
< (% > [f(\wmkm]pk) + (% > <HN%”>]”’“)
n il " kel,

Hence g, (x) is subadditive. Finally, to check the continuity of multiplica-
tion, let us take any complex number 3. By definition of f we have

L

s wm)—sup(f > <|w<ﬂmk||>>1pk) < K0, (@)

" kel,

where Kj is a positive integer such that |5| < K. Now, let 5 — 0 for any
fixed z with g, (x) # 0. By definition of f for || < 1, we have

(2) )\ Z (IBA™zk|)]PF < e for n > ng(e).
" keln

Also, for 1 < n < ng, taking G small enough, since f is continuous we have

Q = Y 1 (IpaTa e <
" kel
(2) and (3) together imply that g, (fz) — 0 as 8 — 0. O

Theorem 2.5. If r > 1, then the inclusion
[V: )‘7 f]Z (Ar_l’E) C [V: )‘7 f]Z (AT” E)

is strict. In general [V, \, ], (AL E) C [V, A, f], (AT, E) for alli =1,2,...

r — 1 and the inclusion is strict.

Proof. We give the proof for Z = oo only. It can be proved in a similar way
for Z=0and Z =1. Let x € [V, \, f]__ (A""1, E) . Then we have

a5 (1 (J )] <

7'L
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By definition of f, we have

LS r (1A
An kel,
_ 1 —
o [ (o)) + 5 3 (7 (o)) <
€ln kel

n

Thus [V, A, f]. (A™™1, E) C [A™, ), f] (AT, E) . Proceeding in this way one
w1llhave [V)\ flo (AL E) C [V, f] (AT E) for i = 1,2,... ,r — 1. Let
E =C,and )\, = nfor each n € N. Then the sequence z = (k") , for example,
belongs to [V, A, f], (A", E), but does not belong to [V, A, f], (A1, E) for
f(x) = 2. (If z = (k"), then A"z = (—=1)"r! and A" 'z = (—=1)"Hrl(k +
Lﬁ) for all k € N).

O

The proof of the following result is a routine work.
Proposition 2.6. [V, ), f,p], (A1 E) C [V, f,pl, (A", E).

Theorem 2.7. Let f, f1, fo be modulus functions. Then we have

l) [V7A7f17p]z (AT7E) - [Va)\af o flap]Z (AT’E) 9

”) [‘/7)\7 flap]Z (AT,E)Q[V,)\,fQ,p]Z (AT’E) C [‘/7 A7fl +f27p]Z (AT’E) .
Proof. i) We shall only prove (i). Let € > 0 and choose 6 with 0 < ¢ < 1
such that f(t) < e for 0 <t <. Write yi, = f1 (]|]A"xg||) and consider

SO =D [ o)l + > 1f ()P
kel, 1 2

where the first summation is over gy, < § and second summation is over
yr > 0. Since f is continuous, we have

(4) Do L) < Aae
1
and for yi > d, we use the fact that
Yk
LRSS 4
Ye <5 + 2 5

By the definition of f we have for y, > 4,
Yk
Flyw) <2f(1)75

Hence
(5) )\iz pen p’“<maX< (2r()57") > > Uk
n An kel,

2
From (4) and (5), we obtain [V, A, £,plo (A7) C [V, A, £ o f1,pl (A7)
The proof of (ii) follows from the following inequality
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[(fr + f2) 1Az DIP* < C L (1A 2 D7 + C [f2 (1A 2k )]~

The following result is a consequence of Theorem 2.7 (i).

Proposition 2.8. Let f be a modulus function. Then [V, \,p|, (A", E) C
[V: )‘7 f’p]Z (AT?E)

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [3] and stud-
ied by various authors ([2],[7],[10],[12],[16],[18]).
In this section we give some inclusion relations between Sy(A”", E) and

V) A, f.p)y (AT, E).

Definition 3.1. A sequence z = (xy) is said to be A, — statistically conver-
gent to the number L if for every € > 0,

1
lim — |{k € L : || A"y — || > e} =0,
An

In this case we write Sy(A", F) —limz = L or z;, — LS\(A", E).
In the case A\, = n and L = 0 we shall write S(A", FE) and S),(A", E)
instead of S)(A", E).

Theorem 3.2. Let A = (\,) be the same as in Section 1, then
i) If &, — L[V, ], (A", E) then x — LS\(A", E),
ii) If v € loo(A", E) and x, — LS\(A", E), then x, — L[V, \]; (A", E),
iii) S\(A",E) Nl (AT, E) = [V, A]; (A", E) Nl (AT, E).

where oo (A", E) = {z € w(E) : supy, |A"x|| < oo} .

Proof. i) Let € > 0 and z, — L[V, \]; (A", E). Then we have

S ATz, = L|| > e|{k € I, : | A"z, — L|| > }].
keln
Hence zp — LS\(A", E).
In fact the set [V, \]; (A", E) is a proper subset of Sy(A", E). To show
this, let £ = C and define x = (xy) such that

r [k, forn—[yn+1<k<n
Alay, = { 0, otherwise.
Then z ¢ {o(A", E) , 1, — 0S\(A", E), and x ¢ [V, \]; (A", E).
ii) Suppose that z;, — LS\(A", E) and x € (o (A", E), say ||ATxy — L|| <
M. Given € > 0, we have
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— Z |A e — LI =

“/ke[n
1 1
o Y. ATz L +1 Yo AT - I
n kel, n kel,
|ATz,—L||>e |ATz,—Ll<e

M
g)\—{keln:||N:ck—L||26}+s

n
Hence x is A\;— statistically convergent to the number L.
iii) This 1mmed1ately follows from (i) and (ii).

O
Theorem 3.3. If liminf 22 > 0,then S(A", E) C S\(A", E).
Proof. For given € > 0, we get
{k<n:|A"xp—L|>c} D{kel,:||A"z — L| >¢€}.
Hence
Lk <ncATm - Ll 2 e} > Sk <n:|ATm- L] > <)
> M b e AT — L] > €}
n Ap
Therefore z € S\(A", E).
U

Theorem 3.4. Let f be a modulus function and sup,pr, = H. Then
[Vv A, f7p]1 (AT,E) C S)\(AT,E).

Proof. Let = € [V, A, f,p]; (A",E) and € > 0 be given. Let ¥; denote the
sum over k < n such that |A"zy — L|| > ¢ and X9 denote the sum over
k < mn such that |A"zy — L|| < e. Then

= 3 [~ LI =

" kel,
1 T 1 T
TSI A — L+ 2 7 (AT~ L
no no2
1 - 1
2 5 S TP 2 5 S

1

Ai; in (If (¢ ‘“fpk,we)]f’)

> 1k € L A7~ ) 2 &) min ([f (27 (7 ()7
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Hence x € Sy\(A", E). O

Theorem 3.5. Let f be bounded and 0 < h = infy pr < pr < supppr =
H < oo. Then Sx(A",E) C [V, A, f,p]; (A", E).

Proof. Suppose that f is bounded. Let £ > 0 be given and »; and Y5 be in
previous theorem. Since f is bounded there exists an integer K such that
f(z )<K for all © > 0. Then

= 30 [ (AT~ L) =

" kel,
%Z[ FOIAT 2 = LI + 5= U7 (AT, — LD
n 'I’L 2
1 1 .
)\—; aX(Kh7KH)+)\_Z[f(E)]p

n

1
< max (K", K) Ik € L ATz — L] 2 €}

+max (f ()", £(2)").
Hencex € [V, A, f,p], (A", E). O
Theorem 3.6. S\(A",E) = [V, A, f,pl; (A", E) if and only if f is bounded.
Proof. Let f be bounded. By Theorems 3.4 and 3.5 we have Sy(A", E) =
[ViA £l (A7, E).

Conversely suppose that f is unbounded. Then there exists a sequence
(t) of positive numbers with f (t;) = k2, for k =1,2,... . If we choose

etk i=k% =12,
A :Cl_{ 0, otherwise

then we have

1 An—
Sk € L ATy = e} < Tl

for all n and so z € S\(A", E), but z ¢ [V, A, f,p]; (A", E) for E = C. This
contradicts to Sy(A", E) = [V, A, f,p] (A", E).

O
Theorem 3.7. The sequence spaces [V, A, f,pl, (A", E), [V, A, f,pl; (A", E),
VoA, fipl (AT, E), SX(AT, E) and S),(A", E) are not solid for r > 1.
Proof. Let E =C, pp =1forall k, f(x) =z and A\, = n for all n € N. Then
(zx) = (") € VA f,plo (A7, E) but (arzr) ¢ [V, A, f,plo (A7, E) when
o = (—1)F for all k € N. Hence [V, A, f,plo (A", E) is not solid. The other

cases can be proved on considering similar examples.

O
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From the above theorem we may give the following corollary.

Corollary 3.8. The sequence spaces [V, X, f,p], (A", E), [V, A, f,p] (A", E)
and [V, A, f,ply, (A7, E) are not perfect for r > 1.

Theorem 3.9. The sequence spaces [V, A, f,pl; (AT, E), [V, A, f,plo (AT, E),
SA(A™, E) and Sy,(A", E) are not symmetric for r > 1.

Proof. Let E = C , pp =1 for all k, f(z) =z and A\, = n for all n € N.
Then (z) = (k") € [V, f,plo (A", E). Let (y;) be a rearrangement of
(), which is defined as follows

(yk):: {$17x27x47x3,wg,$5,$167x67x25,$7,$367x87$49,$1u-~}-

Then (yr) ¢ [V A, f,Plo (A7, E) .
For the space Sy, (A", E), consider the sequence x = (x) defined by

D RN (2i -1 <k<(20)% i=12..
k= 4, otherwise.

Then (zx) € S,(A). Let (yx) be the same as above, then (yx) ¢ S,(A).
U

Remark 3.10. The space [V, A, f,pl, (A", E) is not symmetric for r > 2.

Theorem 3.11. The sequence spaces [V, A, f,p|, (A", E), S\(A",E) and
Sxo (A", E) are not sequence algebras.

Proof. Let E = C, pp, = 1 for all Kk € N, f(x) = x and A\, = n for all
n € N. Then z = (k"2),y = (k"2) € [V,\, f,p], (A", E), but z.y ¢
[V, A, f,p], (AT, E) . The other cases can be proved on considering similar
examples. ]
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