51. On Some Homogeneous Boundary Value Problems Bounded Below

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., April 12, 1969)

§ 1. Introduction. Let Ω be a compact oriented Riemannian n-space with smooth boundary Γ. Let A be a linear partial differential operator on Ω of order $2 m$. We assume A is strongly elliptic, that is, there is a constant $C>0$ such that, for any x in Ω and for any non zero vector ξ cotangent to Ω at x, we have

$$
C^{-1}|\xi|^{2 m} \leq \operatorname{Re} \sigma_{2 m}(A)(x, \xi) \leq C|\xi|^{2 m},
$$

where $\sigma_{2 m}(A)$ is the principal symbol of A. We consider normal systems $\left\{B_{r}\right\}_{r \in R}, R=\left(r_{1}, r_{2}, \cdots, r_{m}\right)$, of m boundary operators $B_{r_{j}} . \quad r_{j}$ is the order of $B_{r_{j}}$. We assume $r_{j}<2 m$ for any $j=0,1, \cdots, m$. The problem to be considered is

Problem 1. Characterize those couples $\left\{A,\left\{B_{r}\right\}_{r \in R}\right\}$ which give, with some constants $1 / 2 \geq \varepsilon \geq 0, C, \beta>0$, the estimate

$$
\begin{equation*}
\operatorname{Re}((A+\beta) u, u)_{L^{2}(\Omega)} \geq C\|u\|_{H^{m-s}(\Omega)}^{2} \tag{1}
\end{equation*}
$$

for all u in $H_{B}^{2 m}(\Omega)=\left\{u \in H^{2 m}(\Omega) ;\left.B_{r} u\right|_{\Gamma}=0\right.$, for any $\left.r \in R\right\}$.
Here $H^{s}(\Omega)$ denotes the Sobolev space on Ω of order $s,\| \|_{H^{s}(\Omega)}$ is its norm and (, $)_{L^{2}(\Omega)}$ is the inner product in $L^{2}(\Omega)$.

If $1 / 2>\varepsilon \geq 0$, the problem was treated in far stronger form in [3]. In this note we concern with the case $\varepsilon=1 / 2$. So the problem is

Problem 1'. Characterize those couples $\left\{A,\left\{B_{r}\right\}_{r \in R}\right\}$ which give, with some constants $C, \beta>0$, the estimate

$$
\begin{equation*}
\operatorname{Re}((A+\beta) u, u)_{L^{2}(\Omega)} \geq C\|u\|_{H^{m-1 / 2}(\Omega)}^{2} \tag{2}
\end{equation*}
$$

for all u in $H_{B}^{2 m}(\Omega)$.
We assume the following hypothesis (H) that was proved in the case $0 \leq \varepsilon<1 / 2$ necessary for the estimate (1) to hold. (See [3] and [6].) (H) The set R coincides with one of the R_{j} 's defined by $R_{j}=(0,1, \ldots$ $\cdots, m-j-1, m, m+1, \cdots, m+j-1), 1 \leq j \leq m$. Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.*)
§2. Results. We denote by ν the interior unit normal to Γ and

[^0]by D_{n} the normal derivative $-i \frac{\partial}{\partial \nu}$ multiplied by $-i=-\sqrt{-1} . \quad S_{j}$ is the complement of R_{j} in the set $\{0,1,2, \cdots, 2 m-1\}$. Then $B_{r}, r \in R_{j}$ can be written as
$$
B_{r}=D_{n}^{r}-\sum_{\substack{\rho \in \mathcal{S}_{j} \\ \rho<r}} B_{r-\rho}^{r} D_{n}^{\rho},
$$
where $B_{r-\rho}^{r}$ is a pseudo-differential operator on Γ of order $\leq r-\rho$. Let $\Lambda=\left(1-\Delta^{\prime}\right)^{1 / 2}$ where Δ^{\prime} is the Laplace-Beltrami operator associated with the metric on Γ. Then Λ^{k} is an isomorphism from $H^{s}(\Gamma)$ to $H^{s-k}(\Gamma) . \quad A^{*}$ denotes the formal adjoint of A.

We choose and fix α so large that we can solve uniquely the problem:

$$
\begin{gathered}
\left(A+A^{*}+2 \alpha\right) v=0 \\
\left.D_{n}^{k} v\right|_{\Gamma}=\Lambda^{k} \phi_{k}, \quad m-1 \geq k \geq m-j, \\
\left.D_{n}^{k} v\right|_{\Gamma}=0, \quad m-j-1 \geq k \geq 0,
\end{gathered}
$$

and obtain the estimates, for any $s \in \boldsymbol{R}$,

$$
\begin{equation*}
C^{-1} \sum_{k=m-j}^{m-1}\left\|\phi_{k}\right\|_{H^{s-1 / 2}(\Gamma)}^{2} \leq\|v\|_{H^{s}(\Omega)}^{2} \leq C \sum_{k=m-j}^{m-1}\left\|\phi_{k}\right\|_{H^{s-1 / 2}(\Gamma)}^{2} \tag{5}
\end{equation*}
$$

Here and hereafter we denote by C different constants >0 in different occurrences.

Now we fix $B=\left\{B_{r}\right\}_{r \in R_{j}}$. We decompose any u in $H_{B}^{2 m}(\Omega)$ into sum of two functions v and w :

$$
\begin{equation*}
u=v+w \tag{6}
\end{equation*}
$$

where
(7) $\quad\left(A+A^{*}+2 \beta\right) v=0$ on $\Omega,\left.\quad D_{n}^{k} v\right|_{\Gamma}=\left.D_{n}^{k} u\right|_{\Gamma}, \quad 0 \leq k \leq m-1$, and $\left.D_{n}^{k} w\right|_{\Gamma}=0,0 \leq k \leq m-1$. This implies that $\left.D_{n}^{k} v\right|_{\Gamma}=0$ for $0 \leq k$ $\leq m-j-1$. We set $\left.D_{n}^{k} u\right|_{\Gamma}=\Lambda^{k} \varphi_{k}, m-j \leq k \leq m-1$. Let $H_{B}^{s}(\Omega)$ be the closure of $H_{B}^{2 m}(\Omega)$ in $H^{s}(\Omega)$. Then $H_{B}^{m}(\Omega)=\left\{u \in H^{m}(\Omega):\left.D_{n}^{k} u\right|_{\Gamma}=0,0 \leq k\right.$ $\leq m-j-1\}$. The decomposition (6) is a topological decomposition of $H_{B}^{m}(\Omega)$. (See [5].) Now we take any u in $H_{B}^{2 m}(\Omega)$. Then using the boundary condition $\left.B_{r} u\right|_{T}=0$ and the decomposition (6), we can find pseudo-differential operators $H_{p, q}$ on Γ of order $2 m-1, m-j \leq p$, $q \leq m-1$, such that

$$
\begin{align*}
& \operatorname{Re}((A+\beta) u, u)_{L^{2}(\Omega)} \tag{8}\\
& \quad=\operatorname{Re}((A+\beta) w, w)_{L^{2}(\Omega)}+\sum_{p, q=m-j}^{m-1}\left(H_{p q}(\beta) \varphi_{q}, \varphi_{p}\right)_{L^{2}(\Gamma)} .
\end{align*}
$$

(See [2].)
Let T be the 1 dimensional circle $=\boldsymbol{R} / 2 \pi Z$. We consider the elliptic operator $\tilde{A}=A+D_{s}^{2 m}, s \in T$, on $\Omega \times T$ and boundary operators $\left\{B_{r}\right\}_{r \in R_{j}}$ on $\Gamma \times T . \quad H_{B}^{s}(\Omega \times T)$ denotes the closure in $H^{s}(\Omega \times T)$ of $H_{B}^{2 m}(\Omega \times T)=\left\{f \in H^{2 m}(\Omega \times T):\left.B_{r} f\right|_{\Gamma \times T}=0, r \in R_{j}\right\}$. Decomposition corresponding to (6) holds for functions in $H_{B}^{2 m}(\Omega \times T)$, that is, for any f in $H_{B}^{2 m}(\Omega \times T)$,

$$
\begin{gather*}
f=g+h, \quad\left(\tilde{A}+\tilde{A}^{*}+2 \beta\right) g=0 \text { on } \Omega \times T, \tag{9}\\
\left.D_{n}^{k} g\right|_{r \times T}=\left.D_{n}^{k} f\right|_{\Gamma \times T}, \quad 0 \leq k \leq m-1 .
\end{gather*}
$$

We set $\left.D_{n}^{k} f\right|_{\Gamma \times T}=\widetilde{\Lambda}^{k} \phi_{k}, m-j \leq k \leq m-1$, where $\widetilde{\Lambda}=\left(1-\Delta^{\prime}+D_{s}^{2}\right)^{1 / 2}$. Just as we did above, we can find pseudo-differential operators $\tilde{H}_{p q}(\beta)$ on $\Gamma \times T$ of order $2 m-1$ such that for any f in $H_{B}^{2 m}(\Omega \times T)$

$$
\begin{align*}
& \operatorname{Re}((\tilde{A}+\beta) f, f)_{L^{2}(\Omega \times T)} \tag{10}\\
& \quad=\operatorname{Re}((\tilde{A}+\beta) h, h)_{L^{2}(\Omega \times T)}+\sum_{p, q=m-j}^{m-1}\left(\tilde{H}_{p q}(\beta) \phi_{q}, \phi_{p}\right)_{L^{2}(\Gamma \times T)} .
\end{align*}
$$

Our first result is
Theorem 1. Each of the following four propositions are equivalent to the other:
(i) There are some $\beta_{1}, C_{1}>0$ such that the estimate (2) holds for any $u \in H_{B}^{2 m}(\Omega)$.
(ii) There are some $\beta_{2}, C_{2}>0$, such that the estimate

$$
\begin{equation*}
\operatorname{Re}\left(\left(\tilde{A}+\beta_{2}\right) f, f\right)_{L^{2}(\Omega \times T)} \geq C_{2}\|f\|_{H^{m-1 / 2}(\Omega \times T)}^{2} \tag{11}
\end{equation*}
$$

holds for any f in $H_{B}^{2 m}(\Omega \times T)$.
(iii) There are some constants $\beta_{3}, C_{3}>0$ such that the estimate

$$
\begin{equation*}
\sum_{p, q=m-j}^{m-1}\left(H_{p q}\left(\beta_{3}\right) \varphi_{q}, \varphi_{p}\right)_{L^{2}(\Gamma)} \geq C_{3} \sum_{p=m-j}^{m-1}\left\|\varphi_{p}\right\|_{H^{m-1}(\Gamma)}^{2} \tag{12}
\end{equation*}
$$

holds for any $\varphi_{m-j}, \varphi_{m-j+1}, \cdots, \varphi_{m-1} \in H^{m-1 / 2}(\Gamma)$.
(iv) There are some constants $\gamma, \beta_{4}, C_{4}>0$ such that the estimate

$$
\begin{align*}
& \left.\sum_{p, q=m-j}^{m-1}\left(\tilde{H}_{p q}(\gamma) \phi_{q}, \phi_{p}\right)_{L^{2}(\Gamma \times T)}+\beta_{4} \sum_{p=m-j}^{m-1}\left\|\phi_{p}\right\|_{H-1 / 2} \|^{2} \times T\right) \tag{13}\\
& \quad \geq C_{4} \sum_{p=m-j}^{m-1}\left\|\phi_{p}\right\|_{H^{m-1}(\Gamma \times T)}^{2}
\end{align*}
$$

holds for any $\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1}$ in $H^{m-1 / 2}(\Gamma \times T)$.
Remark 1. In the case $0 \leq \varepsilon<1 / 2$ the estimate holds with some $\beta, C>0$, if and only if, with some $\gamma, \beta, C>0$, the estimate

$$
\begin{align*}
& \sum_{p, q=m-j}^{m-1}\left(H_{p q}(\gamma) \varphi_{q}, \varphi_{p}\right)_{L^{2}(\Gamma)}+\beta \sum_{p=m-j}^{m-1}\left\|\varphi_{p}\right\|_{H^{-1 / 2}(\Gamma)}^{2} \tag{14}\\
& \geq C \sum_{p=m-j}^{m-1}\left\|\varphi_{p}\right\|_{H^{m-1 / 2-s(r)}}^{2}
\end{align*}
$$

holds for any $\varphi_{m-j}, \cdots, \varphi_{m-1}$ in $H^{m-1 / 2}(\Gamma)$.
We consider pseudo-differential operators $\tilde{H}_{p q}(\gamma), m-j \leq p$, $q \leq m-1$, of order $2 m-1$ defined on $\Gamma \times T$ and satisfying the property (iv) of Theorem 1.

The property (iv) of Theorem 1 can be localized.
Theorem 2. Assume that there exists a family of finite number of real functions $\left\{\mu_{k}(x)\right\}_{k=1}^{N}$ in $\mathscr{D}(\Gamma \times T)$ satisfying
(i) $\sum \mu_{k}(x, s)^{2}=1$,
(ii) for any $\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1} \in \mathscr{D}(\Gamma \times T)$ and for any k the following estimate holds:

$$
\begin{align*}
& \sum_{p, q=m-j}^{m-1}\left(\tilde{H}_{p q}(\gamma) \mu_{k} \phi_{q}, \mu_{k} \phi_{p}\right)_{L^{2}(\Gamma \times T)}+\beta \sum_{p=m-j}^{m-1}\left\|\mu_{k} \phi_{p}\right\|_{H^{-1 / 2}(\Gamma \times T)}^{2} \tag{15}\\
& \quad \geq C \sum_{p=m-j}^{m-1}\left\|\mu_{k} \phi_{p}\right\|_{H^{m-1}(\Gamma \times T)}^{2} .
\end{align*}
$$

Then for any $\phi_{m-j}, \phi_{m_{-j+1}}, \cdots, \phi_{m_{-1}} \in \mathscr{D}(\Gamma \times T)$ the estimate (13) holds with some β_{4}, C_{4} and $\gamma_{4}>0$.

Let Ω be any open set (not necessarily connected) in \boldsymbol{R}^{n}. Let $Q_{r s}$, $m-j \leq r, s \leq m-1$, be pseudo-differential operators of order 1 defined in $\Omega . \quad q_{r s}(x, \xi) \sim \sum_{j=0}^{\infty} q_{r s}^{j}(x, \xi)$ denote the symbol of $Q_{r s}$. We assume the matrix $\left(q_{r s}^{0}(x, \xi)\right)_{r s}$ of the principal symbols of $Q_{r s}$ is Hermitian. Then we have

Theorem 3. The following two properties are equivalent:
(i) For any compact set K in Ω, there are constants C_{0} and $C_{1}>0$ such that, for any $\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1} \in \mathscr{D}(K)$,

$$
\begin{equation*}
\operatorname{Re} \sum_{r, s=m-j}^{m-1}\left(Q_{r s} \phi_{s}, \phi_{r}\right)_{L^{2}(\Omega)}+C_{1} \sum_{r=m-j}^{m-1}\left\|\phi_{r}\right\|_{H^{-1 / 2}(\Omega)}^{2} \geq C_{0} \sum_{r=m-j}^{m-1}\left\|\phi_{r}\right\|_{H^{0}(\Omega)}^{2} . \tag{16}
\end{equation*}
$$

(ii) For any compact set K_{1} in Ω, there exist constant $C>0$, integer $N>0$ and a function $\varepsilon(\xi)$ with $\varepsilon(\xi) \rightarrow 0$ when $|\xi| \rightarrow \infty$ such that, for any $x \in K_{1}, \psi_{m-j}, \cdots, \psi_{m-1} \in \mathscr{D}\left(\boldsymbol{R}^{n}\right)$,

$$
\begin{align*}
& \operatorname{Re} \sum_{r, s=m-j,}^{m-1} \sum_{|\alpha|+|\beta| \leq 2} \frac{|\xi| \leq|||\beta|-|\alpha|) / 2}{\alpha!\beta!} q_{r s(\alpha)}^{0(\beta)}(x, \xi) \int_{\boldsymbol{R}^{n}}\left(i D_{y}\right)^{\beta} \psi_{s}(y) \overline{(-i y)^{\alpha} \psi_{r}(y)} d y \tag{17}\\
&+\operatorname{Re} \sum_{r, s=m-j}^{m-1} q_{r s}^{1}(x, \xi) \int_{\boldsymbol{R}^{n}} \psi_{s}(y) \overline{\psi_{r}(y)} d y \\
&+\varepsilon(\xi) \sum_{|\alpha|+|\beta| \leq N} \sum_{r=m-j}^{m-1} \int_{\boldsymbol{R}^{n}}\left|D_{y}^{\alpha} y^{\beta} \psi_{r}(y)\right| d y \\
& \quad \geq C \sum_{r=m-j}^{m-1} \int_{\boldsymbol{R}^{n}}\left|\psi_{r}(y)\right|^{2} d y,
\end{align*}
$$

where $q_{(\alpha)}^{0(\beta)}(x, \xi)=D_{x}^{\alpha} D_{\xi}^{\beta} q^{0}(x, \xi)$.
Remark 2. The estimate (14) holds for any $\varphi_{m-j}, \cdots, \varphi_{m-1}$ $\in H^{m-1 / 2}(\Gamma)$ if and only if the matrix defined by the principal symbols $\sigma_{2 m-1}\left(H_{p q}(\beta)\right)\left(x^{\prime}, \xi^{\prime}\right)$ is uniformly positive definite. Thus we can prove the result in [3] without the assumption that $\sigma_{2 m}(A)(x, \xi)$ is real.

To prove Theorem 3 we use the following theorem which is interesting in itself.

Theorem 4.*) Let K be any compact set in an open set Ω in \boldsymbol{R}^{n} and let P be a peudo-differential operator of order ρ defined on Ω, whose symbol is denoted by $p(x, \xi)$. Assume $\varphi \in \mathscr{D}(\Omega)$ is identically 1 in some neighbourhood of K. Then for any $N>0$, there is a constant $C>0$ such that for any $x \in K, \xi \in \boldsymbol{R}^{n}$ with $|\xi| \geqq 1$, and ϕ, φ in $\mathscr{D}\left(\boldsymbol{R}^{n}\right)$,

[^1]\[

$$
\begin{aligned}
& |\xi|^{n / 2} \int_{\Omega}\left(P \varphi v_{1}\right)(y) \overline{\varphi v_{2}(y)} d y \\
& \quad-\sum_{|\alpha|,|\beta|<N} \frac{|\xi|^{(|\beta|-|\alpha|) / 2}}{\alpha!\beta!} p_{(\alpha)}^{(\beta)}(x, \xi) \int\left(i D_{y}\right)^{\beta} \psi(y) \overline{(-i y)^{\alpha} \phi(y)} d y \\
& \quad \leq C|\xi|^{-N / 2+2|\beta|+n}\|\psi\|_{H^{3 N / 2}}\left\|(1+|y|)^{N} \phi\right\|_{H^{0}\left(\boldsymbol{R}^{n}\right)}
\end{aligned}
$$
\]

where $v_{1}(y)=\psi\left((y-x)|\xi|^{1 / 2}\right) e^{i y \cdot \xi}$ and $v_{2}(y)=\phi\left((y-x)|\xi|^{1 / 2}\right) e^{i y \cdot \xi}$.
Proofs of Theorems 3 and 4 are omitted here. They are similar to the discussion in [4].

References

[1] Agmon, S.: The coerciveness problem for integro-differential forms. J. Analyse Math., 6, 183-223 (1958).
[2] Fujiwara, D.: On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators (to appear in J. Fac. Sci. Univ. Tokyo).
[3] Fujiwara, D., and Shimakura, N.: Sur les problèmes aux limites elliptiques stablement variationnels (to appear).
[4] Hörmander, L.: Pseudo-differential operators and non elliptic boundary problems. Ann. of Math., 83, 129-209 (1966).
[5] Lions, J. L., and Magenes. E.: Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
[6] Shimakura, N.: Problèmes aux limites variationnels du type elliptique (to appear in Ann. Sci. Ecole Norm. Sup. de Paris).

[^0]: *) This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.

[^1]: *) During the preparation of this article the author had a chance to know that A. P. Calderón also had obtained, independently, a result similar to Theorem 4 in a little stronger form.

