51. On Some Homogeneous Boundary Value Problems Bounded Below

By Daisuke FUJIWARA Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1969)

§1. Introduction. Let Ω be a compact oriented Riemannian *n*-space with smooth boundary Γ . Let A be a linear partial differential operator on Ω of order 2m. We assume A is strongly elliptic, that is, there is a constant C>0 such that, for any x in Ω and for any non zero vector ξ cotangent to Ω at x, we have

 $C^{-1}|\xi|^{2m} \leq \operatorname{Re} \sigma_{2m}(A)(x,\xi) \leq C|\xi|^{2m},$

where $\sigma_{2m}(A)$ is the principal symbol of A. We consider normal systems $\{B_r\}_{r \in R}$, $R = (r_1, r_2, \dots, r_m)$, of m boundary operators B_{r_j} . r_j is the order of B_{r_j} . We assume $r_j < 2m$ for any $j = 0, 1, \dots, m$. The problem to be considered is

Problem 1. Characterize those couples $\{A, \{B_r\}_{r \in R}\}$ which give, with some constants $1/2 \ge \varepsilon \ge 0$, $C, \beta > 0$, the estimate

(1) $\operatorname{Re}((A+\beta)u, u)_{L^{2}(g)} \geq C \|u\|_{H^{m-\varepsilon}(g)}^{2}$

for all u in $H^{2m}_B(\Omega) = \{ u \in H^{2m}(\Omega) ; B_r u |_{\Gamma} = 0, \text{ for any } r \in R \}.$

Here $H^{s}(\Omega)$ denotes the Sobolev space on Ω of order s, $\| \|_{H^{s}(\Omega)}$ is its norm and $(,)_{L^{2}(\Omega)}$ is the inner product in $L^{2}(\Omega)$.

If $1/2 > \varepsilon \ge 0$, the problem was treated in far stronger form in [3]. In this note we concern with the case $\varepsilon = 1/2$. So the problem is

Problem 1'. Characterize those couples $\{A, \{B_r\}_{r \in R}\}$ which give, with some constants $C, \beta > 0$, the estimate

(2) $\operatorname{Re}((A+\beta)u, u)_{L^{2}(g)} \geq C \|u\|_{H^{m-1/2}(g)}^{2}$

for all u in $H^{2m}_B(\Omega)$.

We assume the following hypothesis (H) that was proved in the case $0 \le \varepsilon \le 1/2$ necessary for the estimate (1) to hold. (See [3] and [6].) (H) The set R coincides with one of the R_j 's defined by $R_j = (0, 1, \dots, \dots, m-j-1, m, m+1, \dots, m+j-1), 1 \le j \le m$. Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.^{*)}

§2. Results. We denote by ν the interior unit normal to Γ and

^{*)} This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.

by D_n the normal derivative $-i\frac{\partial}{\partial\nu}$ multiplied by $-i=-\sqrt{-1}$. S_j is the complement of R_j in the set $\{0, 1, 2, \dots, 2m-1\}$. Then $B_r, r \in R_j$ can be written as

$$B_r = D_n^r - \sum_{\substack{\rho \in S_j \\ \rho < r}} B_{r-\rho}^r D_n^{\rho},$$

where $B_{r-\rho}^{r}$ is a pseudo-differential operator on Γ of order $\leq r-\rho$. Let $\Lambda = (1 - \Delta')^{1/2}$ where Δ' is the Laplace-Beltrami operator associated with the metric on Γ . Then Λ^{k} is an isomorphism from $H^{s}(\Gamma)$ to $H^{s-k}(\Gamma)$. Λ^{*} denotes the formal adjoint of Λ .

We choose and fix α so large that we can solve uniquely the problem:

$$(A + A^* + 2lpha)v = 0 \ D_n^k v|_{arphi} = arLambda^k \phi_k, \quad m - 1 \ge k \ge m - j, \ D_n^k v|_{arLambda} = 0, \quad m - j - 1 \ge k \ge 0,$$

and obtain the estimates, for any $s \in \mathbf{R}$,

(5)
$$C^{-1} \sum_{k=m-j}^{m-1} \|\phi_k\|_{H^{s-1/2}(\Gamma)}^2 \le \|v\|_{H^{s}(\mathcal{Q})}^2 \le C \sum_{k=m-j}^{m-1} \|\phi_k\|_{H^{s-1/2}(\Gamma)}^2.$$

Here and hereafter we denote by C different constants >0 in different occurrences.

Now we fix $B = \{B_r\}_{r \in R_j}$. We decompose any u in $H^{2m}_B(\Omega)$ into sum of two functions v and w:

$$u=v+w$$
,

(6) where

(7)
$$(A+A^*+2\beta)v=0 \text{ on } \Omega, \quad D_n^k v|_{\Gamma}=D_n^k u|_{\Gamma}, \quad 0 \le k \le m-1,$$

and $D_n^k w|_{\Gamma} = 0$, $0 \le k \le m-1$. This implies that $D_n^k v|_{\Gamma} = 0$ for $0 \le k \le m-j-1$. We set $D_n^k u|_{\Gamma} = \Lambda^k \varphi_k$, $m-j \le k \le m-1$. Let $H_B^i(\Omega)$ be the closure of $H_B^{2m}(\Omega)$ in $H^s(\Omega)$. Then $H_B^m(\Omega) = \{u \in H^m(\Omega) : D_n^k u|_{\Gamma} = 0, \ 0 \le k \le m-j-1\}$. The decomposition (6) is a topological decomposition of $H_B^m(\Omega)$. (See [5].) Now we take any u in $H_B^{2m}(\Omega)$. Then using the boundary condition $B_r u|_{\Gamma} = 0$ and the decomposition (6), we can find pseudo-differential operators $H_{p,q}$ on Γ of order 2m-1, $m-j \le p$, $q \le m-1$, such that

(8)
$$\operatorname{Re}((A+\beta)u, u)_{L^{2}(g)}$$

$$= \operatorname{Re}((A+\beta)w, w)_{L^{2}(\mathcal{G})} + \sum_{p,q=m-j}^{m-1} (H_{pq}(\beta)\varphi_{q}, \varphi_{p})_{L^{2}(\Gamma)}.$$

(See [2].)

Let T be the 1 dimensional circle $= \mathbb{R}/2\pi Z$. We consider the elliptic operator $\tilde{A} = A + D_s^{2m}$, $s \in T$, on $\Omega \times T$ and boundary operators $\{B_r\}_{r \in R_j}$ on $\Gamma \times T$. $H_B^s(\Omega \times T)$ denotes the closure in $H^s(\Omega \times T)$ of $H_B^{2m}(\Omega \times T) = \{f \in H^{2m}(\Omega \times T) : B_r f|_{\Gamma \times T} = 0, r \in R_j\}$. Decomposition corresponding to (6) holds for functions in $H_B^{2m}(\Omega \times T)$, that is, for any f in $H_B^{2m}(\Omega \times T)$,

No. 4]

D. FUJIWARA

(9)
$$f=g+h, \quad (\tilde{A}+\tilde{A}^*+2\beta)g=0 \text{ on } \Omega \times T, \\ D_n^k g|_{\Gamma \times T}=D_n^k f|_{\Gamma \times T}, \quad 0 \le k \le m-1.$$

We set $D_n^k f|_{\Gamma \times T} = \tilde{A}^k \phi_k$, $m - j \le k \le m - 1$, where $\tilde{A} = (1 - \Delta' + D_s^2)^{1/2}$. Just as we did above, we can find pseudo-differential operators $\tilde{H}_{pq}(\beta)$ on $\Gamma \times T$ of order 2m - 1 such that for any f in $H_B^{2m}(\Omega \times T)$

(10)
$$\operatorname{Re}((\tilde{A}+\beta)f,f)_{L^{2}(g\times T)} = \operatorname{Re}((\tilde{A}+\beta)h,h)_{L^{2}(g\times T)} + \sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\beta)\phi_{q},\phi_{p})_{L^{2}(\Gamma\times T)}.$$

Our first result is

Theorem 1. Each of the following four propositions are equivalent to the other:

(i) There are some β_1 , $C_1 > 0$ such that the estimate (2) holds for any $u \in H^{2m}_B(\Omega)$.

(ii) There are some
$$\beta_2$$
, $C_2 > 0$, such that the estimate

(11)
$$\operatorname{Re}((\tilde{A}+\beta_2)f,f)_{L^2(\mathcal{Q}\times T)} \ge C_2 \|f\|_{H^{m-1/2}(\mathcal{Q}\times T)}^2$$

holds for any f in $H^{2m}_B(\Omega \times T)$.

(iii) There are some constants β_3 , $C_3 > 0$ such that the estimate

(12)
$$\sum_{p,q=m-j}^{m-1} (H_{pq}(\beta_3)\varphi_q,\varphi_p)_{L^2(\Gamma)} \ge C_3 \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{m-1}(\Gamma)}^2$$

holds for any $\varphi_{m-j}, \varphi_{m-j+1}, \cdots, \varphi_{m-1} \in H^{m-1/2}(\Gamma)$.

(iv) There are some constants γ , β_4 , $C_4 > 0$ such that the estimate

(13)
$$\sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\gamma)\phi_q,\phi_p)_{L^2(\Gamma\times T)} + \beta_4 \sum_{p=m-j}^{m-1} \|\phi_p\|_{H^{-1/2}(\Gamma\times T)}^2$$
$$\geq C_4 \sum_{p=m-j}^{m-1} \|\phi_p\|_{H^{m-1}(\Gamma\times T)}^2$$

holds for any $\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1}$ in $H^{m-1/2}(\Gamma \times T)$.

Remark 1. In the case $0 \le \varepsilon \le 1/2$ the estimate holds with some β , C > 0, if and only if, with some γ , β , C > 0, the estimate

(14)
$$\sum_{p,q=m-j}^{m-1} (H_{pq}(\gamma)\varphi_q,\varphi_p)_{L^2(\Gamma)} + \beta \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{-1/2}(\Gamma)}^2 \\ \ge C \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{m-1/2-\epsilon}(\Gamma)}^2$$

holds for any $\varphi_{m-1}, \dots, \varphi_{m-1}$ in $H^{m-1/2}(\Gamma)$.

We consider pseudo-differential operators $\tilde{H}_{pq}(\gamma)$, $m-j \leq p$, $q \leq m-1$, of order 2m-1 defined on $\Gamma \times T$ and satisfying the property (iv) of Theorem 1.

The property (iv) of Theorem 1 can be localized.

Theorem 2. Assume that there exists a family of finite number of real functions $\{\mu_k(x)\}_{k=1}^N$ in $\mathcal{D}(\Gamma \times T)$ satisfying

(i) $\sum \mu_k(x,s)^2 = 1$,

(ii) for any $\phi_{m-j}, \phi_{m-j+1}, \dots, \phi_{m-1} \in \mathcal{D}$ ($\Gamma \times T$) and for any k the following estimate holds:

230

Boundary Value Ploblems Bounded Below

(15)
$$\sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\gamma)\mu_k\phi_q, \mu_k\phi_p)_{L^2(\Gamma\times T)} + \beta \sum_{p=m-j}^{m-1} \|\mu_k\phi_p\|_{H^{-1/2}(\Gamma\times T)}^2$$
$$\geq C \sum_{p=m-j}^{m-1} \|\mu_k\phi_p\|_{H^{m-1}(\Gamma\times T)}^2.$$

Then for any $\phi_{m-j}, \phi_{m-j+1}, \dots, \phi_{m-1} \in \mathcal{D}$ ($\Gamma \times T$) the estimate (13) holds with some β_4 , C_4 and $\gamma_4 > 0$.

Let Ω be any open set (not necessarily connected) in \mathbb{R}^n . Let Q_{rs} , $m-j \leq r, s \leq m-1$, be pseudo-differential operators of order 1 defined in Ω . $q_{rs}(x,\xi) \sim \sum_{j=0}^{\infty} q_{rs}^j(x,\xi)$ denote the symbol of Q_{rs} . We assume the matrix $(q_{rs}^0(x,\xi))_{rs}$ of the principal symbols of Q_{rs} is Hermitian. Then we have

Theorem 3. The following two properties are equivalent:

(i) For any compact set K in Ω , there are constants C_0 and $C_1 > 0$ such that, for any $\phi_{m-j}, \phi_{m-j+1}, \dots, \phi_{m-1} \in \mathcal{D}(K)$,

(16) Re
$$\sum_{r,s=m-j}^{m-1} (Q_{rs}\phi_s,\phi_r)_{L^2(\mathcal{Q})} + C_1 \sum_{r=m-j}^{m-1} \|\phi_r\|_{H^{-1/2}(\mathcal{Q})}^2 \ge C_0 \sum_{r=m-j}^{m-1} \|\phi_r\|_{H^0(\mathcal{Q})}^2.$$

(ii) For any compact set K_1 in Ω , there exist constant C>0, integer N>0 and a function $\varepsilon(\xi)$ with $\varepsilon(\xi)\to 0$ when $|\xi|\to\infty$ such that, for any $x \in K_1, \psi_{m-j}, \dots, \psi_{m-1} \in \mathcal{D}(\mathbb{R}^n)$,

(17)
$$\operatorname{Re}_{r,s=m-j, |\alpha|+|\beta|\leq 2} \frac{|\xi|^{(|\beta|-|\alpha|)/2}}{\alpha\,|\beta|} q_{rs(\alpha)}^{0(\beta)}(x,\xi) \int_{\mathbb{R}^{n}} (iD_{y})^{\beta} \psi_{s}(y) \overline{(-iy)^{\alpha}\psi_{r}(y)} dy + \operatorname{Re}_{r,s=m-j} \sum_{r,s=m-j}^{m-1} q_{rs}^{1}(x,\xi) \int_{\mathbb{R}^{n}} \psi_{s}(y) \overline{\psi_{r}(y)} dy + \varepsilon(\xi) \sum_{|\alpha|+|\beta|\leq N} \sum_{r=m-j}^{m-1} \int_{\mathbb{R}^{n}} |D_{y}^{\alpha}y^{\beta}\psi_{r}(y)| dy \geq C \sum_{r=m-j}^{m-1} \int_{\mathbb{R}^{n}} |\psi_{r}(y)|^{2} dy,$$

where $q^{0(\beta)}_{(\alpha)}(x,\xi) = D^{\alpha}_{x} D^{\beta}_{\xi} q^{0}(x,\xi).$

Remark 2. The estimate (14) holds for any $\varphi_{m-j}, \dots, \varphi_{m-1} \in H^{m-1/2}(\Gamma)$ if and only if the matrix defined by the principal symbols $\sigma_{2m-1}(H_{pq}(\beta))(x',\xi')$ is uniformly positive definite. Thus we can prove the result in [3] without the assumption that $\sigma_{2m}(A)(x,\xi)$ is real.

To prove Theorem 3 we use the following theorem which is interesting in itself.

Theorem 4.*) Let K be any compact set in an open set Ω in \mathbb{R}^n and let P be a peudo-differential operator of order ρ defined on Ω , whose symbol is denoted by $p(x, \xi)$. Assume $\varphi \in \mathcal{D}(\Omega)$ is identically 1 in some neighbourhood of K. Then for any N > 0, there is a constant C > 0 such that for any $x \in K$, $\xi \in \mathbb{R}^n$ with $|\xi| \ge 1$, and ϕ , φ in $\mathcal{D}(\mathbb{R}^n)$,

No. 4]

^{*)} During the preparation of this article the author had a chance to know that A. P. Calderón also had obtained, independently, a result similar to Theorem 4 in a little stronger form.

$$\begin{split} |\xi|^{n/2} &\int_{\mathcal{Q}} (P\varphi v_1)(y)\overline{\varphi v_2(y)} dy \\ &- \sum_{|\alpha|, |\beta| < N} \frac{|\xi|^{(|\beta| - |\alpha|)/2}}{\alpha \, !\beta \, !} p_{\langle \alpha \rangle}^{\langle \beta \rangle}(x, \, \xi) \int (iD_y)^{\beta} \psi(y) \overline{(-iy)^{\alpha} \phi(y)} dy \\ &\leq C |\xi|^{-N/2 + 2|\beta| + n} \|\psi\|_{H^{3N/2}} \|(1 + |y|)^N \phi\|_{H^0(\mathbf{R}^n)}, \end{split}$$

where $v_1(y) = \psi((y-x)|\xi|^{1/2})e^{iy\cdot\xi}$ and $v_2(y) = \phi((y-x)|\xi|^{1/2})e^{iy\cdot\xi}$.

Proofs of Theorems 3 and 4 are omitted here. They are similar to the discussion in [4].

References

- Agmon, S.: The coerciveness problem for integro-differential forms. J. Analyse Math., 6, 183-223 (1958).
- [2] Fujiwara, D.: On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators (to appear in J. Fac. Sci. Univ. Tokyo).
- [3] Fujiwara, D., and Shimakura, N.: Sur les problèmes aux limites elliptiques stablement variationnels (to appear).
- [4] Hörmander, L.: Pseudo-differential operators and non elliptic boundary problems. Ann. of Math., 83, 129-209 (1966).
- [5] Lions, J. L., and Magenes. E.: Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
- [6] Shimakura, N.: Problèmes aux limites variationnels du type elliptique (to appear in Ann. Sci. Ecole Norm. Sup. de Paris).