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ON SOME IMPLICIT AND SEMI-IMPLICIT STAGGERED SCHEMES

FOR THE SHALLOW WATER AND EULER EQUATIONS

R. Herbin1, W. Kheriji2 and J.-C. Latché2

Abstract. In this paper, we propose implicit and semi-implicit in time finite volume schemes for
the barotropic Euler equations (hence, as a particular case, for the shallow water equations) and for
the full Euler equations, based on staggered discretizations. For structured meshes, we use the MAC
finite volume scheme, and, for general mixed quadrangular/hexahedral and simplicial meshes, we use
the discrete unknowns of the Rannacher−Turek or Crouzeix−Raviart finite elements. We first show
that a solution to each of these schemes satisfies a discrete kinetic energy equation. In the barotropic
case, a solution also satisfies a discrete elastic potential balance; integrating these equations over the
domain readily yields discrete counterparts of the stability estimates which are known for the continuous
problem. In the case of the full Euler equations, the scheme relies on the discretization of the internal
energy balance equation, which offers two main advantages: first, we avoid the space discretization of the
total energy, which involves cell-centered and face-centered variables; second, we obtain an algorithm
which boils down to a usual pressure correction scheme in the incompressible limit. Consistency (in a
weak sense) with the original total energy conservative equation is obtained thanks to corrective terms
in the internal energy balance, designed to compensate numerical dissipation terms appearing in the
discrete kinetic energy inequality. It is then shown in the 1D case, that, supposing the convergence of a
sequence of solutions, the limit is an entropy weak solution of the continuous problem in the barotropic
case, and a weak solution in the full Euler case. Finally, we present numerical results which confirm
this theory.
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1. Introduction

The objective pursued in this work is to develop and analyze a class of efficient numerical schemes for the
simulation of compressible flows at all Mach number regimes. To this purpose, our basic choice is to extend
algorithms that are classical in the incompressible framework, namely pressure correction schemes based on
(inf-sup stable) staggered discretizations.
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The fractional step strategy involving an elliptic pressure correction step has been recognized to yield algo-
rithms which are not limited by stringent stability conditions (such as CFL conditions based on the celerity of
the fastest waves) since the first attempts to build “all flow velocity” schemes in the late sixties [23] or in the
early seventies [24]; these algorithms may be seen as an extension to the compressible case of the celebrated MAC
scheme, introduced some years before [25]. These seminal papers have been the starting point for the develop-
ment of numerous schemes, using staggered finite volume space discretizations [4, 6, 34, 35, 38, 41, 47, 64–69,71],
colocated finite volumes [2,10,32,33,36,37,39,43,48–51,54,57,59,61,70] or finite elements [3,46,52,72]. Algorithms
proposed in these works may be essentially implicit-in-time, and the pressure correction step is then an ingredi-
ent of a SIMPLE-like iterative procedure, or only semi-implicit, with a single (or a limited number of) prediction
and correction step(s), as in projection methods for incompressible flows (see [7, 60] for seminal works and [19]
for a review of most of the variants). The schemes which we propose in the present paper fall in this latter class.

We first deal with the barotropic Euler equations, which read:

∂t ρ + div(ρ u) = 0, (1.1a)

∂t (ρ u) + div(ρ u ⊗ u) + ∇p = 0, (1.1b)

ρ ≥ 0, p = ℘(ρ) = ργ , (1.1c)

where t stands for the time, ρ, u, p, are the density, velocity, pressure in the flow, and γ > 1 is a coefficient
specific to the considered fluid. For p = ργ , γ = 2 and ρ = h, we also get the shallow water (or Saint-Venant)
equations.

Then, we address the full Euler equations, which are obtained from the complete Navier–Stokes equations

∂tρ + div(ρ u) = 0, (1.2a)

∂t(ρ u) + div(ρ u ⊗ u) + ∇p − div(τ (u)) = 0, (1.2b)

∂t(ρ E) + div(ρ E u) + div(p u) = 0, (1.2c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1.2d)

by neglecting the viscous stress tensor, i.e. setting τ (u) = 0. In this system, E and e stand for the total energy
and the internal energy in the flow, respectively.

Both problems (1.1) and (1.2) are supposed to be posed over Ω×(0, T ), where Ω is an open bounded connected
subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval. System (1.1) (resp. (1.2)) is complemented by initial
conditions for ρ and u (resp. ρ, e and u); these initial conditions are denoted by ρ0 and u0 (resp. ρ0, e0 and
u0), with ρ0 > 0 and e0 > 0. In both cases, we consider the boundary condition u · n = 0 at any time and a.e.
on ∂Ω, where n stands for the normal vector to the boundary.

This paper is organized as follows. We begin by describing the space discretizations (Sect. 2). We then address
the barotropic case in Section 3; we introduce a fully implicit scheme and a pressure correction scheme (Sects. 3.1
and 3.2 resp.). We prove the stability of each algorithm and their consistency in the one-dimensional case, in the
Lax–Wendroff sense. We finally propose in Section 4 a pressure correction scheme for the full Euler equations. We
first give the general form of the algorithm (Sect. 4.2). The scheme solves the internal energy balance, which offers
three advantages: first, we avoid the space discretization of the total energy, which involves cell-centered and
face-centered variables; second, we obtain an algorithm which boils down to a usual pressure correction scheme in
the incompressible limit; third, this relation implies that the internal energy remains positive. Consistency (again
in the Lax–Wendroff sense) with the original total energy conservative equation is obtained thanks to corrective
terms in the internal energy balance, designed to compensate numerical dissipation terms appearing in the
discrete kinetic energy inequality. It is then shown in the 1D case (Sect. 4.3), that, supposing the convergence of
a sequence of solutions, the limit is a weak solution of the continuous problem. Finally, we present some numerical
tests in Section 4.4 for the case of the Euler equations (note that the numerical study of the correction pressure
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scheme in the barotropic case was performed in [27]). In several theoretical developments, we are lead to use a
derived form of a discrete finite volume convection operator (for instance, typically, a convection operator for
the kinetic energy, possibly with residual terms, obtained from the finite volume discretization of the convection
of the velocity components); the proofs of various related discrete identities are given in the Appendix.

2. Meshes and unknowns

Let M be a decomposition of the domain Ω, supposed to be regular in the usual sense of the finite element
literature (see e.g. [8]). The cells may be:

– for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices, both types of
cells being possibly combined in a same mesh,

– for a domain whose boundaries are hyperplanes normal to a coordinate axis, rectangles (d = 2) or rectangular
parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily normal to a coordinate axis).

By E and E(K) we denote the set of all (d−1)-faces σ of the mesh and of the element K ∈ M respectively. The
set of faces included in Ω (resp. in the boundary ∂Ω) is denoted by Eint (resp. Eext); a face σ ∈ Eint separating
the cells K and L is denoted by σ = K|L. The outward normal vector to a face σ of K is denoted by nK,σ.
For K ∈ M and σ ∈ E , we denote by |K| the measure of K and by |σ| the (d − 1)-measure of the face σ. For

1 ≤ i ≤ d, we denote by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the faces of E and Eext respectively which are

perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered. In the case of rectangular or orthogonal parallelepipedic meshes, we
use the Marker-And Cell (MAC) scheme [24, 25]. For mixed simplicial or quadrilateral/hexahedral meshes, we
use the discrete unknowns of the Crouzeix−Raviart [9] and Ranacher–Turek [58] finite element spaces; however,
the associated finite element formulation is not used here (but it would readily provide a discretization of the
diffusion terms, in the Navier–Stokes case [1, 16]).

For all these space discretizations, the degrees of freedom for the scalar unknowns are associated with the
cells of the mesh M; these are the discrete pressure and density unknowns, and, for the full Euler equations,
the internal energy unknowns, which are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity unknowns).

– Rannacher−Turek or Crouzeix−Raviart discretizations – The discrete velocity unknowns are located at
the center of the faces of the mesh, and represent the average of the velocity through the face. The set of
discrete velocity unknowns reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

– MAC discretization – The degrees of freedom for the ith component of the velocity are located at the center
of the faces σ ∈ E(i), so that the set of discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

We now introduce a dual mesh, which will be used for the finite volume approximation of the time derivative
and convection terms in the momentum balance equation.

– Rannacher−Turek or Crouzeix−Raviart discretizations – For the RT or CR discretizations, the dual
mesh is the same for all the velocity components. When K ∈ M is a simplex, a rectangle or a cuboid, for
σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass center of K (see Fig. 1). We
thus obtain a partition of K in m sub-volumes, where m is the number of faces of the mesh, each sub-volume
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Figure 1. Notations for control volumes and dual cells – Left: Finite Elements (the present
sketch illustrates the possibility, implemented in our software (CALIF3S [5]), of mixing simpli-
cial (Crouzeix−Raviart) and quadrangular (Rannacher−Turek) cells) – Right: MAC discretiza-
tion, dual cell for the y-component of the velocity.

having the same measure |DK,σ| = |K|/m. We extend this definition to general quadrangles and hexahedra,
by supposing that we have built a partition still of equal-volume sub-cells, and with the same connectivities;
note that this is of course always possible, but that such a volume DK,σ may be no longer a cone; indeed, if
K is far from a parallelogram, it may not be possible to build a cone having σ as basis, the opposite vertex
lying in K and a volume equal to |K|/m. The volume DK,σ is referred to as the half-diamond cell associated
with K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated with σ by Dσ = DK,σ ∪ DL,σ; for an
external face σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.

– MAC discretization – For the MAC scheme, the dual mesh depends on the component of the velocity. For
the ith component, the dual cells are associated to the faces perpendicular to the ith unit vector of the
canonical basis of Rd, i.e. to the faces of E(i) (which is, of course, consistent with the location of the velocity
discrete unknowns). A MAC dual cell only differs from the corresponding RT or CR one by the choice of the
half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle or rectangular parallelepiped of
basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, by ǫ = Dσ|Dσ′ the face separating two diamond cells Dσ

and Dσ′ , and by Ē(Dσ) the set of the faces of Dσ.
Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary condition. Since the velocity

unknowns lie on the boundary (and not inside the cells), these conditions are taken into account in the definition
of the discrete spaces. To avoid technicalities in the expression of the schemes, we suppose throughout this paper
that the boundary is a.e. normal to a coordinate axis, (even in the case of the RT or CR discretizations), which
allows to simply set to zero the corresponding velocity unknowns:

for i = 1, . . . , d, ∀σ ∈ E
(i)
ext, uσ,i = 0. (2.1)
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Therefore, there are no discrete velocity unknowns on the boundary for the MAC scheme, and there are only
d − 1 discrete velocity unknowns on each boundary face for the CR and RT discretizations, which depend on
the orientation of the face. In order to be able to write a unique expression of the discrete equations for both

MAC and CR/RT schemes, we introduce the set of faces E
(i)
S associated with the degrees of freedom of each

component of the velocity (S stands for “scheme”):

E
(i)
S =

∣∣∣∣∣∣

E(i) \ E
(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by defining:

Ē
(i)
S =

∣∣∣∣∣∣

Ē(i) \ Ē
(i)
ext for the MAC scheme,

Ē \ Ē
(i)
ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ē(i) is thus the set of faces of the dual mesh associated

with the ith component of the velocity, and Ē
(i)
ext stands for the subset of these dual faces included in the

boundary. Note that, for the MAC scheme, the faces of Ē(i) are perpendicular to a unit vector of the canonical
basis of Rd, but not necessarily to the ith one.

Note that general domains can easily be addressed (of course, with the CR or RT discretizations) by redefining,
through linear combinations, the degrees of freedom at the external faces, so as to introduce the normal velocity
as a new degree of freedom.

3. Implicit and semi-implicit schemes for the barotropic equations

We study two schemes for the numerical solution of System (1.1) which differ by the time discretization: the
first one is implicit, and the second one is a non-iterative pressure-correction scheme introduced in [14]. This
latter algorithm (and, by an easy extension, also the first one) was shown in [14] to have at least one solution,
to provide solutions satisfying ρ > 0 (and therefore also p > 0) and to be unconditionally stable, in the sense
that its (their) solution(s) satisfies an inequality corresponding to the control in L∞(0, T ) of the integral of the
discrete entropy over the domain. In this section, we complement this work in several directions. For the implicit
scheme, we obtain the following results.

– First we pass from a (discrete) global (i.e. integrated over Ω) entropy balance to (discrete) local balance
equations. Precisely speaking, a discrete kinetic energy balance is established on dual cells, while a discrete
potential elastic balance is established on primal cells.
These equations yield the stability of the scheme (i.e. the same global entropy conservation as in [14]) by a
simple integration in space (i.e. summation over the primal and dual control volumes).

– Second, in one space dimension, the limit of any convergent sequence of solutions to the scheme is shown to
be a weak solution to the continuous problem, and thus to satisfy the Rankine–Hugoniot conditions.

– Finally, passing to the limit in the discrete kinetic energy and elastic potential balances, such a limit is also
shown to satisfy the usual entropy inequality.

For the pressure correction scheme, the results are essentially the same: the scheme is unconditionally stable,
and the passage to the limit in the scheme shows that if a sequence of approximate solutions obtained with the
scheme is assumed to converge to some limit, then the predicted and end-of-step velocities necessarily tend to
the same function, and that the limit is a weak solution to the problem, satisfying the entropy inequality. The
numerical study of this scheme (which is the only one implemented in practice) is performed in [27]. It confirms
the present theoretical study: in particular, the scheme is observed to converge to weak entropy solutions of
Riemann problems, with an approximately first order rate; in addition, it yields qualitatively correct solutions
for CFL numbers much larger than one.
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3.1. An implicit scheme

3.1.1. The scheme

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. We consider an implicit-in-time scheme, which
reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt

(
ρn+1

K − ρn
K

)
+
∑

σ∈E(K)

Fn+1
K,σ = 0, (3.1a)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt

(
ρn+1

Dσ
un+1

σ,i − ρn
Dσ

un
σ,i

)
+
∑

ǫ∈Ē(Dσ)

Fn+1
σ,ǫ un+1

ǫ,i − |Dσ|
(
∆M

u

)n+1

σ,i
+ |Dσ| (∇p)n+1

σ,i = 0, (3.1b)

∀K ∈ M, pn+1
K = ℘

(
ρn+1

K

)
=
(
ρn+1

K

)γ
, (3.1c)

where the terms introduced for each discrete equation are defined hereafter.
Equation (3.1a) is obtained by discretizing the mass balance (1.1a) over the primal mesh, and Fn+1

K,σ stands
for the mass flux across σ outward K, which, because of the impermeability condition, vanishes on external
faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, Fn+1
K,σ = |σ| ρn+1

σ un+1
K,σ ,

where un+1
K,σ is an approximation of the normal velocity to the face σ outward K. This latter quantity is defined by:

un+1
K,σ =

∣∣∣∣∣
un+1

σ,i e
(i) · nK,σ for σ ∈ E(i) in the MAC case,

u
n+1
σ · nK,σ in the CR and RT cases,

(3.2)

where e
(i) denotes the ith vector of the orthonormal basis of Rd. The density at the face σ = K|L is approximated

by the upwind technique:

ρn+1
σ =

∣∣∣∣∣
ρn+1

K if un+1
K,σ ≥ 0,

ρn+1
L otherwise.

(3.3)

Note that the positivity of the density in (1.1c) is not enforced in the scheme but results from the above
upwind choice (see e.g. [16], Lem. 2.1).

We now turn to the discrete momentum balance (3.1b). In order to obtain the desired estimates on the
approximate solution such as a discrete kinetic energy inequality, the discretization of the momentum balance
must be performed in a way that is compatible with the discretization of the mass balance equation. Hence we
must carefully choose the values ρn+1

Dσ
and ρn

Dσ
as functions of the primal unknowns (ρn+1

K )K∈M and (ρn
K)K∈M

and the fluxes on the dual faces Fn+1
σ,ǫ as functions of the fluxes on the primal faces Fn+1

K,σ . The values ρn+1
Dσ

and

ρn
Dσ

, which approximate the density on the face σ at time tn+1 and tn respectively, are given by the following
weighted average:

for σ = K|L ∈ Eint, for k = n and k = n + 1, |Dσ| ρk
Dσ

= |DK,σ| ρk
K + |DL,σ| ρk

L. (3.4)

Let us then detail the discretization of the convection term. The first task is to define the discrete mass flux
through the dual face ǫ outward Dσ, denoted by Fn+1

σ,ǫ ; the guideline for its construction is that a finite volume
discretization of the mass balance equation over the diamond cells, of the form

∀σ ∈ E ,
|Dσ|

δt

(
ρn+1

Dσ
− ρn

Dσ

)
+
∑

ǫ∈E(Dσ)

Fn+1
σ,ǫ = 0 (3.5)
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must hold in order to be able to derive a discrete kinetic energy balance (see Sect. 3.1.1). For the MAC scheme,
the flux on a dual face which is located on two primal faces is the mean value of the sum of the fluxes on these
two primal faces, and the flux of a dual face located between two primal faces is again the mean value of the sum
of the fluxes on these two primal faces [28]. In the case of the CR and RT schemes, for a dual face ǫ included in
the primal cell K, this flux is computed as a linear combination (with constant coefficients, i.e. independent of
the cell) of the mass fluxes through the faces of K, i.e. the quantities (Fn+1

K,σ )σ∈E(K) appearing in the discrete
mass balance (3.1a). We refer to [1, 15] for a detailed construction of this approximation. Let us remark that
a dual face lying on the boundary is then also a primal face, and the flux across that face is zero. Therefore,
the values un+1

ǫ,i are only needed at the internal dual faces; we choose them to be centered (in fact, the upwind
choice is also covered by our analysis, see the comments on the numerical diffusion below); so, for ǫ = Dσ|Dσ′ ,
un+1

ǫ,i reads:

un+1
ǫ,i =

un+1
σ,i + un+1

σ′,i

2
· (3.6)

The quantity (∆M
u)n+1

σ,i stands for a possible stabilizing diffusion term which may be written under a finite
volume form over any diamond cell Dσ associated with the ith component of the velocity:

−|Dσ| (∆
M

u)n+1
σ,i =

∑

ǫ=Dσ |Dσ′

ν hd−2
ǫ

(
un+1

σ,i − un+1
σ′,i

)
, (3.7)

where hǫ is a characteristic dimension of the face ǫ, and ν stands for a non-negative coefficient, possibly depending
on a power of hǫ. Note that external faces are excluded in the sum at the right-hand side, which means that the
possible associated diffusion flux is set to zero. Note also that (∆M

u)n+1
σ,i is usually (i.e. for general meshes)

not consistent with a Laplace operator. Moreover, the upwind scheme

un+1
ǫ,i =

∣∣∣∣∣
un+1

σ,i if Fn+1
σ,ǫ ≥ 0,

un+1
σ′,i otherwise,

can also be written under this form, since in this case, the convection term may be written as:

(
Fn+1

σ,ǫ un+1
ǫ,i

)(up)
= Fn+1

σ,ǫ

un+1
σ,i + un+1

σ′,i

2
+

1

2

∣∣Fn+1
σ,ǫ

∣∣
(
un+1

σ,i − un+1
σ′,i

)
for ǫ = Dσ|Dσ′ . (3.8)

Hence the upwind choice is included in the formulation (3.1b), (3.6), with a numerical diffusion term defined
by (3.7), setting

ν hd−2
ǫ =

1

2

∣∣Fn+1
σ,ǫ

∣∣ , (3.9)

and ν behaves as hǫ in this case (provided that the density and the velocity are uniformly bounded).
The introduction of a numerical diffusion of the form (3.7) presents two advantages:

– On one hand, if we assume that the coefficient ν is such that C1h
α
ǫ ≤ ν ≤ C2h

α
ǫ with C1, C2 ∈ R+ and

0 < α < 2, we obtain a weak L2(H1) control of the velocity which is sufficient, at least in one space dimension,
to pass to the limit in the scheme (see Sect. 3.1.3). This is not the the case for a pure (i.e. without additional
diffusion term) upwind discretization, because ν vanishes with the mass flux (i.e. the normal velocity).

Note however that the situation is different if we now assume that the approximate velocity u satisfies a BV
estimate: the convergence analysis of Section 3.1.3 then still holds in the centered or upwind case, without
requiring any additional diffusion.

– On the other hand, this formalism may prepare for a stabilization strategy which could be less diffusive than
the upwind choice, choosing for instance ν on the basis of an a posteriori analysis of the local regularity of
the solution [20, 21, 40].
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The last term (∇p)n+1
σ,i stands for the ith component of the discrete pressure gradient at the face σ. The gradient

operator is built as the transpose of the natural discrete divergence operator which is defined by

|K| (divu)K =
∑

σ∈E(K)

|σ| uK,σ. (3.10)

In the CR and RT case, the duality between the divergence and gradient operators simply reads:

∑

K∈M

|K| pK (divu)K +
∑

σ∈E

|Dσ| uσ · (∇p)σ = 0.

This duality relation may be rewritten so as to fit both the CR/RT scheme and the MAC scheme as follows:

∑

K∈M

|K| pK(divu)K +
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| uσ,i (∇p)σ,i = 0. (3.11)

Therefore, on any internal face, the components of the gradients are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|

|Dσ|
(pn+1

L − pn+1
K ) nK,σ · e(i).

Note that, because of the impermeability boundary conditions, the discrete gradient is not defined at the external
faces.

Finally, the initial approximations for ρ and u are given by the average of the initial conditions ρ0 and u0

on the primal and dual cells respectively:

∀K ∈ M, ρ0
K =

1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.12)

3.1.2. Estimates

We begin with an estimate on the velocity which is a discrete equivalent of the kinetic energy balance. Recall
that in the continuous setting, the kinetic energy balance is formally obtained by multiplying the ith component
of the momentum balance equation (1.1b) by the ith component ui of u; this yields for 1 ≤ i ≤ d, using the
mass balance equation (1.1a) twice:

∂t

(
1

2
ρu2

i

)
+ div

((
1

2
ρu2

i

)
u

)
+ (∂xi

p) ui = 0,

and thus, summing over the components:

∂t(ρ Ek) + div
(
ρ Ek u

)
+ ∇p · u = 0, with Ek =

1

2
|u|2. (3.13)

In the discrete setting, this multiplication must be performed on the dual mesh, since the velocity unknowns
are defined on the faces. This is the reason why we chose the fluxes on the faces of the dual mesh in such a way
that a discrete mass balance equation holds on the dual grid cells, thus allowing us to use Lemma A.2 (which
performs the discrete equivalent of the above formal computations) on the dual mesh.
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Lemma 3.1 (Discrete kinetic energy balance, implicit scheme). A solution to the system (3.1) satisfies the

following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[
ρn+1

Dσ
(un+1

σ,i )2 − ρn
Dσ

(un
σ,i)

2
]
+

1

2

∑

ǫ=Dσ |Dσ′

Fn+1
σ,ǫ un+1

σ,i un+1
σ′,i + |Dσ| (∇p)n+1

σ,i un+1
σ,i = −Rn+1

σ,i , (3.14)

where

Rn+1
σ,i =

|Dσ|

2 δt
ρn

Dσ

(
un+1

σ,i − un
σ,i

)2
+

⎡
⎣ ∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ

(
un+1

σ,i − un+1
σ′,i

)
⎤
⎦ un+1

σ,i . (3.15)

Proof. Let us multiply equation (3.1b) by the corresponding velocity unknown un+1
σ,i ; this yields

T conv
σ,i + T ∆

σ,i + T∇
σ,i = 0

with:

T conv
σ,i =

⎡
⎣ |Dσ|

δt

(
ρn+1

Dσ
un+1

σ,i − ρn
Dσ

un
σ,i

)
+

∑

ǫ=Dσ |Dσ′

Fn+1
σ,ǫ un+1

ǫ,i

⎤
⎦ un+1

σ,i ,

T ∆
σ,i =

⎡
⎣ ∑

ǫ=Dσ |Dσ′

ν hd−2
ǫ (un+1

σ,i − un+1
σ′,i )

⎤
⎦ un+1

σ,i ,

T∇
σ,i = |Dσ| (∇p)n+1

σ,i un+1
σ,i .

Applying Lemma A.2 with P = Dσ, we get from the identity (A.9) that

T conv
σ,i =

1

2

|Dσ|

δt

[
ρn+1

Dσ
(un+1

σ,i )2 − ρn
Dσ

(un
σ,i)

2
]

+
1

2

∑

ǫ=Dσ |Dσ′

Fn+1
σ,ǫ un+1

σ,i un+1
σ′,i +

|Dσ|

2 δt
ρn

Dσ

(
un+1

σ,i − un
σ,i

)2
.

We then note that

T ∆
σ,i +

|Dσ|

2 δt
ρn

Dσ

(
un+1

σ,i − un
σ,i

)2
= Rn+1

σ,i ,

where Rn+1
σ,i is defined by (3.15), which concludes the proof of (3.14). �

Let us now define the elastic potential P :

P(z) =

∫ z

0

℘(s)

s2
ds i.e. P(z) =

⎧
⎪⎨
⎪⎩

zγ−1

γ − 1
if γ > 1,

ln(z) if γ = 1,

(3.16)

and let H be the function defined over (0, +∞) by

H(z) = z P(z) =

⎧
⎨
⎩

zγ

γ − 1
if γ > 1,

z ln(z) if γ = 1.

(3.17)

It may easily be checked that zH′(z)−H(z) = ℘(z); therefore, by a formal computation detailed in the appendix
(see (A.3)), multiplying (1.1a) by H′(ρ) yields:

∂t

(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (3.18)

We now derive a discrete analogue of this relation.
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Lemma 3.2 (Discrete potential balance). Let H be defined by (3.17). A solution to the system (3.1) satisfies
the following equality, for K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt

[
H(ρn+1

K ) −H(ρn
K)
]

+
∑

σ∈E(K)

|σ| H(ρn+1
σ ) un+1

K,σ + |K| pn+1
K (divu

n+1)K = −Rn+1
K , (3.19)

with:

Rn+1
K =

|K|

2 δt
H′′(ρ

n+ 1
2

K ) (ρn+1
K − ρn

K)2 +
1

2

∑

σ=K|L

|σ| (un+1
K,σ )− H′′(ρn+1

σ ) (ρn+1
σ − ρn+1

K )2, (3.20)

where ρ
n+ 1

2

K ∈ [min(ρn+1
K , ρn

K), max(ρn+1
K , ρn

K)], ρn+1
σ ∈ [min(ρn+1

σ , ρn+1
K ), max(ρn+1

σ , ρn+1
K )] for all σ ∈ E(K),

and, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). Note that, since the function H is convex, Rn+1
K is

non-negative.

Proof. Let us multiply the discrete mass balance (3.1a) by H′(ρn+1
K ). The result is then a consequence of

Lemma A.1 with P = K, using the fact that zH′(z)−H(z) = ℘(z) and that ρn+1
σ is the upwind choice between

ρK and ρL in the remainder term RK,δt. �

Summing (3.13) and (3.18) yields:
∂tη + div

(
(η + p)u

)
= 0,

where η = ρ Ek +H(ρ) is the entropy of the system. This relation is only valid for regular solutions, and should
be replaced by an inequality to take into account the presence of shocks (see relations (3.34)–(3.35)). Integrating
over Ω and using the boundary conditions yields:

d

dt

∫

Ω

η(x, t) dx ≤ 0 (for regular solutions,
d

dt

∫

Ω

η(x, t) dx = 0),

and, for t ∈ (0, T ), ∫

Ω

η(x, t) dx ≤

∫

Ω

η(x, 0) dx.

The following proposition states a discrete analogue to this relation.

Proposition 3.3 (Global discrete entropy inequality, existence of a solution). Assume that the initial density
ρ0 is positive. Then, there exists a solution (un, ρn) 0≤n≤N to the scheme (3.1), and, for 1 ≤ n ≤ N , ρn > 0
and the following inequality holds:

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρn
Dσ

(un
σ,i)

2 +
∑

K∈M

|K| H(ρn
K) + Rn ≤ C0, (3.21)

where C0 ∈ R+ only depends on the initial conditions, and Rn is the following non-negative remainder which
depends on the space and time translates of the unknowns:

Rn =
d∑

i=1

n∑

k=1

⎡
⎢⎣

1

2

∑

σ∈E
(i)
S

|Dσ| ρk−1
Dσ

(uk
σ,i − uk−1

σ,i )2 + δt
∑

ǫ=Dσ|Dσ′∈Ē
(i)
S

ν hd−2
σ (uk

σ,i − uk
σ′,i)

2

⎤
⎥⎦

+
γ

2

n∑

k=1

δt
∑

σ=K|L∈Eint

|σ| (ρk
σ,γ)γ−2 |uk

K,σ| (ρk
K − ρk

L)2,

(3.22)

with ρk
σ,γ equal to either ρk

K or ρk
L and such that (ρk

σ,γ)γ−2 = min
(
(ρk

K)γ−2, (ρk
L)γ−2

)
.



SEMI-IMPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 1817

Remark 3.4. For γ > 1, the function H is positive and increasing over (0, +∞). The inequality (3.21) thus
readily provides an estimate on the unknowns.

This is still true also for γ = 1, since in this case H(z) = z ln z and therefore H(z) ≥ −1/e, ∀z ∈ (0, +∞), and
H is increasing over (1/e, +∞). In fact, in order to get the usual formulation of an estimate, we may rephrase the
inequality (3.21) by changing the expression of H to H(z) = max(z log(z), 0) and adding |Ω|/e to the constant
C at the right-hand side.

Proof. Let us give the proof of Proposition 3.3. The positivity of the density is a consequence of the properties
of the upwind choice (3.3) for ρ [16], Lemma 2.1; note that it may also be proved applying Lemma A.1 with
ψ(s) = 1

2 (s−)2 and P = K.

Let us then sum equation (3.14) over the components i and the faces σ ∈ E
(i)
S , equation (3.19) over K ∈ M,

and, finally, the two obtained relations. Since the discrete gradient and divergence operators are dual with
respect to the L2-inner product (see (3.11)), noting that the conservative fluxes vanish in the summation, we
get, for 1 ≤ k ≤ N :

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ|

δt

[
ρk

Dσ

(
uk

σ,i

)2
− ρk−1

Dσ

(
uk−1

σ,i

)2]
+
∑

K∈M

|K|

δt

(
H
(
ρk

K

)
−H

(
ρk−1

K

))
= −

d∑

i=1

∑

σ∈E
(i)
S

Rk
σ,i −

∑

K∈M

Rk
K .

(3.23)
Summing (3.23) for k = 1 to n, and using the fact that H′′(z) = γ zγ−2 for any γ ≥ 1 yields (3.21), with Rn

given by (3.22) and

C0 =
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ0
σ |u0

σ,i|
2 +

∑

K∈M

|K| H(ρ0
K).

Finally, the existence of a solution may be inferred by the Brouwer fixed point theorem, by an easy adap-
tation of the proof of ([12], Prop. 5.2). This proof relies on the following set of mesh-dependent estimates: the
conservativity of the mass balance discretization, together with the fact that the density is positive, yields an
estimate for ρ in the L1-norm, and so, by a norm equivalence argument, of the pressure in any norm; the discrete
momentum balance equation then provides a control on the velocity. Therefore, computing

(i) ρ from the mass balance for fixed u;

(ii) p from ρ by the equation of state;

(iii) and finally u from the momentum balance equation with fixed ρ and p.

yields an iteration in a bounded convex subset of a finite dimensional space. �

3.1.3. Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of solutions is controlled
in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak formulation of
the continuous problem.

The 1D version of the scheme which is studied in this section may be obtained from Scheme (3.1) by taking
the MAC variant, with only one horizontal stripe of grid cells, supposing that the vertical component of the
velocity (the degrees of freedom of which are located on the top and bottom boundaries) vanishes, and that
the measure of the vertical faces is equal to 1. For the sake of readability, however, we completely rewrite this
1D scheme, and, to this purpose, we first introduce some adaptations of the notations to the one dimensional
case. For any K ∈ M, we denote by hK its length (so hK = |K|); when we write K = [σσ′], this means that
either K = (xσ , xσ′) or K = (xσ′ , xσ); if we need to specify the order, i.e. K = (xσ , xσ′) with xσ < xσ′ , then

we write K = [
−→
σσ′]. For an interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by

definition of the dual mesh, hσ = |Dσ|. If we need to specify the order of the cells K and L, say K is left of L,
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then we write σ =
−−→
K|L. With these notations, the implicit scheme (3.1) may be written as follows in the one

dimensional setting:

∀K ∈ M, ρ0
K =

1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0
σ =

1

|Dσ|

∫

Dσ

u0(x) dx,
(3.24a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρn
K) + Fn+1

σ′ − Fn+1
σ = 0, (3.24b)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt

(
ρn+1

Dσ
un+1

σ − ρn
Dσ

un
σ

)
+ Fn+1

L un+1
L − Fn+1

K un+1
K

− |Dσ| (∆Mu)n+1
σ + pn+1

L − pn+1
K = 0,

(3.24c)

∀K ∈ M, pn+1
K = ℘

(
ρn+1

K

)
= (ρn+1

K )γ . (3.24d)

The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by:

Fn+1
σ = ρn+1

σ un+1
σ , (3.25)

where the upwind approximate density ρn+1
σ at the face σ is defined by (3.3). In the momentum balance

equation, the application of the procedure described in Section 3.1.1 yields the following expression for the
density associated with the dual cell Dσ with σ = K|L and for the mass fluxes at the dual face located at the
center of the cell K = [σσ′]:

ρn+1
Dσ

=
1

2 |Dσ|

(
|K| ρn+1

K + |L| ρn+1
L

)
, Fn+1

K =
1

2

(
Fn+1

σ + Fn+1
σ′

)
, (3.26)

and the approximation of the velocity at this face is centered: un+1
K = (un+1

σ + un+1
σ′ )/2. Finally, for a face

σ =
−−→
K|L with K = [

−→
σ′σ] and L = [

−−→
σσ′′], the stabilization diffusion term reads:

−|Dσ| (∆Mu)n+1
σ = ν

[
1

hK
(un+1

σ − un+1
σ′ ) +

1

hL

(
un+1

σ − un+1
σ′′

)]
. (3.27)

Definition 3.5 (Regular sequence of discretizations). We define a regular sequence of discretizations
(M(m), δt(m), ν(m))m∈N as a sequence of meshes, time steps and numerical diffusion coefficients satisfying
the following assertions:

(i) both the time step δt(m) and the size h(m) of the mesh M(m), defined by h(m) = supK∈M(m) hK , tend to
zero as m → +∞;

(ii) there exists θ > 0 such that:

θ ≤
hK

hL
≤

1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing a face,

(iii) the sequence of numerical diffusion coefficients (ν(m))m∈N is such that:

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.
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Let such a regular sequence of discretizations be given, and ρ(m), p(m) and u(m) be a solution given by the
scheme (3.24) with the mesh M(m), the time step δt(m) and the numerical diffusion coefficient ν(m). To the
discrete unknowns, we associate piecewise constant functions on time intervals and on primal or dual meshes,
so that the density ρ(m), the pressure p(m) and the velocity u(m) are defined almost everywhere on Ω × (0, T )
by:

ρ(m)(x, t) =
N−1∑

n=0

∑

K∈M

(
ρ(m)
)n+1

K
XK(x) X(n,n+1](t), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(
p(m)
)n+1

K
XK(x) X(n,n+1](t),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(
u(m)
)n+1

σ
XDσ

(x) X(n,n+1](t),

where XK , XDσ
and X(n,n+1] stand for the characteristic functions of the intervals K, Dσ and (tn, tn+1] respec-

tively.

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
Ω × [0, T )

)
:

−

∫ T

0

∫

Ω

[ρ ∂tϕ + ρ u ∂xϕ] dxdt −

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (3.28a)

−

∫ T

0

∫

Ω

[
ρ u ∂tϕ + (ρ u2 + p) ∂xϕ

]
dxdt −

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (3.28b)

p = ργ . (3.28c)

Note that these relations are not sufficient to define a weak solution to the problem, since they do not imply
anything about the boundary conditions. However, they allow to derive the Rankine–Hugoniot conditions; hence
if we show that they are satisfied by the limit of a sequence of solutions to the discrete problem, this implies,
loosely speaking, that the scheme computes correct shocks (i.e. shocks where the jumps of the unknowns and
of the fluxes are linked to the shock speed by Rankine–Hugoniot conditions). This is the result we are seeking
and which we state in Theorem 3.7. In order to prove this theorem, we need some definitions of interpolates of
regular test functions on the primal and dual mesh.

Definition 3.6 (Interpolates on one-dimensional meshes). Let Ω be an open bounded interval of R, let ϕ ∈
C∞

c (Ω × [0, T )), and let M be a mesh of Ω. The interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM =
N−1∑

n=0

∑

K∈M

ϕn
K XK X[tn,tn+1),

where, for 0 ≤ n ≤ N and K ∈ M, we set ϕn
K = ϕ(xK , tn), with xK the mass center of K. The time and space

discrete derivatives of the discrete function ϕM are defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1), and ðxϕM =

N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn
L − ϕn

K

hσ
XDσ

X[tn,tn+1).

Let ϕE be an interpolate of ϕ on the dual mesh, defined by:

ϕE =
N−1∑

n=0

∑

σ∈E

ϕn
σ XDσ

X[tn,tn+1),
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where, for 1 ≤ n ≤ N and σ ∈ E , we set ϕn
σ = ϕ(xσ , tn), with xσ the abscissa of the interface σ. We also define

the time and space discrete derivatives of this discrete function by:

ðtϕE =
N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1), and ðxϕE =
N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn
σ′ − ϕn

σ

hK
XK X[tn,tn+1).

Finally, we define ðxϕM,E by:

ðxϕM,E =

N−1∑

n=0

∑

K=[
−−→
σσ′ ]∈M

ϕn
K − ϕn

σ

hK/2
XDK,σ

X[tn,tn+1), +
ϕn

σ′ − ϕn
K

hK/2
XDK,σ′

X[tn,tn+1).

Theorem 3.7 (Consistency of the one-dimensional implicit scheme). Let Ω be an open bounded inter-
val of R. We suppose that the initial data satisfies ρ0 ∈ L∞(Ω), 1/ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω).
Let (M(m), δt(m), ν(m))m∈N be a regular sequence of discretizations in the sense of Definition 3.5, and
(ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that this sequence converges in
Lp(Ω × (0, T ))3, for 1 ≤ p < +∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequences
(ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )).

Then the limit (ρ̄, p̄, ū) satisfies the system (3.28).

Proof. With the assumed convergence for the sequence of solutions, the limit clearly satisfies the equation of
state (note that in reality this is the difficult point to prove with the estimates at hand, see e.g. [12]). The
proof of this theorem is thus obtained by passing to the limit in the scheme, first for the mass balance equation
and then for the momentum balance equation. Thanks to the assumption on the initial condition, the stability
estimate of Proposition 3.3 is uniform with respect to m, and thus provides uniform bounds for some space
translates of the solution (see the expression (3.22) of the remainder term), which are used all along the proof.
In particular, using in addition the assumption that both sequences (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly
bounded in L∞(Ω × (0, T )), exploiting the last part of the remainder term, we get the following weak BV
estimate for ρ:

∀m ∈ N,

N(m)−1∑

n=0

δt
∑

σ=K|L∈E
(m)
int

∣∣∣∣
(
u(m)
)n+1

σ

∣∣∣∣
[(

ρ(m)
)n+1

K
−
(
ρ(m)
)n+1

L

]2
≤ C, (3.29)

where C stands for a real number which is independent of m.

Mass balance equation – Let ϕ ∈ C∞
c (Ω × [0, T )). Let m ∈ N, M(m), δt(m) and ν(m) be given. Dropping

for short the superscript (m), let ϕM be the interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM

be its time and space discrete derivatives in the sense of Definition 3.6. Thanks to the regularity of ϕ, these
functions respectively converge in Lr(Ω× (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively.
In addition, ϕM(m)(·, 0) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1 as m → +∞. Since the support of ϕ is compact
in Ω × [0, T ), for m large enough, ϕM(m) vanishes at the boundary cells and at the final time; hereafter, we
systematically assume that this indeed the case.

Let us multiply the discrete mass balance equation (3.24b) by δt ϕn
K , and sum the result on n ∈ {0, . . . , N−1}

and K ∈ M, to obtain T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|K| (ρn+1
K − ρn

K) ϕn
K , T

(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
Fn+1

σ′ − Fn+1
σ

]
ϕn

K .
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(In the above expressions and in the remainder of the proof, we whall omit the superscript (m) in the summations

for the sake of clarity.) Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K

ϕn+1
K − ϕn

K

δt
−
∑

K∈M

|K| ρ0
K ϕ0

K ,

= −

∫ T

0

∫

Ω

ρ(m)
ðt ϕM(m) dxdt −

∫

Ω

ρ0(x) ϕM(m)(x, 0) dx.

Since, by assumption, the sequence of discrete solutions converges in Lr(Ω × (0, T )) for r ≥ 1, we get:

lim
m−→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxdt −

∫

Ω

ρ0(x) ϕ(x, 0) dx.

Reordering the sums in T
(m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|Dσ| ρn+1
σ un+1

σ

ϕn
L − ϕn

K

hσ
,

where hσ (which is equal to |Dσ|) is by definition equal to |xL − xK | and we recall that ρn+1
σ is the upwind

approximation of ρn+1 at the face σ. Using the fact that |Dσ| = (|K|+ |L|)/2, we may write T
(m)
2 = T

(m)
2 +R

(m)
2

with:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
|K|

2
ρn+1

K +
|L|

2
ρn+1

L

]
un+1

σ

ϕn
L − ϕn

K

hσ
,

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
|K|

2

(
ρn+1

K − ρn+1
L

)
(un+1

σ )− +
|L|

2

(
ρn+1

K − ρn+1
L

)
(un+1

σ )+
]

ϕn
L − ϕn

K

hσ
·

Therefore we get

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðxϕM(m) dxdt, and lim

m−→+∞
T

(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxdt,

and the remainder term R
(m)
2 is bounded as follows:

|R
(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K|L∈Eint

|Dσ| |ρ
n+1
K − ρn+1

L | |un+1
σ |

≤ Cϕ h1/2
N−1∑

n=0

δt

⎡
⎣ ∑

σ=K|L∈Eint

∣∣un+1
σ

∣∣ ∣∣ρn+1
K − ρn+1

L

∣∣2
⎤
⎦

1/2 ⎡
⎣ ∑

σ=K|L∈Eint

|Dσ|
∣∣un+1

σ

∣∣
⎤
⎦

1/2

,

where the notation Cϕ means that this real number only depends on the function ϕ. Thanks to the stability
estimate (3.29), this term tends to zero when m tends to +∞.

Momentum balance equation – Let ϕE , ðtϕE and ðxϕE be the interpolate of ϕ on the dual mesh and its
discrete time and space derivatives, in the sense of Definition 3.6, which converge in Lr(Ω × (0, T )), for r ≥ 1
(including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively.
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Let us multiply the discrete momentum balance equation (3.24c) by δt ϕn
σ, and sum the result over n ∈

{0, . . . , N − 1} and σ ∈ Eint. We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 = 0 with:

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
(
ρn+1

Dσ
un+1

σ − ρn
Dσ

un
σ

)
ϕn

σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
Fn+1

L un+1
L − Fn+1

K un+1
K

]
ϕn

σ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) ϕn
σ ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

⎡
⎣ ∑

K=[σσ′ ]

ν

hK

(
un+1

σ − un+1
σ′

)
⎤
⎦ ϕn

σ.

Thanks to the definition (3.26) of the density on the dual mesh ρDσ
, reordering the sums, we get for T

(m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈Eint

[
|K|

2
ρn+1

K +
|L|

2
ρn+1

L

]
un+1

σ

ϕn+1
σ − ϕn

σ

δt
−

∑

σ=K|L∈Eint

[
|K|

2
ρ0

K +
|L|

2
ρ0

L

]
u0

σ ϕ0
σ.

Therefore:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðt ϕM(m) dxdt −

∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕM(m)(x, 0) dx.

From the definition (3.24a) of the initial conditions and the assumed regularity of ρ0 and u0, the sequences(
(ρ(m))0

)
and
(
u(m))0

)
converge in Lr(Ω), for 1 ≤ r < +∞, to ρ0 and u0 respectively. From the convergence

assumption for the sequence of discrete solutions, we thus get:

lim
m−→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxdt −

∫

Ω

ρ0(x) u0(x) ϕ(x, 0) dx.

Let us now turn to T
(m)
2 . From the expression (3.26) of the fluxes FK and the values uK , reordering the sums,

we get:

T
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(
ρn+1

σ un+1
σ + ρn+1

σ′ un+1
σ′

) (
un+1

σ + un+1
σ′

)
(ϕn

σ′ − ϕn
σ) ,

which we write T
(m)
2 = T

(m)
2 + R

(m)
2 with:

T
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K

[(
un+1

σ

)2
+ (un+1

σ′ )2
]

(ϕn
σ′ − ϕn

σ) .
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This term reads:

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxdt, and so lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.

The remainder term R
(m)
2 reads:

R
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρn+1

σ un+1
σ + ρn+1

σ′ un+1
σ′ )(un+1

σ +un+1
σ′ )− 2ρn+1

K

((
un+1

σ

)2
+
(
un+1

σ′

)2)]
(ϕn

σ′ −ϕn
σ).

Expanding the quantity 2 ρn+1
K ((un+1

σ )2 + (un+1
σ′ )2) thanks to the identity 2(a2 + b2) = (a + b)2 + (a − b)2, we

get R
(m)
2 = R

(m)
2,1 + R

(m)
2,2 :

R
(m)
2,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[(
(ρn+1

σ − ρn+1
K ) un+1

σ + (ρn+1
σ′ − ρn+1

K ) un+1
σ′

)
(un+1

σ + un+1
σ′ )
]

(ϕn
σ′ − ϕn

σ),

R
(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K (un+1

σ − un+1
σ′ )2 (ϕn

σ′ − ϕn
σ).

First we study R
(m)
2,1 . Thanks to the definition (3.3) of the upwind value ρn+1

σ , reordering the sum by faces, we
get that:

|R
(m)
2,1 | =

1

4

∣∣
N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

(ρn+1
L − ρn+1

K ) un+1
σ (un+1

σ + un+1
σ′ ) (ϕn

σ − ϕn
σ′ )
∣∣,

where the notation L → K means that the flow is going from L to K, or, in other words, that if un+1
σ ≥ 0 (resp.

un+1
σ ≤ 0), the cells K and L are chosen such that σ =

−−→
L|K (resp. σ =

−−→
K|L). Since |ϕn

σ − ϕn
σ′ | ≤ Cϕ |K| ≤

Cϕ (|Dσ| + |Dσ′ |), we get:

|R
(m)
2,1 | ≤

Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

(
|Dσ| + |Dσ′ |

)
|ρn+1

L − ρn+1
K | |un+1

σ | |un+1
σ + un+1

σ′ |.

Therefore, by the Cauchy−Schwarz inequality, we get:

|R
(m)
2,1 | ≤

Cϕ

4
h1/2

N−1∑

n=0

δt

⎡
⎣ ∑

σ=K|L∈Eint

|un+1
σ | (ρn+1

L − ρn+1
K )2

⎤
⎦

1/2

×

⎡
⎢⎢⎢⎣

∑

σ∈Eint,

σ=L→K, K=[σσ′]

(
|Dσ| + |Dσ′ |

)
|un+1

σ |
(
un+1

σ + un+1
σ′

)2

⎤
⎥⎥⎥⎦

1/2

. (3.30)

Since the ratio of the size of two neighboring cells is bounded by the regularity assumption on the mesh (item
(ii) of Def. 3.5), we get from the estimate (3.29) on the solution:

|R
(m)
2,1 | ≤ C h1/2 ‖u(m)‖

3/2

L3(Ω×(0,T )), (3.31)



1824 R. HERBIN ET AL.

where the real number C is independent of m and therefore R
(m)
2,1 tends to zero when m tends to +∞. For

R
(m)
2,2 , we have, thanks to the estimate (3.21):

|R
(m)
2,2 | ≤ Cϕ h2

N−1∑

n=0

δt
∑

K∈M

ρn+1
K

1

hK
(un+1

σ − un+1
σ′ )2 ≤ C

h2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )),

where C > 0 does not depend on m; therefore, this term also tends to zero when m tends to +∞, since, by
assumption, h2/ν(m) tends to zero.

We turn to the term T
(m)
3 :

T
(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| pn+1
K

ϕn
σ′ − ϕn

σ

hK
= −

∫ T

0

∫

Ω

p(m)
ðxϕE dxdt,

and therefore,

lim
m−→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ∂xϕdxdt.

Let us finally study T
(m)
4 . Reordering the sums, we get:

T
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ ) (ϕn

σ − ϕn
σ′ ).

The Cauchy−Schwarz inequality yields:

|T
(m)
4 | ≤

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ )2

⎤
⎥⎦

1/2 ⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(ϕn

σ − ϕn
σ′ )

2

⎤
⎥⎦

1/2

,

and thus, in view of the estimate (3.21), this term tends to zero when ν(m) tends to zero.

Conclusion – Gathering the limits of all the terms of the mass and momentum balance equations concludes
the proof. �

Remark 3.8 (Sharper bounds and convergence assumptions). The convergence properties and bounds assumed
for the solution have been chosen so as to match what may be observed in the theoretical works on compressible
Navier–Stokes equations [13,44,53]. Note that they are weaker than the assumptions of the Lax–Wendroff theo-
rem for colocated finite volume schemes on hyperbolic systems, see e.g. [11], Theorem 5.3. However, examining
the proof of Theorem 3.7, we observe that what we really need is that the sequences ρ(m)u(m), ρ(m)(u(m))2,
p(m)u(m) converge in the distribution sense to ρ̄ū, ρ̄ū2 and p̄ū respectively, that (ρ(m))γ converge a.e. to ρ̄γ , and
that the sequence (u(m))m∈N be bounded in L3(Ω × (0, T )). The required second assumption for (ν(m))m∈N is
in fact:

lim
m→+∞

(h(m))2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )) = 0,

and may be verified, for instance supposing a relation between δt(m) and h(m) and invoking inverse inequalities,
with milder estimates on (ρ(m))m∈N. Finally, the bound of (1/ρ(m))m∈N in L∞(Ω × (0, T )) (which, loosely
speaking, means that the appearance of void is excluded) is needed to obtain the weak-BV estimate:

lim
m→+∞

h(m)
N∑

n=1

∑

σ=K|L∈Eint

|un
σ| (ρn

K − ρn
L)2 = 0 (3.32)
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from the “weighted weak-BV estimate” (3.21):

lim
m→+∞

h(m)
N∑

n=1

∑

σ=K|L∈Eint

(ρn
σ,γ)γ−2 |un

σ| (ρn
K − ρn

L)2 = 0,

where we recall that ρn
σ,γ is equal to either ρn

K or ρn
L. This assumption is thus useless for γ ≤ 2. For γ > 2, in

the case of a non-vanishing viscosity, equation (3.32) may perhaps be derived by using the density itself as test
function in the discrete mass balance equation, and invoking a control of the divergence of the velocity (from
the momentum balance diffusion term), see ([12], Prop. 5.5) for such a computation in the steady case.

Remark 3.9 (Less sharp bounds and more general meshes). The assumption that the ratio of the size of two
neighboring cells is bounded, i.e. assumption (ii) of Definition 3.5, is only used to derive (3.31) from (3.30),

which allows to conclude that the remainder term R
(m)
2,1 tends to zero invoking a control of the velocity only in

L3(Ω×(0, T )). If we choose to use a uniform bound in L∞(Ω×(0, T )) for the sequence of approximate solutions,
we may replace (3.31) by ∣∣∣R(m)

2,1

∣∣∣ ≤ C h1/2 ‖u(m)‖
3/2

L∞(Ω×(0,T )),

and assumption (ii) is useless.

We now turn to the entropy condition. Let us first recall that η = ρ Ek +H(ρ) is an entropy of the continuous
problem (1.1), in the sense that if we sum the formal kinetic energy (3.13) and elastic potential balance (3.18),
we get:

∂tη + ∂x

(
(η + p)u

)
= 0. (3.33)

In fact, in order to avoid to invoke unrealistic regularity assumption, such a computation should be done on
regularized equations (obtained by adding diffusion perturbation terms), and, when making these regularization
terms tend to zero, positive measures appear at the left-hand-side of (3.33), so that we get in the distribution
sense:

∂tη + ∂x

(
(η + p)u

)
≤ 0. (3.34)

An entropy solution to (1.1) is thus required to satisfy, for any ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0:

∫ T

0

∫

Ω

[
η ∂tϕ + (η + p)u ∂xϕ

]
dx dt +

∫

Ω

η0(x) ϕ(x, 0) dx ≥ 0, (3.35)

where η0 =
1

2
ρ0 u2

0 + H(ρ0).

Theorem 3.10 (Entropy consistency, implicit scheme). Under the assumptions of Theorem 3.7, (ρ̄, p̄, ū) sat-
isfies the entropy condition (3.35).

Proof. Let ϕ ∈ C∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0. Using the notations introduced in Definition 3.6, we multiply the kinetic

balance equation (3.14) by ϕn
σ, and the elastic potential balance (3.19) by ϕn

K , sum over the faces and cells
respectively, to get

∑

E∈Eint

T n+1
σ ϕn

σ +
∑

K∈M

T n+1
K ϕn

K = −
∑

E∈Eint

Rn+1
σ ϕn

σ −
∑

K∈M

Rn+1
K ϕn

K , (3.36)

where, for σ =
−−→
K|L, K = [

−→
σ′σ] and L = [

−−→
σσ′′],

T n+1
σ =

1

2

|Dσ|

δt

[
ρn+1

Dσ
(un+1

σ )2 − ρn
Dσ

(un
σ)2
]

+
1

2
Fn+1

L un+1
σ un+1

σ′′ −
1

2
Fn+1

K un+1
σ un+1

σ′ + (pn+1
L − pn+1

K ) un+1
σ ,
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for K = [
−→
σσ′],

T n+1
K =

|K|

δt

[
H(ρn+1

K ) −H(ρn
K)
]

+ un+1
σ′ H(ρn+1

σ′ ) − un+1
σ H(ρn+1

σ ) + pn+1
K (un+1

σ′ − un+1
σ ),

and the quantities Rn+1
σ and Rn+1

K are given by (the one-dimensional version of) equations (3.15) and (3.20)
respectively.

The discrete weak form of the entropy balance is obtained by integrating in time (i.e. summing over the time

steps) equation (3.36). We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 + R(m) = 0 with:

T
(m)
1 =

1

2

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρn+1

Dσ
(un+1

σ )2 − ρn
Dσ

(un
σ)2
]

ϕn
σ, (3.37a)

T
(m)
2 =

1

2

N−1∑

n=0

∑

K∈M

|K|
[
H(ρn+1

K ) −H(ρn
K)
]

ϕn
K , (3.37b)

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint,

K=[
−−→
σ′σ], L=[

−−→
σσ′′]

[
Fn+1

L un+1
σ un+1

σ′′ − Fn+1
K un+1

σ un+1
σ′

]
ϕn

σ, (3.37c)

T
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
un+1

σ′ H(ρn+1
σ′ ) − un+1

σ H(ρn+1
σ )
]

ϕn
K , (3.37d)

T
(m)
5 =

1

2

N−1∑

n=0

δt

⎡
⎢⎣

∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) un+1
σ ϕn

σ +
∑

K=[
−−→
σσ′]∈M

pn+1
K (un+1

σ′ − un+1
σ ) ϕn

K

⎤
⎥⎦ , (3.37e)

R(m) =
1

2

N−1∑

n=0

δt

⎡
⎢⎣

∑

σ=
−−→
K|L∈Eint

Rn
σ ϕn

σ +
∑

K=[
−−→
σσ′ ]∈M

Rn
K ϕn

K

⎤
⎥⎦. (3.37f)

We first study T
(m)
1 . Reordering the summations and then using the definition (3.26) of the density at the

faces, we get:

T
(m)
1 = −

1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ| ρn+1
Dσ

(un+1
σ )2

ϕn+1
σ − ϕn

σ

δt
−

1

2

∑

σ∈E

|Dσ|ρ
0
Dσ

(u0
σ)2 ϕ0

σ

= −
1

2

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðtϕE dxdt −
1

2

∫

Ω

(ρ(m))0(x)
[
(u(m))0(x)

]2
ϕE(x, 0) dx.

By the definition (3.53a) of the initial conditions of the scheme, since both ρ0 and u0 are supposed to belong
to L∞(Ω), (ρ(m))0 and (u(m))0 converge to ρ0 and u0 respectively in Lr(Ω), for r ≥ 1. Since, by assumption,
the sequence of discrete solutions converges in Lr(Ω × (0, T )) for r ≥ 1, we can pass to the limit in the previous
relation, to get:

lim
m−→+∞

T
(m)
1 = −

1

2

∫ T

0

∫

Ω

ρ̄ (ū)2 ∂tϕdxdt −
1

2

∫

Ω

ρ0(x)u0(x)2 ϕ(x, 0) dx. (3.38)



SEMI-IMPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 1827

By a similar computation, we get for T
(m)
2 :

T
(m)
2 = −

N−1∑

n=0

δt
∑

K∈M

|K| H(ρn+1
K )

ϕn+1
K − ϕn

K

δt
−
∑

σ∈E

|K| H(ρ0
K) ϕ0

K

= −

∫ T

0

∫

Ω

H(ρ(m)) ðtϕM(m) dxdt −

∫

Ω

H
(
(ρ(m))0

)
(x) ϕM(m)(x, 0) dx,

and therefore:

lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ̄) ∂tϕdxdt −

∫

Ω

H(ρ0)(x)ϕ(x, 0) dx. (3.39)

Let us now study the kinetic energy convection term T
(m)
3 which reads, after reordering the summations:

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn+1
K un+1

σ un+1
σ′ (ϕn

σ − ϕn
σ′) .

Using now the definition of the mass fluxes at the dual edges, we have:

T
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(
ρn+1

σ un+1
σ + ρn+1

σ′ un+1
σ′ ) un+1

σ′ un+1
σ

(
ϕn

σ − ϕn
σ′

)
.

We now split T
(m)
3 = T

(m)
3 + R

(m)
3 , where

T
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K

[
(un+1

σ )3 + (un+1
σ′ )3

] (
ϕn

σ − ϕn
σ′

)
= −

1

2

∫ T

0

∫

Ω

ρ(m)(u(m))3ðxϕE dxdt,

so that

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ū3∂xϕdxdt,

and

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρn+1

σ un+1
σ + ρn+1

σ′ un+1
σ′ ) un+1

σ un+1
σ′ − ρn+1

K

(
(un+1

σ )3 + (un+1
σ′ )3

)]
(ϕn

σ − ϕn
σ′).

Expanding the quantity (un+1
σ )3 + (un+1

σ′ )3 thanks to the identity a3 + b3 = (a + b)(ab + (a − b)2), we obtain

R
(m)
3 = R

(m)
3,1 + R

(m)
3,2 with:

R
(m)
3,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρn+1

σ − ρn+1
K )un+1

σ + (ρn+1
σ′ − ρn+1

K )un+1
σ′

]
un+1

σ un+1
σ′ (ϕn

σ − ϕn
σ′ ),

R
(m)
3,2 =

1

4

N∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn+1
K (un+1

σ + un+1
σ′ ) (un+1

σ − un+1
σ′ )2 (ϕn

σ − ϕn
σ′).

Reordering the sums, the term R
(m)
3,1 reads:

R
(m)
3,1 =

1

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

εn+1
σ (ρn+1

L − ρn+1
K ) (un+1

σ )2 un+1
σ′ (ϕn

σ − ϕn
σ′),
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where εn+1
σ = ±1 and the notation L → K means that the flow is going from L to K. Thanks to the

Cauchy−Schwarz inequality, we get, by the regularity of ϕ:

|R
(m)
3,1 | ≤ Cϕ h1/2

⎡
⎣

N−1∑

n=0

δt
∑

σ=K|L∈Eint

|un+1
σ | (ρn+1

L − ρn+1
K )2

⎤
⎦

1/2

×

⎡
⎢⎢⎢⎣

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

|K| |un+1
σ | (un+1

σ un+1
σ′ )2

⎤
⎥⎥⎥⎦

1/2

,

and thus:

|R
(m)
3,1 | ≤ Cϕ h1/2 ‖u(m)‖

5/2

L5(Ω×(0,T )).

We now turn to R
(m)
3,2 . Thanks to the regularity of ϕ, we get:

|R
(m)
3,2 | ≤ Cϕ

(h(m))2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖

2

L∞(Ω×(0,T ))

∑

K=[σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ )2,

and thus R
(m)
3,2 also tends to zero when m tends to +∞ as soon as the ratio (h(m))2/ν(m) tends to zero. As a

consequence, we get that

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ū3∂xϕdxdt.

Expressing the mass fluxes as a function of the unknowns in T
(m)
4 and reordering the sums, we get:

T
(m)
4 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρn+1
σ )un+1

σ (ϕn
K − ϕn

L).

Let us write T
(m)
4 = T

(m)
4 + R

(m)
4 , with, thanks to the definition of the upwind density (3.3) at the face:

T
(m)
4 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
|DK,σ|H(ρn+1

K ) + |DL,σ|H(ρn+1
L )
]

un+1
σ

ϕn
K − ϕn

L

hσ
,

R
(m)
4 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|DL,σ|
[
H(ρn+1

L ) −H(ρn+1
K )
]

un+1
σ

ϕn
K − ϕn

L

hσ
·

We have:

T
(m)
4 = −

∫ T

0

∫

Ω

H(ρ(m))u(m)
ðxϕM(m) dxdt, so lim

m−→+∞
T

(m)
4 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕdxdt.

By the regularity of ϕ, we get:

|R
(m)
4 | ≤ Cϕ h(m)

N−1∑

n=0

δt
∑

σ=K|L∈Eint

∣∣H(ρn+1
K ) −H(ρn+1

L )
∣∣ |un+1

σ |.
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Since both sequences (ρ(m))m∈N and (1/ρ(m))m∈N are supposed to be uniformly bounded, we have
∣∣H(ρn+1

K ) −

H(ρn+1
L )
∣∣ ≤ C |ρn+1

K −ρn+1
L | with a constant real number C, and therefore R

(m)
4 tends to zero as h(m). Therefore,

lim
m→+∞

T
(m)
4 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕdxdt. (3.40)

Reordering the sums in the term T
(m)
5 , we obtain:

T
(m)
5 =

N−1∑

n=0

−δt
∑

K=[
−−→
σσ′]∈M

pn+1
K (un+1

σ′ ϕn
σ′ − un+1

σ ϕn
σ) + pn+1

K (un+1
σ − un+1

σ′ ) ϕn
K ,

hence:

T
(m)
5 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

|K|

2
pn+1

K un+1
σ

ϕn
K − ϕn

σ

hK/2
+

|K|

2
pn+1

K un+1
σ′

ϕn
σ′ − ϕn

K

hK/2

= −

∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dxdt.

and so, since ðxϕM,E converges to ∂xϕ in Lr(Ω), for r ≥ 1:

lim
m−→+∞

T
(m)
5 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxdt. (3.41)

From (3.38)−(3.41), we get that

lim
m−→+∞

5∑

i=1

T
(m)
i = −

∫ T

0

∫

Ω

[
η ∂tϕ + (η + p)u ∂xϕ

]
dxdt −

∫

Ω

η0(x) ϕ(x, 0) dx.

In order to complete the proof of Theorem 3.17, there only remains to show that limm→+∞ R(m) ≥ 0. Since we
only seek an inequality, the non-negative part of R(m), i.e. the first part in Rn+1

σ and the whole term Rn+1
K ,

poses no problem, and we only have to study the terms coming from the second part of Rn+1
σ , which reads:

(Rdiff)n+1
σ =

⎡
⎣ ∑

K=[σσ′]

ν(m)

hK
(un+1

σ − un+1
σ′ )

⎤
⎦ un+1

σ .

For 0 ≤ n ≤ N − 1 and K ∈ M, K = [σσ′], let us define the quantity Qn+1
K by:

Qn+1
K =

ν(m)

hK
(un+1

σ − un+1
σ′ )2.

We have Qn+1
K ≥ 0, and, reordering the summation, we get that

Q(m) =

∣∣∣∣∣

N−1∑

n=0

δt

[
∑

σ∈Eint

ϕn
σ (Rdiff)n+1

σ −
∑

K∈M

ϕn
K Qn+1

K

]∣∣∣∣∣

=

∣∣∣∣∣∣∣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν

hK
(un+1

σ − un+1
σ′ )

[
un+1

σ (ϕσ − ϕK) − un+1
σ′ (ϕσ′ − ϕK)

]
∣∣∣∣∣∣∣
.
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By the Cauchy−Schwarz inequality and the regularity of ϕ, we thus get:

Q(m) ≤Cϕ

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(un+1

σ − un+1
σ′ )2

⎤
⎥⎦

1/2

×

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)
(
|DK,σ| (un+1

σ )2 + |DK,σ′ | (un+1
σ′ )2

)
⎤
⎥⎦

1/2

.

From estimate (3.21), we thus get that

Q(m) ≤ C (ν(m))1/2,

where C > 0 only depends on ϕ, on C0 and on the assumed bounds on the solution. Since ν(m) tends to 0 with
m, we then obtain that limm→+∞ R(m) ≥ 0, which concludes the proof. �

3.2. The pressure correction scheme for the barotropic equations

The implicit scheme which we studied in the previous section is easy to write, but difficult to implement in
practice, because of the large nonlinear systems to be solved at the algebraic level. Pressure correction methods
are based on the idea that one may compute the velocity and the pressure in a sequential way, thus yielding
a more practical scheme. The algorithm presented in this section is implemented in the open-source software
component library for fluid flows simulation CALIF3S [5], developed at IRSN on the basis of the software
components library PELICANS [55]; in this context, it is routinely used for industrial applications.

3.2.1. The scheme

In the algorithm given below, the velocity is predicted by solving the momentum balance equation with a
known pressure. This latter is obtained from the beginning-of-step pressure through a “renormalization” step,
in order to be able to perform the stability analysis (stability of the scheme and satisfaction of the entropy
condition). Note that the renormalization proposed here is different than that proposed in [22] in the context
of variable density incompressible flows or in [14] in the context of compressible barotropic flows. Indeed, in
these latter works, this step requires the resolution of a discrete elliptic problem for the pressure, while, here,
we only scale the pressure gradient by a simple weight. Then, the velocity is corrected and the other variables
are advanced in time. As for the implicit scheme, a discrete kinetic energy balance can be derived, provided
that the mass balance over the dual cells (3.5) holds; since the mass balance is not yet solved when performing
the prediction step, this leads us to perform a time shift of the density at this stage. The algorithm reads, for
0 ≤ n ≤ N − 1:

Pressure gradient renormalization step:

∀σ ∈ E ,
(
∇̃p
)n+1

σ
=

√
ρn

Dσ

ρn−1
Dσ

(∇p)n
σ . (3.42a)

Prediction step – Solve for ũ
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρn

Dσ
ũn+1

σ,i − ρn−1
Dσ

un
σ,i) +

∑

ǫ∈Ē(Dσ)

Fn
σ,ǫũ

n+1
ǫ,i − |Dσ| (∆

M
ũ)n+1

σ,i + |Dσ| (∇̃p)n+1
σ,i = 0. (3.42b)
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Correction step – Solve for ρn+1, pn+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
ρn

Dσ
(un+1

σ,i − ũn+1
σ,i ) + |Dσ|

[
(∇p)n+1

σ,i − (∇̃p)n+1
σ,i

]
= 0, (3.42c)

∀K ∈ M,
|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

Fn+1
K,σ = 0, with Fn+1

K,σ = |σ| ρn+1
σ un+1

K,σ , (3.42d)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (3.42e)

Recall that the notation ρn+1
σ in (3.42d) stands for the upwind choice of ρ defined by (3.3), while ρn

Dσ

(resp. ρn−1
Dσ

) in (3.42b) is the convex combination of ρn
K and ρn

L (resp. ρn−1
K and ρn−1

L ) defined by (3.4). The
initialization of the scheme is performed as follows. First, ρ−1 and u

0 are given by the average of the initial
conditions ρ0 and u0 on the primal and dual cells respectively:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.43)

Then, we compute ρ0 by solving the mass balance equation (3.42d). Finally, the initial pressure p0 is computed
from the initial density ρ0 by the equation of state: ∀K ∈ M, p0

K = (ρ0
K)γ . This procedure allows to perform

the first prediction step with (ρ−1
Dσ

)σ∈E , (ρ0
Dσ

)σ∈E and the dual mass fluxes satisfying the mass balance.

3.2.2. Estimates

As for the implicit scheme, we begin with an estimate on the velocity which is a discrete equivalent of the
kinetic energy balance.

Lemma 3.11 (Discrete kinetic energy balance, pressure correction scheme). A solution to the system (3.42)

satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[
ρn

Dσ
(un+1

σ,i )2−ρn−1
Dσ

(un
σ,i)

2
]
+

1

2

∑

ǫ=Dσ|Dσ′

Fn
σ,ǫ ũn+1

σ,i ũn+1
σ′,i + |Dσ| (∇p)n+1

σ,i un+1
σ,i = −Rn+1

σ,i −Pn+1
σ,i , (3.44)

where

Rn+1
σ,i =

|Dσ|

2 δt
ρn−1

Dσ

(
ũn+1

σ,i − un
σ,i

)2
+

⎡
⎣ ∑

ǫ=Dσ |Dσ′

ν hd−2
ǫ (ũn+1

σ,i − ũn+1
σ′,i )

⎤
⎦ ũn+1

σ,i ,

Pn+1
σ,i =

|Dσ| δt

2 ρn
Dσ

[(
(∇p)n+1

σ,i

)2
−
(
(∇̃p)n+1

σ,i

)2]
.

(3.45)

Proof. Let us multiply the velocity prediction equation (3.42b) by the corresponding velocity unknown ũn+1
σ,i ,

and use the equality (A.9) of Lemma A.2, on the dual mesh and with P = Dσ. We obtain:

1

2

|Dσ|

δt

[
ρn

Dσ
(ũn+1

σ,i )2 − ρn−1
Dσ

(un
σ,i)

2
]

+
1

2

∑

ǫ=Dσ|Dσ′

Fn
σ,ǫ ũn+1

σ,i ũn+1
σ′,i

+
1

2

|Dσ|

δt
ρn−1

Dσ

(
ũn+1

σ,i − un
σ,i

)2
− |Dσ|(∆

M
ũ)n+1

σ,i ũn+1
σ,i + |Dσ| (∇̃p)n+1

σ,i ũn+1
σ,i = 0. (3.46)
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Dividing the velocity correction equation (3.42c) by (
|Dσ|

δt
ρn

Dσ
)

1
2 , we obtain:

[
|Dσ|

δt
ρn

Dσ

]1/2

un+1
σ,i +

[
|Dσ| δt

ρn
Dσ

]1/2

(∇p)n+1
σ,i =

[
|Dσ|

δt
ρn

Dσ

]1/2

ũn+1
σ,i +

[
|Dσ| δt

ρn
Dσ

]1/2

(∇̃p)n+1
σ,i .

Squaring this relation, dividing by two and summing it with (3.46) yields the result, using the definition (3.7)
of (∆M

ũ)n+1. �

The discrete potential balance is again valid for the pressure correction algorithm, thanks to the fact that
the mass balance (3.42d) is satisfied. The proof is identical to that of Lemma 3.2 given for the implicit scheme.

Lemma 3.12 (Discrete potential balance, pressure correction scheme). A solution to the system (3.42) satisfies
the discrete potential balance (3.19), with Rn+1

K defined by (3.20).

Let us now turn to the entropy inequality.

Proposition 3.13 (Global discrete entropy inequality, existence of a solution). Assume that the initial condition
ρ0 is positive. Then there exists a solution (un, ρn) 0≤n≤N and (ũn) 1≤n≤N to the scheme (3.42), and, for
1 ≤ n ≤ N , ρn > 0 and the following inequality holds:

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρn−1
Dσ

(un
σ,i)

2 +
∑

K∈M

|K| H(ρn
K) + Rn ≤ C0, (3.47)

where C0 ∈ R+ only depends on the initial conditions and on the density field ρ0 computed at the initialization
of the algorithm. The remainder term Rn is non-negative, and gathers some estimates of the space and time
translates of the unknowns:

Rn =

d∑

i=1

n∑

k=1

⎡
⎢⎣

1

2

∑

σ∈E
(i)
S

|Dσ| ρk−2
Dσ

(ũk
σ,i − uk−1

σ,i )2 + δt
∑

ǫ=Dσ |Dσ′∈Ē
(i)
S

ν hd−2
σ (ũk

σ,i − ũk
σ′,i)

2

⎤
⎥⎦

+
γ

2

n∑

k=1

δt
∑

σ=K|L∈Eint

|σ| (ρk
σ,γ)γ−2 |uk

K,σ| (ρk
K − ρk

L)2 +
δt2

2

∑

σ∈Eint

|Dσ|

ρn−1
Dσ

|(∇p)n
σ |

2, (3.48)

with ρk
σ,γ equal to either ρk

K or ρk
L and such that (ρk

σ,γ)γ−2 = min
(
(ρk

K)γ−2, (ρk
L)γ−2

)
.

Proof. The essential arguments of the proof of this proposition are given in ([14], Thm. 3.8) with slightly different
notations, so we briefly recall here how to obtain the estimate (3.47), for the sake of completeness. We sum the
kinetic energy balance equation (3.44) over the faces, and the elastic potential balance (3.19) over the cells, and
finally sum the two obtained relations. We obtain a “local in time” version of equation (3.47), which reads:

T n+1 − T n + Rn+1 + Pn+1 = 0, (3.49)

where:

T n+1 =
∑

K∈M

|K| H(ρn+1
K ) +

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρn
Dσ

(un+1
σ,i )2,

and:
Rn+1 =

∑

1≤i≤d

∑

σ∈E
(i)
S

Rn+1
σ,i , Pn+1 =

∑

1≤i≤d

∑

σ∈E
(i)
S

∩Eint

Pn+1
σ,i ,
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with Rn+1
σ,i , and Pn+1

σ,i given by equation (3.45). The term Pn+1 thus reads:

Pn+1 =
δt2

2

∑

σ∈Eint

|Dσ|

ρn
Dσ

[
|(∇p)n+1

σ |2 − |(∇̃p)n+1
σ |2

]
=

δt2

2

∑

σ∈Eint

|Dσ|

[
|(∇p)n+1

σ |2

ρn
Dσ

−
|(∇p)n

σ|
2

ρn−1
Dσ

]
· (3.50)

Then, summing (3.49) over the time steps yields the estimate (3.47) with:

C0 =
∑

K∈M

|K| H(ρ0
K) +

1

2

∑

1≤i≤d

∑

σ∈E
(i)
S

|Dσ| ρ−1
Dσ

(u0
σ,i)

2 +
δt2

2

∑

σ∈Eint

|Dσ|

ρ−1
Dσ

|(∇p)0σ|
2. �

Remark 3.14. As in the implicit case, the inequality (3.47) thus provides an estimate on the unknowns (see
Rem. 3.4).

Remark 3.15 (Regularity assumptions for the initial conditions). For a given mesh, the quantity denoted
above by C0 is bounded whenever ρ0 is positive and belongs to L1(Ω) and u0 belongs to L1(Ω)d. When dealing
with a sequence of discretizations to pass to the limit in the scheme, we need to assume that C0 is controlled
independently of the mesh and time step, which necessitates (i) that the initial kinetic energy is bounded, (ii)
that H(ρ0

K) is bounded in L1(Ω), and (iii) that the last term involving the discrete pressure gradient does not
blow-up.

Assumption (ii) (and, of course, (i)) may be obtained by supposing that both u0 and ρ0 belongs to L∞(Ω)
and L∞(Ω)d respectively and that δt/h is bounded (possibly by a number much larger than 1); indeed, ρ0 is then
obtained in this case by a single time step of a (discrete) transport equation with a velocity field the divergence
of which is controlled by 1/h, and so ρ0 is controlled in L∞(Ω). Assumption (iii) may then be inferred by the
same assumption on the ratio δt/h, together with the hypothesis that the data ρ0 (and so ρ−1) is bounded away
from zero. Indeed, since ρ0 is bounded, so is p0 and we get:

∑

σ∈Eint

|Dσ| δt2

ρ−1
Dσ

|(∇p)0σ|
2 =

∑

σ=K|L∈Eint

δt2 |σ|2

ρ−1
Dσ

|Dσ|
(p0

K − p0
L)2 ≤ C ‖

1

ρ−1
‖
L∞(Ω)

‖p0‖
2

L∞(Ω)

∑

σ∈Eint

h2 |σ|2

|Dσ|

and the last sum is bounded. We shall work under these assumptions for the passage to the limit in the scheme.

The expression (3.50) in the proof of Proposition 3.13, where Pn+1 is set under the form of a difference
of the same two quantities taken at two consecutive time steps, shows the interest of the pressure gradient
renormalization step. We prove in addition in the following lemma that, under stability conditions, this remainder
term tends to zero in a discrete distribution sense.

Lemma 3.16 (Pressure remainder terms). Let (M(m), δt(m))m∈N be a sequence of meshes and time steps, such
that h(m) and δt(m) tend to zero as m tends to infinity, and satisfying the CFL-like condition:

∀m ∈ N,
δt(m)

h(m)
≤ C, with h(m) = min

σ∈E
(m)
int

|Dσ|

|σ|
,

and where C is a positive real number which can be greater than 1. Let (ρ(m))m∈N and (p(m))m∈N be (part of) the
associated sequence of discrete solutions, satisfying equations (3.42). We assume that the sequence (p(m))m∈N

is uniformly bounded in L∞(Ω × (0, T )) and in the discrete L1(0, T ; BV (Ω)) norm:

∀m ∈ N, ‖p(m)‖T ,x,BV =
N(m)∑

n=0

δt
∑

σ=K|L∈E
(m)
int

|σ|
∣∣(p(m))n

L − (p(m))n
K

∣∣ ≤ C. (3.51)
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We furthermore suppose that (ρ(m))m∈N and (1/ρ(m))m∈N are bounded in L∞(Ω×(0, T )). Let ϕ ∈ C∞
c (Ω×[0, T )),

and, for m ∈ N, 0 ≤ n ≤ N (m) and σ ∈ E
(m)
int , let ϕn

σ = ϕ(xσ, tn), with xσ the mass center of σ. Let us define
the quantity Pn+1

σ , for 0 ≤ n ≤ N − 1 and σ ∈ Eint, as:

Pn+1
σ =

|Dσ| δt

ρn
Dσ

[
|(∇p)n+1

σ |2 − |(∇̃p)n+1
σ |2

]
. (3.52)

Then

lim
m→+∞

[
n−1∑

n=0

δt
∑

σ∈Eint

Pn+1
σ ϕn

σ

]
= 0.

Proof. By definition of Pn+1
σ , we get that

N−1∑

n=0

δt
∑

σ=K|L∈Eint

Pn+1
σ ϕn

σ =

N−1∑

n=0

δt2
∑

σ=K|L∈Eint

|σ|2

|Dσ|

[
1

ρn
Dσ

(pn+1
K − pn+1

L )2 −
1

ρn−1
Dσ

(pn
K − pn

L)2

]
ϕn

σ .

A discrete integration by parts yields:
∣∣∣∣∣∣

N−1∑

n=0

δt
∑

σ=K|L∈Eint

Pn+1
σ ϕn

σ

∣∣∣∣∣∣
≤ δt2

⎡
⎣ ∑

σ=K|L∈Eint

1

ρ−1
Dσ

|σ|2

|Dσ|
|p0

K − p0
L|

2 |ϕ0
σ |

+

N−1∑

n=0

∑

σ=K|L∈Eint

1

ρn
Dσ

|σ|2

|Dσ|
(pn+1

K − pn+1
L )2|ϕn+1

σ − ϕn
σ|

⎤
⎦ .

Using the fact that, for 0 ≤ n ≤ N and σ = K|L ∈ Eint, (pn
K − pn

L)2 ≤ 2 ‖p‖L∞(Ω×(0,T )) |pn
K − pn

L|, we get,
thanks to the regularity of ϕ, that

|
N−1∑

n=0

δt
∑

σ=K|L∈Eint

Pn+1
σ ϕn

σ| ≤ Cϕ
δt2

h
‖p‖L∞(Ω×(0,T ))

[
‖p0‖BV (Ω) + ‖p‖T ,x,BV

]
,

which concludes the proof. �

3.2.3. Passing to the limit in the scheme

Using the notations of Section 3.1.3, the pressure correction scheme in one space dimension reads:

Initialization – Compute ρ−1, u0, solve for ρ0 and compute p0:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0
σ =

1

|Dσ|

∫

Dσ

u0(x) dx,

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρ0

K − ρ−1
K ) + F 0

σ′ − F 0
σ = 0,

∀K ∈ M, p0
K = (ρ0

K)γ .

(3.53a)

Pressure gradient renormalization step:

∀σ =
−−→
K|L ∈ Eint, (δ̃p)n+1

σ =

√
ρn

Dσ

ρn−1
Dσ

(pn
L − pn

K). (3.53b)
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Prediction step – Solve for ũn+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn

Dσ
ũn+1

σ − ρn−1
Dσ

un
σ) + Fn

L ũn+1
L − Fn

K ũn+1
K

−|Dσ| (∆Mũ)n+1
σ + (δ̃p)n+1

σ = 0,
(3.53c)

Correction step – Solve for ρn+1, pn+1 and un+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
ρn

Dσ
(un+1

σ − ũn+1
σ ) + (pn+1

L − pn+1
K ) − (δ̃p)n+1

σ = 0, (3.53d)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρn
K) + Fn+1

σ′ − Fn+1
σ = 0, (3.53e)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (3.53f)

Theorem 3.17 (Consistency of the pressure correction scheme). Let Ω be an open bounded interval of R. We
suppose that ρ0 ∈ L∞(Ω), 1/ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m), ν(m))m∈N be a regular sequence of
discretizations in the sense of Definition 3.5, and let (ρ(m), p(m), u(m), ũ(m))m∈N be the corresponding sequence
of solutions. We suppose that this sequence converges in Lp(Ω × (0, T ))4, for 1 ≤ p < +∞, to (ρ̄, p̄, ū, ¯̃u) ∈
L∞(Ω×(0, T ))4. We suppose in addition that both sequences (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded
in L∞(Ω × (0, T )).

Then ū = ¯̃u and the triplet (ρ̄, p̄, ū) satisfies the system (3.28).

Proof. Let m ∈ N be given. Dropping for short the superscript (m), the estimate of Proposition 3.13 yields:

n∑

k=1

δt
∑

σ∈Eint

|Dσ| ρk−1
Dσ

(ũk
σ − uk−1

σ )2 ≤ C δt, (3.54)

where, by the assumption on the initial data, the real number C is independent of m (see Rem. 3.15). Hence,

‖ũ(m) − u(m)(., . − δt)‖
2

L2(Ω×(0,T )) ≤ C δt(m) ‖
1

ρ(m)
‖
L∞(Ω×(0,T ))

.

Letting m tend to +∞ in this equation yields ū = ¯̃u.
As for the implicit scheme, with the assumed convergence for the sequence of solutions, the limit satisfies

the equation of state. The passage to the limit in the mass balance equation is the same as in the implicit
case, and we only need to address here the momentum balance equation. Let ϕ ∈ C∞

c (Ω × [0, T )), and let its
interpolate ϕE and its discrete derivatives be defined by Definition 3.6. Summing the velocity prediction and
correction equations, multiplying the result by δt ϕn

σ and then summing over the faces and time steps, we get

T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 = 0, with:

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρn

Dσ
ũn+1

σ − ρn−1
Dσ

un
σ

]
ϕn

σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
Fn

L ũn+1
L − Fn

K ũn+1
K

]
ϕn

σ,
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T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K ) ϕn
σ ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=[σσ′ ]

ν

hK
(ũn+1

σ − ũn+1
σ′ )
]

ϕn
σ .

Thanks to the definition (3.26) of the density on the dual mesh ρDσ
, reordering the sums, we get for T

(m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ=K|L∈Eint

[ |K|

2
ρn

K +
|L|

2
ρn

L

]
ũn+1

σ

ϕn+1
σ − ϕn

σ

δt
−

∑

σ=K|L∈Eint

[ |K|

2
ρ−1

K +
|L|

2
ρ−1

L

]
u0

σ ϕ0
σ

= −

∫ T

0

∫

Ω

ρ(m) ũ(m)
ðt ϕM(m) dxdt −

∫

Ω

(ρ(m))−1(x) (u(m))0(x) ϕM(m)(x, 0) dx.

From the definition (3.53a) of the initial conditions, the sequences
(
(ρ(m))−1

)
and
(
u(m))0

)
converge in Lr(Ω),

for r ≥ 1, to ρ0 and u0 respectively. Thanks to the convergence assumption for the sequence of discrete solutions,
and noting that the sequence

(
ρ(m)(·, · − δt)

)
m∈N

converges to ρ̄ as (ρ(m))m∈N, we get:

lim
m−→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxdt −

∫

Ω

ρ0(x) u0(x) ϕ(x, 0) dx.

Let us now turn to T
(m)
2 . From the expression (3.26) of the fluxes FK and the values uK , reordering the sums,

we get:

T
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρn
σun

σ + ρn
σ′ un

σ′) (ũn+1
σ + ũn+1

σ′ ) (ϕn
σ′ − ϕn

σ),

which we write T
(m)
2 = T

(m)
2 + R

(m)
2 with:

T
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn
K

[
un

σ ũn+1
σ + un

σ′ ũn+1
σ′

]
(ϕn

σ′ − ϕn
σ). (3.56)

= −

∫ T

0

∫

Ω

ρ(m)(·, · − δt) u(m)(·, · − δt) ũ(m)
ðxϕE dxdt, (3.57)

and therefore,

lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.

The remainder term R
(m)
2 reads:

R
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=
[−−→
σσ′

]
∈M

[
(ρn

σun
σ + ρn

σ′un
σ′)
(
ũn+1

σ + ũn+1
σ′

)

− 2ρn
K

(
un

σ ũn+1
σ + un

σ′ ũn+1
σ′

)]
(ϕn

σ′ − ϕn
σ) .



SEMI-IMPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 1837

Expanding the quantity 2ρn
K (un

σ ũn+1
σ +un

σ′ ũn+1
σ′ ) thanks to the identity 2(ab+cd) = (a+c)(b+d)+(a−c)(b−d),

we get R
(m)
2 = R

(m)
2,1 + R

(m)
2,2 :

R
(m)
2,1 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

(
(ρn

σ − ρn
K) un

σ + (ρn
σ′ − ρn

K) un
σ′

)
(ũn+1

σ + ũn+1
σ′ ) (ϕn

σ′ − ϕn
σ),

R
(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρn
K (un

σ − un
σ′) (ũn+1

σ − ũn+1
σ′ ) (ϕn

σ′ − ϕn
σ).

First we study R
(m)
2,1 . Thanks to the definition of the upwind approximation, reordering the sum by faces, we

get:

R
(m)
2,1 =

1

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

εn
σ (ρn

L − ρn
K) un

σ (ũn+1
σ + ũn+1

σ′ ) (ϕn
σ − ϕn

σ′ ),

where we recall that the notation σ = L → K means that the face σ separates K and L and the flow goes from
L to K at the time level n, and where εn

σ = ±1. Since |ϕn
σ − ϕn

σ′ | ≤ Cϕ |K| ≤ Cϕ (|Dσ| + |Dσ′ |), we get:

|R
(m)
2,1 | ≤

Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

(
|Dσ| + |Dσ′ |

)
|ρn

L − ρn
K | |un

σ| |ũ
n+1
σ + ũn+1

σ′ |.

Therefore, by the Cauchy−Schwarz inequality, we get:

|R
(m)
2,1 | ≤

Cϕ

4
(h(m))1/2

[N−1∑

n=0

δt
∑

σ=K|L∈Eint

|un
σ| (ρn

L − ρn
K)2
]1/2

×
[N−1∑

n=0

δt
∑

σ∈Eint,

σ=L→K, K=[σσ′]

(
|Dσ| + |Dσ′ |

)
|un

σ|
(
ũn+1

σ + ũn+1
σ′

)2]1/2

.

Since the ratio of the size of two neighboring meshes is bounded by the regularity assumption on the mesh, we
get from the estimate (3.47) on the solution:

|R
(m)
2,1 | ≤ C (h(m))1/2

[
‖u(m)‖L2(Ω×(0,T )) + ‖ũ(m)‖

2

L4(Ω×(0,T ))

]
, (3.58)

where C ∈ R+ does not depend on m, and so R
(m)
2,1 tends to zero when m tends to +∞. For R

(m)
2,2 , we have, by

the Cauchy−Schwarz inequality:

|R
(m)
2,2 | ≤ Cϕ

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| ρn+1
K |un

σ + un
σ′ | (ũn+1

σ − ũn+1
σ′ )

≤ Cϕ
h(m)

(ν(m))1/2
‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L2(Ω×(0,T ))

⎡
⎣

N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν(m)

hK
(ũn+1

σ − ũn+1
σ′ )2

⎤
⎦

1/2

,

and thus, thanks to the estimate (3.47):

|R
(m)
2,2 | ≤ C

h(m)

(ν(m))1/2
‖ρ(m)‖L∞(Ω×(0,T )) ‖u(m)‖L2(Ω×(0,T )),
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where C ∈ R+ does not depend on m. Therefore, this term also tends to zero when m tends to +∞.

Next, we turn to the term T
(m)
3 :

T
(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| pn+1
K

ϕn
σ′ − ϕn

σ

hK
= −

∫ T

0

∫

Ω

p(m)
ðxϕE dxdt,

and therefore,

lim
m−→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ∂xϕdxdt.

Let us finally study T
(m)
4 . Reordering the sums, we get:

T
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(ũn+1

σ − ũn+1
σ′ ) (ϕn

σ − ϕn
σ′ ).

The Cauchy−Schwarz inequality yields:

|T
(m)
4 | ≤

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(ũn+1

σ − ũn+1
σ′ )2

⎤
⎥⎦

1/2 ⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν(m)

hK
(ϕn

σ − ϕn
σ′ )2

⎤
⎥⎦

1/2

,

and thus, again in view of the estimate (3.47), this term tends to zero when ν(m) tends to zero. �

Remark 3.18 (On the “non appearance of void assumption”). The assumption that (1/ρ(m))m∈N is bounded
in L∞(Ω × (0, T )) (which, loosely speaking, means that the appearance of void is excluded) is used twice in the
proof of Theorem 3.17. We use it for the first time to obtain ū = ¯̃u. Here, the hypothesis may be circumvented
by replacing this conclusion by ρ̄ū = ρ̄¯̃u (or, in other words, ū = ¯̃u wherever ρ̄ = 0), which is easily obtained
from inequality (3.54) below. The second time is to obtain, as in the implicit case, the “non–weighted” estimate
of the density space translates (3.32) for γ ≥ 2, see Remark 3.8.

Remark 3.19 (Less sharp bounds and more general meshes). As in the implicit case, the assumption that the
ratio of the size of two neighboring cells is bounded, i.e. Assumption (ii) of Definition 3.5, is only used for the
remainder associated with the the convection term in the momentum balance. It may be avoided if we suppose
that the sequence of solution is uniformly bounded, replacing (3.58) by

|R
(m)
2,1 | ≤ C (h(m))1/2 ‖u(m)‖

1/2

L∞(Ω×(0,T )) ‖ũ(m)‖L∞(Ω×(0,T )).

We now turn to the entropy condition. For any piecewise constant function q on primal cells, we define its
L1(0, T ; BV (Ω)) norm by:

‖q‖T ,x,BV =
N∑

n=0

δt
∑

σ=K|L∈Eint

|qn
L − qn

K |. (3.59)

With this notation, we are now in position to state the following result.
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Theorem 3.20 (Entropy consistency, pressure correction scheme). Under the assumptions of Theorem 3.17,
we furthermore assume that:

- the sequence of regular meshes satisfies:

∀m ∈ N,
δt(m)

h(m)
≤ C, with h(m) = min

σ∈E
(m)
int

|hσ|,

and where C is a positive real number which can be greater than 1,

- the sequence (p(m))m∈N is uniformly bounded in the discrete L1(0, T ; BV (Ω)) norm defined by (3.59).

Then the limit (ρ̄, p̄, ū) satisfies the entropy condition (3.35).

Proof. Let ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. Again using the notations of Definition 3.6, we multiply the kinetic

balance equation (3.44) by ϕn
σ, and the elastic potential balance (3.19) by ϕn

K , sum over the faces and cells
respectively and over the time steps, to get:

∑

σ∈Eint

T n+1
σ ϕn

σ +
∑

K∈M

T n+1
K ϕn

K = −
∑

σ∈Eint

Rn+1
σ ϕn

σ −
∑

K∈M

Rn+1
K ϕn

K −
∑

σ∈Eint

Pn+1
σ ϕn

σ, (3.60)

where, for σ =
−−→
K|L, K = [

−→
σ′σ] and L = [

−−→
σσ′′],

T n+1
σ =

1

2

|Dσ|

δt

[
ρn

Dσ
(un+1

σ )2 − ρn−1
Dσ

(un
σ)2
]

+
1

2
Fn+1

L ũn+1
σ ũn+1

σ′′ −
1

2
Fn+1

K ũn+1
σ ũn+1

σ′ + (pn+1
L − pn+1

K ) un+1
σ ,

for K = [
−→
σσ′],

T n+1
K =

|K|

δt

[
H(ρn+1

K ) −H(ρn
K)
]

+ un+1
σ′ H(ρn+1

σ′ ) − un+1
σ H(ρn+1

σ ) + pn+1
K (un+1

σ′ − un+1
σ ),

the quantities Rn+1
σ and Pn+1

σ are given by (the one-dimensional version of) equation (3.45), and Rn+1
K is given

by (the one-dimensional version of) equation (3.20).

The discrete weak form of the entropy balance is obtained by integrating in time (i.e. summing over the

time steps) equation (3.60). We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 + R(m) + P (m) = 0 where T

(m)
1 ,

T
(m)
2 , T

(m)
4 , T

(m)
5 and R(m) are identical to their namesakes in the implicit case (see proof of Thm. 3.10, defined

by (3.37a), (3.37b), (3.37d), (3.37e) and (3.37f) respectively, and

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint,

K=[
−−→
σ′σ], L=[

−−→
σσ′′]

[
Fn+1

L ũn+1
σ ũn+1

σ′′ − Fn+1
K ũn+1

σ ũn+1
σ′

]
ϕn

σ, (3.61a)

P (m) =
N−1∑

n=0

δt
∑

σ∈Eint

Pn+1
σ ϕn

σ. (3.61b)

The terms T
(m)
1 , T

(m)
2 , T

(m)
4 , T

(m)
5 and R(m) were studied in the proof of Theorem 3.10. Let us then study the

kinetic energy convection term T
(m)
3 which reads, after reordering the summations:

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K ũn+1

σ ũn+1
σ′ (ϕn

σ′ − ϕn
σ).
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We write T m
3 = T

(m)
3 + R

(m)
3 , where

T
(m)
3 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K|

2
ρn

K

[
un

σ(ũn+1
σ )2 + un

σ′(ũn+1
σ′ )2

] ϕn
σ′ − ϕn

σ

hK

= −
1

2

∫ T

0

∫

Ω

ρ(m)(x, t − δt) u(m)(x, t − δt) (ũ(m)(x, t))2 ðxϕE dxdt,

so that

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxdt.

The remainder term R
(m)
3 reads:

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρn

σun
σ + ρn

σ′un
σ′) ũn+1

σ′ ũn+1
σ − ρn

K

(
un

σ (ũn+1
σ )2 + un

σ′ (ũn+1
σ′ )2

)]
(ϕn

σ′ − ϕn
σ).

Reordering the terms in the sum, we get:

R
(m)
3 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

⎡
⎢⎢⎣(ρ

n
σ ũn+1

σ′ − ρn
K ũn+1

σ )un
σ ũn+1

σ︸ ︷︷ ︸
D1

+ (ρn
σ′ ũn+1

σ − ρn
K ũn+1

σ′ )un
σ′ ũn+1

σ′︸ ︷︷ ︸
D2

⎤
⎥⎥⎦ (ϕn

σ′ − ϕn
σ).

Let us consider the term involving D1, and skip the exposition of the treatment of the term with D2, which

is similar. Using the identity 2(ab − cd) = (a − c)(b + d) + (a + c)(b − d), we split this first part of R
(m)
3 into

R
(m)
31 + R

(m)
32 , with:

R
(m)
31 = −

1

8

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

un
σ ũn+1

σ (ρn
σ − ρn

K) (ũn+1
σ′ + ũn+1

σ ) (ϕn
σ′ − ϕn

σ),

R
(m)
32 = −

1

8

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

un
σ ũn+1

σ (ρn
σ + ρn

K) (ũn+1
σ′ − ũn+1

σ ) (ϕn
σ′ − ϕn

σ).

Thanks to the regularity of ϕ, the Cauchy−Schwarz inequality yields:

|R
(m)
31 | ≤ Cϕ h1/2

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′ ]∈M

|un
σ| (ρn

σ − ρn
K)2

⎤
⎥⎦

1/2⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K| |un
σ|
(
ũn+1

σ (ũn+1
σ′ + ũn+1

σ )
)2
⎤
⎥⎦

1/2

,

and thus, invoking the estimate (3.47),

|R
(m)
31 | ≤ C (h(m))1/2

[
‖u(m)‖L2(Ω×(0,T )) + ‖ũ(m)‖

4

L8(Ω×(0,T ))

]
.

Similarly, we get:

|R
(m)
32 | ≤ Cϕ

h

ν1/2

⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν

hK
(ũn+1

σ′ − ũn+1
σ )2

⎤
⎥⎦

1/2 ⎡
⎢⎣

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

|K|
(
un

σũn+1
σ (ρn

σ + ρn
K)
)2
⎤
⎥⎦

1/2

,
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and thus:

|R
(m)
32 | ≤ C

h(m)

(ν(m))1/2

[
‖u(m)‖

3

L6(Ω×(0,T )) + ‖ũ(m)‖
3

L6(Ω×(0,T )) +
[
‖ρ(m)‖

3

L6(Ω×(0,T ))

]
.

Therefore, under the assumptions of the theorem, we have

lim
m−→+∞

T
(m)
3 = −

1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxdt. (3.62)

Together with the results which were obtained in the proof of Theorem 3.10, this yields

lim
m−→+∞

( 5∑

i=1

T
(m)
i + R(m)) ≥ −

∫ T

0

∫

Ω

[η ∂tϕ + (η + p)u ∂xϕ] dxdt −

∫

Ω

η0(x) ϕ(x, 0) dx.

In the proof of Theorem 3.10, we obtained that limm→+∞ R(m) ≥ 0. Furthermore, Lemma 3.16 implies that
limm→+∞ P (m) = 0, which concludes the proof of the theorem. �

4. The pressure correction scheme for the full Euler equations

We now turn to the development and study of a similar pressure correction scheme for the full Euler equa-
tions, that is for the system (1.2) assuming τ (u) = 0. Numerical schemes for the Euler equations have been
widely studied, and are very often based on Riemann solvers on the system consisting of the mass balance, the
momentum balance, and the total energy balance. We start this section by explaining why we use the internal
energy balance rather the the total energy in the correction scheme, and the precautions that must be taken in
order to compute correct shocks in this way.

4.1. Internal energy, kinetic energy and total energy

Let us suppose that the solution to the Navier–Stokes equations (1.2) is regular. As already mentioned, taking
the inner product of the momentum balance equation (1.2b) by u and using the mass balance equation, we
obtain the so-called kinetic energy balance equation:

1

2
∂t(ρ |u|

2) +
1

2
div(ρ |u|2u) + ∇p · u = div(τ (u)) · u. (4.1)

Subtracting this relation from the total energy balance, we obtain the internal energy balance equation:

∂t(ρe) + div(ρeu) + p div(u) = τ (u) : ∇u. (4.2)

Since,

– from thermodynamical arguments, τ (u) : ∇u ≥ 0;
– thanks to the mass balance equation, the first two terms in the left-hand side of (4.2) may be recast as a

transport operator: ∂t(ρe) + div(ρeu) = ρ [∂te + u · ∇e];
– and, finally, from the equation of state, the pressure vanishes when e = 0,

this equation implies that, if e ≥ 0 at t = 0 and with suitable boundary conditions, then e remains non-negative
at all times.

Our aim here is to build a scheme stable and accurate at all Mach numbers, and, in particular, which boils
down to a usual scheme for incompressible flows (or, more generally speaking, for the asymptotic model of
vanishing Mach number flows [45]) when the Mach number tends to zero. In these latter models, the natural
energy balance equation is the internal energy equation (4.2). In addition, discretizing (4.2) instead of the total
energy balance (1.2c) presents two advantages:
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– first, it avoids the space discretization of the total energy, which is rather unnatural for staggered schemes
since the degrees of freedom for the velocity and the scalar variables are not colocated,

– second, a suitable discretization of (4.2) may yield, “by construction” of the scheme, the positivity of the
internal energy [18].

However, in the inviscid case and for solutions with shocks, equation (4.2) (with τ = 0) is not equivalent
to the conservative total energy balance (1.2c) (with τ = 0); more precisely speaking, at the locations of
shocks, positive measures should replace, at the right-hand side of equation (4.2), the term τ (u) : ∇u which
is formally the product of vanishing quantities (for a Newtonian fluid, the viscosity) and infinite derivatives of
the velocity. Discretizing (4.2) instead of (1.2c) may thus yield a scheme which does not compute the correct
weak discontinuous solutions; in particular, the numerical solutions may present (smeared) shocks which do
not satisfy the Rankine–Hugoniot conditions associated with (1.2c). The essential result of this section is to
provide a solution to circumvent this problem. To this purpose, we closely mimic the above performed formal
computation:

– Starting from the discrete momentum balance equation, we derive a discrete kinetic energy balance (in fact,
this computation is already performed in the previous sections, since we use for the full Euler equations the
same discrete momentum balance as in the barotropic case). In this relation, residual terms which do no
tend to zero with space and time step appear (they are the discrete manifestations of the above mentioned
measures).

– These residual terms are then compensated by corrective terms in the internal energy balance.

We provide a theoretical justification of this process by showing that, in the 1D case, if the scheme is stable
and converges to a limit (in a sense to be defined), this limit satisfies a weak form of (1.2c) which implies the
correct Rankine–Hugoniot conditions. Then, we perform numerical tests which substantiate this analysis. A
fully implicit scheme was studied in [26] along with two pressure correction schemes: the first correction scheme
is appealing for its (relative) simplicity, but does not seem to warrant the sign of the internal energy (so that
the unconditional stability induced by the above mentioned conservation of the total energy property is lost);
the second scheme cures this problem, at the price of the introduction of an additional elliptic problem which
must be solved at the beginning of each time step to determine a tentative pressure. Here, we present a variant
of these schemes, that preserves the positivity of the internal energy thanks to a renormalization step which
only consists in a weighting of the discrete pressure gradient and does not require any elliptic solve (and which
is thus much less costly). As the correction scheme for barotropic flows, it is implemented in the industrial
open-source code CALIF3S [5]. Let us mention also that fully explicit versions have been studied [30, 31].

4.2. The scheme

We propose in this section a pressure correction scheme, which, as in the barotropic case, features a renor-
malization step for the pressure gradient. As previously mentioned, we add a corrective term in the internal
energy equation; we are able to show that this corrective term is non negative, which ensures the positivity of
the internal energy and the existence of a solution to the scheme.

With the notations that were introduced in Section 3.2.1, the algorithm reads, for 0 ≤ n ≤ N − 1:

Pressure gradient renormalization step:

∀σ ∈ E , (∇̃p)n+1
σ =

√
ρn

Dσ

ρn−1
Dσ

(∇p)n
σ. (4.3a)
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Prediction step – Solve for ũ
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
(ρn

Dσ
ũn+1

σ,i − ρn−1
Dσ

un
σ,i) +

∑

ǫ∈Ē(Dσ)

Fn
σ,ǫũ

n+1
ǫ,i − |Dσ| (∆

M
ũ)n+1

σ,i + |Dσ| (∇̃p)n+1
σ,i = 0. (4.3b)

Correction step – Solve for ρn+1, pn+1, en+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

|Dσ|

δt
ρn

Dσ
(un+1

σ,i − ũn+1
σ,i ) + |Dσ|

[
(∇p)n+1

σ,i − (∇̃p)n+1
σ,i

]
= 0, (4.3c)

∀K ∈ M,
|K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (4.3d)

∀K ∈ M,
|K|

δt
(ρn+1

K en+1
K − ρn

Ken
K) +

∑

σ∈E(K)

Fn+1
K,σ en+1

σ

+|K| pn+1
K (divu)n+1

K = Sn+1
K ,

(4.3e)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (4.3f)

where we make an upwind choice for e (again a crucial choice to ensure the positivity of the internal energy):

for σ = K|L ∈ Eint, en+1
σ =

∣∣∣∣∣
en+1

K if Fn+1
K,σ ≥ 0,

en+1
L otherwise.

(4.4)

The initialization of the scheme is performed in a way similar to the barotropic case. First, ρ−1, e0 and u
0 are

given by the average of the initial conditions ρ0, e0 and u0, i.e. by (3.43) and the following relation:

∀K ∈ M, e0
K =

1

|K|

∫

K

e0(x) dx. (4.5)

Then, we compute ρ0 by solving the mass balance equation (4.3d). Finally, the initial pressure p0 is computed
from the initial density ρ0 by the equation of state: ∀K ∈ M, p0

K = (γ − 1) ρ0
K e0

K . As in the barotropic case,
the objective of this procedure is to perform the first prediction step with (ρ−1

Dσ
)σ∈E , (ρ0

Dσ
)σ∈E and the dual

mass fluxes satisfying the mass balance.
There only remains to define the corrective terms Sn+1

K in the internal energy balance (4.3e), with the aim
to recover a consistent discretization of the total energy balance. The first idea to do this could be just to
sum the (discrete) kinetic energy balance with the internal energy balance: it is indeed possible for a colocated
discretization. But here, we face the fact that the kinetic energy balance is associated with the dual mesh, while
the internal energy balance is discretized on the primal one. The way to circumvent this difficulty is to remark
that we do not really need a discrete total energy balance; in fact, we only need to recover (a weak form of)
this equation when the mesh and time steps tend to zero. To this purpose, we choose the quantities (Sn+1

K ) in
such a way as to somewhat compensate the terms (Rn+1

σ,i ) defined by (3.45) appearing at the right-hand-side of
the discrete kinetic energy identity (3.44):

∀K ∈ M, Sn+1
K =

d∑

i=1

Sn+1
K,i ,
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with:

Sn+1
K,i =

1

2
ρn−1

K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|

δt

(
ũn+1

σ,i − un
σ,i

)2
+

∑

ǫ∈Ē
(i)
S

, ǫ∩K̄ 	=∅,
ǫ=Dσ|Dσ′

αK,ǫ ν hd−2
ǫ

(
ũn+1

σ,i − ũn+1
σ′,i

)2

. (4.6)

The coefficient αK,ǫ is fixed to 1 if the face ǫ is included in K, and this is the only situation to consider for the
RT and CR discretizations. For the MAC scheme, some dual faces are included in the primal cells, but some lie
on their boundary; for such a dual face ǫ, we denote by Nǫ the set of cells M such that M̄ ∩ ǫ = ∅ (the cardinal
of this set being always 4), and compute αK,ǫ by:

αK,ǫ =
|K|∑

M∈Nǫ
|M |

·

For a uniform grid, this formula yields αK,ǫ = 1/4.
The expression of the terms(Sn+1

K )K∈M is justified by the passage to the limit in the scheme (for a one-
dimensional problem) performed in Section 4.3. However, its expression may be anticipated, thanks to the
following remarks. First, we note that:

∑

K∈M

Sn+1
K −

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0. (4.7)

Indeed, for K ∈ M and σ = K|L, the first part of Sn+1
K,i , thanks to the expression (3.4) of the density at the

face ρn
Dσ

, results from a dispatching of the first part of the kinetic energy balance residual Rn+1
σ,i over the two

cells adjacent to σ:

1

2

|Dσ|

δt
ρn−1

Dσ

(
ũn+1

σ,i − un
σ,i

)2
=

1

2

|DK,σ|

δt
ρn−1

K

(
ũn+1

σ,i − un
σ,i

)2
︸ ︷︷ ︸

affected to K

+
1

2

|DL,σ|

δt
ρn−1

L

(
ũn+1

σ,i − un
σ,i

)2
︸ ︷︷ ︸

affected to L

.

For the second part of the remainder, a standard reordering of the sum yields:

d∑

i=1

∑

σ∈E
(i)
S

⎡
⎣ ∑

ǫ=Dσ|Dσ′

ν hd−2
ǫ

(
ũn+1

σ,i − ũn+1
σ′,i

)
⎤
⎦ ũn+1

σ,i =

d∑

i=1

∑

ǫ=Dσ|Dσ′∈Ē
(i)
S

ν hd−2
ǫ

(
ũn+1

σ,i − ũn+1
σ′,i

)2

.

One may wonder why we do not use in Sn+1
K the expression of this term as it is written in the remainder

Rn+1
σ,i , i.e., in other words, use the numerical diffusion multiplied by u instead of the dissipation. A first answer

is that we mimic what happens at the continuous level: the term which appears in the kinetic energy balance
is div

(
τ (u)

)
· u and the corresponding term in the internal energy balance is the dissipation τ (u) : ∇u. A

more involved argument is that the expression in Sn+1
K provides a positive source term to the internal energy

balance, and we may hope that the difference between the numerical diffusion multiplied by u and the associated
dissipation tends to zero (because the numerical diffusion tends to zero) in the sense of distributions. To have
an intuition of this fact, let us consider the toy elliptic problem, posed over Ω:

v − ν∆v = f,

where ν is a positive parameter and f ∈ L2(Ω). Assuming homogeneous Dirichlet boundary conditions, we
obtain by standard variational arguments ‖v‖L2(Ω) + ν1/2‖∇v‖L2(Ω)d ≤ C, with C only depending on Ω and f .

We thus get, with ϕ ∈ C∞
c (Ω):

∫

Ω

[
ν(∆v)v + ν|∇v|2

]
ϕdx = ν

∫

Ω

div(v∇v)ϕdx = −ν

∫

Ω

v∇v · ∇ϕdx,
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and so, finally, by the Cauchy−Schwarz inequality:

∣∣∣∣
∫

Ω

[
ν(∆v)v + ν|∇v|2

]
ϕdx

∣∣∣∣ ≤ C ‖∇ϕ‖L∞(Ω)d ν1/2,

so this term tends to zero if so does ν. A discrete analogue of this simple computation is used to pass to the
limit in the scheme in the next section (with a control on the unknown assumed and not proven).

Note that the term Sn+1
K is non-negative. Consequently, adapting the proof of ([18], Thm. 4.1) to cope with

this additional term, we obtain that the scheme admits at least one solution, which satisfies p ≥ 0, ρ ≥ 0 and
e ≥ 0. In addition, equation (4.7) shows that the scheme conserves the integral of the total energy over the
computational domain.

Theorem 4.1 (Existence and stability). Assume that for all K ∈ M, e0
K > 0 and ρ−1

K > 0. Then there exists
a solution to the scheme (4.3), which furthermore satisfies ρ0

K > 0 and, for 1 ≤ n ≤ N and K ∈ M, en
K > 0,

ρn
K > 0, and the following discrete analogue of the total energy balance:

∑

K∈M

|K| en
K +

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρn−1
Dσ

(un
σ,i)

2 + Rn

≤
∑

K∈M

|K| e0
K +

1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ−1
Dσ

(u0
σ,i)

2 + R0,

where:

Rn = δt2
∑

σ∈Eint

|Dσ|

ρn−1
Dσ

|(∇p)n
σ |

2 = δt2
∑

σ=K|L∈Eint

|σ|2

|Dσ| ρn−1
Dσ

(pn
K − pn

L)2.

4.3. Passing to the limit in the scheme (1D case)

We now undertake the passage to the limit in the scheme (4.3) in the one-dimensional case. Using the
notations (3.25)–(3.27), the scheme may be rewritten in “one-dimensional notations” as follows:

Initialization – Compute ρ−1, u0 and ρ0 by (3.53a) and e0 and p0 by:

∀K ∈ M, e0
K =

1

|K|

∫

K

e0(x) dx,

∀K ∈ M, p0
K = (γ − 1) ρ0

K e0
K .

(4.8a)

Pressure gradient renormalization step

∀σ = K|L ∈ Eint, (δ̃p)n+1
σ =

√
ρn

Dσ

ρn−1
Dσ

(pn
K − pn

L) . (4.8b)

Prediction step – Solve for ũn+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn

Dσ
ũn+1

σ − ρn−1
Dσ

un
σ) + Fn

L ũn+1
L − Fn

K ũn+1
K − |Dσ| (∆Mũ)n+1

σ + (δ̃p)n+1
σ = 0. (4.8c)
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Correction step – Solve for ρn+1, pn+1, en+1 and un+1:

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
ρn

Dσ
(un+1

σ − ũn+1
σ ) + (pn+1

L − pn+1
K ) − (δ̃p)n+1

σ = 0, (4.8d)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρn
K) + Fn+1

σ′ − Fn+1
σ = 0, (4.8e)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K en+1
K − ρn

Ken
K) + Fn+1

σ′ en+1
σ′ − Fn+1

σ en+1
σ

+pn+1
K (un+1

σ′ − un+1
σ ) = Sn+1

K ,
(4.8f)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (4.8g)

The corrective term Sn+1
K reads:

∀K = [σσ′], Sn+1
K =

|K|

4 δt
ρn−1

K

[(
ũn+1

σ − un
σ

)2
+
(
ũn+1

σ′ − un
σ′

)2]
+

ν

hK

(
ũn+1

σ − ũn+1
σ′

)2
. (4.9)

For discrete functions q and v defined on the primal and dual mesh, respectively, we define a discrete
L1((0, T ); BV (Ω)) norm by:

‖q‖T ,x,BV =
N∑

n=0

δt
∑

σ=K|L∈Eint

|qn
L − qn

K |, ‖v‖T ,x,BV =
N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ēint

|vn
σ′ − vn

σ |,

and a discrete L1(Ω; BV ((0, T ))) norm by:

‖q‖T ,t,BV =
∑

K∈M

|K|
N−1∑

n=0

|qn+1
K − qn

K |, ‖v‖T ,t,BV =
∑

σ∈E

|Dσ|
N−1∑

n=0

|vn+1
σ − vn

σ |.

For the proof of the consistency of the scheme (i.e. the proof of the Theorem 4.3 below), we need to introduce
the following stability assumptions on a sequence (ρ(m), p(m), e(m), ũ(m), u(m))m∈N of discrete solutions:

|(ρ(m))n
K | + |(p(m))n

K | + |(e(m))n
K | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.10a)

1

|(ρ(m))n
K |

≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.10b)

|(u(m))n
σ| + |(ũ(m))n

σ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (4.10c)

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N, (4.10d)

‖ρ(m)‖T ,t,BV + ‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (4.10e)

Note that we do not suppose any control on time discrete derivatives of ũ(m) (i.e. on ‖ũ(m)‖T ,t,BV ) and on the
discrete space derivatives of u(m) (i.e. on ‖u(m)‖T ,x,BV ). Note also that, by definition of the initial conditions
of the scheme, these inequalities imply that the functions ρ0, e0 and u0 belong to L∞(Ω) ∩ BV (Ω). As in the
barotropic case, we are not able to prove (4.10) for the solutions of the scheme; however, such inequalities are
satisfied by the “interpolation” (for instance, by taking the cell average) of the solution to a Riemann problem,
and are also observed in computations.

The following definition gathers the assumptions on the discretization which are needed in the proof of
Theorem 4.3 below.
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Definition 4.2 (Regular sequence of discretizations). We define a regular sequence of discretizations
(M(m), δt(m), ν(m))m∈N as a sequence of meshes, time steps and numerical diffusion coefficients which are
assumed to satisfy the following conditions:

(i) both the time step δt(m) and the size h(m) of the mesh M(m) tend to zero as m → +∞;
(ii) there exists C ∈ R+ (not necessarily lower than 1) such that the following CFL-like condition holds:

∀m ∈ N,
δt(m)

h(m)
≤ C, with h(m) = min

σ=K|L∈E
(m)
int

1

2
(hK + hL); (4.11)

(iii) there exists C ∈ R+ such that the sequence of numerical diffusion coefficients (ν(m))m∈N satisfies

lim
m→+∞

ν(m)

h(m)
≤ C.

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
[0, T )× Ω

)
:

−

∫

Ω×(0,T )

[
ρ ∂tϕ + ρ u ∂xϕ

]
dxdt −

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (4.12a)

−

∫

Ω×(0,T )

[
ρ u ∂tϕ + (ρ u2 + p) ∂xϕ

]
dxdt −

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (4.12b)

−

∫

Ω×(0,T )

[
ρ E ∂tϕ + (ρ E + p)u ∂xϕ

]
dxdt −

∫

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0, (4.12c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u2

0 + e0. (4.12d)

As in the barotropic case, these relations are not sufficient to define a weak solution to the problem, since
they do not imply anything about the boundary conditions, but they allow to derive the Rankine–Hugoniot
conditions.

We are now in position to state the following consistency result.

Theorem 4.3. Let Ω be an open bounded interval of R. Let (M(m), δt(m), ν(m))m∈N be a regular sequence of
discretizations in the sense of Definition 4.2. Let (ρ(m), p(m), e(m), ũ(m), u(m))m∈N be the corresponding sequence
of solutions. We suppose that this sequence satisfies the bounds (4.10) and converges in Lp(Ω × (0, T ))5, for
1 ≤ p < +∞, to (ρ̄, p̄, ē, ¯̃u, ū) ∈ L∞(Ω × (0, T ))5.

Then ¯̃u = ū and (ρ̄, p̄, ē, ū) satisfies the system (4.12).

Proof. Let us first check that ¯̃u = ū. We first note that thanks to assumptions (4.10a) and (4.10b), the pressure

prediction step (4.8b) yields that|(δ̃p)n+1
σ | ≤ C |pn

K − pn
L|. Therefore, from the expression of the correction step

for the velocity (4.8d), we have, again using assumption (4.10b):

‖u(m) − ũ(m)‖L1(Ω×(0,T )) ≤ Cδt ‖p(m)‖T ,x,BV

which, passing to the limit when m → +∞, yields the result.
We now observe that the stability assumptions (4.10) and the regularity assumptions for the discretization

of Definition 4.2 are stronger than the hypotheses made in the barotropic case (see Def. 3.5, Rem. 3.19 and
the assumptions of Thm. 3.20). In particular, combining L∞, space BV estimates and the assumption (iii) of
Definition 4.2 on the numerical diffusion coefficient, we can prove the same control on the space translates of
ρ and ũ as provided by the remainder terms (3.48) of the inequality (3.47). Consequently, the passage to the
limit in the scheme for the mass and momentum balance equations is the same as in the barotropic case.
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We thus only need to prove that (ρ̄, p̄, ē, ū) satisfies (4.12c). Let us first multiply the one dimensional version
of the discrete kinetic energy equation (3.44) by δt ϕn

σ and sum over the faces and the time steps. Similarly, we
multiply the discrete internal energy equation (4.8f) by δt ϕn

K , and sum over the primal cells and the time steps.

Summing the two obtained relations, we get T
(m)
1 + T̃

(m)
2 + T

(m)
3 + T̃

(m)
4 + T

(m)
5 = R(m), where the terms T

(m)
1 ,

T
(m)
3 , and T

(m)
5 are defined by (3.37a)–(3.37c) in the proof of Theorem 3.20, and

T̃
(m)
2 =

N−1∑

n=0

δt
∑

K∈M

|K|

δt

[
ρn+1

K en+1
K − ρn

Ken
K

]
ϕn

K , (4.13)

T̃
(m)
4 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
Fn+1

σ′ en+1
σ′ − Fn+1

σ en+1
σ

]
ϕn

K , (4.14)

R̃(m) = −
N−1∑

n=0

δt
∑

σ∈E

(
R̃n+1

σ − Pn+1
σ

)
ϕn

σ +

N−1∑

n=0

δt
∑

K∈M

Sn+1
K ϕn

K (4.15)

where, in the latter relation, the remainder term reads, for σ =
−−→
K|L ∈ Eint with K = [

−→
σ′σ] and L = [

−−→
σσ′′]:

R̃n+1
σ =

1

2

|Dσ|

δt
ρn−1

Dσ

[
ũn+1

σ − un
σ

]2
+ ũn+1

σ

[
ν

hK
(ũn+1

σ − ũn+1
σ′ ) +

ν

hL

(
ũn+1

σ − ũn+1
σ′′

)]
,

and where Pn+1
σ is defined by (3.45), and Sn+1

K by (4.9).

The study of the terms T
(m)
1 , T

(m)
3 and T

(m)
5 has already been performed in the proof of Theorem 3.20. The

study of the term T̃
(m)
2 (resp. T̃

(m)
4 ) is similar to that of the term T

(m)
2 (resp. T

(m)
4 ) of the proof of Theorem 3.20,

replacing the elastic potential H(ρ) by the internal energy e. Finally, we have to deal with the term R̃(m). Here,
the situation is different from Theorem 3.20 since we have to prove that this term tends to zero whereas for the
entropy inequality in the barotropic case, we only had to prove that it is non-negative at the limit of vanishing

time and space steps. We split R̃(m) into three terms: R̃(m) = R
(m)
δt + R

(m)
∆ + P (m) and give the expression of

each of these three terms hereafter. The first term reads:

R
(m)
δt = −

1

2

N−1∑

n=0

∑

σ∈E

|Dσ| ρn−1
Dσ

(ũn+1
σ − un

σ)2 ϕn
σ +

1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ| ρn−1
K (ũn+1

σ − un
σ)2 ϕn

K .

Thanks to the definition of the density on the faces, we get:

R
(m)
δt =

1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ| ρn−1
K (ũn+1

σ − un
σ)2 (ϕn

K − ϕn
σ),

and therefore, thanks to the regularity of ϕ:

∣∣∣R(m)
δt

∣∣∣ ≤ Cϕ h
N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ| ρn−1
K (ũn+1

σ − un
σ)2.

Using the assumed uniform bound in L∞(Ω × (0, T )) for the sequence (ρ(m))m∈N, we obtain that the remainder

R
(m)
δt satisfies |R

(m)
δt | ≤ C h(m)

(
R

(m)
δt,1 + R

(m)
δt,2

)
, where C is a real positive number, independent of m and

R
(m)
δt,1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ| (un+1
σ − un

σ)2, R
(m)
δt,2 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
(
un+1

σ − ũn+1
σ

)2
.
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The first of this term satisfies ∣∣∣R(m)
δt,1

∣∣∣ ≤ 2 ‖u(m)‖L∞(Ω×(0,T )) ‖u
(m)‖T ,t,BV ,

and, thanks once again to the expression of the velocity correction step (4.8d), we have for the second one:
∣∣∣R(m)

δt,2

∣∣∣ ≤ C ‖
1

ρ(m)
‖
L∞(Ω×(0,T ))

(
‖u(m)‖L∞(Ω×(0,T )) + ‖ũ(m)‖L∞(Ω×(0,T ))

)
‖p(m)‖T ,x,BV ,

where C is again a real positive number, independent of m. Hence R
(m)
δt tends to zero as m tends to +∞. Let

us now turn to R
(m)
∆ , which reads:

R
(m)
∆ = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint,

K=[
−−→
σ′σ], L=[

−−→
σσ′′]

ũn+1
σ

[
ν

hK
(ũn+1

σ − ũn+1
σ′ ) +

ν

hL
(ũn+1

σ − ũn+1
σ′′ )

]
ϕn

σ

+

N−1∑

n=0

δt
∑

K=[σσ′]∈M

ν

hK

(
ũn+1

σ − ũn+1
σ′

)2
ϕn

K .

As explained in Section 4.2, the general idea is now to recast this term as a discrete version of the integral over
space and time of a quantity of the form −u ∂xu ∂xϕ scaled by a numerical viscosity vanishing with the space
step; then, the supposed controls on the solution imply that the term tends to zero. Reordering the sums, we
get:

R
(m)
∆ =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν

hK
(ũn+1

σ − ũn+1
σ′ ) (ũn+1

σ′ ϕn
σ′ − ũn+1

σ ϕn
σ) +

ν

hK

(
ũn+1

σ′ − ũn+1
σ

)2
ϕn

K ,

and thus:

R
(m)
∆ =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ν

hK
(ũn+1

σ − ũn+1
σ′ )

[
ũn+1

σ (ϕn
K − ϕn

σ) + ũn+1
σ′ (ϕn

σ′ − ϕn
K)
]
.

We thus get, thanks to the regularity of ϕ:

|R
(m)
∆ | ≤ ν Cϕ ‖ũ(m)‖L∞(Ω×(0,T )) ‖ũ

(m)‖T ,x,BV ,

which yields the desired estimate. Finally, P (m) reads:

P (m) =
N−1∑

n=0

δt
∑

σ∈E

Pn+1
σ ϕn

σ,

and the fact that this term tends to zero is stated in Lemma 3.16. This concludes the proof. �

4.4. Numerical tests

In this section, we assess the behaviour of the scheme on a one dimensional Riemann problem. We choose
initial conditions such that the structure of the solution consists in two shock waves, separated by the contact
discontinuity, with sufficiently strong shocks to allow an easy discrimination of correct numerical solutions.
These initial conditions are those proposed in ([63], Chap. 4), for the test referred to as Test 5:

left state:

⎡
⎣

ρleft

uleft

pleft

⎤
⎦ =

⎡
⎣

5.99924
19.5975
460.894

⎤
⎦ right state:

⎡
⎣

ρright

uright

pright

⎤
⎦ =

⎡
⎣

5.99242
−6.19633
46.0950

⎤
⎦.

The problem is posed over Ω = (−0.5, 0.5), and the discontinuity is initially located at x = 0.
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At the boundaries, since, in this test, the flow is entering the domain, the solution is prescribed (which,
in fact, is unimportant, the solution being constant at any time in a sufficiently large neighborhood of these
boundaries). Previous numerical experiments addressing barotropic flows [27] showed that, at least for one
dimensional computations with schemes similar to the one under study here, it was not necessary to upwind the
convection term in the momentum balance equation; consequently, we only employ a centered approximation
of the velocity at the dual faces.

The computations are performed with the open-source software CALIF3S [5].
The density fields obtained with h = 1/2000 (or a number of cells n = 2000) at t = 0.035, with and without

assembling the corrective source term in the internal energy balance (SK)K∈M, together with the analytical
solution, are shown on Figure 2. The density and the pressure obtained, still with and without corrective terms,
for various meshes, are plotted on Figures 3 and 4 respectively. For these computations, we take δt = h/20,
which yields a cfl number, with respect to the material velocity only, close to one. The first conclusion is that
both schemes seem to converge, but the corrective term is necessary to obtain the right solution. In this case, for
instance, we obtain the correct intermediate state for the pressure and velocity up to four digits in the essential
part of the corresponding zone:

(analytical) intermediate state:

[
p∗

u∗

]
=

[
1691.65
8.68977

]
for x ∈ (0.028, 0.428)

numerical results:

∣∣∣∣∣
p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417).

Without a corrective term, one can check that the obtained solution is not a weak solution to the Euler
system: indeed, the Rankine–Hugoniot condition applied to the total energy balance, with the states obtained
numerically, yields a right shock speed slightly greater than the analytical solution one, while the same shock
speed obtained numerically is clearly lower.

We also observe that the scheme is rather diffusive especially for contact discontinuities for which the beneficial
compressive effect of the shocks does not apply. More accurate variants may certainly be derived, using for
instance MUSCL-like techniques; this work is underway [17].

In order to check the consistency of the scheme, we give in the table below the L1(Ω)-norm of the difference
between the numerical and the exact solution (denoted (ρex, pex, uex)) at t = 0.035, for various grids and still
for δt = h/20.

h ‖ρ − ρex‖L1(Ω) ‖p − pex‖L1(Ω) ‖u − uex‖L1(Ω)

1/250 0.0662 1.235 0.00911
1/500 0.0452 0.619 0.00437
1/1000 0.0313 0.365 0.00232
1/2000 0.0215 0.170 0.00125
1/4000 0.0148 0.0849 0.000625
1/8000 0.0102 0.0357 0.000358

We observe a convergence rate of approximatively 1 for the variables which are continuous at the contact
discontinuity (p and u) and 1/2 for the other ones (in the table, only ρ). Since, as explained above, the error
essentially lies at the jumps of the solution, it means that a shock is captured in approximatively the same
number of cells, for any of the meshes used in this test; by a simple computation, this implies that the corrective
term (SK)K∈M does not tend to zero.

5. Conclusion, perspectives

In this work, we studied staggered implicit and semi-implicit schemes which had been found earlier to be
very efficient for viscous compressible flows [14–16]. We were able to show here that they are also well adapted
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Figure 2. Test 5 of [63], Chapter 4 - Density obtained with n = 2000 cells, with and without
corrective source terms, and analytical solution.
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Figure 3. Test 5 of ([63], Chap. 4) – Density obtained with various meshes, with (left) and
without (right) corrective source terms.

to the shallow water equations or barotropic Euler equations. We also showed that, with a careful discretization
of the internal energy equation, they are again an efficient choice for the full Euler equations.

There are several open questions under study at the present time or that will be in the near future:

– A proof of the consistency of the scheme in the multidimensional case is underway: there is a real difficulty in
going from the 1D case that we studied here in Sections 3.1.3, 3.2.3 and 4.3 to the multidimensional case, due
to the intricate definition of the nonlinear convection term in the momentum balance equation, which makes
complex the passage to the limit in this term. This difficulty has been adressed both for the fluxes defined on
unstructured meshes, with the Crouzeix−Raviart and Rannacher−Turek finite element unknowns [42], and
in the MAC case [29].
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Figure 4. Test 5 of ([63], Chap. 4) – pressure obtained with various meshes, with (left) and
without (right) corrective source terms.

– The consistency of the scheme with the entropy condition in the case of the full Euler equation is an open ques-
tion, although the numerical results suggest that this is true. We shall continue to investigate this important
issue.

– Comparisons are currently being performed, for the proposed pressure correction scheme, between the present
staggered discretization and a colocated version (density, pressure and velocity unknowns all in the cells), for
the Euler equations [62].

– An explicit version of this scheme has been studied both for the shallow water and Euler equations [30].
For this time discretization, higher order schemes using a MUSCL technique [56] have been studied and
implemented [17].

– Finally, setting ρ to a constant in the pressure correction scheme yields the usual projection scheme for
the incompressible Euler (or Navier–Stokes) equations. A natural question is therefore to know whether the
scheme is indeed asymptotic preserving: does the approximate solution tend to the incompressible solution
as the Mach number tends to 0? This question should be addressed in the near future.

Appendix A. Some results associated

with finite volume convection operators

We gather in this section some results concerning the finite volume discretization of the two convection
operators which appear in the Navier–Stokes equations:

– the convection operator C appearing in the mass balance, which reads, at the continuous level,

ρ �→ C(ρ) = ∂tρ + div(ρu), (A.1)

where u stands for a given velocity field (which is not assumed to satisfy any divergence constraint),
– the convection operator Cρ appearing in the momentum and energy balances, which reads, in the contin-

uous setting,
z �→ Cρ(z) = ∂t(ρz) + div(ρzu), (A.2)

where ρ (resp. u) stands for a given scalar (resp. vector) field; we wish to obtain some property of Cρ

under the assumption that ρ and u satisfy a mass balance equation, i.e. ∂tρ + div(ρu) = 0.

Multiplying these operators by functions depending on the unknown is a classical technique to obtain convection
operators acting over different variables, possibly with residual terms: one may think, for instance, to the theory
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of renormalized solutions or entropy solutions for the operator C, or, in fluid mechanics, to the derivation of the
so-called kinetic energy transport identity for the operator Cρ, with z standing for a component of the velocity.
The results provided in this section are the discrete analogs of these properties.

We begin with a property of the convection operator C defined by (A.1); at the continuous level, this property
may be formally obtained as follows. Let ψ be a regular function from (0, +∞) to R; then:

ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u · ∇ρ + ψ′(ρ) ρ divu = ∂t(ψ(ρ)) + u · ∇ψ(ρ) + ρ ψ′(ρ) divu;

adding and subtracting ψ(ρ) divu yields:

ψ′(ρ) C(ρ) = ∂t

(
ψ(ρ)
)

+ div
(
ψ(ρ)u

)
+
(
ρψ′(ρ) − ψ(ρ)

)
divu. (A.3)

This computation is of course completely formal and only valid for regular functions ρ and u. The following
lemma states a discrete analogue to (A.3), and its proof follows the formal computation which we just described.

Lemma A.1. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3), and let E(P ) be the set of
its edges (resp. faces). Let ψ be a continuously differentiable function defined over (0, +∞). Let ρ∗P > 0, ρP > 0,
δt > 0; consider three families (ρη)η∈E(P ) ⊂ R+ \ {0}, (Vη)η∈E(P ) ⊂ R and (Fη)η∈E(P ) ⊂ R such that

∀η ∈ E(P ), Fη = ρη Vη,

and define:

RP,δt =

⎡
⎣ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη

⎤
⎦ψ′(ρP ) (A.4)

−

⎡
⎣ |P |

δt

(
ψ(ρP ) − ψ(ρ∗P )

)
+
∑

η∈E(P )

ψ(ρη) Vη + (ρP ψ′(ρP ) − ψ(ρP ))
∑

η∈E(P )

Vη

⎤
⎦ (A.5)

Then

(i) If ψ is convex and ρη = ρP whenever Vη > 0, then RP,δt ≥ 0.
(ii) If ψ is twice continuously differentiable then

RP,δt =
1

2

|P |

δt
ψ′′(ρP ) (ρP − ρ∗P )2 −

1

2

∑

η∈E(P )

Vη ψ′′(ρη) (ρη − ρP )2,

with ρP ∈ [min(ρP , ρ∗P ), max(ρP , ρ∗P )] and ∀η ∈ E(P ), ρη ∈ [min(ρη, ρP ), max(ρη, ρP )].

Proof. We have:

⎡
⎣ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη

⎤
⎦ ψ′(ρP ) =

|P |

δt
(ρP − ρ∗P ) ψ′(ρP ) +

∑

η∈E(P )

ψ(ρη) Vη

+
∑

η∈E(P )

[ρηψ′(ρP ) − ψ(ρη)] Vη,

so the remainder term RP,δt reads RP,δt =
|P |

δt
rP +

∑
η∈E(P ) Vη rη, with:

rP = (ρP − ρ∗P ) ψ′(ρP ) −
[
ψ(ρP ) − ψ(ρ∗P )

]
, rη = ρηψ′(ρP ) − ψ(ρη) −

[
ρP ψ′(ρP ) − ψ(ρP )

]
.
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If the function ψ is convex, rP is non-negative while rη is non-positive (and vanishes if ρη = ρP ). If ψ is twice
continuously differentiable, a Taylor expansion gives that:

(ρP − ρ∗P )ψ′(ρP ) = ψ(ρP ) − ψ(ρ∗P ) +
1

2
ψ

′′

(ρP )(ρP − ρ∗P )2,

ρηψ′(ρP ) − ψ(ρη) = ρP ψ′(ρP ) − ψ(ρP ) −
1

2
ψ′′(ρη)(ρη − ρP )2,

with ρP ∈ [min(ρP , ρ∗P ), max(ρP , ρ∗P )] and for any η ∈ E(P ), ρη ∈ [min(ρη, ρP ), max(ρη, ρP )]; hence the re-
sult. �

We now turn to the momentum convection operator Cρ defined by (A.2); formally, using twice the assumption
∂tρ + div(ρu) = 0 yields:

ψ′(z) Cρ(z) =ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u · ∇z

]

= ρ
[
∂tψ(z) + u · ∇ψ(z)

]
= ∂t

(
ρ ψ(z)

)
+ div

(
ρ ψ(z)u

)
.

Taking for z a component of the velocity field, this relation is the central argument used to derive the kinetic
energy balance. The following lemma states a discrete counterpart of this identity.

Lemma A.2. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3) and let E(P ) be the set of
its edges (resp. faces). Let ρ∗P > 0, ρP > 0, δt > 0, and (Fη)η∈E(P ) ⊂ R be such that

|P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

Fη = 0. (A.6)

Let ψ be a continuously differentiable function defined over (0, +∞). For u∗
P ∈ R, uP ∈ R and (uη)η∈E(P ) ⊂ R

let us define:

RP,δt =

⎡
⎣ |P |

δt

(
ρP uP − ρ∗P u∗

P

)
+
∑

η∈E(P )

Fη uη

⎤
⎦ ψ′(uP )

−

⎡
⎣ |P |

δt

[
ρP ψ(uP ) − ρ∗P ψ(u∗

P )
]
+
∑

η∈E(P )

Fη ψ(uη)

⎤
⎦ . (A.7)

Then:

(i) If ψ is convex and uη = uP whenever Fη > 0, then RP,δt ≥ 0.
(ii) If ψ is twice continuously differentiable, then

RP,δt =
1

2

|P |

δt
ρ∗P ψ′′(uP )(uP − u∗

P )2 −
1

2

∑

η∈E(P )

Fη ψ′′(uη) (uη − uP )2, (A.8)

with, uP ∈ [min(uP , u∗
P ), max(uP , u∗

P )] and, ∀η ∈ E(P ), uη ∈ [min(uη, uP ), max(uη, uP )].
(iii) As a consequence of (ii), for ψ defined by ψ(s) = s2/2, and ∀η ∈ E(P ), uη such that uη = (uP + uPη

)/2
(this is simply obtained by defining uPη

= 2 uη − uP ), we get the following identity:
⎡
⎣ |P |

δt
(ρP uP − ρ∗P u∗

P ) +
∑

η∈E(P )

Fη uη

⎤
⎦ uP =

1

2

|P |

δt

[
ρP u2

P − ρ∗P (u∗
P )2
]
+

1

2

∑

η∈E(P )

Fη uP uPη
+ R̃P,δt,

(A.9)
with

R̃P,δt =
1

2

|P |

δt
ρ∗P (uP − u∗

P )2,
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Proof. Let TP be defined by:

TP =

⎡
⎣ |P |

δt
(ρP uP − ρ∗P u∗

P ) +
∑

η∈E(P )

Fη uη

⎤
⎦ψ′(uP ).

Using equation (A.6), we obtain:

TP =

⎡
⎣ |P |

δt
ρ∗P (uP − u∗

P ) +
∑

η∈E(P )

Fη(uη − uP )

⎤
⎦ψ′(uP ).

We now define the remainder terms rP and (rη)η∈E(P ) by:

rP = (uP − u∗
P ) ψ′(uP ) −

[
ψ(uP ) − ψ(u∗

P )
]
, rη = (uP − uη) ψ′(uP ) −

[
ψ(uP ) − ψ(uη)

]
.

With these notations, we get:

TP =
|P |

δt
ρ∗P
[
ψ(uP ) − ψ(u∗

P )
]
+
∑

η∈E(P )

Fη

[
ψ(uη) − ψ(uP )

]
+

|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη.

Using equation (A.6) once again, we have:

TP =
|P |

δt

[
ρP ψ(uP ) − ρ∗P ψ(u∗

P )
]
+
∑

η∈E(P )

Fη ψ(uη) +
|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη,

and thus:

RP,δt =
|P |

δt
ρ∗P rP −

∑

η∈E(P )

Fη rη.

If ψ is convex, the remainder terms rP and (rη)η∈E(P ) are non-negative, and if uη = uP , rη = 0; hence, if we
suppose that uη = uP when Fη ≥ 0, then RP,δt ≥ 0. If ψ is twice continuously differentiable, a Taylor expansion
yields:

rP =
1

2
ψ′′(uP ) (up − u∗

p)
2, rη =

1

2
ψ′′(uη) (uη − up)

2

with uP ∈ [min(uP , u∗
P ), max(uP , u∗

P )] and, ∀η ∈ E(P ), uη ∈ [min(uη, uP ), max(uη, uP )]. Thus (ii) holds. The
assertion (iii) is then a direct consequence of (ii). �
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[27] R. Herbin, W. Kheriji and J.-C. Latché, Pressure correction staggered schemes for barotropic monophasic and two-phase flows.
Comput. Fluids 88 (2013) 524–542.
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[30] R. Herbin, J.-C. Latché and T. Nguyen, An explicit staggered scheme for the shallow water and Euler equations. Submitted
(2013).
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