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ON SOME GLOBAL MEASURES OF THE DEVIATIONS 

OF DENSITY FUNCTION ESTIMATES 
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We consider density estimates of the usual type generated by a weight 

function. Limt theorems are obtained for the maximum of the normalized 

deviation of the estimate from its expected value, and for quadratic norms 

of the same quantity. Using these results we study the behavior of tests 

of goodness-of-fit and confidence regions based on these statistics. In par­

ticular, we obtain a procedure which uniformly improves the chi-square 

goodness-of-fit test when the number of observations and cells is large and 

yet remains insensitive to the estimation of nuisance parameters. A new 

limit theorem for the maximum absolute value of a type of nonstationary 

Gaussian process is also proved. 

1. Introduction. Let X19 X2, • • •, Xn be independent and identically distributed 

random variables with continuous density function f(x). By now there are a 

goodly number of papers on estimation of the density function (see [13] for a 

bibliography). The class of estimates fn(x) that we consider are determined by 

a bounded integrable weight function w, 

(1.1) Mx) = -4rri:%i"
/X

~~
Xi 

nb(n) ^ J \ b(n) 

1 
dFn(s) . 

b(n) \ b(n) 

In formula (1.1), Fn is the sample distribution function. Also b(n) is a bandwidth 

that tends to zero as n —> oo but is such that n~l — o(b(n)). 

The local properties of such estimates have been discussed extensively. Our 

object will be to get global measures of how good fn(x) is as an estimate of/(x). 

In particular, the asymptotic distribution of the functional 

m a x 0 ^ : \fn(x) - f(x)\/(f(x)y 
and 

A*) 
are evaluated under appropriate conditions as n —» oo. 
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1072 P. J. BICKEL AND M. ROSENBLATT 

We shall state two results, one concerned with absolute deviation of the esti­

mate fn(x) from/(x) and the other with integrated quadratic deviation. They 

will give some insight into the type of result that is obtained. However, in order 

to give the result on absolute deviation it is convenient to introduce at this point 

certain convenient assumptions which we shall refer to as Al , A2, A3, and A4. 

Al . The weight function w also assigns mass one to the line and either (a) 

vanishes outside an interval [ — A, A] and is absolutely continuous on [ — A9 A] 

with derivative wf or (b) is absolutely continuous on ( — 00, 00) with derivative 

wf such that \ \w'(t)\k dt < 00, k = 1, 2. 

A2. The density / i s continuous, positive and bounded. 

A3. The function /* is absolutely continuous and its derivative \ff\f^ is 

bounded in absolute value. Moreover, 

Su^\^Uoglog\z\n\w'(z)\ + \w(z)\]dz< oo . 

A4. The second derivative / " of / exists and is bounded. Moreover w is 

symmetric (about 0) and z2w(z) is integrable. 

We shall simply state a corollary of a main result on absolute deviations which 

is appealing because it is phrased in a form that is convenient if one wishes to 

set up a confidence band for the density function. 

COROLLARY. Let assumptions Al—A4 be satisfied with b(n) = /r5 , £ < d < £. 

Then 

lirn __ P 
n—*<x> 

nb(ri) I \(251og«) i 

AWW (1.2) ^f(x)^fn(x) + lJ^pZL\ I ; T T + < for all O ^ x ^ l 
nb(n) I \ (2d log n) 

= e-^z 

where 

and 

dn = (2*log„)» + -^—^V^i^T1) + Mlog<5 + log logn]I 

if (a) of Al holds and 

Kl(w) = ^ > +2"%=4/w > 0 , 

and otherwise 

1 (K2{w) 
rf, = (25 1og«)*+ l 

(251og«) 
log. 

it 

with 

K^) = ^\-A^mdtix(w). 
The following result for a quadratic functional is also of some interest. The 

function a(x) used in the theorem is assumed to be a bounded piece-wise smooth 

integrable function. 
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MEASURES OF DENSITY FUNCTION ESTIMATES 1073 

THEOREM. Let Al—A4 hold. Then if b(n) = o(n_i), Ar*(log n)*(log log A)* = 

o(b{ri)) as n —> oo, 

b(n)-i[nb(n) \ [/„(*) - f(x)Ya(x) dx - \ f(x)a(x) dx \ w\z) dz] 

is asymptotically normally distributed with mean zero and variance 

2
 MS

 w
(

x
 + y)

w
(

x
)

 dx
Y

 d
y S

 a
\
x
)P(

x
) dx 

as n —> oo. 

The basic technique in obtaining the results is that of approximating the nor­

malized and centered sample distribution function by an appropriate Brownian 

motion process on a convenient probability space by using a Skorohod-like im­

bedding due to Brillinger and Breiman. The details'of this approximation and 

remarks on approximation of other functional are given in Section 2. The as­

ymptotic theory of the maximal deviation and that of quadratic deviations are 

developed in Sections 3 and 4 respectively. Some computations on the power 

of these procedures are also carried out. In particular, we show that a goodness-

of-fit test based on a quadratic functional is strictly better than the x2 test. There 

is also an appendix on the asymptotic distribution of the maximal deviation for 

a type of nonstationary Gaussian process. 

2. Approximations. As has been indicated in the introduction our technique 

is to consider the statistics of interest as functionals of certain stochastic processes 

on the interval [0, 1] and then to substitute Gaussian processes with the same 

covariance structure for the latter where possible. 

It is convenient to introduce Zn°(.) given by 

(2.1) zM = »h(W)-t)> o ^ t ^ i 

where Fn* = ^ (F" 1 ) is the empirical distribution of F(X1), • • •, F(Xn). This will 

be approximated by Z°(«), the Brownian bridge, given by 

(2.2) Z\t) = Z(t) - tZ(\) 

where Z is a standard Wiener process on [0, 1]. 

The process [nb(n)f~\ty\\fn(*) — E(f„(•))) is central to our discussion. It can 

be written as 

(2.3) Yn(t) = b~\n)f-\t) \~„ " ( l = r i ) dZn\F{s)) . 

Approximations 0Yn and 1Yn to this process are obtained by substituting Z°(F(.)) 

and Z(F(-)) respectively for the random measure in (2.3). The resulting processes 

are well defined, at least if ^ w\t) dF(t) < oo. 

Two other processes which also arise naturally are given by 

(2.4) ,y.(r) = [b(n)f(t)]-i S " fer^) (/(*))* dZ(s) 
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1 0 7 4 P. J. BICKEL AND M. ROSENBLATT 

and 

(2-5) 3Yn(t) = [b(n)]-i \ w (LZ-^j dZ(s) 

where Z is a two-sided Wiener process on ( — 00, 00) (dZ is Wiener measure). 

The process 3Yn is well defined if $ w2(t) dt < 00, and all the integrals with respect 

to dZ\F(.)), dZ(F(.)), dZ(.), dZ\.) are taken in the U sense (cf. Doob [6] 

page 426). For convenience, suppose all our processes are realized as random 

elements taking their values in the space D[0, 1] (cf. [3]). For xeD[0, 1] let 

||JC|| = sup{|*(r)|: 0 <S t <: 1}. Our approximations rest on the following theorem 

of Brillinger (1969). (A similar argument appeared simultaneously in Breiman 

(1969).) 

THEOREM. There exists a probability space (Q, A, P) on which one can construct 

versions of Zn° and Z such that 

(2.6) \\z: - Z'H = 0,(/r*(log/i)*(log log/1)*) . 

From this we can derive 

PROPOSITION 2.1. / / the processes Zn°, Z° are constructed as above and Al and 

A2 hold, then 

(2.7) \\Yn - oy„|| = 0,(6-i(«)/r*(log/!)»(loglog«)*) . 

PROOF. Write, using Al , 

(2.8) Yn{q) = [b(n)f(q)]-l{-W(A)Zn°(F(q - Ab{n))) 

+ w(-A)Zn\F(q + Ab(n)))} 

+ b-Kn)f-*{q) $-_ Zn\F(s))w' ( l ^ l ) ds . 

(The first two terms inside the curly brackets are taken to be 0 in the event 

A 1(b) holds but A 1(a) does not.) A similar representation is valid for 0Yn and 

(2.7) follows. 

PROPOSITION 2.2. / / A 2 holds then 

(2.9) ||„y. - .y.11 = o,(bi(n)). 

If A2 and A3 hold then 

(2.10) \\tY% - 3Yn\\ = Op(A»(n)) . 

PROOF. From the representation (2.2), 

(2.11) \0YM ~ iYM\ = \Z{\)\[b{n)f{q)V 

S»(?~')As)ds=\Z(\)\0{»(n)). 
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MEASURES OF DENSITY FUNCTION ESTIMATES 1075 

Applying (2.8) and its analogues, if A 1(a) holds, 

\2Yn(q) - 3Yn(q)\ 

£ b-*{n){[\Z(Ab{n) + q)\\[f(Ab(n) + q)lf(q)f - 1| 

(2.12) + \Z(-Ab(n) + q)\\[f(-Ab(n) + q)lf{q)f - 1|] sup( \w{t)\ 

+ \ \Z(sb(n) + q)\\[f(q + sb{n))lf{q)f - \\\w'{s)\ ds 

+ *(*(«)) S \Z{sb(n) + q)\\f'{q + sb{n))\[f(q)f(q + Sb(n))]-*\w(s)\ds} 

= 0,(bi(n)) 

by using A3 and the law of the iterated logarithm for the Wiener process. If 

A 1(b) holds the first two terms vanish and the same argument applies. 

To apply these propositions we make the elementary 

REMARK. If {gn} is a sequence of functionals on D[0, 1] satisfying Lipschitz 

conditions such that 

(2.13) \gn(X) - gn(y)\ £ Mn\\X - y\\ 

and An, Bn are stochastic processes realizable in,Z) such that \\An — Bn\\ = op(l/A/w), 

then gn(An) converges in law if and only if gn(Bn) does, and to the same limit. 

We shall apply this proposition in the next two sections to the functionals 

I (2|log A(n)|)» m a x J 1 .̂(01 . o < t < 11 - B(\b(ti)Y') 

where B is defined in Theorem Al and, 

II b-\n)[ J !!„ Yn\t)f(t)a{t) dt - \1„ w\t) dt] 

where a is an integrable weight function. Evidently, since 1Yn and 2Yn have the 

same joint laws, we can substitute sYn for Yn in I if Al—A3 hold and 

(2.14) 0 ( l i ^ r ) = „-Mog»(logIog„)» 

and 0Yn can be substituted for Yn in II if Al and A2 hold and, 

(2.15) o(b{n)) = /r*(log/?)*(loglogrt)± . 

Although we do not pursue this it is clear that the same technique can be 

applied to other functionals, e.g., a normalized version of the total time in [0, 1] 

spent by Yn above a high level (cf. Berman (1971) [2]). 

3. The maximum absolute deviation. The first measure of global deviation 

that we consider is Mn = max {| Yn(t)\: 0 <̂  t <̂  1}. (There is no loss in consider­

ing [0, 1] rather than any other interval on which the density is bounded away 

from 0 and oo.) The statistical interest of this functional is twofold as 

(i) A convenient way of getting a confidence band for / . 

(ii) A test statistic for the hypothesis H: f = fQ. 
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1076 P. J. BICKEL AND M. ROSENBLATT 

Under (ii) we shall also consider the possibility of testing composite hypotheses, 

for example, t h a t / is Gaussian. The asymptotic theorem we need to discuss 

(i), and the behavior of (ii) under the null hypothesis is a consequence of our 

remarks in Section 2 and Theorem Al of the appendix. 

THEOREM 3.1. Let w satisfy assumptions Al—A3 and 

Then, 

(3.1) 

where 

(3.2) 

and 

(3-3) 

where 

ifK1(w)> 

where 

P 

b(n) = n- , 

"(25 l o g n ) * ( _ ^ _ - < / . ) < * " 

o < a < i . 

l(w) = $ w\t) dt 

dn = (25 log*)* + _ _ I ^ . { l o g . ^ 1 - tflog* + log log*]} 

Kl(w) = ^ ^ ( - A ) / l { w ) , 

0, and otherwise 

dn =
 <25

'°
8
"

),+
 ( 2 W 

log 
1 K2(w)-

7T 2 _ 

K,(w) = M[w'(t)]'dtyX(w). 

REMARK 1. The natural weight function w{t) = -J, \t\ ^ 1, = 0 otherwise, 

falls under the first case, while the "optimal" weight function of Epanechnikov 

(1969) w{t) = 3/(4(5)^(1 - (v2/5)) if \v\ ^ 5*, = 0 otherwise, falls under the 

second. 

REMARK 2. A similar result holds if one considers the maximum deviation 

(rather than absolute deviation) of a density function estimate as in Rosenblatt 

(1971). However, since one-sided deviations for density functions are unnatural 

the present result seems more interesting. 

REMARK 3. The techniques of proof of this result may readily be adapted to 

prove limit theorems such as that of Woodroofe (1967) for the maximum deviation 

observed at an increasing finite number of points. 

PROOF. It follows from Propositions 2.1 and 2.2 and the following remark 

that the limiting behavior of {2d \ogn)*[{MJ{X{w)y) — dn] is the same as that of 

(2 logb(n))*(ma.x{\2Yn(t)\/(X(w))t: 0 ^ t ^ 1] - dn). By the similarity transform 

for the Wiener process, the law 

(3.4) H9Yn(t):0£t£\) = L(sw{.' - s}dZ(s):0£t£iy 
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MEASURES OF DENSITY FUNCTION ESTIMATES 1 0 7 7 

Since l/(Z(w))* $ w(t — s) dZ(s) is a stationary Gaussian process with mean 0 and 

covariance 

(3.5) r{t)^\w(s+t)w{s)ds^ 

X(w) 

Theorem 3.1 follows from Corollary A. 1 provided we show that r satisfies condi­

tion (v) and (vi) of Theorem Al with a = 1,2. That (v) is satisfied is equivalent 

to Theorem Bl. Moreover, 

(3.6) \ r\t) dt = — $ |r(0|2 dt = \\w{t)\* dt 

where " denotes Fourier transformation. Since w is integrable and bounded w 

is square integrable and bounded and (vi) must hold. 

APPLICATIONS, (i) To obtain a confidence band for / t h a t is simple and ex­

plicit it is natural to consider 8 such that E(fn) can be replaced by / . This is 

true if 8 > £ and A4 holds. Then, 

(3.7) J - $ w ( ~ W ) ds = /(0 + 0(*(n)) 
b{n) \ b(n) / 

with 0 independent of f. If we now define Fw* by replacing E(fn(t)) with /(f) 

we conclude that 

(3.8) \\Yn-Yn*\\ = 0{[nb\n)f). 

Using the usual approximations we conclude that max{|Fw*(r)(: 0 ^ t <; 1} be­

haves like M% if A4 holds and 8 > ^. In this case inverting as usual we obtain 

the confidence band 

(3.9) /< /„ + M*-Y c(a)fl + _ ^ L V + J ^ L 

y - ■'• V «6(n) / W \ 4n6(«)/. / 2nA(«) 

where c(a) is given by (3.11). A simpler band is obtained if we further substitute 

fn f o r / i n the denominator of Yn. The resulting process Yn** (say) has 

/ ii v *ii2 

(3 10) \\Y * — Y **ll = O ( II " " II/--! 

= c> 
log" 

if Al—A4 hold and ^ < 8 < ^. The approximate confidence band obtained by 

looking at the maximum of |yn**| is given in the introduction (1.2). 

There is no choice of 8 which asymptotically makes this simple band as thin 

as possible, i.e. one should choose 8 as small as possible. This of course ignores 

the obvious—the speed with which bias disappears asymptotically depends on 8 

as does the speed of convergence to the asymptote. However, for fixed n there 
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1078 P. J. BICKEL AND M. ROSENBLATT 

is an optimal 8(n) (depending on a) > 0 which for moderate n and small a may 

be the right thing to use if the choice of bandwidth is free. 

(ii) To test H: f — f0 it is natural to compute Mn with /" = f0 and reject for 

large values of the statistic. According to the theorem to obtain approximate 

level a we should use as cutoff point, 

(3.11) c(a) = - [ log | log( l - a)\ - log2] f^\w))\. + dn(k(w))i . 
(25 log tip 

Under some assumptions the same cutoff point may be used for testing composite 

hypotheses of the form H: / = / 0 ( . , 0) where 0 is an unknown vector parameter 

by using Mn with an estimate 0 substituted for the unknown parameter 0. We 

need the following assumption. 

A5. The estimate 0 is such that if 0 = 0O, for every 0O, 

(3.12) sup{|$ [f0(t + sb(n), 6) - f0(t + sb(n)9 0o)]w(s) ds\: 0 ^ t^ 1} 

= o,([nb(n)logb(n)]-i) 
and 

\\fo(;Oo)-M'J)\\ = o,(\logb(n)n. 

Typically for maximum likelihood and method of moments estimates 

(3.13) I* - *o| = 0,(*-*) . 

If, moreover, 0 = (0a\ • • •, 0(k)), dfo/d0ij) is bounded for 0 in a neighborhood 

of 0O, all x, and 1 ^ y ^ A:, it is easy to see that A5 holds. To see that A5 is 

the needed assumption again introduce a process Yn with Ed(fn) replaced by 

£g(/tt) and (/( . , 0)f replaced in the denominator of Yn by (/( . , 0))K Then 

(3.14) ( 1 ^ - 1̂1 = ^([log%)]-*) 

and the result follows. 

To make local power calculations on the test of the simple hypothesis described 

above we need to consider the behavior of Mn (calculated under f0) for a sequence 

of alternatives of the form, 

(3 .15) gn(x)=Mx) + rnV(x) + 0(Tn) 

where gn satisfy A2—A3 uniformly in n, j n j 0 at a suitable rate, and o(yn) is 

uniform in x on [0, 1]. (Note that r) must be continuous on [0, 1].) Denote 

probabilities calculated under gn by Pn. Our basic result is, 

THEOREM 3.2. Suppose that gn are as above. Let w satisfy Al—A3 and define 

Mn in terms off0. Let 

Tn = n-l+8/2[28logn]-t . 
Then, 

<
2 5 1 O

S " > ' ( T ^ - " - ) < * 
exp [ — s(r])e-x} (3.16) 

where 

(3.17) s(v) = Ji{exp[9(r)/(/-0(0^(M;))*] + exp[-37(/)/(/o(0^(M'))*]} dt 
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MEASURES OF DENSITY FUNCTION ESTIMATES 1079 

This result follows from Theorem Al quite readily. 

One interesting consequence of this formula is that our test is asymptotically 

strictly unbiased for such alternatives. The reason is that sty) ^ 2 with sty) > 2 

unless r] — 0 and the family of distributions e~de~x is an exponential family in 6. 

Unfortunately these tests are asymptotically inadmissible (have Pitman effi­

ciency 0) when compared to the test based on the quadratic functional of the 

next section based on the same w and b(n). The reason is that alternatives there 

may be permitted to come in t o / 0 at rate n~^+8/i rather than n~*+8/2. However, 

this test for moderate sample sizes and some alternatives may well be preferable. 

In analogy to the confidence band situation it would appear that maximum 

power is achieved by taking d as small as possible. However, consideration of 

the approximation arguments suggests that styn) is a better measure of the "true 

shift" than sty) where, 

(3.18) Vn = (gn -f0)(2nb(n) log*(«))» . 

Of course, styn) may well be maximized for d > 0. In all of these questions it 

would be desirable to have some small sample Monte Carlo explorations. 

4. Quadratic functionals. We are interested in the behavior of the functional, 

(4.1) Tn = nb(n) $rTO [fn(x) - E(fn(x))fa(x) dx = J r . Ln\x)a{x) dx , 

where Ln = pYn and a is integrable. We have already remarked that if Al and 

A2 hold and (say) bn = n~8, d < J, then. 

(4.2) \Tn - J QLn\x)a(x) dx\ = o{b\n)) . 

Moreover, if a is bounded as well as integrable and w and / a r e bounded, we 

can replace 0Ln by xLn =p1Yn and hence by 2LM z=fiiYn. To see this note that, 

\SW(x)-0Ln\x))a(x)dx\ 

=
h4K

Z ( 1 M w
(w)

/ ( 5 )
^)

2 

(4.3) - 2Z(1) $ w ( . L z l ) dZ(F(s)) ] w ( - L z l ) f(s) ds} a(t) dt\ 

£Z(\yb(n) sup. |.f{x)\S\a{t)dt\ 

+ 2|Z(1)|6(«)| \ (J w{y)c(s + b(n)y)a(s + b(ri)y) dy) dZ{F{s))\ 
where 

<t)=S»(y)f(t-b{ri)y)dy. 
But, 

(4.4) E{\ ($ w(y)c(s + b(n)y)a(s + b(n)y) dy) dZ{F{s))f 

= S (S "(y)
c
(

s
 + H«)y)

a
(

s
 +

 b
i
n
)y)

 d
yf

 dF
(

s
) 

is bounded. 

By (4.3) and (4.4), 

(4.5) \Tn - S Mx)a(x) dx\ = Op(b(n)) . 
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1080 P. J. BICKEL AND M. ROSENBLATT 

(The infinite range poses no problem since we are approximating Ln rather than 

the normalized Yn.) 

The following lemma lets us determine the characteristic function of a quad­

ratic functional 

(4.6) Z = J Y{xfa(x) dx 

of a Gaussian process Y(x) under appropriate conditions. 

LEMMA 4.1. Let Y(x), EY(x) = 0, be a Gaussian process with bounded, uniformly 

continuous covariance function r(x, y). Ifa(x) is a piecewise smooth inferrable func­

tion, the quadratic functional (4.6) has characteristic function formally given by 

(4.7) E{e™) = exp {2ZU 2k~\it)kck/k} 

with 

ck = I • • • 5 r(x19 x2)r(x2, x3) • • • r(xk, x1)^(x1)^(x2) • • • a(xk) dx, • • • dxk . 

The representation (4.6) is valid for \t\ < 1/2M where M = ||r|| $ |a(r)| rff. The 

quantities (k — 1)! 2A;_1c^ are of course the cumulants of (4.6). 

The lemma is obtained by considering the form 

(4.8) X%iVfr 

in jointly Gaussian random variables Yp EYj = 0 with the afs constants. Let 

R be the covariance matrix of the Y/s with A the diagonal matrix with diagonal 

entries a.. The characteristic function of (4.8) is then 

|1 - 2itRA\~l = UU(l ~ 2V0~* = exV{Zk=ilk-1(it)kH(M)k/k} , 

at least if \t\ < l/2tr(RA). 

Here tr (M) denotes the trace of M, \M\ its determinant and X19 • • •, Xn are the 

eigenvalues of RA. Lemma 4.1 is then obtained by going through an appropriate 

limiting operation. 
The covariance function of the Gaussian process 2Ln(x) can be written 

(4.9) r(x, y) = $ w(z)w(a + z)f(x - b{ri)z) dz 

= f(x) 5 w(*M« + z)dz + 0(b(n)) 
where 

a = (y- x)j(b{n)) 

and 0(b(n)) is independent of JC if / is bounded and has a uniformly bounded 

derivative and w2(z)(l + |z() is integrable. Then 

(4.10) E{\ 2Ln{xfa(x) dx) = 5 /(*)*(*) dx J w(z)2 <fe + 0(A(/i)) . 

Similarly if a is bounded as well as integrable and w is bounded and/ i s as above, 

the variance of $ 2Ln\x)a{x) dx is 2b(n) $ [w * w(u)f du $ a\x)p{x) dx to first order 

as n —> oo, where n>(f) = w( — r) and * denotes convolution. A similar argument 

shows that under the same conditions the kth cumulant of $ 2Ln\x)a(x) dx equals 

to first order (k — 1)! 2k-1bk~1(n)[w * w]ik)(0) $ ak(x)fk(x) dx as n -> oo where the 
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MEASURES OF DENSITY FUNCTION ESTIMATES 1081 

superscript (k) indicates that w * w is convoluted with itself & times. As a result 

we have the following theorem which actually holds under the weaker assump­

tions indicated above. 

THEOREM 4.1. Let Al—A3 hold and suppose that a is integrable piecewise 

continuous and bounded. Suppose moreover that (2.16) holds. Then b~^(n)(Tn — 

($ f(x)a(x) dx) \ w2(z) dz) is asymptotically normally distributed with mean 0 and 

variance 2(w * w)(2)(0) \ a\x)f2(x) dx as n —> oo. 

A particular case of interest for the application of the theorem is that in which 

as in Section 3, a(x) vanishes off an interval, say [0, 1], and one sets a(x) = /(x)'1 

on [0, 1]. In this case under Al—A3, Tn is asymptotically Gaussian with mean 

$ w2(z) dz and variance 2b(n)(w * H>)(2)(0). 

The statistic 

(4.11) fn = nb{n) \ [/„(*) -f(x)fa(x)dx 

is probably of greater interest than that considered in Theorem 4.1. However, 

let us expand fn in the form 

nb(n){S[fn(x)-Efn(x)fa(x)dx 

(4.12) + 2 $ [/.(*) - Efn(x)][Efn(x) - f(x)]a(x) dx 

+ \[EUx)-f{x)Ya(x)dx}. 

Let w be positive and symmetric about zero with 

(4.13) c = $ w(u)u2du < 00 . 

Then if n~l = 0(b(n)), b(n) —> 0 as n —> 00, Al holds and / has a continuous 

bounded second derivative, the second term of (4.12) may, by the usual ap­

proximation arguments, be shown to be asymptotically normal with mean zero 

and variance 

(4.14) n-lb(nfc2 \ f"(x)*a{x)*f(x) dx 

to the first order. Also, under the same conditions, the last term of (4.12) can 

be shown to be 

(4.15) b(nfc2\ f"{xfa(x)dx 

to the first order. Then [b(n)]-*[Tn - Tn] = op(\) if and only if b(n) = o(/r*). 

(The term (4.14) is then negligible.) The theorem quoted in the introduction 

follows. 

APPLICATIONS. An explicit confidence band is hard to obtain from Theorem 

4.1 and the theorem of the introduction. However we can test H: f = f0 at 

(approximate) level a by calculating Tn f o r / = fQ and rejecting when Tn >̂ d(a) 

where by Theorem 4.1 

(4.16) d(a) = [ 5 f0(x)a(x) dx][ J w\z) dz] 

+ b\n)<&-\\ - a)/[2(w * vt>)(2)(0) $ a2(x)f0\x) dx]± . 
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As in Section 3 it is easy to see that in testing H: / = / 0 ( . , 0) where 0 is an 

unknown vector parameter we may use Tn with / replaced by f0(., 0) and d(a) 

with/0 replaced by/ 0 ( . , 0), provided that A6 below holds. 

A6. For each 0O9 (d2f(x, 0)jd0{i)d0^)) is bounded in absolute value for all 0 in 

a neighborhood of 0O and all x, i, j . Moreover, if 0O is true, 

(4.17) \0 - 0O\ = op([nb(n)]-i) . 

To see this, taking k — 1 for simplicity, expand as in (4.12) and note that it 

suffices to show that 

(4.18) J [/„(*) - E0o(fn(x))][Effo(fn(x)) - Ei(fn(x))]a(x) dx = op([nb*(n)]-*) 

and 

(4.19) $ [E0Q(fn(x)) - Ej(fn(x))Ya(x) dx = o,([nb*(n)F) . 

Taylor expanding the integral in (4.18) about 0O we obtain a first term 

df(x + b(n)z, 0) 
(0 - 0O) $ [AW - £JAM)] 5 w(z) dz a(x) dx 

which is Op(\0 — 0o\n~^)y and a second term which is Op([nb(n)]-^(0 — #0)
2), and 

(4.18) follows. A similar argument yields (4.19). 

To make local power calculations we again suppose gn is as in (3.15) with gn 

satisfying A2—A3 uniformly in n and o(jn) uniform in x and rj is bounded. 

THEOREM 4.2. Let gn be as above, w satisfy Al—A4, a be integrable piecewise 

continuous and bounded, b(n) = n~d, d < J, j n = n~^+d/i. Define Tn in termsoffQ. 

Then, 

(4.20) b-\n){Tn - [ J fQ(x)a(x) dx] J w\z) dz) 

is asymptotically normally distributed with mean \ r]2(x)a(x) dx and variance 

2(w * wy2)(0) l a\x)f\x) dx . 

The proof is straightforward. As in Section 3 it follows that the test which 

rejects when Tn is >̂ d(a) is locally strictly unbiased if a(x) > 0 for all x. 

Also as before the asymptotics lead to choosing 8 as large as possible and again 

this conclusion is shaken if one uses the better approximation to the asymptotic 

mean, J r]n
2(x)a(x) dx where 

(4.21) Vn(x) = J w(z)[gn(x + b(n)z) - f0(x + b(n)z)] dz . 

It is also clear that for fixed 8 we can let Xn —> 0 more quickly than for the 

sup functional and still get power. Thus the Pitman efficiency of the Tn test to 

the Mn test for the same 8 is oo. 

Suppose that/0 is the uniform density on [0, 1 ] an effect we can always achieve 

by applying the probability integral transformation to our observations before 

making the test. Let a(x) = 1 on [0, 1 ] and 0 otherwise, w be the uniform density 
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on [ — 1, £]. Neglecting fringe effects we may then write 

(4.22) T% = Si W ~ ^n)' < + ^ ( n ) ] ~ b{"))2 dt 

where N[x, y] is the number of observations falling in the interval [x, y]. A 

related statistic for testing uniformity on the circle was considered by Watson 

in [15]. This is, of course, very similar to the f statistic for the problem based 

on the cells [0, b(n)]9 [b(n)9 2b(n)]9 . - . , [ ( * - 1 )£*(*), (K + l)&(n)] given by, 

(4.23) Zw - 2,*.i ^ 

where (K + \)%b(n) ̂  1 < (K + 2)%b(n) and £ * i s a s u m o v e r o d d index. 

Now we can write, 

(4.24) t:\K = nb(n) JJ (/.(f) - £(A(0))2 ^ . ( 0 

where y4% places mass l/K at each of the points £A(/i), • • •, K±b(n). It is easy to 

see that the arguments leading to Theorem 4.2 apply to functional of this type 

also and that under the conditions of that theorem, if b(n) = rr\ 8 < £, XnlK 

is asymptotically normal with the natural parameters E(xn
2/K) and Var (xn

2/K)' 

This result is, of course, known. A rigorous proof under milder conditions 

but using a different method may be found in Steck (1957). Now 

(4.25) E(ljp) = 1 + 1 2 # **(") (* " ^ r - \m\l\l\%Qn(x)dx 

~* + o{nb(n)Tn
%) = l + /i^r.'ls;* 1 C(i + l)6(n)/2 „(x\ (jx 

■ W 

(4.26) V a r t e ) = 1 Var ( N ^ W) + o(l) = A + 0(i 
K } \K/ K \ nb(n) I \KI K \K, 

Thus if we take j n = n~^+3/4 as in Theorem 4.2, under gn the statistics 

(4.27) Wn = b^{n)[^- l ) 

have a limiting Gaussian distribution with mean \ J rj\x) dx and variance 2. Under 

the same circumstances the asymptotic mean of b~\n)(Tn — 1) with Tn given by 

(4.22) is also \\ rf(x) dx while its asymptotic variance is, 

(4.28) 2w^(0) = 2 $Lt (1 - M)1 A = f -

The Pitman efficiency of the tests based on Tn to those based on Wn is thus 

by the usual calculations, 

(4.29) e(Tn, Wn) = (f)*-' 

and thus at least (§)* = 1.217 on the range 8 > 0. For the Mann-Wald (1942) 

prescription 8 — \ we get an efficiency of 1.292. 
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Although as we have seen these asymptotic calculations are to be taken with 

a grain of salt we feel that the procedure Tn has promise as a competitor to the 

X2 test, at least for moderate sample sizes. 

Acknowledgment. We are grateful to S. Berman and J. Pickands, III for 

providing us with preprints of some of the papers cited in the list of references. 

5. Appendix A. On the extrema of some nonstationary Gaussian processes. 

Let YT(*) be a sequence of separable Gaussian processes with mean ftT(*) such 

that YT(.) — fiT(*) is stationary. Let r ( . ) be the covariance function of YT, 

MT = max{F r ( r ) : 0 ^ t ^ T] , mT = min{YT( t): 0 ^ t ^ T}. 

Let bT(t) = fiT(t)(2 log T)K 

THEOREM A l . Suppose that, 

(i) bT(t) is uniformly bounded in t and T on [0, T] as T —> oo. 

(ii) bT(t) —> b(t) uniformly on [0, T] as T —> oo. 

(iii) r_1^[f: b(t) ^ x, 0 <̂  t ^ T] —> r](x) the cdf of a probability measure as 

T —> oo. (2 as usual denotes Lebesgue measure.) 

(iv) £(•) is uniformly continuous on R. 

(v) r(t) = 1 - C\t\a + o(\t\a), 0 < a ^ 2, as t -> oo. 

(vi) \~r\t)dt< oo. 

Let 

Bit) = (2 log tf + — i 

X {(— - i ) l o g l o g r + log(27r)-i(C1/«//a2^-«)/2«)J 

where 

Ha = l i m r _ 1 . J~ e s P [ s u p 0 ^ r F(r) > j] ds 

and Y is a Gaussian process with, 

(A. l ) E(Y(t)) = -\t\°, Cov(r ( r 1 ) , F(r2)) = W" + N * - K - f,|a. 

UT = (2 log r )*(M r - B(T)) and VT = - ( 2 log r)*(m r + * ( r » 

are asymptotically independent with, 

(A.l) P[UT < z] -> <r ̂  , P[ F r < z] -> <r V ; 

(A.3) h=S*z drj(z) , ^2 = \ e~* drj{z) . 

An immediate consequence of Theorem Al is, 
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COROLLARY Al . If MT = ma.x{\YT{f)\: 0 rg t ^ T] then under the conditions 

of the theorem, 

(A.4) P[(2 log Tf{MT - B(T)) < x] - exp [ - (^ + A2)e~*] . 

Note. lx + 12 ;> 2 with strict inequality unless 57 concentrates at 0. 

COROLLARY A2. Le/ F0(/) — fi(f) be a stationary mean 0 Gaussian process with 

covariance function r(t) satisfying the conditions of the theorem. Suppose that b(t) = 

(2 log(r -f 2)hfJt(t) is a bounded uniformly continuous function of t and that b(*) 

satisfies condition (iii) of the theorem. Then, 

(A.5) P[(2 log r)*(max {Y0(s): 0 ^ s ^ T} - B(T)) < x] -* e~^~x . 

Similar assertions hold about the independence of maximum and minimum 

and the asymptotic distribution of the minimum. 

This corollary may be viewed as complementing Theorem 4.1 of Quails and 

Watanabe (1971) which deals with the extrema of a mean 0 process whose 

covariance function is asymptotically locally approximated by that of a station­

ary process while we deal with a process'which is stationary when centered and 

asymptotically stationary. 

The constants Hx and H2 are the only ones known explicitly. They are given 

by H,= 1, i/2 = 7r-i(cf. [11]). 

PROOF OF COROLLARY A2. Define, 

(A.6) YT(t) = Y0(t) on [e(T)9 T] 

= Y0(t) + ([log(r + 2)/log(r + 2)]* - l)^(r) otherwise 

where e(T) = o(T), \oge(T) ~ log T. Evidently, (2 log TfE(YT(t)) ~> b(t) uni­

formly and 

(A.7) 

max {Yr(s): 0 ^ s ^ T} < * + B(T) 

max{y0(.): 0 ^ s£ T} < X + B{T) 

(2 log Tf 

< IP max {Y0(s) - E{ Y0(s)): 0 £ s£ e(T)} ^ x 

(2 log 7)* 

- K + B(T)~\ 

where K = max {ju(t): 0 <; r <: <:(?)}. Since 5(e(r)) - fi(r) ->• - oo the term on 

the right of (A.7) tends to 0 by the theorem. Q 

PROOF OF THEOREM Al . The theorem is argued much as Theorem 3.1 of 

Pickands (1969). We refer the reader to this paper and Berman (1971) for the 

details of the argument. 
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LEMMA Al . Let<p(x) — <ft(x)/x where <f> is the standard normal density. Let C = I, 

x = x(T) = B(T) + z,/(2 log T)K Then for a > 0, 

P[m&x{YT(t + akx~2a), 0 ^ k ^ n] > x] 

(A-8) = <P{x)ebwHa(n, a) + o(</>(x)) 

P[min{YT(t + kax~2a), 0 ^ k ^ «} < - x ] 

= ^(x)e- 6 ' " / /> ,a ) + 0(^(x)) 

05 7 —> oo uniformly in 0 ^ ( ^ T w/rere 

(A.9) //„(«, o) = J ^ e*/>[max {Y{ka): 0 ^ k ^ n} > s]ds . 

Moreover, if y = y(T) = B(T) + z2/(2 log Tf then 

(A. 10) /^max{y r(r + kax~v"): 0 ^ k ^ «} > x, * 

min {rr(? -f kax-%a): 0 ^ it ^ «} < - / ] 

= 0(^(x)) = o ( ^ ) ) , 

uniformly in 0 ^ t <^ T. (Throughout, k may take on integer values only.) 

PROOF. AS in [11] consider the "local" process 

(A. 11) YT(s) = x(YT(t + sx-2'a) - ftT(t) - x) . 

(A. 12) P[max{YT(t + akx~2 "): 0 ^ k ^ «} < x] 

= 5r«,rW[max{f7 , ( te): 0 ^ k ^ «} > -xftT(t) \ Yr(0) = z]rfz 

where ?■ is the density of Yr(0), 

(A. 13) r(z) = l-4>(x + ±) = <P(x) exp [ - z - z2/2x2] . 
X \ X I 

It is easy to see using (ii) and (iv) that the finite dimensional conditional distri­

butions of YT{s) given ¥r(0) = z converge uniformly in t to those of the process 

Y(s) + z where Y is given by (A. 1). Arguing as in [11] the first part of (A.8) 

follows since x/uT(t) —> b(t) uniformly as required. By considering — YT we obtain 

the second part. To prove (A. 10) let A be the event whose probability is being 

estimated. Then, 

P(A, rr(o > * - 1 + MO) 

^ S-,4 r(z)P[min{fT(ka): 0 ^ k ^ «} - z 

^ - z - x(y + x + /iT(f)) | ?T(0) = z] rfz 

(A. 14) ^ ^(x) J i t e2/>[min{fr(A:a) + z : 0 ^ k ^ «} 

< z - x(j + x + ^(f)) I ?r(0) = - z ] </z 

- x(y + X + j«r(0) | ? r(0) = - * ] dz 

+ x* expx* maxfFfFr^a) + z 

< xi - x(y + x + ^ ( 0 ) | ?r(0) = - z ] : 0 ^ z £ x*}}]. 
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Applying the usual estimate O(z) <̂  <p(\z\) for z ^ 0 we conclude that the left-

hand side of (A. 14) is o(<p(x)). Similarly, 

(A. 15) P(A, YT(t) - pT(t) < -y + - I ) = o(<p(y)) . 

Finally, 

P(A> -y + \ < yT(t) - MO ^ x - 1 ) 

(A. 16) ^ \z*J j{z)P[mdix{YT{ka): 0 ^ k ^ n) > -x/i r(?) | F(0) = z] rfz 

^ ^(*) \~ezP[m2ix{YT(ka): 0 ^ k <: n} > z]dz 

for every ,4 < oo. 

The final statement of the lemma follows. 

LEMMA A2. The assertion of Lemma Al remains valid if a — 1, k is permitted 

to range over all values in [0, n] and Ha(n, a) is replaced by 

(A. 17) Ha(n) = • ^00e
tP[m3x{Y(s): 0 ^ s ^ n} > t]dt 

PROOF. We prove the analogue of (A.8); the other assertions follow similarly. 

We need to check that uniformly in 7\ 

(a) The conditional distributions of the continuous processes YT(t) — z given 

YT(0) = z converge weakly (in the sense of Prohorov) to that of Y(*)9 

(b) P[max {YT(k): 0 ^ k ^ n) > x/iT(t) | YT(0) = z] ^ g(z) 

where $ e~zg(z) dz < oo. 

To see that (a) holds it suffices to note that, 

(A. 18) Var[(?r(j1) - YT(s2)) | ?T(0) = z] £ C\ s, - s2\« 

and then apply Billingsley [3] page 95. To see that (b) is valid use the estimate 

of Fernique (1970) given below on the tails of max {| JV(&)| : 0 ^ k ^ n}. 

LEMMA. Let Z(*) be a Gaussian process on (0, 1). Let a be such that F[\\Z\\ <La] ̂  

f, P[\\Z\\ ^ a] ^ J. 77K?/*, for z ^a 

F [ | | Z | | > z ] ^ e x p | - ^ l o g 3 } . 

LEMMA A3. Fix t > 0 such that inf{*-*(l - r(s))\ 0 ^ s ^ t] ^ A(t) > 0. 

Define x and y as before. Let, 

(A. 19) Ha(a) = limn^
f{^l. 

n 

(A.20) 0<Ha = lim_0 ^ M = l i m _ ^ > . 

(See the note at the end of the lemma.) 
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Then, 

(A.21) 

(A.22) 

max \ YT(v + kax~Va): 0 ^ k ^ 
r2/a 

La J 
> x 

= xv"if)(x) H^L \i+* expb(s) ds + o(x2/«(P(x)) , 
a 

F[max{YT(v + s): 0 ^ s ^ t} > x] 

= Jc2/^(;c)[5:+i Qxpb(s) ds]Ha + o(x2/«<p(x)) , 

uniformly inO < v ^ T. Similar assertions hold for P[m'm{YT(v + s): 0 ^ 5 <̂  /} < 

— x] w/7/z — b replacing b. Finally, 

(A.23) P[msix{Yr(v + s): 0 ^ 5 ^ r} > x, min{r7,(v %+ 5): 0 ^ 5 <; /} < - j / ] 

= o(x2/^(x)) . 

Note. The existence of the limit in (A.19) was first proved in [11]. An in­

correct proof of (A.20) was also given. Subsequently, a correct proof was com­

municated to the author by J. Pickands and another is included in [12]. We 

provide yet a third in Appendix B. 

PROOF. We prove (A.22); (A.21) is argued similarly. Begin by bounding the 

left-hand side of (A.22) from above by, 

(A.24) 2 X 0 P[mzx{YT(v + knx~2/a + s): 0 ^ s ^ nx~2/a} > x] 

where M = [txv"/n]. By Lemma A2 the expression above is asymptotic to 

(A.25) 
tffa(n) 

x2/"(p(x) 
1 

2f= 0exp6(v + knx-v*) 
.M + 1 

= **.«("). xVn<p(x)[\l+t expb(s) ds + o(l)] 

since b is assumed uniformly continuous and bounded. On the other hand we 

can bound from below by the left-hand side of (A.21) which in turn is bounded 

from below by, 

(A.26) 2?=*o P(Ar) - Z»^Si,a P(ArAs) 

where Ar = [{max{YT(v + kax~'2/"), rn ^ k < (r + \)n] > x], Ma = [x-v"tjna]. 

If we apply Lemma A.l to the first term on the right of (A.26) we obtain that, 

Sf=% P(AT) ~ HAn\a\ xv"(f>(x)[\l+t <?6"" ds] . (A.27) 

Finally, 

(A.28) 

where 

(A.29) 

na 

P{ArAs) ^ P{CrCs) 

max {Y,,.(kax-'2/" + v) — fiT(kax-v"): rn <; k < (r + 1)«} 

K 
> x 

(2\ogT)K 
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where K = sup{(21og7')*|/£7.(f)|: 0 ^ t ^ T}. Now applying Lemma 2.3 of [11] 

and arguing as in Lemma 2.5 of the same paper we see that, 

(A.30) Z P(CrCa) = o{Xv«<P{x)) . 

Applying (A.20) we see that (A.22) follows. To prove (A.23) it suffices to show 

that, 

P{[max{YT(v + s): 0 ^ s ^ /} > x] 

(A.31) u [min{YT(v + s): 0 ^ s ^ t} < -y]} 

= x^'</>(x)Hn^[cxpb(S)]^ 

+ f'"<p{y)Hn $;+' [exp -b($)] dS + o(x^4>(x)) . 

But we can bound the expression on the left of (A.31) from above by 

/'[max {YT(v + s): 0 ^ j ^ t] > x] + P[min {Yr(v + s): 0 ^ s ^ r) < - 7 ] 

and from below as in (A.26) where we add A„a+1, ■■-, A2„a+1 with AMa+j = 

[min {Y,,,(v + kax~v"): (j - \)n ^ A: < _/«}} < - y}. Now by (A. 10) 

(A-32) \ S & . P(AsAMa+i+1) = o{x^<P{x)) . 

Finally, again arguing as for the previous case, 

(A.33) i - S o s j * * ^ . ^ ^ ^ ) , \l>^*kiNa+iP{Aj+MaAk+Ma) and 

--Zf>n*kiKaP(A}A„^k+l) are all o(x2^(x)) . Q 

The rest of the proof goes much as in Berman [1]. Neglecting fringe effects 

break the interval [0, T] up into 2/V intervals of which half, Wx, ■ ■ ■, WN are of 

length rand the others Vx, • • •, VN of length e so that Vi follows Wx which follows 

Vt-i, i = 2, • • •, N. Of course, A' ~ T/(t + s). Define x and j as in Lemma Al 

and note that, 

(A.34) y?"*<l>(x)Ha ~ _L e-'i . 

Then, by Lemma A3, 

P[max{Yr(r): r e U?=i F;} ^ *] ^ E7=i ^max {^(r): rSF.) ^ *] 

(A.35) - [ E ^ S ^ e x p ^ ) ^ ] ^ 1 

= ^ ( y ) = ^(l) 

where the O term is independent of e and the Vr A similar assertion holds for 

min{K7,(r): r e (Jf=1 V)} and hence we need only show that, 

lim,^0 fimr-0O P[max{Yr(T): r e \JU w
3\ ^ *. 

(A.36) min {Yr(r): r e [JU W ,\ ^ - y] 

= exp -{V* 1 + V * } , 
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where ^ , 1, are defined in (A.3) and the bars above and below the limit sign 

indicate lim sup and lim inf respectively. Next choose a > 0. If W5 = [ap ai + t), 

j=l,...,N. 

P[max{r7.(r): r e Uy=i WJ) ^ x] 

Yr(aj + kax~v") ^ x: 0 ^ k ^ 
ixVa-

,l^j^N 

(A.37) P[max{YT(r): re Ws} £ x] 

max i YT(aj + kax~v"): 0 £ k ^ 

£ZU 

-[ZUW^xpWWW*) H,. - "M 

_ a _ 

e ~ * i , 

[S,j 

by Lemma A3. 

A similar argument holds for F[min {^(r) : r e JJJU W)} >̂ —y] and by simple 

probability manipulations it follows that to prove the theorem we need only 

show, 

-y ^ YT(aj + kax~Va) ^ x: 1 ^j^N, 

' tx
Vn

' 

lima^0 lim^n \m\T P 

(A.38) 0 ^ /c ^ 
L a J_ 

= e x p { - [ V - * i + V * 2 ] } -

Now in view of Lemma A3 it is easy to show that, 

(A.39) iimr ZU (I - P -y ^ YT(aj + kax~V(X) <, x:0 ^ k ^ tx
2 

= ^ lim-' L ^ J l r. {exp[6(5) - z,] + exp -[b{s) + z2]} <fc . 
aH„ - T 

Since, by the boundedness of b, T~l[Yi%\ \w • exPb( s) ds ~ \l e xP Ks) ds\ — °(e) 
uniformly in T it follows from (A.39) and (A.20) that 

(A.40) lim^0 lim_0 lim7, EU{1 ~ p 

< x: 0 < k < 

-y ^ YT(a. + kax~v«) 

(xv« -

a JJ/ 

Let Ej, j = 1, • • •, N be the events whose probabilities are being summed in 

(A.40). The assertion (A.38) corresponds to a limiting statement about 

P(E1- • -EN). If the E- were independent assertion (A.38) would follow readily 

from (A.40). Let P be the measure which makes the vectors (Y^a^, YT{ax + 

ax-v«), • • ., YT(ax + ax-v«[tx^/a])), (Yr(a%)9 • • -, YT(a2 + ax^n[t^a/a]))9 • • -, 

(YT(aN), • • •, YT(aN + ax~Va[tx2/aja]) independent and otherwise agrees with P. 

302 



MEASURES OF DENSITY FUNCTION ESTIMATES 1 0 9 1 

To conclude the proof of the theorem we need to show that. 

(A.41) l i m ^ l i m r \(P - P ) ( ^ . . . ^ ) | = 0 . 

To do this apply the following modification of Lemma 4.1 of [1]. 

LEMMA A4. Let 

Let Zj = \ru\, 22 = |^y| be k x k nonnegative semi-definite matrices with ru = su= I 

for all i. Let X = (X19 • • •, Xk) be a mean 0 Gaussian vector with covariance matrix 

I>1 or E2. Let u19 • • •, uk be nonnegative numbers and u = miny u5. Then, 

(A.43) \PZi[X3. ^ i/., 1 rg / ^ k] - P^Xi ^ up ikj^ k]\ 

PROOF. By the usual argument (see [1] page 931) the left-hand side of (A.43) 

is bounded by, 4 £*,; |$;;j <f>(ui> UP *) d*V B u t ' bY a n elementary inequality 

(A.44) x2 - 2pxy + f ^ ( 1 ~P) (x + yf . 

Thus, 

(A.45) f(ui9 up X)<L<f> (^L+ll , ?L+JU , j ) rg <J(a, «, X) . Q 

Take X, = YT(aJ - t*T{ax), X2 = -YT(ax) + ^(a,) etc., k = 2N[tx2/«/a], \riS\ 

corresponding to the distribution of X under F, | ^ | corresponding to P, ux — 

x - fjiT(a^ u2=y + fxT(a^ etc. Evidently, 

(A.46) u = (2 log Tf + 0((log 7*)"*) . 

It is clear now that we can apply to the bound of (A.43) exactly the same analysis 

as that given by Berman on pages 933-936 of [1] to arrive at the conclusion of 

the theorem. 

Note. By applying the more refined analysis of Pickands [11] pages 64-72 we 

can show that the conclusion of the theorem also holds if (vi) is replaced by, 

(A.47) l i m ^ r{t) log t = 0 . 

Unfortunately, the analysis of Berman appears to only yield the conclusion under 

the stronger 

(A.48) r(t)[\og ' ] a / a -> ° • 

We do not enter into this further since (vi) is what we need for Theorems 1.1 

and 1.2. 

5. Appendix B. Miscellanea. 

THEOREM Bl. Let w be an absolutely continuous square integrable function with 
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a square inferrable derivative w'. Let, 

(B. l ) r(t) = 5 w(t 4- s)w(s)ds . 

Then r is twice differentiate and 

(B.2) r"(t) = - \ wr(t + s)w'(s) ds . 

P R O O F . W e first show that 

(B.3) r'{t) = I w\t + s)w(s) ds = $ w(s - t)w'(s) ds . 

Let H>, vi>' be the Four ier t ransforms of w, wf. Then by Parseval, 

(B.4) r(( + h)~ *> = 1 5 ^ ( t + " * - g"f'") |*(„)|» du . 
h 2TT h 

Applying the dominated convergence theorem we obtain the existence of rf 

given by 

Similarly 

fit) = — — \ e-ltuu\w(u)\2 du = I w'(t + s)w(s) ds , 
2K 

r'i* + h)~ rV) = c Hfo - r - A) - w(5 - t) w,(s) ds 

h 3 h w 

/ /s>i(t-\-h)u s,itu\ 

(B.5) = A J (? ^—^—) *|tf(")|a ^ 

_> _ _ L J ^WW2|H>(W)|2 £/I/ = - J W'(J - t)w'(s) ds . 
2?r 

The theorem follows. Note that r'(O) = 0 from (B4) since \w\ is symmetr ic . 

T H E O R E M B2. Let w be absolutely continuous on [ — A , A] andO otherwise. Then 

r has left and right derivatives at 0 and 

(B.6) r+'(0) = -r_'(0) = -^(w\A) + w\-A)) . 

P R O O F . Wr i te , for h > 0, 

w(s + h)_ w(s) ds 

— \s+h w'(z)dz 
h u w _ w(s) ds - — \A

A_h w\s) ds 
h 

(B.7) = JlxM 
L # J # 

J1 A W'(J)W(J) <fc - w\A) = -^(W»(y<) + w 2 ( - ^ ) ) 

by arguing as in Theorem A l and using Lebesgue's theorem. Since r{ — t) = r(7) 

the result follows. 

T H E O R E M B3. (Pickands) / / Ha(n, a), Ha(n) are defined as in (A. 17), (A. 19) 

then (A.20) holds. 

P R O O F . Suppose first that 0 < a < 2. Let for j > 0, 

(B8) #„(/! , r) = S-oo e s [ m a x 0 ^ w 7(f) > s + T] ds = * - ' # a ( / i ) . 
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Then 

— \Ha(n, a) - Ha(na, y)\ 
n 

^ — [S-~ e°P[max0^na Y(t) > s + r, max0SjfcSm Y(ka) ^ s] ds 
n 

(B.9) + $!!„ e°P[s < max0StSlia Y{t) ^ s + r] ds] 

S — ZtZl S-oo e°P[Y(ka) ^ s, mzxka^(lc+1)a Y(t) > s + r) ds 
n 

+ 1 [Ha(na) - Ha(na, r)] . 
n 

If the summands on the right of the first term of (B.9) are denoted by A(k, j , a) 

then, 

(B.10) A(k, r, a) = $!!«*• $!„, T(Z9 ka) 

X P[max0^a Y(t + ka) > 5 + j \ Y(ka) = z] dz ds 

where T(Z, ka) is the density of Y(ka). After some manipulation we obtain 

(B.ll) A(k,r,a) = l-<,H^)^esP[m^x0^a(Y(t + ka)^Y(ka))>s + r\Y(ka) 

— w + (ka)a] ds dw . 

As k —» 00, the finite dimensional conditional distributions of Y(t -f ka) — Y(ka) 

given Y(ka) — w + (&#)* tend for each w to those of Y(t), 0 <, t <^ a. Arguing 

as in Lemma Al we conclude that, 

(B.12) lim, A(k, r, a) = A(y, a) = $~ esP[mzx0^a Y{t) > s + r]ds. 

Let Y*(t) = y(r) + |f|a. Then, 

^(r, «) ^ $0°° ^ [ m a x 0 ^ a Y*(t) > s + r]ds 

(B.13) = $~ ^F[max 0 ^^ y*(r) > ( * + r)a"«/2] <fc 

= a^V-r $-_a/8 e™a/2P[max0^x Y*(t) > w]dw . 

Applying Fernique's estimate the right-hand side of (B.13) is 0(exp — a~a/2) for 

every y > 0. We conclude that, 

(B. 14) lim supa lim sup% — \Ha(n, a) - Ha(na, r)\ 
na 

<; (1 — e~r) lim supa lim supw —a^na' 
na 

for every y > 0. Since, 

P[mzx0^n Y{t) > s] 

(B.15) ^ 2J=ox P[mzxk^k+1 Y(t) > s] 

^ Zt=l {P[Y(k) £ s, max^«*+ 1 Y{t) >s] + P[Y(k) > s]}, 
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it is easy to see that, 

(B.16) s u p ^ 1 ^ M < co . 
x 

Hence, 

(B.17) lima lim supn i - \Ha(n9 a) - Ha(na)\ = 0 . 
na 

But from the argument of Lemma A3 it is clear that for every a > 0, 

(B.18) lim supn
 H*(n> g> ^ lim inf. R^nd) . 

na na 

The theorem follows for 0 < a < 2. For a = 2 we caiuuse the representation 

Y(t) = 2*rZ — t2 where Z is a standard normal deviate. Evidently, 

Z2 

(B.19) max0,8,M/2i F(s) = — 

= naZ 

It follows that, 

<
E
-
20
> = W $ - " ■ ( " ■ £ ) ! 

^ _L j j 2 * 2 es/2P[s^ < Z <(s + a2f] ds ~ 2(1 - *-"*'*) 

by standard arguments. The theorem now follows generally. 
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