On some Hadamard-type inequalities for (h_{1}, h_{2})-preinvex functions on the co-ordinates

Marian Matłoka*

"Correspondence
marian.matloka@ue.poznan.pl
Department of Applied Mathematics, Poznań University of Economics, Al. Niepodległości 10, Poznań, 61-875, Poland

Abstract

We introduce the class of $\left(h_{1}, h_{2}\right)$-preinvex functions on the co-ordinates, and we prove some new inequalities of Hermite-Hadamard and Fejér type for such mappings.
MSC: Primary 26A15; 26A51; secondary 52A30
Keywords: $\left(h_{1}, h_{2}\right)$-preinvex function on the co-ordinates; Hadamard inequalities; Hermite-Hadamard-Fejér inequalities

1 Introduction

A function $f: I \rightarrow R, I \subseteq R$ is an interval, is said to be a convex function on I if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \tag{1.1}
\end{equation*}
$$

holds for all $x, y \in I$ and $t \in[0,1]$. If the reversed inequality in (1.1) holds, then f is concave.
Many important inequalities have been established for the class of convex functions, but the most famous is the Hermite-Hadamard inequality. This double inequality is stated as follows:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

where $f:[a, b] \rightarrow R$ is a convex function. The above inequalities are in reversed order if f is a concave function.

In 1978, Breckner introduced an s-convex function as a generalization of a convex function [1].

Such a function is defined in the following way: a function $f:[0, \infty) \rightarrow R$ is said to be s-convex in the second sense if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y) \tag{1.3}
\end{equation*}
$$

holds for all $x, y \in \infty, t \in[0,1]$ and for fixed $s \in(0,1]$.
Of course, s-convexity means just convexity when $s=1$.

In [2], Dragomir and Fitzpatrick proved the following variant of the Hermite-Hadamard inequality, which holds for s-convex functions in the second sense:

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1} \tag{1.4}
\end{equation*}
$$

In the paper [3] a large class of non-negative functions, the so-called h-convex functions, is considered. This class contains several well-known classes of functions such as non-negative convex functions and s-convex in the second sense functions. This class is defined in the following way: a non-negative function $f: I \rightarrow R, I \subseteq R$ is an interval, is called h-convex if

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) \tag{1.5}
\end{equation*}
$$

holds for all $x, y \in I, t \in(0,1)$, where $h: J \rightarrow R$ is a non-negative function, $h \not \equiv 0$ and J is an interval, $(0,1) \subseteq J$.

In the further text, functions h and f are considered without assumption of nonnegativity.
In [4] Sarikaya, Saglam and Yildirim proved that for an h-convex function the following variant of the Hadamard inequality is fulfilled:

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)] \cdot \int_{0}^{1} h(t) d t \tag{1.6}
\end{equation*}
$$

In [5] Bombardelli and Varošanec proved that for an h-convex function the following variant of the Hermite-Hadamard-Fejér inequality holds:

$$
\begin{align*}
\frac{\int_{a}^{b} w(x) d x}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) & \leq \int_{a}^{b} f(x) w(x) d x \\
& \leq(b-a)(f(a)+f(b)) \int_{0}^{1} h(t) w(t a+(1-t) b) d t \tag{1.7}
\end{align*}
$$

where $w:[a, b] \rightarrow R, w \geq 0$ and symmetric with respect to $\frac{a+b}{2}$.
A modification for convex functions, which is also known as co-ordinated convex functions, was introduced by Dragomir [6] as follows.

Let us consider a bidimensional $\Delta=[a, b] \times[c, d]$ in R^{2} with $a<b$ and $c<d$. A mapping $f: \Delta \rightarrow R$ is said to be convex on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow$ $R, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow R, f_{x}(v)=f(x, v)$ are convex for all $x \in[a, b]$ and $y \in[c, d]$.

In the same article, Dragomir established the following Hadamard-type inequalities for convex functions on the co-ordinates:

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4} \tag{1.8}
\end{align*}
$$

The concept of s-convex functions on the co-ordinates was introduced by Alomari and Darus [7]. Such a function is defined in following way: the mapping $f: \Delta \rightarrow R$ is s-convex
in the second sense if the partial mappings $f_{y}:[a, b] \rightarrow R$ and $f_{x}:[c, d] \rightarrow R$ are s-convex in the second sense.
In the same paper, they proved the following inequality for an s-convex function:

$$
\begin{align*}
4^{s-1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{(s+1)^{2}} \tag{1.9}
\end{align*}
$$

For refinements and counterparts of convex and s-convex functions on the co-ordinates, see [6-10].
The main purpose of this paper is to introduce the class of $\left(h_{1}, h_{2}\right)$-preinvex functions on the co-ordinates and establish new inequalities like those given by Dragomir in [6] and Bombardelli and Varošanec in [5].
Throughout this paper, we assume that considered integrals exist.

2 Main results

Let $f: X \rightarrow R$ and $\eta: X \times X \rightarrow R^{n}$, where X is a nonempty closed set in R^{n}, be continuous functions. First, we recall the following well-known results and concepts; see [11-16] and the references therein.

Definition 2.1 Let $u \in X$. Then the set X is said to be invex at u with respect to η if

$$
u+t \eta(v, u) \in X
$$

for all $v \in X$ and $t \in[0,1]$.
X is said to be an invex set with respect to η if X is invex at each $u \in X$.

Definition 2.2 The function f on the invex set X is said to be preinvex with respect to η if

$$
f(u+t \eta(v, u)) \leq(1-t) f(u)+t f(v)
$$

for all $u, v \in X$ and $t \in[0,1]$.

We also need the following assumption regarding the function η which is due to Mohan and Neogy [11].

Condition Cet $X \subseteq R$ be an open invex subset with respect to η. For any $x, y \in X$ and any $t \in[0,1]$,

$$
\begin{aligned}
& \eta(y, y+t \eta(x, y))=-t \eta(x, y) \\
& \eta(x, y+t \eta(x, y))=(1-t) \eta(x, y) .
\end{aligned}
$$

Note that for every $x, y \in X$ and every $t_{1}, t_{2} \in[0,1]$ from Condition C, we have

$$
\eta\left(y+t_{2} \eta(x, y), y+t_{1} \eta(x, y)\right)=\left(t_{2}-t_{1}\right) \eta(x, y) .
$$

In [12], Noor proved the Hermite-Hadamard inequality for preinvex functions

$$
\begin{equation*}
f\left(a+\frac{1}{2} \eta(b, a)\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)+f(b)}{2} . \tag{2.1}
\end{equation*}
$$

Definition 2.3 Let $h:[0,1] \rightarrow R$ be a non-negative function, $h \not \equiv 0$. The non-negative function f on the invex set X is said to be h-preinvex with respect to η if

$$
f(u+t \eta(v, u)) \leq h(1-t) f(u)+h(t) f(v)
$$

for each $u, v \in X$ and $t \in[0,1]$.

Let us note that:

- if $\eta(v, u)=v-u$, then we get the definition of an h-convex function introduced by Varošanec in [3];
- if $h(t)=t$, then our definition reduces to the definition of a preinvex function;
- if $\eta(v, u)=v-u$ and $h(t)=t$, then we obtain the definition of a convex function.

Now let X_{1} and X_{2} be nonempty subsets of R^{n}, let $\eta_{1}: X_{1} \times X_{1} \rightarrow R^{n}$ and $\eta_{2}: X_{2} \times X_{2} \rightarrow R^{n}$.

Definition 2.4 Let $(u, v) \in X_{1} \times X_{2}$. We say $X_{1} \times X_{2}$ is invex at (u, v) with respect to η_{1} and η_{2} if for each $(x, y) \in X_{1} \times X_{2}$ and $t_{1}, t_{2} \in[0,1]$,

$$
\left(u+t_{1} \eta_{1}(x, u), v+t_{2} \eta_{2}(y, v)\right) \in X_{1} \times X_{2} .
$$

$X_{1} \times X_{2}$ is said to be an invex set with respect to η_{1} and η_{2} if $X_{1} \times X_{2}$ is invex at each $(u, v) \in X_{1} \times X_{2}$.

Definition 2.5 Let h_{1} and h_{2} be non-negative functions on $[0,1], h_{1} \not \equiv 0, h_{2} \not \equiv 0$. The nonnegative function f on the invex set $X_{1} \times X_{2}$ is said to be co-ordinated (h_{1}, h_{2})-preinvex with respect to η_{1} and η_{2} if the partial mappings $f_{y}: X_{1} \rightarrow R, f_{y}(x)=f(x, y)$ and $f_{x}: X_{2} \rightarrow$ $R, f_{x}(y)=f(x, y)$ are h_{1}-preinvex with respect to η_{1} and h_{2}-preinvex with respect to η_{2}, respectively, for all $y \in X_{2}$ and $x \in X_{1}$.

If $\eta_{1}(x, u)=x-u$ and $\eta_{2}(y, v)=y-v$, then the function f is called $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates.

Remark 1 From the above definition it follows that if f is a co-ordinated $\left(h_{1}, h_{2}\right)$-preinvex function, then

$$
\begin{aligned}
f(x & \left.+t_{1} \eta_{1}(b, x), y+t_{2} \eta_{2}(d, y)\right) \\
\leq & h_{1}\left(1-t_{1}\right) f\left(x, y+t_{2} \eta_{2}(d, y)\right)+h_{1}\left(t_{1}\right) f\left(b, y+t_{2} \eta_{2}(d, y)\right) \\
\leq & h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(x, y)+h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(x, d) \\
& +h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, y)+h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(b, d) .
\end{aligned}
$$

Remark 2 Let us note that if $\eta_{1}(x, u)=x-u, \eta_{2}(y, v)=y-v, t_{1}=t_{2}$ and $h_{1}(t)=h_{2}(t)=t$, then our definition of a co-ordinated $\left(h_{1}, h_{2}\right)$-preinvex function reduces to the definition
of a convex function on the co-ordinates proposed by Dragomir [6]. Moreover, if $h_{1}(t)=$ $h_{2}(t)=t^{s}$, then our definition reduces to the definition of an s-convex function on the coordinates proposed by Alomari and Darus [7].

Now, we will prove the Hadamard inequality for the new class functions.

Theorem 2.1 Suppose that $f:[a, a+\eta(b, a)] \rightarrow R$ is an h-preinvex function, Condition C for η holds and $a<a+\eta(b, a), h\left(\frac{1}{2}\right)>0$. Then the following inequalities hold:

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(a+\frac{1}{2} \eta(b, a)\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq[f(a)+f(b)] \cdot \int_{0}^{1} h(t) d t \tag{2.2}
\end{equation*}
$$

Proof From the definition of an h-preinvex function, we have that

$$
f(a+t \eta(b, a)) \leq h(1-t) f(a)+h(t) f(b) .
$$

Thus, by integrating, we obtain

$$
\int_{0}^{1} f(a+t \eta(b, a)) d t \leq f(a) \int_{0}^{1} h(1-t) d t+f(b) \int_{0}^{1} h(t) d t=[f(a)+f(b)] \int_{0}^{1} h(t) d t .
$$

But

$$
\int_{0}^{1} f(a+t \eta(b, a)) d t=\frac{1}{\eta(b, a)} \cdot \int_{a}^{a+\eta(b, a)} f(x) d x .
$$

So,

$$
\frac{1}{\eta(b, a)} \cdot \int_{a}^{a+\eta(b, a)} f(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(t) d t
$$

The proof of the second inequality follows by using the definition of an h-preinvex function, Condition C for η and integrating over $[0,1]$.

That is,

$$
\begin{aligned}
f\left(a+\frac{1}{2} \eta(b, a)\right) & =f\left(a+\operatorname{t\eta }(b, a)+\frac{1}{2} \eta(a+(1-t) \eta(b, a), a+t \eta(b, a))\right. \\
& \leq h\left(\frac{1}{2}\right)[f(a+t \eta(b, a))+f(a+(1-t) \eta(b, a))] \\
f\left(a+\frac{1}{2} \eta(b, a)\right) & \leq h\left(\frac{1}{2}\right)\left[\int_{0}^{1} f(a+t \eta(b, a)) d t+\int_{0}^{1} f(a+(1-t) \eta(b, a))\right], \\
f\left(a+\frac{1}{2} \eta(b, a)\right) & \leq 2 \cdot h\left(\frac{1}{2}\right) \frac{1}{\eta(b, a)} \cdot \int_{a}^{a+\eta(b, a)} f(x) d x
\end{aligned}
$$

The proof is complete.

Theorem 2.2 Suppose that $f:\left[a, a+\eta_{1}(b, a)\right] \times\left[c, c+\eta_{2}(d, c)\right] \rightarrow R$ is an $\left(h_{1}, h_{2}\right)$-preinvex function on the co-ordinates with respect to η_{1} and η_{2}, Condition C for η_{1} and η_{2} is fulfilled,
and $a<a+\eta_{1}(b, a), c<c+\eta_{2}(d, c)$, and $h_{1}\left(\frac{1}{2}\right)>0, h_{2}\left(\frac{1}{2}\right)>0$. Then one has the following inequalities:

$$
\begin{align*}
& \frac{1}{4 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \\
& \leq \frac{1}{4 \cdot h_{1}\left(\frac{1}{2}\right) \eta_{2}(d, c)} \int_{c}^{c+\eta_{2}(d, c)} f\left(a+\frac{1}{2} \eta_{1}(b, a), y\right) d y \\
&+\frac{1}{4 \cdot h_{2}\left(\frac{1}{2}\right) \eta_{1}(b, a)} \int_{a}^{c+\eta_{1}(b, a)} f\left(x, c+\frac{1}{2} \eta_{2}(d, c)\right) d x \\
& \leq \frac{1}{\eta_{1}(b, a) \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) d x d y \\
& \leq \frac{1}{2 \eta_{1}(b, a)} \int_{0}^{1} h_{2}\left(t_{2}\right) d t_{2}\left[\int_{a}^{a+\eta_{1}(b, a)} f(x, c) d x+\int_{a}^{a+\eta_{1}(b, a)} f(x, d) d x\right] \\
&+\frac{1}{2 \eta_{2}(d, c)} \int_{0}^{1} h_{1}\left(t_{1}\right) d t_{1}\left[\int_{c}^{c+\eta_{2}(d, c)} f(a, y) d y+\int_{c}^{c+\eta_{2}(d, c)} f(b, y) d y\right] \\
& \leq {[f(a, c)+f(b, c)+f(a, d)+f(b, d)] \int_{0}^{1} h_{1}\left(t_{1}\right) d t_{1} \cdot \int_{0}^{1} h_{2}\left(t_{2}\right) d t_{2} . } \tag{2.3}
\end{align*}
$$

Proof Since f is $\left(h_{1}, h_{2}\right)$-preinvex on the co-ordinates, it follows that the mapping f_{x} is h_{2}-preinvex and the mapping f_{y} is h_{1}-preinvex. Then, by the inequality (2.2), one has

$$
\begin{aligned}
\frac{1}{2 h_{2}\left(\frac{1}{2}\right)} f\left(x, c+\frac{1}{2} \eta_{2}(d, c)\right) & \leq \frac{1}{\eta_{2}(d, c)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) d y \\
& \leq[f(x, c)+f(x, d)] \int_{0}^{1} h_{2}(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2 h_{1}\left(\frac{1}{2}\right)} f\left(a+\frac{1}{2} \eta_{1}(b, a), y\right) & \leq \frac{1}{\eta_{1}(b, a)} \int_{a}^{a+\eta_{1}(b, a)} f(x, y) d x \\
& \leq[f(a, y)+f(b, y)] \int_{0}^{1} h_{1}(t) d t .
\end{aligned}
$$

Dividing the above inequalities for $\eta_{1}(b, a)$ and $\eta_{2}(d, c)$ and then integrating the resulting inequalities on $\left[a, a+\eta_{1}(b, a)\right]$ and $\left[c, c+\eta_{2}(d, c)\right]$, respectively, we have

$$
\begin{aligned}
& \frac{1}{\eta_{1}(b, a) \cdot 2 h_{2}\left(\frac{1}{2}\right)} \int_{a}^{a+\eta_{1}(b, a)} f\left(x, c+\frac{1}{2} \eta_{2}(d, c)\right) d x \\
& \leq \frac{1}{\eta_{1}(b, a) \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) d x d y \\
& \leq \frac{1}{\eta_{1}(b, a)} \int_{0}^{1} h_{2}(t) d t\left[\int_{a}^{a+\eta_{1}(b, a)} f(x, c) d x+\int_{a}^{a+\eta_{1}(b, a)} f(x, d) d x\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{\eta_{2}(b, a) \cdot 2 h_{1}\left(\frac{1}{2}\right)} \int_{c}^{c+\eta_{2}(d, c)} f\left(a+\frac{1}{2} \eta_{1}(b, a), y\right) d y \\
& \quad \leq \frac{1}{\eta_{1}(b, a) \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) d x d y \\
& \quad \leq \frac{1}{\eta_{2}(d, c)} \int_{0}^{1} h_{1}(t) d t\left[\int_{c}^{c+\eta_{2}(c, d)} f(a, y) d y+\int_{c}^{c+\eta_{2}(c, d)} f(b, y) d y\right]
\end{aligned}
$$

Summing the above inequalities, we get the second and the third inequalities in (2.3).
By the inequality (2.2), we also have

$$
\frac{1}{2 h_{2}\left(\frac{1}{2}\right)} f\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \leq \frac{1}{\eta_{2}(d, c)} \int_{c}^{c+\eta_{2}(d, c)} f\left(a+\frac{1}{2} \eta_{1}(b, a), y\right) d y
$$

and

$$
\frac{1}{2 h_{1}\left(\frac{1}{2}\right)} f\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \leq \frac{1}{\eta_{1}(b, a)} \int_{a}^{a+\eta_{1}(b, a)} f\left(x, c+\frac{1}{2} \eta_{2}(d, c)\right) d x
$$

which give, by addition, the first inequality in (2.3).
Finally, by the same inequality (2.2), we ca also state

$$
\begin{aligned}
& \frac{1}{\eta_{2}(d, c)} \int_{c}^{c+\eta_{2}(d, c)} f(a, y) d y \leq[f(a, c)+f(a, d)] \int_{0}^{1} h_{2}(t) d t \\
& \frac{1}{\eta_{2}(d, c)} \int_{c}^{c+\eta_{2}(d, c)} f(b, y) d y \leq[f(b, c)+f(b, d)] \int_{0}^{1} h_{2}(t) d t \\
& \frac{1}{\eta_{1}(b, a)} \int_{a}^{a+\eta_{1}(b, a)} f(x, c) d x \leq[f(a, c)+f(b, c)] \int_{0}^{1} h_{1}(t) d t \\
& \frac{1}{\eta_{1}(b, a)} \int_{a}^{a+\eta_{1}(b, a)} f(x, d) d x \leq[f(a, d)+f(b, d)] \int_{0}^{1} h_{1}(t) d t
\end{aligned}
$$

which give, by addition, the last inequality in (2.3).

Remark 3 In particular, for $\eta_{1}(b, a)=b-a, \eta_{2}(d, c)=d-c, h_{1}\left(t_{1}\right)=h_{2}\left(t_{2}\right)=t$, we get the inequalities obtained by Dragomir [6] for functions convex on the co-ordinates on the rectangle from the plane R^{2}.

Remark 4 If $\eta_{1}(b, a)=b-a, \eta_{2}(d, c)=d-c$, and $h_{1}\left(t_{1}\right)=h_{2}\left(t_{2}\right)=t^{s}$, then we get the inequalities obtained by Alomari and Darus in [7] for s-convex functions on the co-ordinates on the rectangle from the plane R^{2}.

Theorem 2.3 Let $f, g:\left[a, a+\eta_{1}(b, a)\right] \times\left[c, c+\eta_{2}(d, c)\right] \rightarrow R$ with $a<a+\eta_{1}(b, a), c<c+$ $\eta_{2}(d, c)$. If f is $\left(h_{1}, h_{2}\right)$-preinvex on the co-ordinates and g is $\left(k_{1}, k_{2}\right)$-preinvex on the co-
ordinates with respect to η_{1} and η_{2}, then

$$
\begin{aligned}
& \frac{1}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) g(x, y) d x d y \\
& \leq M_{1}(a, b, c, d) \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) k_{1}\left(t_{1}\right) k_{2}\left(t_{2}\right) d t_{1} d t_{2} \\
& \quad+M_{2}(a, b, c, d) \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) k_{1}\left(t_{1}\right) k_{2}\left(1-t_{2}\right) d t_{1} d t_{2} \\
& \quad+M_{3}(a, b, c, d) \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) k_{1}\left(1-t_{1}\right) k_{2}\left(t_{2}\right) d t_{1} d t_{2} \\
& \quad+M_{4}(a, b, c, d) \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) k_{1}\left(1-t_{1}\right) k_{2}\left(1-t_{2}\right) d t_{1} d t_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{1}(a, b, c, d)=f(a, c) g(a, c)+f(a, d) g(a, d)+f(b, c) g(b, c)+f(b, d) g(b, d), \\
& M_{2}(a, b, c, d)=f(a, c) g(a, d)+f(a, d) g(a, c)+f(b, c) g(b, d)+f(b, d) g(b, c), \\
& M_{3}(a, b, c, d)=f(a, c) g(b, c)+f(a, d) g(b, d)+f(b, c) g(a, c)+f(b, d) g(a, d), \\
& M_{4}(a, b, c, d)=f(a, c) g(b, d)+f(a, d) g(b, c)+f(b, c) g(a, d)+f(b, d) g(a, c) .
\end{aligned}
$$

Proof Since f is $\left(h_{1}, h_{2}\right)$-preinvex on the co-ordinates and g is $\left(k_{1}, k_{2}\right)$-preinvex on the coordinates with respect to η_{1} and η_{2}, it follows that

$$
\begin{aligned}
f(a+ & \left.t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(a, c)+h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(a, d) \\
& +h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, c)+h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(b, d)
\end{aligned}
$$

and

$$
\begin{aligned}
g(a+ & \left.t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \\
\leq & k_{1}\left(1-t_{1}\right) k_{2}\left(1-t_{2}\right) g(a, c)+k_{1}\left(1-t_{1}\right) k_{2}\left(t_{2}\right) g(a, d) \\
& +k_{1}\left(t_{1}\right) k_{2}\left(1-t_{2}\right) g(b, c)+k_{1}\left(t_{1}\right) k_{2}\left(t_{2}\right) g(b, d) .
\end{aligned}
$$

Multiplying the above inequalities and integrating over $[0,1]^{2}$ and using the fact that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \cdot g\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) d t_{1} d t_{2} \\
& \quad=\frac{1}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) g(x, y) d x d y
\end{aligned}
$$

we obtain our inequality.

In the next two theorems, we will prove the so-called Hermite-Hadamard-Fejér inequalities for an $\left(h_{1}, h_{2}\right)$-preinvex function.

Theorem 2.4 Let $f:\left[a, a+\eta_{1}(b, a)\right] \times\left[c, c+\eta_{2}(d, c)\right] \rightarrow R$ be $\left(h_{1}, h_{2}\right)$-preinvex on the coordinates with respect to η_{1} and $\eta_{2}, a<a+\eta_{1}(b, a), c<c+\eta_{2}(d, c)$, and $w:\left[a, a+\eta_{1}(b, a)\right] \times$ $\left[c, c+\eta_{2}(d, c)\right] \rightarrow R, w \geq 0$, symmetric with respect to

$$
\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) .
$$

Then

$$
\begin{align*}
& \frac{1}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) w(x, y) d x d y \\
& \leq[f(a, c)+f(a, d)+f(b, c)+f(b, d)] \\
& \quad \cdot \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) w\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) d t_{1} d t_{2} \tag{2.4}
\end{align*}
$$

Proof From the definition of $\left(h_{1}, h_{2}\right)$-preinvex on the co-ordinates with respect to η_{1} and η_{2}, we have
(a)

$$
\begin{aligned}
f(a+ & \left.t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(a, c)+h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(a, d) \\
& +h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, c)+h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(b, d)
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(a+ & \left.\left(1-t_{1}\right) \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(a, c)+h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(a, d) \\
& +h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(b, c)+h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, d)
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(a+ & \left.t_{1} \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(a, c)+h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(a, d) \\
& +h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(b, c)+h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, d)
\end{aligned}
$$

(d)

$$
\begin{aligned}
f(a+ & \left.\left(1-t_{1}\right) \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(t_{1}\right) h_{2}\left(1-t_{2}\right) f(a, c)+h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) f(a, d) \\
& +h_{1}\left(1-t_{1}\right) h_{2}\left(1-t_{2}\right) f(b, c)+h_{1}\left(1-t_{1}\right) h_{2}\left(t_{2}\right) f(b, d)
\end{aligned}
$$

Multiplying both sides of the above inequalities by $w\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right), w(a+$ $\left.\left(1-t_{1}\right) \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right), w\left(a+t_{1} \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right), w\left(a+\left(1-t_{1}\right) \eta_{1}(b, a), c+\right.$
$\left.t_{2} \eta_{2}(d, c)\right)$, respectively, adding and integrating over $[0,1]^{2}$, we obtain

$$
\begin{aligned}
& \frac{4}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) w(x, y) d x d y \\
& \leq[f(a, c)+f(a, d)+f(b, c)+f(b, d)] \\
& \quad \cdot 4 \int_{0}^{1} \int_{0}^{1} h_{1}\left(t_{1}\right) h_{2}\left(t_{2}\right) w\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) d t_{1} d t_{2},
\end{aligned}
$$

where we use the symmetricity of the w with respect to $\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right)$, which completes the proof.

Theorem 2.5 Let $f:\left[a, a+\eta_{1}(b, a)\right] \times\left[c, c+\eta_{2}(d, c)\right] \rightarrow R$ be $\left(h_{1}, h_{2}\right)$-preinvex on the coordinates with respect to η_{1} and η_{2}, and $a<a+\eta_{1}(b, a), c<c+\eta_{2}(d, c), w:\left[a, a+\eta_{1}(b, a)\right] \times$ $\left[c, c+\eta_{2}(d, c)\right] \rightarrow R, w \geq 0$, symmetric with respect to $\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right)$. Then, if Condition C for η_{1} and η_{2} is fulfilled, we have

$$
\begin{align*}
f(a & \left.+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \cdot \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} w(x, y) d x d y \\
& \leq 4 \cdot h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \cdot \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) w(x, y) d x d y \tag{2.5}
\end{align*}
$$

Proof Using the definition of an $\left(h_{1}, h_{2}\right)$-preinvex function on the co-ordinates and Condition C for η_{1} and η_{2}, we obtain

$$
\begin{aligned}
f(a+ & \left.\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \\
\leq & h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \cdot\left[f\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right)\right. \\
& +f\left(a+t_{1} \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right)+f\left(a+\left(1-t_{1}\right) \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) \\
& \left.+f\left(a+\left(1-t_{1}\right) \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right)\right] .
\end{aligned}
$$

Now, we multiply it by $w\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right)=w\left(a+t_{1} \eta_{1}(b, c), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right)=$ $w\left(a+\left(1-t_{1}\right) \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right)=w\left(a+\left(1-t_{1}\right) \eta_{1}(b, a), c+\left(1-t_{2}\right) \eta_{2}(d, c)\right)$ and integrate over $[0,1]^{2}$ to obtain the inequality

$$
\begin{aligned}
& f\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \int_{0}^{1} \int_{0}^{1} w\left(a+t_{1} \eta_{1}(b, a), c+t_{2} \eta_{2}(d, c)\right) d t_{1} d t_{2} \\
& \quad=f\left(a+\frac{1}{2} \eta_{1}(b, a), c+\frac{1}{2} \eta_{2}(d, c)\right) \frac{1}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} w(x, y) d x d y \\
& \quad \leq 4 \cdot h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \frac{1}{\eta_{1}(b, a) \cdot \eta_{2}(d, c)} \int_{a}^{a+\eta_{1}(b, a)} \int_{c}^{c+\eta_{2}(d, c)} f(x, y) w(x, y) d x d y
\end{aligned}
$$

which completes the proof.

Now, for a mapping $f:[a, b] \times[c, d] \rightarrow R$, let us define a mapping $H:[0,1]^{2} \rightarrow R$ in the following way:

$$
\begin{equation*}
H(t, r)=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, r y+(1-r) \frac{c+d}{2}\right) d x d y \tag{2.6}
\end{equation*}
$$

Some properties of this mapping for a convex on the co-ordinates function and an s-convex on the co-ordinates function are given in [6, 7], respectively. Here we investigate which of these properties can be generalized for $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates functions.

Theorem 2.6 Suppose that $:[a, b] \times[c, d]$ is $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates. Then:
(i) The mapping H is $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates on $[0,1]^{2}$,
(ii) $4 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) H(t, r) \geq H(0,0)$ for any $(t, r) \in[0,1]^{2}$.

Proof (i) The $\left(h_{1}, h_{2}\right)$-convexity on the co-ordinates of the mapping H is a consequence of the $\left(h_{1}, h_{2}\right)$-convexity on the co-ordinates of the function f. Namely, for $r \in[0,1]$ and for all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$, we have:

$$
\begin{aligned}
& H\left(\alpha t_{1}+\beta t_{2}, r\right) \\
&= \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(\left(\alpha t_{1}+\beta t_{2}, r\right) x+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}\right. \\
&\left.r y+(1-r) \frac{c+d}{2}\right) d x d y \\
&= \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(\alpha\left(t_{1} x+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} x+\left(1-t_{2}\right) \frac{a+b}{2}\right),\right. \\
&\left.r y+(1-r) \frac{c+d}{2}\right) d x d y \\
& \leq h_{1}(\alpha) \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t_{1} x+\left(1-t_{1}\right) \frac{a+b}{2}, r y+(1-r) \frac{c+d}{2}\right) d x d y \\
&+h_{1}(\beta) \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t_{2} x+\left(1-t_{2}\right) \frac{a+b}{2}, r y+(1-r) \frac{c+d}{2}\right) d x d y \\
&= h_{1}(\alpha) H\left(t_{1}, r\right)+h_{1}(\beta) H\left(t_{2}, r\right) .
\end{aligned}
$$

Similarly, if $t \in[0,1]$ is fixed, then for all $r_{1}, r_{2} \in[0,1]$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, we also have

$$
H\left(t, \alpha r_{1}+\beta r_{2}\right) \leq h_{2}(\alpha) H\left(t, r_{1}\right)+h_{2}(\beta) H\left(t, r_{2}\right),
$$

which means that H is $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates.
(ii) After changing the variables $u=t x+(1-t) \frac{a+b}{2}$ and $v=r y+(1-r) \frac{c+d}{2}$, we have

$$
\begin{aligned}
H(t, r) & =\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, r y+(1-r) \frac{c+d}{2}\right) d x d y \\
& =\frac{1}{(b-a)(d-c)} \int_{u_{L}}^{u_{U}} \int_{v_{L}}^{v_{U}} f(u, v) \frac{b-a}{u_{U}-u_{L}} \cdot \frac{d-c}{v_{U}-v_{L}} d u d v
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\left(u_{U}-u_{L}\right)\left(v_{U}-v_{L}\right)} \int_{u_{L}}^{u_{U}} \int_{v_{L}}^{v_{U}} f(u, v) d u d v \\
& \geq \frac{1}{4 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
\end{aligned}
$$

where $u_{L}=t a+(1-t) \frac{a+b}{2}, u_{U}=t b+(1-t) \frac{a+b}{2}, v_{L}=r c+(1-r) \frac{c+d}{2}$ and $v_{U}=r d+(1-r) \frac{c+d}{2}$, which completes the proof.

Remark 5 If f is convex on the co-ordinates, then we get $H(t, r) \geq H(0,0)$. If f is s-convex on the co-ordinates in the second sense, then we have the inequality $H(t, r) \geq 4^{s-1} H(0,0)$.

Competing interests

The author declares that he has no competing interests.

Received: 5 December 2012 Accepted: 18 April 2013 Published: 7 May 2013

References

1. Breckner, WW: Stetigkeitsanssagen für eine Klasse verallgemeinerter Konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. (Belgr.) 23, 13-20 (1978)
2. Dragomir, SS, Fitzpatrick, S: The Hadamard's inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687-696 (1999)
3. Varošanec, S: On h-convexity. J. Math. Anal. Appl. 326, 303-311 (2007)
4. Sarikaya, MZ, Saglam, A, Yildirim, H: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2, 335-341 (2008)
5. Bombardelli, M, Varošanec, S : Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58, 1869-1877 (2009)
6. Dragomir, SS: On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane Taiwan. J. Math. 5(4), 775-788 (2001)
7. Alomari, M, Darus, M : The Hadamard's inequality for s-convex function of 2 -variables on the co-ordinates. Int. J. Math. Anal. 2(13), 629-638 (2008)
8. Latif, MA, Dragomir, SS: On some new inequalities for differentiable co-ordinated convex functions. J. Inequal. Appl. (2012). doi:10.1186/1029-242X-2012-28
9. Özdemir, ME, Latif, MA, Akademir, AO: On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates. J. Inequal. Appl. (2012). doi:10.1186/1029-242X-2012-21
10. Özdemir, ME, Kavurmaci, H, Akademir, AO, Avci, M: Inequalities for convex and s-convex functions on $\Delta=[a, b] \times[c, d]$. J. Inequal. Appl. (2012). doi:10.1186/1029-242X-2012-20
11. Mohan, SR, Neogy, SK: On invex sets and preinvex functions. J. Math. Anal. Appl. 189, 901-908 (1995)
12. Noor, MS: Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 14, 167-173 (2009)
13. Noor, MS: Some new classes of non convex functions. Nonlinear Funct. Anal. Appl. 11, 165-171 (2006)
14. Noor, MS: On Hadamard integral inequalities involving two log-preinvex functions. J. Inequal. Pure Appl. Math. 8(3), 1-6 (2007)
15. Weir, T, Mond, B: Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 136, 29-38 (1988)
16. Yang, XM, Li, D: On properties of preinvex functions. J. Math. Anal. Appl. 256, 229-241 (2001)
[^0]
[^0]: doi:10.1186/1029-242X-2013-227
 Cite this article as: Matłoka: On some Hadamard-type inequalities for $\left(h_{1}, h_{2}\right)$-preinvex functions on the co-ordinates. Journal of Inequalities and Applications 2013 2013:227.

